1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50
51 #include <asm/switch_to.h>
52
53 #include <linux/sched/cond_resched.h>
54
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58
59 /*
60 * Targeted preemption latency for CPU-bound tasks:
61 *
62 * NOTE: this latency value is not the same as the concept of
63 * 'timeslice length' - timeslices in CFS are of variable length
64 * and have no persistent notion like in traditional, time-slice
65 * based scheduling concepts.
66 *
67 * (to see the precise effective timeslice length of your workload,
68 * run vmstat and monitor the context-switches (cs) field)
69 *
70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71 */
72 unsigned int sysctl_sched_latency = 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
74
75 /*
76 * The initial- and re-scaling of tunables is configurable
77 *
78 * Options are:
79 *
80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83 *
84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85 */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87
88 /*
89 * Minimal preemption granularity for CPU-bound tasks:
90 *
91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92 */
93 unsigned int sysctl_sched_min_granularity = 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
95
96 /*
97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98 * Applies only when SCHED_IDLE tasks compete with normal tasks.
99 *
100 * (default: 0.75 msec)
101 */
102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
103
104 /*
105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106 */
107 static unsigned int sched_nr_latency = 8;
108
109 /*
110 * After fork, child runs first. If set to 0 (default) then
111 * parent will (try to) run first.
112 */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114
115 /*
116 * SCHED_OTHER wake-up granularity.
117 *
118 * This option delays the preemption effects of decoupled workloads
119 * and reduces their over-scheduling. Synchronous workloads will still
120 * have immediate wakeup/sleep latencies.
121 *
122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123 */
124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
126
127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
128
129 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 int _shift = 0;
133
134 if (kstrtoint(str, 0, &_shift))
135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136
137 sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141
142 #ifdef CONFIG_SMP
143 /*
144 * For asym packing, by default the lower numbered CPU has higher priority.
145 */
arch_asym_cpu_priority(int cpu)146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 return -cpu;
149 }
150
151 /*
152 * The margin used when comparing utilization with CPU capacity.
153 *
154 * (default: ~20%)
155 */
156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
157
158 /*
159 * The margin used when comparing CPU capacities.
160 * is 'cap1' noticeably greater than 'cap2'
161 *
162 * (default: ~5%)
163 */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170 * each time a cfs_rq requests quota.
171 *
172 * Note: in the case that the slice exceeds the runtime remaining (either due
173 * to consumption or the quota being specified to be smaller than the slice)
174 * we will always only issue the remaining available time.
175 *
176 * (default: 5 msec, units: microseconds)
177 */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
179 #endif
180
181 #ifdef CONFIG_SYSCTL
182 static struct ctl_table sched_fair_sysctls[] = {
183 {
184 .procname = "sched_child_runs_first",
185 .data = &sysctl_sched_child_runs_first,
186 .maxlen = sizeof(unsigned int),
187 .mode = 0644,
188 .proc_handler = proc_dointvec,
189 },
190 #ifdef CONFIG_CFS_BANDWIDTH
191 {
192 .procname = "sched_cfs_bandwidth_slice_us",
193 .data = &sysctl_sched_cfs_bandwidth_slice,
194 .maxlen = sizeof(unsigned int),
195 .mode = 0644,
196 .proc_handler = proc_dointvec_minmax,
197 .extra1 = SYSCTL_ONE,
198 },
199 #endif
200 {}
201 };
202
sched_fair_sysctl_init(void)203 static int __init sched_fair_sysctl_init(void)
204 {
205 register_sysctl_init("kernel", sched_fair_sysctls);
206 return 0;
207 }
208 late_initcall(sched_fair_sysctl_init);
209 #endif
210
update_load_add(struct load_weight * lw,unsigned long inc)211 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
212 {
213 lw->weight += inc;
214 lw->inv_weight = 0;
215 }
216
update_load_sub(struct load_weight * lw,unsigned long dec)217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
218 {
219 lw->weight -= dec;
220 lw->inv_weight = 0;
221 }
222
update_load_set(struct load_weight * lw,unsigned long w)223 static inline void update_load_set(struct load_weight *lw, unsigned long w)
224 {
225 lw->weight = w;
226 lw->inv_weight = 0;
227 }
228
229 /*
230 * Increase the granularity value when there are more CPUs,
231 * because with more CPUs the 'effective latency' as visible
232 * to users decreases. But the relationship is not linear,
233 * so pick a second-best guess by going with the log2 of the
234 * number of CPUs.
235 *
236 * This idea comes from the SD scheduler of Con Kolivas:
237 */
get_update_sysctl_factor(void)238 static unsigned int get_update_sysctl_factor(void)
239 {
240 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
241 unsigned int factor;
242
243 switch (sysctl_sched_tunable_scaling) {
244 case SCHED_TUNABLESCALING_NONE:
245 factor = 1;
246 break;
247 case SCHED_TUNABLESCALING_LINEAR:
248 factor = cpus;
249 break;
250 case SCHED_TUNABLESCALING_LOG:
251 default:
252 factor = 1 + ilog2(cpus);
253 break;
254 }
255
256 return factor;
257 }
258
update_sysctl(void)259 static void update_sysctl(void)
260 {
261 unsigned int factor = get_update_sysctl_factor();
262
263 #define SET_SYSCTL(name) \
264 (sysctl_##name = (factor) * normalized_sysctl_##name)
265 SET_SYSCTL(sched_min_granularity);
266 SET_SYSCTL(sched_latency);
267 SET_SYSCTL(sched_wakeup_granularity);
268 #undef SET_SYSCTL
269 }
270
sched_init_granularity(void)271 void __init sched_init_granularity(void)
272 {
273 update_sysctl();
274 }
275
276 #define WMULT_CONST (~0U)
277 #define WMULT_SHIFT 32
278
__update_inv_weight(struct load_weight * lw)279 static void __update_inv_weight(struct load_weight *lw)
280 {
281 unsigned long w;
282
283 if (likely(lw->inv_weight))
284 return;
285
286 w = scale_load_down(lw->weight);
287
288 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
289 lw->inv_weight = 1;
290 else if (unlikely(!w))
291 lw->inv_weight = WMULT_CONST;
292 else
293 lw->inv_weight = WMULT_CONST / w;
294 }
295
296 /*
297 * delta_exec * weight / lw.weight
298 * OR
299 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
300 *
301 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
302 * we're guaranteed shift stays positive because inv_weight is guaranteed to
303 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
304 *
305 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
306 * weight/lw.weight <= 1, and therefore our shift will also be positive.
307 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
309 {
310 u64 fact = scale_load_down(weight);
311 u32 fact_hi = (u32)(fact >> 32);
312 int shift = WMULT_SHIFT;
313 int fs;
314
315 __update_inv_weight(lw);
316
317 if (unlikely(fact_hi)) {
318 fs = fls(fact_hi);
319 shift -= fs;
320 fact >>= fs;
321 }
322
323 fact = mul_u32_u32(fact, lw->inv_weight);
324
325 fact_hi = (u32)(fact >> 32);
326 if (fact_hi) {
327 fs = fls(fact_hi);
328 shift -= fs;
329 fact >>= fs;
330 }
331
332 return mul_u64_u32_shr(delta_exec, fact, shift);
333 }
334
335
336 const struct sched_class fair_sched_class;
337
338 /**************************************************************
339 * CFS operations on generic schedulable entities:
340 */
341
342 #ifdef CONFIG_FAIR_GROUP_SCHED
343
344 /* Walk up scheduling entities hierarchy */
345 #define for_each_sched_entity(se) \
346 for (; se; se = se->parent)
347
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 {
350 struct rq *rq = rq_of(cfs_rq);
351 int cpu = cpu_of(rq);
352
353 if (cfs_rq->on_list)
354 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
355
356 cfs_rq->on_list = 1;
357
358 /*
359 * Ensure we either appear before our parent (if already
360 * enqueued) or force our parent to appear after us when it is
361 * enqueued. The fact that we always enqueue bottom-up
362 * reduces this to two cases and a special case for the root
363 * cfs_rq. Furthermore, it also means that we will always reset
364 * tmp_alone_branch either when the branch is connected
365 * to a tree or when we reach the top of the tree
366 */
367 if (cfs_rq->tg->parent &&
368 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
369 /*
370 * If parent is already on the list, we add the child
371 * just before. Thanks to circular linked property of
372 * the list, this means to put the child at the tail
373 * of the list that starts by parent.
374 */
375 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
376 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
377 /*
378 * The branch is now connected to its tree so we can
379 * reset tmp_alone_branch to the beginning of the
380 * list.
381 */
382 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
383 return true;
384 }
385
386 if (!cfs_rq->tg->parent) {
387 /*
388 * cfs rq without parent should be put
389 * at the tail of the list.
390 */
391 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
392 &rq->leaf_cfs_rq_list);
393 /*
394 * We have reach the top of a tree so we can reset
395 * tmp_alone_branch to the beginning of the list.
396 */
397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 return true;
399 }
400
401 /*
402 * The parent has not already been added so we want to
403 * make sure that it will be put after us.
404 * tmp_alone_branch points to the begin of the branch
405 * where we will add parent.
