1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Sensor Protocol
4 *
5 * Copyright (C) 2018-2022 ARM Ltd.
6 */
7
8 #define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/scmi_protocol.h>
13
14 #include "protocols.h"
15 #include "notify.h"
16
17 #define SCMI_MAX_NUM_SENSOR_AXIS 63
18 #define SCMIv2_SENSOR_PROTOCOL 0x10000
19
20 enum scmi_sensor_protocol_cmd {
21 SENSOR_DESCRIPTION_GET = 0x3,
22 SENSOR_TRIP_POINT_NOTIFY = 0x4,
23 SENSOR_TRIP_POINT_CONFIG = 0x5,
24 SENSOR_READING_GET = 0x6,
25 SENSOR_AXIS_DESCRIPTION_GET = 0x7,
26 SENSOR_LIST_UPDATE_INTERVALS = 0x8,
27 SENSOR_CONFIG_GET = 0x9,
28 SENSOR_CONFIG_SET = 0xA,
29 SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
30 SENSOR_NAME_GET = 0xC,
31 SENSOR_AXIS_NAME_GET = 0xD,
32 };
33
34 struct scmi_msg_resp_sensor_attributes {
35 __le16 num_sensors;
36 u8 max_requests;
37 u8 reserved;
38 __le32 reg_addr_low;
39 __le32 reg_addr_high;
40 __le32 reg_size;
41 };
42
43 /* v3 attributes_low macros */
44 #define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x))
45 #define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x))
46 #define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x))
47 #define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x))
48
49 /* v2 attributes_high macros */
50 #define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x))
51 #define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x))
52
53 /* v3 attributes_high macros */
54 #define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x))
55 #define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x))
56
57 /* v3 resolution macros */
58 #define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x))
59 #define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x))
60
61 struct scmi_msg_resp_attrs {
62 __le32 min_range_low;
63 __le32 min_range_high;
64 __le32 max_range_low;
65 __le32 max_range_high;
66 };
67
68 struct scmi_msg_sensor_description {
69 __le32 desc_index;
70 };
71
72 struct scmi_msg_resp_sensor_description {
73 __le16 num_returned;
74 __le16 num_remaining;
75 struct scmi_sensor_descriptor {
76 __le32 id;
77 __le32 attributes_low;
78 /* Common attributes_low macros */
79 #define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x))
80 #define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x))
81 #define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x))
82 __le32 attributes_high;
83 /* Common attributes_high macros */
84 #define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x))
85 #define SENSOR_SCALE_SIGN BIT(4)
86 #define SENSOR_SCALE_EXTEND GENMASK(31, 5)
87 #define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x))
88 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
89 /* only for version > 2.0 */
90 __le32 power;
91 __le32 resolution;
92 struct scmi_msg_resp_attrs scalar_attrs;
93 } desc[];
94 };
95
96 /* Base scmi_sensor_descriptor size excluding extended attrs after name */
97 #define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28
98
99 /* Sign extend to a full s32 */
100 #define S32_EXT(v) \
101 ({ \
102 int __v = (v); \
103 \
104 if (__v & SENSOR_SCALE_SIGN) \
105 __v |= SENSOR_SCALE_EXTEND; \
106 __v; \
107 })
108
109 struct scmi_msg_sensor_axis_description_get {
110 __le32 id;
111 __le32 axis_desc_index;
112 };
113
114 struct scmi_msg_resp_sensor_axis_description {
115 __le32 num_axis_flags;
116 #define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x))
117 #define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x))
118 struct scmi_axis_descriptor {
119 __le32 id;
120 __le32 attributes_low;
121 #define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
122 __le32 attributes_high;
123 u8 name[SCMI_SHORT_NAME_MAX_SIZE];
124 __le32 resolution;
125 struct scmi_msg_resp_attrs attrs;
126 } desc[];
127 };
128
129 struct scmi_msg_resp_sensor_axis_names_description {
130 __le32 num_axis_flags;
131 struct scmi_sensor_axis_name_descriptor {
132 __le32 axis_id;
133 u8 name[SCMI_MAX_STR_SIZE];
134 } desc[];
135 };
136
137 /* Base scmi_axis_descriptor size excluding extended attrs after name */
138 #define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28
139
140 struct scmi_msg_sensor_list_update_intervals {
141 __le32 id;
142 __le32 index;
143 };
144