406 */
407 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
408 /*
409 * update tmp_alone_branch to points to the new begin
410 * of the branch
411 */
412 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
413 return false;
414 }
415
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 if (cfs_rq->on_list) {
419 struct rq *rq = rq_of(cfs_rq);
420
421 /*
422 * With cfs_rq being unthrottled/throttled during an enqueue,
423 * it can happen the tmp_alone_branch points the a leaf that
424 * we finally want to del. In this case, tmp_alone_branch moves
425 * to the prev element but it will point to rq->leaf_cfs_rq_list
426 * at the end of the enqueue.
427 */
428 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
429 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
430
431 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
432 cfs_rq->on_list = 0;
433 }
434 }
435
assert_list_leaf_cfs_rq(struct rq * rq)436 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
437 {
438 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
439 }
440
441 /* Iterate thr' all leaf cfs_rq's on a runqueue */
442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
443 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
444 leaf_cfs_rq_list)
445
446 /* Do the two (enqueued) entities belong to the same group ? */
447 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)448 is_same_group(struct sched_entity *se, struct sched_entity *pse)
449 {
450 if (se->cfs_rq == pse->cfs_rq)
451 return se->cfs_rq;
452
453 return NULL;
454 }
455
parent_entity(struct sched_entity * se)456 static inline struct sched_entity *parent_entity(struct sched_entity *se)
457 {
458 return se->parent;
459 }
460
461 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)462 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
463 {
464 int se_depth, pse_depth;
465
466 /*
467 * preemption test can be made between sibling entities who are in the
468 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
469 * both tasks until we find their ancestors who are siblings of common
470 * parent.
471 */
472
473 /* First walk up until both entities are at same depth */
474 se_depth = (*se)->depth;
475 pse_depth = (*pse)->depth;
476
477 while (se_depth > pse_depth) {
478 se_depth--;
479 *se = parent_entity(*se);
480 }
481
482 while (pse_depth > se_depth) {
483 pse_depth--;
484 *pse = parent_entity(*pse);
485 }
486
487 while (!is_same_group(*se, *pse)) {
488 *se = parent_entity(*se);
489 *pse = parent_entity(*pse);
490 }
491 }
492
tg_is_idle(struct task_group * tg)493 static int tg_is_idle(struct task_group *tg)
494 {
495 return tg->idle > 0;
496 }
497
cfs_rq_is_idle(struct cfs_rq * cfs_rq)498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
499 {
500 return cfs_rq->idle > 0;
501 }
502
se_is_idle(struct sched_entity * se)503 static int se_is_idle(struct sched_entity *se)
504 {
505 if (entity_is_task(se))
506 return task_has_idle_policy(task_of(se));
507 return cfs_rq_is_idle(group_cfs_rq(se));
508 }
509
510 #else /* !CONFIG_FAIR_GROUP_SCHED */
511
512 #define for_each_sched_entity(se) \
513 for (; se; se = NULL)
514
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 return true;
518 }
519
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
521 {
522 }
523
assert_list_leaf_cfs_rq(struct rq * rq)524 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
525 {
526 }
527
528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
529 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
530
parent_entity(struct sched_entity * se)531 static inline struct sched_entity *parent_entity(struct sched_entity *se)
532 {
533 return NULL;
534 }
535
536 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)537 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
538 {
539 }
540
tg_is_idle(struct task_group * tg)541 static inline int tg_is_idle(struct task_group *tg)
542 {
543 return 0;
544 }
545
cfs_rq_is_idle(struct cfs_rq * cfs_rq)546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
547 {
548 return 0;
549 }
550
se_is_idle(struct sched_entity * se)551 static int se_is_idle(struct sched_entity *se)
552 {
553 return 0;
554 }
555
556 #endif /* CONFIG_FAIR_GROUP_SCHED */
557
558 static __always_inline
559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
560
561 /**************************************************************
562 * Scheduling class tree data structure manipulation methods:
563 */
564
max_vruntime(u64 max_vruntime,u64 vruntime)565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
566 {
567 s64 delta = (s64)(vruntime - max_vruntime);
568 if (delta > 0)
569 max_vruntime = vruntime;
570
571 return max_vruntime;
572 }
573
min_vruntime(u64 min_vruntime,u64 vruntime)574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
575 {
576 s64 delta = (s64)(vruntime - min_vruntime);
577 if (delta < 0)
578 min_vruntime = vruntime;
579
580 return min_vruntime;
581 }
582
entity_before(struct sched_entity * a,struct sched_entity * b)583 static inline bool entity_before(struct sched_entity *a,
584 struct sched_entity *b)
585 {
586 return (s64)(a->vruntime - b->vruntime) < 0;
587 }
588
589 #define __node_2_se(node) \
590 rb_entry((node), struct sched_entity, run_node)
591
update_min_vruntime(struct cfs_rq * cfs_rq)592 static void update_min_vruntime(struct cfs_rq *cfs_rq)
593 {
594 struct sched_entity *curr = cfs_rq->curr;
595 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
596
597 u64 vruntime = cfs_rq->min_vruntime;
598
599 if (curr) {
600 if (curr->on_rq)
601 vruntime = curr->vruntime;
602 else
603 curr = NULL;
604 }
605
606 if (leftmost) { /* non-empty tree */
607 struct sched_entity *se = __node_2_se(leftmost);
608
609 if (!curr)
610 vruntime = se->vruntime;
611 else
612 vruntime = min_vruntime(vruntime, se->vruntime);
613 }
614
615 /* ensure we never gain time by being placed backwards. */
616 u64_u32_store(cfs_rq->min_vruntime,
617 max_vruntime(cfs_rq->min_vruntime, vruntime));
618 }
619
__entity_less(struct rb_node * a,const struct rb_node * b)620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
621 {
622 return entity_before(__node_2_se(a), __node_2_se(b));
623 }
624
625 /*
626 * Enqueue an entity into the rb-tree:
627 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
631 }
632
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
636 }
637
__pick_first_entity(struct cfs_rq * cfs_rq)638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
639 {
640 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
641
642 if (!left)
643 return NULL;
644
645 return __node_2_se(left);
646 }
647
__pick_next_entity(struct sched_entity * se)648 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
649 {
650 struct rb_node *next = rb_next(&se->run_node);
651
652 if (!next)
653 return NULL;
654
655 return __node_2_se(next);
656 }
657
658 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
660 {
661 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
662
663 if (!last)
664 return NULL;
665
666 return __node_2_se(last);
667 }
668
669 /**************************************************************
670 * Scheduling class statistics methods:
671 */
672
sched_update_scaling(void)673 int sched_update_scaling(void)
674 {
675 unsigned int factor = get_update_sysctl_factor();
676
677 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
678 sysctl_sched_min_granularity);
679
680 #define WRT_SYSCTL(name) \
681 (normalized_sysctl_##name = sysctl_##name / (factor))
682 WRT_SYSCTL(sched_min_granularity);
683 WRT_SYSCTL(sched_latency);
684 WRT_SYSCTL(sched_wakeup_granularity);
685 #undef WRT_SYSCTL
686
687 return 0;
688 }
689 #endif
690
691 /*
692 * delta /= w
693 */
calc_delta_fair(u64 delta,struct sched_entity * se)694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
695 {
696 if (unlikely(se->load.weight != NICE_0_LOAD))
697 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
698
699 return delta;
700 }
701
702 /*
703 * The idea is to set a period in which each task runs once.
704 *
705 * When there are too many tasks (sched_nr_latency) we have to stretch
706 * this period because otherwise the slices get too small.
707 *
708 * p = (nr <= nl) ? l : l*nr/nl
709 */
__sched_period(unsigned long nr_running)710 static u64 __sched_period(unsigned long nr_running)
711 {
712 if (unlikely(nr_running > sched_nr_latency))
713 return nr_running * sysctl_sched_min_granularity;
714 else
715 return sysctl_sched_latency;
716 }
717
718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
719
720 /*
721 * We calculate the wall-time slice from the period by taking a part
722 * proportional to the weight.
723 *
724 * s = p*P[w/rw]
725 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 unsigned int nr_running = cfs_rq->nr_running;
729 struct sched_entity *init_se = se;
730 unsigned int min_gran;
731 u64 slice;
732
733 if (sched_feat(ALT_PERIOD))
734 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
735
736 slice = __sched_period(nr_running + !se->on_rq);
737
738 for_each_sched_entity(se) {
739 struct load_weight *load;
740 struct load_weight lw;
741 struct cfs_rq *qcfs_rq;
742
743 qcfs_rq = cfs_rq_of(se);
744 load = &qcfs_rq->load;
745
746 if (unlikely(!se->on_rq)) {
747 lw = qcfs_rq->load;
748
749 update_load_add(&lw, se->load.weight);
750 load = &lw;
751 }
752 slice = __calc_delta(slice, se->load.weight, load);
753 }
754
755 if (sched_feat(BASE_SLICE)) {
756 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
757 min_gran = sysctl_sched_idle_min_granularity;
758 else
759 min_gran = sysctl_sched_min_granularity;
760
761 slice = max_t(u64, slice, min_gran);
762 }
763
764 return slice;
765 }
766
767 /*
768 * We calculate the vruntime slice of a to-be-inserted task.
769 *
770 * vs = s/w
771 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 return calc_delta_fair(sched_slice(cfs_rq, se), se);
775 }
776
777 #include "pelt.h"
778 #ifdef CONFIG_SMP
779
780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
781 static unsigned long task_h_load(struct task_struct *p);
782 static unsigned long capacity_of(int cpu);
783
784 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)785 void init_entity_runnable_average(struct sched_entity *se)
786 {
787 struct sched_avg *sa = &se->avg;
788
789 memset(sa, 0, sizeof(*sa));
790
791 /*
792 * Tasks are initialized with full load to be seen as heavy tasks until
793 * they get a chance to stabilize to their real load level.
794 * Group entities are initialized with zero load to reflect the fact that
795 * nothing has been attached to the task group yet.
796 */
797 if (entity_is_task(se))
798 sa->load_avg = scale_load_down(se->load.weight);
799
800 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
801 }
802
803 /*
804 * With new tasks being created, their initial util_avgs are extrapolated
805 * based on the cfs_rq's current util_avg:
806 *
807 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
808 *
809 * However, in many cases, the above util_avg does not give a desired
810 * value. Moreover, the sum of the util_avgs may be divergent, such
811 * as when the series is a harmonic series.
812 *
813 * To solve this problem, we also cap the util_avg of successive tasks to
814 * only 1/2 of the left utilization budget:
815 *
816 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
817 *
818 * where n denotes the nth task and cpu_scale the CPU capacity.
819 *
820 * For example, for a CPU with 1024 of capacity, a simplest series from
821 * the beginning would be like:
822 *
823 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
824 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
825 *
826 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
827 * if util_avg > util_avg_cap.
828 */
post_init_entity_util_avg(struct task_struct * p)829 void post_init_entity_util_avg(struct task_struct *p)
830 {
831 struct sched_entity *se = &p->se;
832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
833 struct sched_avg *sa = &se->avg;
834 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
835 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
836
837 if (p->sched_class != &fair_sched_class) {
838 /*
839 * For !fair tasks do:
840 *
841 update_cfs_rq_load_avg(now, cfs_rq);
842 attach_entity_load_avg(cfs_rq, se);
843 switched_from_fair(rq, p);
844 *
845 * such that the next switched_to_fair() has the
846 * expected state.
847 */
848 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
849 return;
850 }
851
852 if (cap > 0) {
853 if (cfs_rq->avg.util_avg != 0) {
854 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
855 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
856
857 if (sa->util_avg > cap)
858 sa->util_avg = cap;
859 } else {
860 sa->util_avg = cap;
861 }
862 }
863
864 sa->runnable_avg = sa->util_avg;
865 }
866
867 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)868 void init_entity_runnable_average(struct sched_entity *se)
869 {
870 }
post_init_entity_util_avg(struct task_struct * p)871 void post_init_entity_util_avg(struct task_struct *p)
872 {
873 }
update_tg_load_avg(struct cfs_rq * cfs_rq)874 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
875 {
876 }
877 #endif /* CONFIG_SMP */
878
879 /*
880 * Update the current task's runtime statistics.
881 */
update_curr(struct cfs_rq * cfs_rq)882 static void update_curr(struct cfs_rq *cfs_rq)
883 {
884 struct sched_entity *curr = cfs_rq->curr;
885 u64 now = rq_clock_task(rq_of(cfs_rq));
886 u64 delta_exec;
887
888 if (unlikely(!curr))
889 return;
890
891 delta_exec = now - curr->exec_start;
892 if (unlikely((s64)delta_exec <= 0))
893 return;
894
895 curr->exec_start = now;
896
897 if (schedstat_enabled()) {
898 struct sched_statistics *stats;
899
900 stats = __schedstats_from_se(curr);
901 __schedstat_set(stats->exec_max,
902 max(delta_exec, stats->exec_max));
903 }
904
905 curr->sum_exec_runtime += delta_exec;
906 schedstat_add(cfs_rq->exec_clock, delta_exec);
907
908 curr->vruntime += calc_delta_fair(delta_exec, curr);
909 update_min_vruntime(cfs_rq);
910
911 if (entity_is_task(curr)) {
912 struct task_struct *curtask = task_of(curr);
913
914 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
915 cgroup_account_cputime(curtask, delta_exec);
916 account_group_exec_runtime(curtask, delta_exec);
917 }
918
919 account_cfs_rq_runtime(cfs_rq, delta_exec);
920 }
921
update_curr_fair(struct rq * rq)922 static void update_curr_fair(struct rq *rq)
923 {
924 update_curr(cfs_rq_of(&rq->curr->se));
925 }
926
927 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)928 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
929 {
930 struct sched_statistics *stats;
931 struct task_struct *p = NULL;
932
933 if (!schedstat_enabled())
934 return;
935
936 stats = __schedstats_from_se(se);
937
938 if (entity_is_task(se))
939 p = task_of(se);
940
941 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
942 }
943
944 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)945 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
946 {
947 struct sched_statistics *stats;
948 struct task_struct *p = NULL;
949
950 if (!schedstat_enabled())
951 return;
952
953 stats = __schedstats_from_se(se);
954
955 /*
956 * When the sched_schedstat changes from 0 to 1, some sched se
957 * maybe already in the runqueue, the se->statistics.wait_start
958 * will be 0.So it will let the delta wrong. We need to avoid this
959 * scenario.
960 */
961 if (unlikely(!schedstat_val(stats->wait_start)))
962 return;
963
964 if (entity_is_task(se))
965 p = task_of(se);
966
967 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
968 }
969
970 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)971 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 struct sched_statistics *stats;
974 struct task_struct *tsk = NULL;
975
976 if (!schedstat_enabled())
977 return;
978
979 stats = __schedstats_from_se(se);
980
981 if (entity_is_task(se))
982 tsk = task_of(se);
983
984 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
985 }
986
987 /*
988 * Task is being enqueued - update stats:
989 */
990 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)991 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
992 {
993 if (!schedstat_enabled())
994 return;
995
996 /*
997 * Are we enqueueing a waiting task? (for current tasks
998 * a dequeue/enqueue event is a NOP)
999 */
1000 if (se != cfs_rq->curr)
1001 update_stats_wait_start_fair(cfs_rq, se);
1002
1003 if (flags & ENQUEUE_WAKEUP)
1004 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1005 }
1006
1007 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1008 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1009 {
1010
1011 if (!schedstat_enabled())
1012 return;
1013
1014 /*
1015 * Mark the end of the wait period if dequeueing a
1016 * waiting task:
1017 */
1018 if (se != cfs_rq->curr)
1019 update_stats_wait_end_fair(cfs_rq, se);
1020
1021 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1022 struct task_struct *tsk = task_of(se);
1023 unsigned int state;
1024
1025 /* XXX racy against TTWU */
1026 state = READ_ONCE(tsk->__state);
1027 if (state & TASK_INTERRUPTIBLE)
1028 __schedstat_set(tsk->stats.sleep_start,
1029 rq_clock(rq_of(cfs_rq)));
1030 if (state & TASK_UNINTERRUPTIBLE)
1031 __schedstat_set(tsk->stats.block_start,
1032 rq_clock(rq_of(cfs_rq)));
1033 }
1034 }
1035
1036 /*
1037 * We are picking a new current task - update its stats:
1038 */
1039 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041 {
1042 /*
1043 * We are starting a new run period:
1044 */
1045 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046 }
1047
1048 /**************************************************
1049 * Scheduling class queueing methods:
1050 */
1051
1052 #ifdef CONFIG_NUMA
1053 #define NUMA_IMBALANCE_MIN 2
1054
1055 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1056 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1057 {
1058 /*
1059 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1060 * threshold. Above this threshold, individual tasks may be contending
1061 * for both memory bandwidth and any shared HT resources. This is an
1062 * approximation as the number of running tasks may not be related to
1063 * the number of busy CPUs due to sched_setaffinity.
1064 */
1065 if (dst_running > imb_numa_nr)
1066 return imbalance;
1067
1068 /*
1069 * Allow a small imbalance based on a simple pair of communicating
1070 * tasks that remain local when the destination is lightly loaded.
1071 */
1072 if (imbalance <= NUMA_IMBALANCE_MIN)
1073 return 0;
1074
1075 return imbalance;
1076 }
1077 #endif /* CONFIG_NUMA */
1078
1079 #ifdef CONFIG_NUMA_BALANCING
1080 /*
1081 * Approximate time to scan a full NUMA task in ms. The task scan period is
1082 * calculated based on the tasks virtual memory size and
1083 * numa_balancing_scan_size.
1084 */
1085 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1086 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1087
1088 /* Portion of address space to scan in MB */
1089 unsigned int sysctl_numa_balancing_scan_size = 256;
1090
1091 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1092 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1093
1094 /* The page with hint page fault latency < threshold in ms is considered hot */
1095 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1096
1097 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1098 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1099
1100 struct numa_group {
1101 refcount_t refcount;
1102
1103 spinlock_t lock; /* nr_tasks, tasks */
1104 int nr_tasks;
1105 pid_t gid;
1106 int active_nodes;
1107
1108 struct rcu_head rcu;
1109 unsigned long total_faults;
1110 unsigned long max_faults_cpu;
1111 /*
1112 * faults[] array is split into two regions: faults_mem and faults_cpu.
1113 *
1114 * Faults_cpu is used to decide whether memory should move
1115 * towards the CPU. As a consequence, these stats are weighted
1116 * more by CPU use than by memory faults.
1117 */
1118 unsigned long faults[];
1119 };
1120
1121 /*
1122 * For functions that can be called in multiple contexts that permit reading
1123 * ->numa_group (see struct task_struct for locking rules).