145 struct scmi_msg_resp_sensor_list_update_intervals {
146 __le32 num_intervals_flags;
147 #define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x))
148 #define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x))
149 #define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x))
150 __le32 intervals[];
151 };
152
153 struct scmi_msg_sensor_request_notify {
154 __le32 id;
155 __le32 event_control;
156 #define SENSOR_NOTIFY_ALL BIT(0)
157 };
158
159 struct scmi_msg_set_sensor_trip_point {
160 __le32 id;
161 __le32 event_control;
162 #define SENSOR_TP_EVENT_MASK (0x3)
163 #define SENSOR_TP_DISABLED 0x0
164 #define SENSOR_TP_POSITIVE 0x1
165 #define SENSOR_TP_NEGATIVE 0x2
166 #define SENSOR_TP_BOTH 0x3
167 #define SENSOR_TP_ID(x) (((x) & 0xff) << 4)
168 __le32 value_low;
169 __le32 value_high;
170 };
171
172 struct scmi_msg_sensor_config_set {
173 __le32 id;
174 __le32 sensor_config;
175 };
176
177 struct scmi_msg_sensor_reading_get {
178 __le32 id;
179 __le32 flags;
180 #define SENSOR_READ_ASYNC BIT(0)
181 };
182
183 struct scmi_resp_sensor_reading_complete {
184 __le32 id;
185 __le32 readings_low;
186 __le32 readings_high;
187 };
188
189 struct scmi_sensor_reading_resp {
190 __le32 sensor_value_low;
191 __le32 sensor_value_high;
192 __le32 timestamp_low;
193 __le32 timestamp_high;
194 };
195
196 struct scmi_resp_sensor_reading_complete_v3 {
197 __le32 id;
198 struct scmi_sensor_reading_resp readings[];
199 };
200
201 struct scmi_sensor_trip_notify_payld {
202 __le32 agent_id;
203 __le32 sensor_id;
204 __le32 trip_point_desc;
205 };
206
207 struct scmi_sensor_update_notify_payld {
208 __le32 agent_id;
209 __le32 sensor_id;
210 struct scmi_sensor_reading_resp readings[];
211 };
212
213 struct sensors_info {
214 u32 version;
215 int num_sensors;
216 int max_requests;
217 u64 reg_addr;
218 u32 reg_size;
219 struct scmi_sensor_info *sensors;
220 };
221
scmi_sensor_attributes_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)222 static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
223 struct sensors_info *si)
224 {
225 int ret;
226 struct scmi_xfer *t;
227 struct scmi_msg_resp_sensor_attributes *attr;
228
229 ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
230 0, sizeof(*attr), &t);
231 if (ret)
232 return ret;
233
234 attr = t->rx.buf;
235
236 ret = ph->xops->do_xfer(ph, t);
237 if (!ret) {
238 si->num_sensors = le16_to_cpu(attr->num_sensors);
239 si->max_requests = attr->max_requests;
240 si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
241 (u64)le32_to_cpu(attr->reg_addr_high) << 32;
242 si->reg_size = le32_to_cpu(attr->reg_size);
243 }
244
245 ph->xops->xfer_put(ph, t);
246 return ret;
247 }
248
scmi_parse_range_attrs(struct scmi_range_attrs * out,const struct scmi_msg_resp_attrs * in)249 static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
250 const struct scmi_msg_resp_attrs *in)
251 {
252 out->min_range = get_unaligned_le64((void *)&in->min_range_low);
253 out->max_range = get_unaligned_le64((void *)&in->max_range_low);
254 }
255
256 struct scmi_sens_ipriv {
257 void *priv;
258 struct device *dev;
259 };
260
iter_intervals_prepare_message(void * message,unsigned int desc_index,const void * p)261 static void iter_intervals_prepare_message(void *message,
262 unsigned int desc_index,
263 const void *p)
264 {
265 struct scmi_msg_sensor_list_update_intervals *msg = message;
266 const struct scmi_sensor_info *s;
267
268 s = ((const struct scmi_sens_ipriv *)p)->priv;
269 /* Set the number of sensors to be skipped/already read */
270 msg->id = cpu_to_le32(s->id);
271 msg->index = cpu_to_le32(desc_index);
272 }
273
iter_intervals_update_state(struct scmi_iterator_state * st,const void * response,void * p)274 static int iter_intervals_update_state(struct scmi_iterator_state *st,
275 const void *response, void *p)
276 {
277 u32 flags;
278 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
279 struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
280 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
281
282 flags = le32_to_cpu(r->num_intervals_flags);
283 st->num_returned = NUM_INTERVALS_RETURNED(flags);
284 st->num_remaining = NUM_INTERVALS_REMAINING(flags);
285
286 /*
287 * Max intervals is not declared previously anywhere so we
288 * assume it's returned+remaining on first call.