1124 */
deref_task_numa_group(struct task_struct * p)1125 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1126 {
1127 return rcu_dereference_check(p->numa_group, p == current ||
1128 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1129 }
1130
deref_curr_numa_group(struct task_struct * p)1131 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1132 {
1133 return rcu_dereference_protected(p->numa_group, p == current);
1134 }
1135
1136 static inline unsigned long group_faults_priv(struct numa_group *ng);
1137 static inline unsigned long group_faults_shared(struct numa_group *ng);
1138
task_nr_scan_windows(struct task_struct * p)1139 static unsigned int task_nr_scan_windows(struct task_struct *p)
1140 {
1141 unsigned long rss = 0;
1142 unsigned long nr_scan_pages;
1143
1144 /*
1145 * Calculations based on RSS as non-present and empty pages are skipped
1146 * by the PTE scanner and NUMA hinting faults should be trapped based
1147 * on resident pages
1148 */
1149 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1150 rss = get_mm_rss(p->mm);
1151 if (!rss)
1152 rss = nr_scan_pages;
1153
1154 rss = round_up(rss, nr_scan_pages);
1155 return rss / nr_scan_pages;
1156 }
1157
1158 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1159 #define MAX_SCAN_WINDOW 2560
1160
task_scan_min(struct task_struct * p)1161 static unsigned int task_scan_min(struct task_struct *p)
1162 {
1163 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1164 unsigned int scan, floor;
1165 unsigned int windows = 1;
1166
1167 if (scan_size < MAX_SCAN_WINDOW)
1168 windows = MAX_SCAN_WINDOW / scan_size;
1169 floor = 1000 / windows;
1170
1171 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1172 return max_t(unsigned int, floor, scan);
1173 }
1174
task_scan_start(struct task_struct * p)1175 static unsigned int task_scan_start(struct task_struct *p)
1176 {
1177 unsigned long smin = task_scan_min(p);
1178 unsigned long period = smin;
1179 struct numa_group *ng;
1180
1181 /* Scale the maximum scan period with the amount of shared memory. */
1182 rcu_read_lock();
1183 ng = rcu_dereference(p->numa_group);
1184 if (ng) {
1185 unsigned long shared = group_faults_shared(ng);
1186 unsigned long private = group_faults_priv(ng);
1187
1188 period *= refcount_read(&ng->refcount);
1189 period *= shared + 1;
1190 period /= private + shared + 1;
1191 }
1192 rcu_read_unlock();
1193
1194 return max(smin, period);
1195 }
1196
task_scan_max(struct task_struct * p)1197 static unsigned int task_scan_max(struct task_struct *p)
1198 {
1199 unsigned long smin = task_scan_min(p);
1200 unsigned long smax;
1201 struct numa_group *ng;
1202
1203 /* Watch for min being lower than max due to floor calculations */
1204 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1205
1206 /* Scale the maximum scan period with the amount of shared memory. */
1207 ng = deref_curr_numa_group(p);
1208 if (ng) {
1209 unsigned long shared = group_faults_shared(ng);
1210 unsigned long private = group_faults_priv(ng);
1211 unsigned long period = smax;
1212
1213 period *= refcount_read(&ng->refcount);
1214 period *= shared + 1;
1215 period /= private + shared + 1;
1216
1217 smax = max(smax, period);
1218 }
1219
1220 return max(smin, smax);
1221 }
1222
account_numa_enqueue(struct rq * rq,struct task_struct * p)1223 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1224 {
1225 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1226 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1227 }
1228
account_numa_dequeue(struct rq * rq,struct task_struct * p)1229 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1230 {
1231 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1232 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1233 }
1234
1235 /* Shared or private faults. */
1236 #define NR_NUMA_HINT_FAULT_TYPES 2
1237
1238 /* Memory and CPU locality */
1239 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1240
1241 /* Averaged statistics, and temporary buffers. */
1242 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1243
task_numa_group_id(struct task_struct * p)1244 pid_t task_numa_group_id(struct task_struct *p)
1245 {
1246 struct numa_group *ng;
1247 pid_t gid = 0;
1248
1249 rcu_read_lock();
1250 ng = rcu_dereference(p->numa_group);
1251 if (ng)
1252 gid = ng->gid;
1253 rcu_read_unlock();
1254
1255 return gid;
1256 }
1257
1258 /*
1259 * The averaged statistics, shared & private, memory & CPU,
1260 * occupy the first half of the array. The second half of the
1261 * array is for current counters, which are averaged into the
1262 * first set by task_numa_placement.
1263 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1264 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1265 {
1266 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1267 }
1268
task_faults(struct task_struct * p,int nid)1269 static inline unsigned long task_faults(struct task_struct *p, int nid)
1270 {
1271 if (!p->numa_faults)
1272 return 0;
1273
1274 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1275 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1276 }
1277
group_faults(struct task_struct * p,int nid)1278 static inline unsigned long group_faults(struct task_struct *p, int nid)
1279 {
1280 struct numa_group *ng = deref_task_numa_group(p);
1281
1282 if (!ng)
1283 return 0;
1284
1285 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1286 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1287 }
1288
group_faults_cpu(struct numa_group * group,int nid)1289 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1290 {
1291 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1292 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1293 }
1294
group_faults_priv(struct numa_group * ng)1295 static inline unsigned long group_faults_priv(struct numa_group *ng)
1296 {
1297 unsigned long faults = 0;
1298 int node;
1299
1300 for_each_online_node(node) {
1301 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1302 }
1303
1304 return faults;
1305 }
1306
group_faults_shared(struct numa_group * ng)1307 static inline unsigned long group_faults_shared(struct numa_group *ng)
1308 {
1309 unsigned long faults = 0;
1310 int node;
1311
1312 for_each_online_node(node) {
1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1314 }
1315
1316 return faults;
1317 }
1318
1319 /*
1320 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1321 * considered part of a numa group's pseudo-interleaving set. Migrations
1322 * between these nodes are slowed down, to allow things to settle down.
1323 */
1324 #define ACTIVE_NODE_FRACTION 3
1325
numa_is_active_node(int nid,struct numa_group * ng)1326 static bool numa_is_active_node(int nid, struct numa_group *ng)
1327 {
1328 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1329 }
1330
1331 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1332 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1333 int lim_dist, bool task)
1334 {
1335 unsigned long score = 0;
1336 int node, max_dist;
1337
1338 /*
1339 * All nodes are directly connected, and the same distance
1340 * from each other. No need for fancy placement algorithms.
1341 */
1342 if (sched_numa_topology_type == NUMA_DIRECT)
1343 return 0;
1344
1345 /* sched_max_numa_distance may be changed in parallel. */
1346 max_dist = READ_ONCE(sched_max_numa_distance);
1347 /*
1348 * This code is called for each node, introducing N^2 complexity,
1349 * which should be ok given the number of nodes rarely exceeds 8.
1350 */
1351 for_each_online_node(node) {
1352 unsigned long faults;
1353 int dist = node_distance(nid, node);
1354
1355 /*
1356 * The furthest away nodes in the system are not interesting
1357 * for placement; nid was already counted.
1358 */
1359 if (dist >= max_dist || node == nid)
1360 continue;
1361
1362 /*
1363 * On systems with a backplane NUMA topology, compare groups
1364 * of nodes, and move tasks towards the group with the most
1365 * memory accesses. When comparing two nodes at distance
1366 * "hoplimit", only nodes closer by than "hoplimit" are part
1367 * of each group. Skip other nodes.
1368 */
1369 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1370 continue;
1371
1372 /* Add up the faults from nearby nodes. */
1373 if (task)
1374 faults = task_faults(p, node);
1375 else
1376 faults = group_faults(p, node);
1377
1378 /*
1379 * On systems with a glueless mesh NUMA topology, there are
1380 * no fixed "groups of nodes". Instead, nodes that are not
1381 * directly connected bounce traffic through intermediate
1382 * nodes; a numa_group can occupy any set of nodes.
1383 * The further away a node is, the less the faults count.
1384 * This seems to result in good task placement.
1385 */
1386 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1387 faults *= (max_dist - dist);
1388 faults /= (max_dist - LOCAL_DISTANCE);
1389 }
1390
1391 score += faults;
1392 }
1393
1394 return score;
1395 }
1396
1397 /*
1398 * These return the fraction of accesses done by a particular task, or
1399 * task group, on a particular numa node. The group weight is given a
1400 * larger multiplier, in order to group tasks together that are almost
1401 * evenly spread out between numa nodes.
1402 */
task_weight(struct task_struct * p,int nid,int dist)1403 static inline unsigned long task_weight(struct task_struct *p, int nid,
1404 int dist)
1405 {
1406 unsigned long faults, total_faults;
1407
1408 if (!p->numa_faults)
1409 return 0;
1410
1411 total_faults = p->total_numa_faults;
1412
1413 if (!total_faults)
1414 return 0;
1415
1416 faults = task_faults(p, nid);
1417 faults += score_nearby_nodes(p, nid, dist, true);
1418
1419 return 1000 * faults / total_faults;
1420 }
1421
group_weight(struct task_struct * p,int nid,int dist)1422 static inline unsigned long group_weight(struct task_struct *p, int nid,
1423 int dist)
1424 {
1425 struct numa_group *ng = deref_task_numa_group(p);
1426 unsigned long faults, total_faults;
1427
1428 if (!ng)
1429 return 0;
1430
1431 total_faults = ng->total_faults;
1432
1433 if (!total_faults)
1434 return 0;
1435
1436 faults = group_faults(p, nid);
1437 faults += score_nearby_nodes(p, nid, dist, false);
1438
1439 return 1000 * faults / total_faults;
1440 }
1441
1442 /*
1443 * If memory tiering mode is enabled, cpupid of slow memory page is
1444 * used to record scan time instead of CPU and PID. When tiering mode
1445 * is disabled at run time, the scan time (in cpupid) will be
1446 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1447 * access out of array bound.