289 */
290 if (!st->max_resources) {
291 s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
292 s->intervals.count = st->num_returned + st->num_remaining;
293 /* segmented intervals are reported in one triplet */
294 if (s->intervals.segmented &&
295 (st->num_remaining || st->num_returned != 3)) {
296 dev_err(dev,
297 "Sensor ID:%d advertises an invalid segmented interval (%d)\n",
298 s->id, s->intervals.count);
299 s->intervals.segmented = false;
300 s->intervals.count = 0;
301 return -EINVAL;
302 }
303 /* Direct allocation when exceeding pre-allocated */
304 if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
305 s->intervals.desc =
306 devm_kcalloc(dev,
307 s->intervals.count,
308 sizeof(*s->intervals.desc),
309 GFP_KERNEL);
310 if (!s->intervals.desc) {
311 s->intervals.segmented = false;
312 s->intervals.count = 0;
313 return -ENOMEM;
314 }
315 }
316
317 st->max_resources = s->intervals.count;
318 }
319
320 return 0;
321 }
322
323 static int
iter_intervals_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * p)324 iter_intervals_process_response(const struct scmi_protocol_handle *ph,
325 const void *response,
326 struct scmi_iterator_state *st, void *p)
327 {
328 const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
329 struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
330
331 s->intervals.desc[st->desc_index + st->loop_idx] =
332 le32_to_cpu(r->intervals[st->loop_idx]);
333
334 return 0;
335 }
336
scmi_sensor_update_intervals(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)337 static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
338 struct scmi_sensor_info *s)
339 {
340 void *iter;
341 struct scmi_iterator_ops ops = {
342 .prepare_message = iter_intervals_prepare_message,
343 .update_state = iter_intervals_update_state,
344 .process_response = iter_intervals_process_response,
345 };
346 struct scmi_sens_ipriv upriv = {
347 .priv = s,
348 .dev = ph->dev,
349 };
350
351 iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
352 SENSOR_LIST_UPDATE_INTERVALS,
353 sizeof(struct scmi_msg_sensor_list_update_intervals),
354 &upriv);
355 if (IS_ERR(iter))
356 return PTR_ERR(iter);
357
358 return ph->hops->iter_response_run(iter);
359 }
360
361 struct scmi_apriv {
362 bool any_axes_support_extended_names;
363 struct scmi_sensor_info *s;
364 };
365
iter_axes_desc_prepare_message(void * message,const unsigned int desc_index,const void * priv)366 static void iter_axes_desc_prepare_message(void *message,
367 const unsigned int desc_index,
368 const void *priv)
369 {
370 struct scmi_msg_sensor_axis_description_get *msg = message;
371 const struct scmi_apriv *apriv = priv;
372
373 /* Set the number of sensors to be skipped/already read */
374 msg->id = cpu_to_le32(apriv->s->id);
375 msg->axis_desc_index = cpu_to_le32(desc_index);
376 }
377
378 static int
iter_axes_desc_update_state(struct scmi_iterator_state * st,const void * response,void * priv)379 iter_axes_desc_update_state(struct scmi_iterator_state *st,
380 const void *response, void *priv)
381 {
382 u32 flags;
383 const struct scmi_msg_resp_sensor_axis_description *r = response;
384
385 flags = le32_to_cpu(r->num_axis_flags);
386 st->num_returned = NUM_AXIS_RETURNED(flags);
387 st->num_remaining = NUM_AXIS_REMAINING(flags);
388 st->priv = (void *)&r->desc[0];
389
390 return 0;
391 }
392
393 static int
iter_axes_desc_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)394 iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
395 const void *response,
396 struct scmi_iterator_state *st, void *priv)
397 {
398 u32 attrh, attrl;
399 struct scmi_sensor_axis_info *a;
400 size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
401 struct scmi_apriv *apriv = priv;
402 const struct scmi_axis_descriptor *adesc = st->priv;
403
404 attrl = le32_to_cpu(adesc->attributes_low);
405 if (SUPPORTS_EXTENDED_AXIS_NAMES(attrl))
406 apriv->any_axes_support_extended_names = true;
407
408 a = &apriv->s->axis[st->desc_index + st->loop_idx];
409 a->id = le32_to_cpu(adesc->id);
410 a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
411
412 attrh = le32_to_cpu(adesc->attributes_high);
413 a->scale = S32_EXT(SENSOR_SCALE(attrh));
414 a->type = SENSOR_TYPE(attrh);
415 strscpy(a->name, adesc->name, SCMI_SHORT_NAME_MAX_SIZE);
416
417 if (a->extended_attrs) {
418 unsigned int ares = le32_to_cpu(adesc->resolution);
419
420 a->resolution = SENSOR_RES(ares);
421 a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
422 dsize += sizeof(adesc->resolution);
423
424 scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
425 dsize += sizeof(adesc->attrs);
426 }
427 st->priv = ((u8 *)adesc + dsize);
428
429 return 0;
430 }
431
432 static int
iter_axes_extended_name_update_state(struct scmi_iterator_state * st,const void * response,void * priv)433 iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
434 const void *response, void *priv)
435 {
436 u32 flags;
437 const struct scmi_msg_resp_sensor_axis_names_description *r = response;
438
439 flags = le32_to_cpu(r->num_axis_flags);
440 st->num_returned = NUM_AXIS_RETURNED(flags);
441 st->num_remaining = NUM_AXIS_REMAINING(flags);
442 st->priv = (void *)&r->desc[0];
443
444 return 0;
445 }
446
447 static int
iter_axes_extended_name_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)448 iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
449 const void *response,
450 struct scmi_iterator_state *st,
451 void *priv)
452 {
453 struct scmi_sensor_axis_info *a;
454 const struct scmi_apriv *apriv = priv;
455 struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
456 u32 axis_id = le32_to_cpu(adesc->axis_id);
457
458 if (axis_id >= st->max_resources)
459 return -EPROTO;
460
461 /*
462 * Pick the corresponding descriptor based on the axis_id embedded
463 * in the reply since the list of axes supporting extended names
464 * can be a subset of all the axes.
465 */
466 a = &apriv->s->axis[axis_id];
467 strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
468 st->priv = ++adesc;
469
470 return 0;
471 }
472
473 static int
scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s)474 scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
475 struct scmi_sensor_info *s)
476 {
477 int ret;
478 void *iter;
479 struct scmi_iterator_ops ops = {
480 .prepare_message = iter_axes_desc_prepare_message,
481 .update_state = iter_axes_extended_name_update_state,
482 .process_response = iter_axes_extended_name_process_response,
483 };
484 struct scmi_apriv apriv = {
485 .any_axes_support_extended_names = false,
486 .s = s,
487 };
488
489 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
490 SENSOR_AXIS_NAME_GET,
491 sizeof(struct scmi_msg_sensor_axis_description_get),
492 &apriv);
493 if (IS_ERR(iter))
494 return PTR_ERR(iter);
495
496 /*
497 * Do not cause whole protocol initialization failure when failing to
498 * get extended names for axes.
499 */
500 ret = ph->hops->iter_response_run(iter);
501 if (ret)
502 dev_warn(ph->dev,
503 "Failed to get axes extended names for %s (ret:%d).\n",
504 s->name, ret);
505
506 return 0;
507 }
508
scmi_sensor_axis_description(const struct scmi_protocol_handle * ph,struct scmi_sensor_info * s,u32 version)509 static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
510 struct scmi_sensor_info *s,
511 u32 version)
512 {
513 int ret;
514 void *iter;
515 struct scmi_iterator_ops ops = {
516 .prepare_message = iter_axes_desc_prepare_message,
517 .update_state = iter_axes_desc_update_state,
518 .process_response = iter_axes_desc_process_response,
519 };
520 struct scmi_apriv apriv = {
521 .any_axes_support_extended_names = false,
522 .s = s,
523 };
524
525 s->axis = devm_kcalloc(ph->dev, s->num_axis,
526 sizeof(*s->axis), GFP_KERNEL);
527 if (!s->axis)
528 return -ENOMEM;
529
530 iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
531 SENSOR_AXIS_DESCRIPTION_GET,
532 sizeof(struct scmi_msg_sensor_axis_description_get),
533 &apriv);
534 if (IS_ERR(iter))
535 return PTR_ERR(iter);
536
537 ret = ph->hops->iter_response_run(iter);
538 if (ret)
539 return ret;
540
541 if (PROTOCOL_REV_MAJOR(version) >= 0x3 &&
542 apriv.any_axes_support_extended_names)
543 ret = scmi_sensor_axis_extended_names_get(ph, s);
544
545 return ret;
546 }
547
iter_sens_descr_prepare_message(void * message,unsigned int desc_index,const void * priv)548 static void iter_sens_descr_prepare_message(void *message,
549 unsigned int desc_index,
550 const void *priv)
551 {
552 struct scmi_msg_sensor_description *msg = message;
553
554 msg->desc_index = cpu_to_le32(desc_index);
555 }
556
iter_sens_descr_update_state(struct scmi_iterator_state * st,const void * response,void * priv)557 static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
558 const void *response, void *priv)
559 {
560 const struct scmi_msg_resp_sensor_description *r = response;
561
562 st->num_returned = le16_to_cpu(r->num_returned);
563 st->num_remaining = le16_to_cpu(r->num_remaining);
564 st->priv = (void *)&r->desc[0];
565
566 return 0;
567 }
568
569 static int
iter_sens_descr_process_response(const struct scmi_protocol_handle * ph,const void * response,struct scmi_iterator_state * st,void * priv)570 iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
571 const void *response,
572 struct scmi_iterator_state *st, void *priv)
573
574 {
575 int ret = 0;
576 u32 attrh, attrl;
577 size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
578 struct scmi_sensor_info *s;
579 struct sensors_info *si = priv;
580 const struct scmi_sensor_descriptor *sdesc = st->priv;
581
582 s = &si->sensors[st->desc_index + st->loop_idx];
583 s->id = le32_to_cpu(sdesc->id);
584
585 attrl = le32_to_cpu(sdesc->attributes_low);
586 /* common bitfields parsing */
587 s->async = SUPPORTS_ASYNC_READ(attrl);
588 s->num_trip_points = NUM_TRIP_POINTS(attrl);
589 /**
590 * only SCMIv3.0 specific bitfield below.