1448 */
cpupid_valid(int cpupid)1449 static inline bool cpupid_valid(int cpupid)
1450 {
1451 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1452 }
1453
1454 /*
1455 * For memory tiering mode, if there are enough free pages (more than
1456 * enough watermark defined here) in fast memory node, to take full
1457 * advantage of fast memory capacity, all recently accessed slow
1458 * memory pages will be migrated to fast memory node without
1459 * considering hot threshold.
1460 */
pgdat_free_space_enough(struct pglist_data * pgdat)1461 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1462 {
1463 int z;
1464 unsigned long enough_wmark;
1465
1466 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1467 pgdat->node_present_pages >> 4);
1468 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1469 struct zone *zone = pgdat->node_zones + z;
1470
1471 if (!populated_zone(zone))
1472 continue;
1473
1474 if (zone_watermark_ok(zone, 0,
1475 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1476 ZONE_MOVABLE, 0))
1477 return true;
1478 }
1479 return false;
1480 }
1481
1482 /*
1483 * For memory tiering mode, when page tables are scanned, the scan
1484 * time will be recorded in struct page in addition to make page
1485 * PROT_NONE for slow memory page. So when the page is accessed, in
1486 * hint page fault handler, the hint page fault latency is calculated
1487 * via,
1488 *
1489 * hint page fault latency = hint page fault time - scan time
1490 *
1491 * The smaller the hint page fault latency, the higher the possibility
1492 * for the page to be hot.
1493 */
numa_hint_fault_latency(struct page * page)1494 static int numa_hint_fault_latency(struct page *page)
1495 {
1496 int last_time, time;
1497
1498 time = jiffies_to_msecs(jiffies);
1499 last_time = xchg_page_access_time(page, time);
1500
1501 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1502 }
1503
1504 /*
1505 * For memory tiering mode, too high promotion/demotion throughput may
1506 * hurt application latency. So we provide a mechanism to rate limit
1507 * the number of pages that are tried to be promoted.
1508 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1509 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1510 unsigned long rate_limit, int nr)
1511 {
1512 unsigned long nr_cand;
1513 unsigned int now, start;
1514
1515 now = jiffies_to_msecs(jiffies);
1516 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1517 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1518 start = pgdat->nbp_rl_start;
1519 if (now - start > MSEC_PER_SEC &&
1520 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1521 pgdat->nbp_rl_nr_cand = nr_cand;
1522 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1523 return true;
1524 return false;
1525 }
1526
1527 #define NUMA_MIGRATION_ADJUST_STEPS 16
1528
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1529 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1530 unsigned long rate_limit,
1531 unsigned int ref_th)
1532 {
1533 unsigned int now, start, th_period, unit_th, th;
1534 unsigned long nr_cand, ref_cand, diff_cand;
1535
1536 now = jiffies_to_msecs(jiffies);
1537 th_period = sysctl_numa_balancing_scan_period_max;
1538 start = pgdat->nbp_th_start;
1539 if (now - start > th_period &&
1540 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1541 ref_cand = rate_limit *
1542 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1543 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1544 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1545 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1546 th = pgdat->nbp_threshold ? : ref_th;
1547 if (diff_cand > ref_cand * 11 / 10)
1548 th = max(th - unit_th, unit_th);
1549 else if (diff_cand < ref_cand * 9 / 10)
1550 th = min(th + unit_th, ref_th * 2);
1551 pgdat->nbp_th_nr_cand = nr_cand;
1552 pgdat->nbp_threshold = th;
1553 }
1554 }
1555
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1556 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1557 int src_nid, int dst_cpu)
1558 {
1559 struct numa_group *ng = deref_curr_numa_group(p);
1560 int dst_nid = cpu_to_node(dst_cpu);
1561 int last_cpupid, this_cpupid;
1562
1563 /*
1564 * The pages in slow memory node should be migrated according
1565 * to hot/cold instead of private/shared.
1566 */
1567 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1568 !node_is_toptier(src_nid)) {
1569 struct pglist_data *pgdat;
1570 unsigned long rate_limit;
1571 unsigned int latency, th, def_th;
1572
1573 pgdat = NODE_DATA(dst_nid);
1574 if (pgdat_free_space_enough(pgdat)) {
1575 /* workload changed, reset hot threshold */
1576 pgdat->nbp_threshold = 0;
1577 return true;
1578 }
1579
1580 def_th = sysctl_numa_balancing_hot_threshold;
1581 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1582 (20 - PAGE_SHIFT);
1583 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1584
1585 th = pgdat->nbp_threshold ? : def_th;
1586 latency = numa_hint_fault_latency(page);
1587 if (latency >= th)
1588 return false;
1589
1590 return !numa_promotion_rate_limit(pgdat, rate_limit,
1591 thp_nr_pages(page));
1592 }
1593
1594 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1595 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1596
1597 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1598 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1599 return false;
1600
1601 /*
1602 * Allow first faults or private faults to migrate immediately early in
1603 * the lifetime of a task. The magic number 4 is based on waiting for
1604 * two full passes of the "multi-stage node selection" test that is
1605 * executed below.
1606 */
1607 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1608 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1609 return true;
1610
1611 /*
1612 * Multi-stage node selection is used in conjunction with a periodic
1613 * migration fault to build a temporal task<->page relation. By using
1614 * a two-stage filter we remove short/unlikely relations.
1615 *
1616 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1617 * a task's usage of a particular page (n_p) per total usage of this
1618 * page (n_t) (in a given time-span) to a probability.
1619 *
1620 * Our periodic faults will sample this probability and getting the
1621 * same result twice in a row, given these samples are fully
1622 * independent, is then given by P(n)^2, provided our sample period
1623 * is sufficiently short compared to the usage pattern.
1624 *
1625 * This quadric squishes small probabilities, making it less likely we
1626 * act on an unlikely task<->page relation.
1627 */
1628 if (!cpupid_pid_unset(last_cpupid) &&
1629 cpupid_to_nid(last_cpupid) != dst_nid)
1630 return false;
1631
1632 /* Always allow migrate on private faults */
1633 if (cpupid_match_pid(p, last_cpupid))
1634 return true;
1635
1636 /* A shared fault, but p->numa_group has not been set up yet. */
1637 if (!ng)
1638 return true;
1639
1640 /*
1641 * Destination node is much more heavily used than the source
1642 * node? Allow migration.
1643 */
1644 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1645 ACTIVE_NODE_FRACTION)
1646 return true;
1647
1648 /*
1649 * Distribute memory according to CPU & memory use on each node,
1650 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1651 *
1652 * faults_cpu(dst) 3 faults_cpu(src)
1653 * --------------- * - > ---------------
1654 * faults_mem(dst) 4 faults_mem(src)
1655 */
1656 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1657 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1658 }
1659
1660 /*
1661 * 'numa_type' describes the node at the moment of load balancing.
1662 */
1663 enum numa_type {
1664 /* The node has spare capacity that can be used to run more tasks. */
1665 node_has_spare = 0,
1666 /*
1667 * The node is fully used and the tasks don't compete for more CPU
1668 * cycles. Nevertheless, some tasks might wait before running.
1669 */
1670 node_fully_busy,
1671 /*
1672 * The node is overloaded and can't provide expected CPU cycles to all
1673 * tasks.
1674 */
1675 node_overloaded
1676 };
1677
1678 /* Cached statistics for all CPUs within a node */
1679 struct numa_stats {
1680 unsigned long load;
1681 unsigned long runnable;
1682 unsigned long util;
1683 /* Total compute capacity of CPUs on a node */
1684 unsigned long compute_capacity;
1685 unsigned int nr_running;
1686 unsigned int weight;
1687 enum numa_type node_type;
1688 int idle_cpu;
1689 };
1690
is_core_idle(int cpu)1691 static inline bool is_core_idle(int cpu)
1692 {
1693 #ifdef CONFIG_SCHED_SMT
1694 int sibling;
1695
1696 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1697 if (cpu == sibling)
1698 continue;
1699
1700 if (!idle_cpu(sibling))
1701 return false;
1702 }
1703 #endif
1704
1705 return true;
1706 }
1707
1708 struct task_numa_env {
1709 struct task_struct *p;
1710
1711 int src_cpu, src_nid;
1712 int dst_cpu, dst_nid;
1713 int imb_numa_nr;
1714
1715 struct numa_stats src_stats, dst_stats;
1716
1717 int imbalance_pct;
1718 int dist;
1719
1720 struct task_struct *best_task;
1721 long best_imp;
1722 int best_cpu;
1723 };
1724
1725 static unsigned long cpu_load(struct rq *rq);
1726 static unsigned long cpu_runnable(struct rq *rq);
1727
1728 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1729 numa_type numa_classify(unsigned int imbalance_pct,
1730 struct numa_stats *ns)
1731 {
1732 if ((ns->nr_running > ns->weight) &&
1733 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1734 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1735 return node_overloaded;
1736
1737 if ((ns->nr_running < ns->weight) ||
1738 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1739 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1740 return node_has_spare;
1741
1742 return node_fully_busy;
1743 }
1744
1745 #ifdef CONFIG_SCHED_SMT
1746 /* Forward declarations of select_idle_sibling helpers */
1747 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)1748 static inline int numa_idle_core(int idle_core, int cpu)
1749 {
1750 if (!static_branch_likely(&sched_smt_present) ||
1751 idle_core >= 0 || !test_idle_cores(cpu))
1752 return idle_core;
1753
1754 /*
1755 * Prefer cores instead of packing HT siblings
1756 * and triggering future load balancing.