591 * Such bitfields are assumed to be zeroed on non
592 * relevant fw versions...assuming fw not buggy !
593 */
594 s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
595 s->timestamped = SUPPORTS_TIMESTAMP(attrl);
596 if (s->timestamped)
597 s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
598 s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
599
600 attrh = le32_to_cpu(sdesc->attributes_high);
601 /* common bitfields parsing */
602 s->scale = S32_EXT(SENSOR_SCALE(attrh));
603 s->type = SENSOR_TYPE(attrh);
604 /* Use pre-allocated pool wherever possible */
605 s->intervals.desc = s->intervals.prealloc_pool;
606 if (si->version == SCMIv2_SENSOR_PROTOCOL) {
607 s->intervals.segmented = false;
608 s->intervals.count = 1;
609 /*
610 * Convert SCMIv2.0 update interval format to
611 * SCMIv3.0 to be used as the common exposed
612 * descriptor, accessible via common macros.
613 */
614 s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
615 SENSOR_UPDATE_SCALE(attrh);
616 } else {
617 /*
618 * From SCMIv3.0 update intervals are retrieved
619 * via a dedicated (optional) command.
620 * Since the command is optional, on error carry
621 * on without any update interval.
622 */
623 if (scmi_sensor_update_intervals(ph, s))
624 dev_dbg(ph->dev,
625 "Update Intervals not available for sensor ID:%d\n",
626 s->id);
627 }
628 /**
629 * only > SCMIv2.0 specific bitfield below.
630 * Such bitfields are assumed to be zeroed on non
631 * relevant fw versions...assuming fw not buggy !
632 */
633 s->num_axis = min_t(unsigned int,
634 SUPPORTS_AXIS(attrh) ?
635 SENSOR_AXIS_NUMBER(attrh) : 0,
636 SCMI_MAX_NUM_SENSOR_AXIS);
637 strscpy(s->name, sdesc->name, SCMI_SHORT_NAME_MAX_SIZE);
638
639 /*
640 * If supported overwrite short name with the extended
641 * one; on error just carry on and use already provided
642 * short name.
643 */
644 if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
645 SUPPORTS_EXTENDED_NAMES(attrl))
646 ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
647 s->name, SCMI_MAX_STR_SIZE);
648
649 if (s->extended_scalar_attrs) {
650 s->sensor_power = le32_to_cpu(sdesc->power);
651 dsize += sizeof(sdesc->power);
652
653 /* Only for sensors reporting scalar values */
654 if (s->num_axis == 0) {
655 unsigned int sres = le32_to_cpu(sdesc->resolution);
656
657 s->resolution = SENSOR_RES(sres);
658 s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
659 dsize += sizeof(sdesc->resolution);
660
661 scmi_parse_range_attrs(&s->scalar_attrs,
662 &sdesc->scalar_attrs);
663 dsize += sizeof(sdesc->scalar_attrs);
664 }
665 }
666
667 if (s->num_axis > 0)
668 ret = scmi_sensor_axis_description(ph, s, si->version);
669
670 st->priv = ((u8 *)sdesc + dsize);
671
672 return ret;
673 }
674
scmi_sensor_description_get(const struct scmi_protocol_handle * ph,struct sensors_info * si)675 static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
676 struct sensors_info *si)
677 {
678 void *iter;
679 struct scmi_iterator_ops ops = {
680 .prepare_message = iter_sens_descr_prepare_message,
681 .update_state = iter_sens_descr_update_state,
682 .process_response = iter_sens_descr_process_response,
683 };
684
685 iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
686 SENSOR_DESCRIPTION_GET,
687 sizeof(__le32), si);
688 if (IS_ERR(iter))
689 return PTR_ERR(iter);
690
691 return ph->hops->iter_response_run(iter);
692 }
693
694 static inline int
scmi_sensor_request_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 message_id,bool enable)695 scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
696 u8 message_id, bool enable)
697 {
698 int ret;
699 u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
700 struct scmi_xfer *t;
701 struct scmi_msg_sensor_request_notify *cfg;
702
703 ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
704 if (ret)
705 return ret;
706
707 cfg = t->tx.buf;
708 cfg->id = cpu_to_le32(sensor_id);
709 cfg->event_control = cpu_to_le32(evt_cntl);
710
711 ret = ph->xops->do_xfer(ph, t);
712
713 ph->xops->xfer_put(ph, t);
714 return ret;
715 }
716
scmi_sensor_trip_point_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)717 static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
718 u32 sensor_id, bool enable)
719 {
720 return scmi_sensor_request_notify(ph, sensor_id,
721 SENSOR_TRIP_POINT_NOTIFY,
722 enable);
723 }
724
725 static int
scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle * ph,u32 sensor_id,bool enable)726 scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
727 u32 sensor_id, bool enable)
728 {
729 return scmi_sensor_request_notify(ph, sensor_id,
730 SENSOR_CONTINUOUS_UPDATE_NOTIFY,
731 enable);
732 }
733
734 static int
scmi_sensor_trip_point_config(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 trip_id,u64 trip_value)735 scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
736 u32 sensor_id, u8 trip_id, u64 trip_value)
737 {
738 int ret;
739 u32 evt_cntl = SENSOR_TP_BOTH;
740 struct scmi_xfer *t;
741 struct scmi_msg_set_sensor_trip_point *trip;
742
743 ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
744 sizeof(*trip), 0, &t);
745 if (ret)
746 return ret;
747
748 trip = t->tx.buf;
749 trip->id = cpu_to_le32(sensor_id);
750 trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
751 trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
752 trip->value_high = cpu_to_le32(trip_value >> 32);
753
754 ret = ph->xops->do_xfer(ph, t);
755
756 ph->xops->xfer_put(ph, t);
757 return ret;
758 }
759
scmi_sensor_config_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 * sensor_config)760 static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
761 u32 sensor_id, u32 *sensor_config)
762 {
763 int ret;
764 struct scmi_xfer *t;
765
766 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
767 sizeof(__le32), sizeof(__le32), &t);
768 if (ret)
769 return ret;
770
771 put_unaligned_le32(sensor_id, t->tx.buf);
772 ret = ph->xops->do_xfer(ph, t);
773 if (!ret) {
774 struct sensors_info *si = ph->get_priv(ph);
775 struct scmi_sensor_info *s = si->sensors + sensor_id;
776
777 *sensor_config = get_unaligned_le64(t->rx.buf);
778 s->sensor_config = *sensor_config;
779 }
780
781 ph->xops->xfer_put(ph, t);
782 return ret;
783 }
784
scmi_sensor_config_set(const struct scmi_protocol_handle * ph,u32 sensor_id,u32 sensor_config)785 static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
786 u32 sensor_id, u32 sensor_config)
787 {
788 int ret;
789 struct scmi_xfer *t;
790 struct scmi_msg_sensor_config_set *msg;
791
792 ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
793 sizeof(*msg), 0, &t);
794 if (ret)
795 return ret;
796
797 msg = t->tx.buf;
798 msg->id = cpu_to_le32(sensor_id);
799 msg->sensor_config = cpu_to_le32(sensor_config);
800
801 ret = ph->xops->do_xfer(ph, t);
802 if (!ret) {
803 struct sensors_info *si = ph->get_priv(ph);
804 struct scmi_sensor_info *s = si->sensors + sensor_id;
805
806 s->sensor_config = sensor_config;
807 }
808
809 ph->xops->xfer_put(ph, t);
810 return ret;
811 }
812
813 /**
814 * scmi_sensor_reading_get - Read scalar sensor value
815 * @ph: Protocol handle
816 * @sensor_id: Sensor ID
817 * @value: The 64bit value sensor reading
818 *
819 * This function returns a single 64 bit reading value representing the sensor
820 * value; if the platform SCMI Protocol implementation and the sensor support
821 * multiple axis and timestamped-reads, this just returns the first axis while
822 * dropping the timestamp value.
823 * Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
824 * timestamped multi-axis values.
825 *
826 * Return: 0 on Success
827 */
scmi_sensor_reading_get(const struct scmi_protocol_handle * ph,u32 sensor_id,u64 * value)828 static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
829 u32 sensor_id, u64 *value)
830 {
831 int ret;
832 struct scmi_xfer *t;
833 struct scmi_msg_sensor_reading_get *sensor;
834 struct sensors_info *si = ph->get_priv(ph);
835 struct scmi_sensor_info *s = si->sensors + sensor_id;
836
837 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
838 sizeof(*sensor), 0, &t);
839 if (ret)
840 return ret;
841
842 sensor = t->tx.buf;
843 sensor->id = cpu_to_le32(sensor_id);
844 if (s->async) {
845 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
846 ret = ph->xops->do_xfer_with_response(ph, t);
847 if (!ret) {
848 struct scmi_resp_sensor_reading_complete *resp;
849
850 resp = t->rx.buf;
851 if (le32_to_cpu(resp->id) == sensor_id)
852 *value =
853 get_unaligned_le64(&resp->readings_low);
854 else
855 ret = -EPROTO;
856 }
857 } else {
858 sensor->flags = cpu_to_le32(0);
859 ret = ph->xops->do_xfer(ph, t);
860 if (!ret)
861 *value = get_unaligned_le64(t->rx.buf);
862 }
863
864 ph->xops->xfer_put(ph, t);
865 return ret;
866 }
867
868 static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading * out,const struct scmi_sensor_reading_resp * in)869 scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
870 const struct scmi_sensor_reading_resp *in)
871 {
872 out->value = get_unaligned_le64((void *)&in->sensor_value_low);
873 out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
874 }
875
876 /**
877 * scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values
878 * @ph: Protocol handle
879 * @sensor_id: Sensor ID
880 * @count: The length of the provided @readings array
881 * @readings: An array of elements each representing a timestamped per-axis
882 * reading of type @struct scmi_sensor_reading.