1757 */
1758 if (is_core_idle(cpu))
1759 idle_core = cpu;
1760
1761 return idle_core;
1762 }
1763 #else
numa_idle_core(int idle_core,int cpu)1764 static inline int numa_idle_core(int idle_core, int cpu)
1765 {
1766 return idle_core;
1767 }
1768 #endif
1769
1770 /*
1771 * Gather all necessary information to make NUMA balancing placement
1772 * decisions that are compatible with standard load balancer. This
1773 * borrows code and logic from update_sg_lb_stats but sharing a
1774 * common implementation is impractical.
1775 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1776 static void update_numa_stats(struct task_numa_env *env,
1777 struct numa_stats *ns, int nid,
1778 bool find_idle)
1779 {
1780 int cpu, idle_core = -1;
1781
1782 memset(ns, 0, sizeof(*ns));
1783 ns->idle_cpu = -1;
1784
1785 rcu_read_lock();
1786 for_each_cpu(cpu, cpumask_of_node(nid)) {
1787 struct rq *rq = cpu_rq(cpu);
1788
1789 ns->load += cpu_load(rq);
1790 ns->runnable += cpu_runnable(rq);
1791 ns->util += cpu_util_cfs(cpu);
1792 ns->nr_running += rq->cfs.h_nr_running;
1793 ns->compute_capacity += capacity_of(cpu);
1794
1795 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1796 if (READ_ONCE(rq->numa_migrate_on) ||
1797 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1798 continue;
1799
1800 if (ns->idle_cpu == -1)
1801 ns->idle_cpu = cpu;
1802
1803 idle_core = numa_idle_core(idle_core, cpu);
1804 }
1805 }
1806 rcu_read_unlock();
1807
1808 ns->weight = cpumask_weight(cpumask_of_node(nid));
1809
1810 ns->node_type = numa_classify(env->imbalance_pct, ns);
1811
1812 if (idle_core >= 0)
1813 ns->idle_cpu = idle_core;
1814 }
1815
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1816 static void task_numa_assign(struct task_numa_env *env,
1817 struct task_struct *p, long imp)
1818 {
1819 struct rq *rq = cpu_rq(env->dst_cpu);
1820
1821 /* Check if run-queue part of active NUMA balance. */
1822 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1823 int cpu;
1824 int start = env->dst_cpu;
1825
1826 /* Find alternative idle CPU. */
1827 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1828 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1829 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1830 continue;
1831 }
1832
1833 env->dst_cpu = cpu;
1834 rq = cpu_rq(env->dst_cpu);
1835 if (!xchg(&rq->numa_migrate_on, 1))
1836 goto assign;
1837 }
1838
1839 /* Failed to find an alternative idle CPU */
1840 return;
1841 }
1842
1843 assign:
1844 /*
1845 * Clear previous best_cpu/rq numa-migrate flag, since task now
1846 * found a better CPU to move/swap.
1847 */
1848 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1849 rq = cpu_rq(env->best_cpu);
1850 WRITE_ONCE(rq->numa_migrate_on, 0);
1851 }
1852
1853 if (env->best_task)
1854 put_task_struct(env->best_task);
1855 if (p)
1856 get_task_struct(p);
1857
1858 env->best_task = p;
1859 env->best_imp = imp;
1860 env->best_cpu = env->dst_cpu;
1861 }
1862
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1863 static bool load_too_imbalanced(long src_load, long dst_load,
1864 struct task_numa_env *env)
1865 {
1866 long imb, old_imb;
1867 long orig_src_load, orig_dst_load;
1868 long src_capacity, dst_capacity;
1869
1870 /*
1871 * The load is corrected for the CPU capacity available on each node.
1872 *
1873 * src_load dst_load
1874 * ------------ vs ---------
1875 * src_capacity dst_capacity
1876 */
1877 src_capacity = env->src_stats.compute_capacity;
1878 dst_capacity = env->dst_stats.compute_capacity;
1879
1880 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1881
1882 orig_src_load = env->src_stats.load;
1883 orig_dst_load = env->dst_stats.load;
1884
1885 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1886
1887 /* Would this change make things worse? */
1888 return (imb > old_imb);
1889 }
1890
1891 /*
1892 * Maximum NUMA importance can be 1998 (2*999);
1893 * SMALLIMP @ 30 would be close to 1998/64.
1894 * Used to deter task migration.
1895 */
1896 #define SMALLIMP 30
1897
1898 /*
1899 * This checks if the overall compute and NUMA accesses of the system would
1900 * be improved if the source tasks was migrated to the target dst_cpu taking
1901 * into account that it might be best if task running on the dst_cpu should
1902 * be exchanged with the source task
1903 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1904 static bool task_numa_compare(struct task_numa_env *env,
1905 long taskimp, long groupimp, bool maymove)
1906 {
1907 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1908 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1909 long imp = p_ng ? groupimp : taskimp;
1910 struct task_struct *cur;
1911 long src_load, dst_load;
1912 int dist = env->dist;
1913 long moveimp = imp;
1914 long load;
1915 bool stopsearch = false;
1916
1917 if (READ_ONCE(dst_rq->numa_migrate_on))
1918 return false;
1919
1920 rcu_read_lock();
1921 cur = rcu_dereference(dst_rq->curr);
1922 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1923 cur = NULL;
1924
1925 /*
1926 * Because we have preemption enabled we can get migrated around and
1927 * end try selecting ourselves (current == env->p) as a swap candidate.
1928 */
1929 if (cur == env->p) {
1930 stopsearch = true;
1931 goto unlock;
1932 }
1933
1934 if (!cur) {
1935 if (maymove && moveimp >= env->best_imp)
1936 goto assign;
1937 else
1938 goto unlock;
1939 }
1940
1941 /* Skip this swap candidate if cannot move to the source cpu. */
1942 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1943 goto unlock;
1944
1945 /*
1946 * Skip this swap candidate if it is not moving to its preferred
1947 * node and the best task is.
1948 */
1949 if (env->best_task &&
1950 env->best_task->numa_preferred_nid == env->src_nid &&
1951 cur->numa_preferred_nid != env->src_nid) {
1952 goto unlock;
1953 }
1954
1955 /*
1956 * "imp" is the fault differential for the source task between the
1957 * source and destination node. Calculate the total differential for
1958 * the source task and potential destination task. The more negative
1959 * the value is, the more remote accesses that would be expected to
1960 * be incurred if the tasks were swapped.
1961 *
1962 * If dst and source tasks are in the same NUMA group, or not
1963 * in any group then look only at task weights.
1964 */
1965 cur_ng = rcu_dereference(cur->numa_group);
1966 if (cur_ng == p_ng) {
1967 /*
1968 * Do not swap within a group or between tasks that have
1969 * no group if there is spare capacity. Swapping does
1970 * not address the load imbalance and helps one task at
1971 * the cost of punishing another.
1972 */
1973 if (env->dst_stats.node_type == node_has_spare)
1974 goto unlock;
1975
1976 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1977 task_weight(cur, env->dst_nid, dist);
1978 /*
1979 * Add some hysteresis to prevent swapping the
1980 * tasks within a group over tiny differences.
1981 */
1982 if (cur_ng)
1983 imp -= imp / 16;
1984 } else {
1985 /*
1986 * Compare the group weights. If a task is all by itself
1987 * (not part of a group), use the task weight instead.
1988 */
1989 if (cur_ng && p_ng)
1990 imp += group_weight(cur, env->src_nid, dist) -
1991 group_weight(cur, env->dst_nid, dist);
1992 else
1993 imp += task_weight(cur, env->src_nid, dist) -
1994 task_weight(cur, env->dst_nid, dist);
1995 }
1996
1997 /* Discourage picking a task already on its preferred node */
1998 if (cur->numa_preferred_nid == env->dst_nid)
1999 imp -= imp / 16;
2000
2001 /*
2002 * Encourage picking a task that moves to its preferred node.
2003 * This potentially makes imp larger than it's maximum of
2004 * 1998 (see SMALLIMP and task_weight for why) but in this
2005 * case, it does not matter.
2006 */
2007 if (cur->numa_preferred_nid == env->src_nid)
2008 imp += imp / 8;
2009
2010 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2011 imp = moveimp;
2012 cur = NULL;
2013 goto assign;
2014 }
2015
2016 /*
2017 * Prefer swapping with a task moving to its preferred node over a
2018 * task that is not.
2019 */
2020 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2021 env->best_task->numa_preferred_nid != env->src_nid) {
2022 goto assign;
2023 }
2024
2025 /*
2026 * If the NUMA importance is less than SMALLIMP,
2027 * task migration might only result in ping pong
2028 * of tasks and also hurt performance due to cache
2029 * misses.
2030 */
2031 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2032 goto unlock;
2033
2034 /*
2035 * In the overloaded case, try and keep the load balanced.