883 * Returned readings are ordered as the @axis descriptors array
884 * included in @struct scmi_sensor_info and the max number of
885 * returned elements is min(@count, @num_axis); ideally the provided
886 * array should be of length @count equal to @num_axis.
887 *
888 * Return: 0 on Success
889 */
890 static int
scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle * ph,u32 sensor_id,u8 count,struct scmi_sensor_reading * readings)891 scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
892 u32 sensor_id, u8 count,
893 struct scmi_sensor_reading *readings)
894 {
895 int ret;
896 struct scmi_xfer *t;
897 struct scmi_msg_sensor_reading_get *sensor;
898 struct sensors_info *si = ph->get_priv(ph);
899 struct scmi_sensor_info *s = si->sensors + sensor_id;
900
901 if (!count || !readings ||
902 (!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
903 return -EINVAL;
904
905 ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
906 sizeof(*sensor), 0, &t);
907 if (ret)
908 return ret;
909
910 sensor = t->tx.buf;
911 sensor->id = cpu_to_le32(sensor_id);
912 if (s->async) {
913 sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
914 ret = ph->xops->do_xfer_with_response(ph, t);
915 if (!ret) {
916 int i;
917 struct scmi_resp_sensor_reading_complete_v3 *resp;
918
919 resp = t->rx.buf;
920 /* Retrieve only the number of requested axis anyway */
921 if (le32_to_cpu(resp->id) == sensor_id)
922 for (i = 0; i < count; i++)
923 scmi_parse_sensor_readings(&readings[i],
924 &resp->readings[i]);
925 else
926 ret = -EPROTO;
927 }
928 } else {
929 sensor->flags = cpu_to_le32(0);
930 ret = ph->xops->do_xfer(ph, t);
931 if (!ret) {
932 int i;
933 struct scmi_sensor_reading_resp *resp_readings;
934
935 resp_readings = t->rx.buf;
936 for (i = 0; i < count; i++)
937 scmi_parse_sensor_readings(&readings[i],
938 &resp_readings[i]);
939 }
940 }
941
942 ph->xops->xfer_put(ph, t);
943 return ret;
944 }
945
946 static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_protocol_handle * ph,u32 sensor_id)947 scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
948 {
949 struct sensors_info *si = ph->get_priv(ph);
950
951 return si->sensors + sensor_id;
952 }
953
scmi_sensor_count_get(const struct scmi_protocol_handle * ph)954 static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
955 {
956 struct sensors_info *si = ph->get_priv(ph);
957
958 return si->num_sensors;
959 }
960
961 static const struct scmi_sensor_proto_ops sensor_proto_ops = {
962 .count_get = scmi_sensor_count_get,
963 .info_get = scmi_sensor_info_get,
964 .trip_point_config = scmi_sensor_trip_point_config,
965 .reading_get = scmi_sensor_reading_get,
966 .reading_get_timestamped = scmi_sensor_reading_get_timestamped,
967 .config_get = scmi_sensor_config_get,
968 .config_set = scmi_sensor_config_set,
969 };
970
scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle * ph,u8 evt_id,u32 src_id,bool enable)971 static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
972 u8 evt_id, u32 src_id, bool enable)
973 {
974 int ret;
975
976 switch (evt_id) {
977 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
978 ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
979 break;
980 case SCMI_EVENT_SENSOR_UPDATE:
981 ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
982 break;
983 default:
984 ret = -EINVAL;
985 break;
986 }
987
988 if (ret)
989 pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
990 evt_id, src_id, ret);
991
992 return ret;
993 }
994
995 static void *
scmi_sensor_fill_custom_report(const struct scmi_protocol_handle * ph,u8 evt_id,ktime_t timestamp,const void * payld,size_t payld_sz,void * report,u32 * src_id)996 scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
997 u8 evt_id, ktime_t timestamp,
998 const void *payld, size_t payld_sz,
999 void *report, u32 *src_id)
1000 {
1001 void *rep = NULL;
1002
1003 switch (evt_id) {
1004 case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
1005 {
1006 const struct scmi_sensor_trip_notify_payld *p = payld;
1007 struct scmi_sensor_trip_point_report *r = report;
1008
1009 if (sizeof(*p) != payld_sz)
1010 break;
1011
1012 r->timestamp = timestamp;
1013 r->agent_id = le32_to_cpu(p->agent_id);
1014 r->sensor_id = le32_to_cpu(p->sensor_id);
1015 r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
1016 *src_id = r->sensor_id;
1017 rep = r;
1018 break;
1019 }
1020 case SCMI_EVENT_SENSOR_UPDATE:
1021 {
1022 int i;
1023 struct scmi_sensor_info *s;
1024 const struct scmi_sensor_update_notify_payld *p = payld;
1025 struct scmi_sensor_update_report *r = report;
1026 struct sensors_info *sinfo = ph->get_priv(ph);
1027
1028 /* payld_sz is variable for this event */
1029 r->sensor_id = le32_to_cpu(p->sensor_id);
1030 if (r->sensor_id >= sinfo->num_sensors)
1031 break;
1032 r->timestamp = timestamp;
1033 r->agent_id = le32_to_cpu(p->agent_id);
1034 s = &sinfo->sensors[r->sensor_id];
1035 /*
1036 * The generated report r (@struct scmi_sensor_update_report)
1037 * was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
1038 * readings: here it is filled with the effective @num_axis
1039 * readings defined for this sensor or 1 for scalar sensors.
1040 */
1041 r->readings_count = s->num_axis ?: 1;
1042 for (i = 0; i < r->readings_count; i++)
1043 scmi_parse_sensor_readings(&r->readings[i],
1044 &p->readings[i]);
1045 *src_id = r->sensor_id;
1046 rep = r;
1047 break;
1048 }
1049 default:
1050 break;
1051 }
1052
1053 return rep;
1054 }
1055
scmi_sensor_get_num_sources(const struct scmi_protocol_handle * ph)1056 static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
1057 {
1058 struct sensors_info *si = ph->get_priv(ph);
1059
1060 return si->num_sensors;
1061 }
1062
1063 static const struct scmi_event sensor_events[] = {
1064 {
1065 .id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
1066 .max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
1067 .max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
1068 },
1069 {
1070 .id = SCMI_EVENT_SENSOR_UPDATE,
1071 .max_payld_sz =
1072 sizeof(struct scmi_sensor_update_notify_payld) +
1073 SCMI_MAX_NUM_SENSOR_AXIS *
1074 sizeof(struct scmi_sensor_reading_resp),
1075 .max_report_sz = sizeof(struct scmi_sensor_update_report) +
1076 SCMI_MAX_NUM_SENSOR_AXIS *
1077 sizeof(struct scmi_sensor_reading),
1078 },
1079 };
1080
1081 static const struct scmi_event_ops sensor_event_ops = {
1082 .get_num_sources = scmi_sensor_get_num_sources,
1083 .set_notify_enabled = scmi_sensor_set_notify_enabled,
1084 .fill_custom_report = scmi_sensor_fill_custom_report,
1085 };
1086
1087 static const struct scmi_protocol_events sensor_protocol_events = {
1088 .queue_sz = SCMI_PROTO_QUEUE_SZ,
1089 .ops = &sensor_event_ops,
1090 .evts = sensor_events,
1091 .num_events = ARRAY_SIZE(sensor_events),
1092 };
1093
scmi_sensors_protocol_init(const struct scmi_protocol_handle * ph)1094 static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
1095 {
1096 u32 version;
1097 int ret;
1098 struct sensors_info *sinfo;
1099
1100 ret = ph->xops->version_get(ph, &version);
1101 if (ret)
1102 return ret;
1103
1104 dev_dbg(ph->dev, "Sensor Version %d.%d\n",
1105 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
1106
1107 sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
1108 if (!sinfo)
1109 return -ENOMEM;
1110 sinfo->version = version;
1111
1112 ret = scmi_sensor_attributes_get(ph, sinfo);
1113 if (ret)
1114 return ret;
1115 sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
1116 sizeof(*sinfo->sensors), GFP_KERNEL);
1117 if (!sinfo->sensors)
1118 return -ENOMEM;
1119
1120 ret = scmi_sensor_description_get(ph, sinfo);
1121 if (ret)
1122 return ret;
1123
1124 return ph->set_priv(ph, sinfo);
1125 }
1126
1127 static const struct scmi_protocol scmi_sensors = {
1128 .id = SCMI_PROTOCOL_SENSOR,
1129 .owner = THIS_MODULE,
1130 .instance_init = &scmi_sensors_protocol_init,
1131 .ops = &sensor_proto_ops,
1132 .events = &sensor_protocol_events,
1133 };
1134
1135 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)
1136