2036 */
2037 load = task_h_load(env->p) - task_h_load(cur);
2038 if (!load)
2039 goto assign;
2040
2041 dst_load = env->dst_stats.load + load;
2042 src_load = env->src_stats.load - load;
2043
2044 if (load_too_imbalanced(src_load, dst_load, env))
2045 goto unlock;
2046
2047 assign:
2048 /* Evaluate an idle CPU for a task numa move. */
2049 if (!cur) {
2050 int cpu = env->dst_stats.idle_cpu;
2051
2052 /* Nothing cached so current CPU went idle since the search. */
2053 if (cpu < 0)
2054 cpu = env->dst_cpu;
2055
2056 /*
2057 * If the CPU is no longer truly idle and the previous best CPU
2058 * is, keep using it.
2059 */
2060 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2061 idle_cpu(env->best_cpu)) {
2062 cpu = env->best_cpu;
2063 }
2064
2065 env->dst_cpu = cpu;
2066 }
2067
2068 task_numa_assign(env, cur, imp);
2069
2070 /*
2071 * If a move to idle is allowed because there is capacity or load
2072 * balance improves then stop the search. While a better swap
2073 * candidate may exist, a search is not free.
2074 */
2075 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2076 stopsearch = true;
2077
2078 /*
2079 * If a swap candidate must be identified and the current best task
2080 * moves its preferred node then stop the search.
2081 */
2082 if (!maymove && env->best_task &&
2083 env->best_task->numa_preferred_nid == env->src_nid) {
2084 stopsearch = true;
2085 }
2086 unlock:
2087 rcu_read_unlock();
2088
2089 return stopsearch;
2090 }
2091
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2092 static void task_numa_find_cpu(struct task_numa_env *env,
2093 long taskimp, long groupimp)
2094 {
2095 bool maymove = false;
2096 int cpu;
2097
2098 /*
2099 * If dst node has spare capacity, then check if there is an
2100 * imbalance that would be overruled by the load balancer.
2101 */
2102 if (env->dst_stats.node_type == node_has_spare) {
2103 unsigned int imbalance;
2104 int src_running, dst_running;
2105
2106 /*
2107 * Would movement cause an imbalance? Note that if src has
2108 * more running tasks that the imbalance is ignored as the
2109 * move improves the imbalance from the perspective of the
2110 * CPU load balancer.
2111 * */
2112 src_running = env->src_stats.nr_running - 1;
2113 dst_running = env->dst_stats.nr_running + 1;
2114 imbalance = max(0, dst_running - src_running);
2115 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2116 env->imb_numa_nr);
2117
2118 /* Use idle CPU if there is no imbalance */
2119 if (!imbalance) {
2120 maymove = true;
2121 if (env->dst_stats.idle_cpu >= 0) {
2122 env->dst_cpu = env->dst_stats.idle_cpu;
2123 task_numa_assign(env, NULL, 0);
2124 return;
2125 }
2126 }
2127 } else {
2128 long src_load, dst_load, load;
2129 /*
2130 * If the improvement from just moving env->p direction is better
2131 * than swapping tasks around, check if a move is possible.
2132 */
2133 load = task_h_load(env->p);
2134 dst_load = env->dst_stats.load + load;
2135 src_load = env->src_stats.load - load;
2136 maymove = !load_too_imbalanced(src_load, dst_load, env);
2137 }
2138
2139 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2140 /* Skip this CPU if the source task cannot migrate */
2141 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2142 continue;
2143
2144 env->dst_cpu = cpu;
2145 if (task_numa_compare(env, taskimp, groupimp, maymove))
2146 break;
2147 }
2148 }
2149
task_numa_migrate(struct task_struct * p)2150 static int task_numa_migrate(struct task_struct *p)
2151 {
2152 struct task_numa_env env = {
2153 .p = p,
2154
2155 .src_cpu = task_cpu(p),
2156 .src_nid = task_node(p),
2157
2158 .imbalance_pct = 112,
2159
2160 .best_task = NULL,
2161 .best_imp = 0,
2162 .best_cpu = -1,
2163 };
2164 unsigned long taskweight, groupweight;
2165 struct sched_domain *sd;
2166 long taskimp, groupimp;
2167 struct numa_group *ng;
2168 struct rq *best_rq;
2169 int nid, ret, dist;
2170
2171 /*
2172 * Pick the lowest SD_NUMA domain, as that would have the smallest
2173 * imbalance and would be the first to start moving tasks about.
2174 *
2175 * And we want to avoid any moving of tasks about, as that would create
2176 * random movement of tasks -- counter the numa conditions we're trying
2177 * to satisfy here.
2178 */
2179 rcu_read_lock();
2180 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2181 if (sd) {
2182 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2183 env.imb_numa_nr = sd->imb_numa_nr;
2184 }
2185 rcu_read_unlock();
2186
2187 /*
2188 * Cpusets can break the scheduler domain tree into smaller
2189 * balance domains, some of which do not cross NUMA boundaries.
2190 * Tasks that are "trapped" in such domains cannot be migrated
2191 * elsewhere, so there is no point in (re)trying.
2192 */
2193 if (unlikely(!sd)) {
2194 sched_setnuma(p, task_node(p));
2195 return -EINVAL;
2196 }
2197
2198 env.dst_nid = p->numa_preferred_nid;
2199 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2200 taskweight = task_weight(p, env.src_nid, dist);
2201 groupweight = group_weight(p, env.src_nid, dist);
2202 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2203 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2204 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2205 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2206
2207 /* Try to find a spot on the preferred nid. */
2208 task_numa_find_cpu(&env, taskimp, groupimp);
2209
2210 /*
2211 * Look at other nodes in these cases:
2212 * - there is no space available on the preferred_nid
2213 * - the task is part of a numa_group that is interleaved across
2214 * multiple NUMA nodes; in order to better consolidate the group,
2215 * we need to check other locations.
2216 */
2217 ng = deref_curr_numa_group(p);
2218 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2219 for_each_node_state(nid, N_CPU) {
2220 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2221 continue;
2222
2223 dist = node_distance(env.src_nid, env.dst_nid);
2224 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2225 dist != env.dist) {
2226 taskweight = task_weight(p, env.src_nid, dist);
2227 groupweight = group_weight(p, env.src_nid, dist);
2228 }
2229
2230 /* Only consider nodes where both task and groups benefit */
2231 taskimp = task_weight(p, nid, dist) - taskweight;
2232 groupimp = group_weight(p, nid, dist) - groupweight;
2233 if (taskimp < 0 && groupimp < 0)
2234 continue;
2235
2236 env.dist = dist;
2237 env.dst_nid = nid;
2238 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2239 task_numa_find_cpu(&env, taskimp, groupimp);
2240 }
2241 }
2242
2243 /*
2244 * If the task is part of a workload that spans multiple NUMA nodes,
2245 * and is migrating into one of the workload's active nodes, remember
2246 * this node as the task's preferred numa node, so the workload can
2247 * settle down.
2248 * A task that migrated to a second choice node will be better off
2249 * trying for a better one later. Do not set the preferred node here.
2250 */
2251 if (ng) {
2252 if (env.best_cpu == -1)
2253 nid = env.src_nid;
2254 else
2255 nid = cpu_to_node(env.best_cpu);
2256
2257 if (nid != p->numa_preferred_nid)
2258 sched_setnuma(p, nid);
2259 }
2260
2261 /* No better CPU than the current one was found. */
2262 if (env.best_cpu == -1) {
2263 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2264 return -EAGAIN;
2265 }
2266
2267 best_rq = cpu_rq(env.best_cpu);
2268 if (env.best_task == NULL) {
2269 ret = migrate_task_to(p, env.best_cpu);
2270 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2271 if (ret != 0)
2272 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2273 return ret;
2274 }
2275
2276 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2277 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2278
2279 if (ret != 0)
2280 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2281 put_task_struct(env.best_task);
2282 return ret;
2283 }
2284
2285 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2286 static void numa_migrate_preferred(struct task_struct *p)
2287 {
2288 unsigned long interval = HZ;
2289
2290 /* This task has no NUMA fault statistics yet */
2291 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2292 return;
2293
2294 /* Periodically retry migrating the task to the preferred node */
2295 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2296 p->numa_migrate_retry = jiffies + interval;
2297
2298 /* Success if task is already running on preferred CPU */
2299 if (task_node(p) == p->numa_preferred_nid)
2300 return;
2301
2302 /* Otherwise, try migrate to a CPU on the preferred node */
2303 task_numa_migrate(p);
2304 }
2305
2306 /*
2307 * Find out how many nodes the workload is actively running on. Do this by
2308 * tracking the nodes from which NUMA hinting faults are triggered. This can
2309 * be different from the set of nodes where the workload's memory is currently
2310 * located.
2311 */
numa_group_count_active_nodes(struct numa_group * numa_group)2312 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2313 {
2314 unsigned long faults, max_faults = 0;
2315 int nid, active_nodes = 0;
2316
2317 for_each_node_state(nid, N_CPU) {
2318 faults = group_faults_cpu(numa_group, nid);
2319 if (faults > max_faults)
2320 max_faults = faults;
2321 }
2322
2323 for_each_node_state(nid, N_CPU) {
2324 faults = group_faults_cpu(numa_group, nid);
2325 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2326 active_nodes++;
2327 }
2328
2329 numa_group->max_faults_cpu = max_faults;
2330 numa_group->active_nodes = active_nodes;
2331 }
2332
2333 /*
2334 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2335 * increments. The more local the fault statistics are, the higher the scan
2336 * period will be for the next scan window. If local/(local+remote) ratio is
2337 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2338 * the scan period will decrease. Aim for 70% local accesses.
2339 */
2340 #define NUMA_PERIOD_SLOTS 10
2341 #define NUMA_PERIOD_THRESHOLD 7
2342
2343 /*
2344 * Increase the scan period (slow down scanning) if the majority of
2345 * our memory is already on our local node, or if the majority of
2346 * the page accesses are shared with other processes.
2347 * Otherwise, decrease the scan period.
2348 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2349 static void update_task_scan_period(struct task_struct *p,
2350 unsigned long shared, unsigned long private)
2351 {
2352 unsigned int period_slot;
2353 int lr_ratio, ps_ratio;
2354 int diff;
2355
2356 unsigned long remote = p->numa_faults_locality[0];
2357 unsigned long local = p->numa_faults_locality[1];
2358
2359 /*
2360 * If there were no record hinting faults then either the task is
2361 * completely idle or all activity is in areas that are not of interest
2362 * to automatic numa balancing. Related to that, if there were failed
2363 * migration then it implies we are migrating too quickly or the local
2364 * node is overloaded. In either case, scan slower
2365 */
2366 if (local + shared == 0 || p->numa_faults_locality[2]) {
2367 p->numa_scan_period = min(p->numa_scan_period_max,
2368 p->numa_scan_period << 1);
2369
2370 p->mm->numa_next_scan = jiffies +
2371 msecs_to_jiffies(p->numa_scan_period);
2372
2373 return;
2374 }
2375
2376 /*
2377 * Prepare to scale scan period relative to the current period.
2378 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2379 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2380 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2381 */
2382 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2383 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2384 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2385
2386 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2387 /*
2388 * Most memory accesses are local. There is no need to
2389 * do fast NUMA scanning, since memory is already local.
2390 */
2391 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2392 if (!slot)
2393 slot = 1;
2394 diff = slot * period_slot;
2395 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2396 /*
2397 * Most memory accesses are shared with other tasks.
2398 * There is no point in continuing fast NUMA scanning,
2399 * since other tasks may just move the memory elsewhere.
2400 */
2401 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2402 if (!slot)
2403 slot = 1;
2404 diff = slot * period_slot;
2405 } else {
2406 /*
2407 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2408 * yet they are not on the local NUMA node. Speed up
2409 * NUMA scanning to get the memory moved over.
2410 */
2411 int ratio = max(lr_ratio, ps_ratio);
2412 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2413 }
2414
2415 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2416 task_scan_min(p), task_scan_max(p));
2417 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2418 }
2419
2420 /*
2421 * Get the fraction of time the task has been running since the last
2422 * NUMA placement cycle. The scheduler keeps similar statistics, but
2423 * decays those on a 32ms period, which is orders of magnitude off
2424 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2425 * stats only if the task is so new there are no NUMA statistics yet.
2426 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2427 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2428 {
2429 u64 runtime, delta, now;
2430 /* Use the start of this time slice to avoid calculations. */
2431 now = p->se.exec_start;
2432 runtime = p->se.sum_exec_runtime;
2433
2434 if (p->last_task_numa_placement) {
2435 delta = runtime - p->last_sum_exec_runtime;
2436 *period = now - p->last_task_numa_placement;
2437
2438 /* Avoid time going backwards, prevent potential divide error: */
2439 if (unlikely((s64)*period < 0))
2440 *period = 0;
2441 } else {
2442 delta = p->se.avg.load_sum;
2443 *period = LOAD_AVG_MAX;
2444 }
2445
2446 p->last_sum_exec_runtime = runtime;
2447 p->last_task_numa_placement = now;
2448
2449 return delta;
2450 }
2451
2452 /*
2453 * Determine the preferred nid for a task in a numa_group. This needs to
2454 * be done in a way that produces consistent results with group_weight,
2455 * otherwise workloads might not converge.
2456 */
preferred_group_nid(struct task_struct * p,int nid)2457 static int preferred_group_nid(struct task_struct *p, int nid)
2458 {
2459 nodemask_t nodes;
2460 int dist;
2461
2462 /* Direct connections between all NUMA nodes. */
2463 if (sched_numa_topology_type == NUMA_DIRECT)
2464 return nid;
2465
2466 /*
2467 * On a system with glueless mesh NUMA topology, group_weight
2468 * scores nodes according to the number of NUMA hinting faults on
2469 * both the node itself, and on nearby nodes.
2470 */
2471 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2472 unsigned long score, max_score = 0;
2473 int node, max_node = nid;
2474
2475 dist = sched_max_numa_distance;
2476
2477 for_each_node_state(node, N_CPU) {
2478 score = group_weight(p, node, dist);
2479 if (score > max_score) {
2480 max_score = score;
2481 max_node = node;
2482 }
2483 }
2484 return max_node;
2485 }
2486
2487 /*
2488 * Finding the preferred nid in a system with NUMA backplane
2489 * interconnect topology is more involved. The goal is to locate
2490 * tasks from numa_groups near each other in the system, and
2491 * untangle workloads from different sides of the system. This requires
2492 * searching down the hierarchy of node groups, recursively searching
2493 * inside the highest scoring group of nodes. The nodemask tricks
2494 * keep the complexity of the search down.
2495 */
2496 nodes = node_states[N_CPU];
2497 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2498 unsigned long max_faults = 0;
2499 nodemask_t max_group = NODE_MASK_NONE;
2500 int a, b;
2501
2502 /* Are there nodes at this distance from each other? */
2503 if (!find_numa_distance(dist))
2504 continue;
2505
2506 for_each_node_mask(a, nodes) {
2507 unsigned long faults = 0;
2508 nodemask_t this_group;
2509 nodes_clear(this_group);
2510
2511 /* Sum group's NUMA faults; includes a==b case. */
2512 for_each_node_mask(b, nodes) {
2513 if (node_distance(a, b) < dist) {
2514 faults += group_faults(p, b);
2515 node_set(b, this_group);
2516 node_clear(b, nodes);
2517 }
2518 }
2519
2520 /* Remember the top group. */
2521 if (faults > max_faults) {
2522 max_faults = faults;
2523 max_group = this_group;
2524 /*
2525 * subtle: at the smallest distance there is
2526 * just one node left in each "group", the
2527 * winner is the preferred nid.
2528 */
2529 nid = a;
2530 }
2531 }
2532 /* Next round, evaluate the nodes within max_group. */
2533 if (!max_faults)
2534 break;
2535 nodes = max_group;
2536 }
2537 return nid;
2538 }
2539
task_numa_placement(struct task_struct * p)2540 static void task_numa_placement(struct task_struct *p)
2541 {
2542 int seq, nid, max_nid = NUMA_NO_NODE;
2543 unsigned long max_faults = 0;
2544 unsigned long fault_types[2] = { 0, 0 };
2545 unsigned long total_faults;
2546 u64 runtime, period;
2547 spinlock_t *group_lock = NULL;
2548 struct numa_group *ng;
2549
2550 /*
2551 * The p->mm->numa_scan_seq field gets updated without
2552 * exclusive access. Use READ_ONCE() here to ensure
2553 * that the field is read in a single access:
2554 */
2555 seq = READ_ONCE(p->mm->numa_scan_seq);
2556 if (p->numa_scan_seq == seq)
2557 return;
2558 p->numa_scan_seq = seq;
2559 p->numa_scan_period_max = task_scan_max(p);
2560
2561 total_faults = p->numa_faults_locality[0] +
2562 p->numa_faults_locality[1];
2563 runtime = numa_get_avg_runtime(p, &period);
2564
2565 /* If the task is part of a group prevent parallel updates to group stats */
2566 ng = deref_curr_numa_group(p);
2567 if (ng) {
2568 group_lock = &ng->lock;
2569 spin_lock_irq(group_lock);
2570 }
2571
2572 /* Find the node with the highest number of faults */
2573 for_each_online_node(nid) {
2574 /* Keep track of the offsets in numa_faults array */
2575 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2576 unsigned long faults = 0, group_faults = 0;
2577 int priv;
2578
2579 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2580 long diff, f_diff, f_weight;
2581
2582 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2583 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2584 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2585 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2586
2587 /* Decay existing window, copy faults since last scan */
2588 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2589 fault_types[priv] += p->numa_faults[membuf_idx];
2590 p->numa_faults[membuf_idx] = 0;
2591
2592 /*
2593 * Normalize the faults_from, so all tasks in a group
2594 * count according to CPU use, instead of by the raw
2595 * number of faults. Tasks with little runtime have
2596 * little over-all impact on throughput, and thus their
2597 * faults are less important.
2598 */
2599 f_weight = div64_u64(runtime << 16, period + 1);
2600 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2601 (total_faults + 1);
2602 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2603 p->numa_faults[cpubuf_idx] = 0;
2604
2605 p->numa_faults[mem_idx] += diff;
2606 p->numa_faults[cpu_idx] += f_diff;
2607 faults += p->numa_faults[mem_idx];
2608 p->total_numa_faults += diff;
2609 if (ng) {
2610 /*
2611 * safe because we can only change our own group
2612 *
2613 * mem_idx represents the offset for a given
2614 * nid and priv in a specific region because it
2615 * is at the beginning of the numa_faults array.
2616 */
2617 ng->faults[mem_idx] += diff;
2618 ng->faults[cpu_idx] += f_diff;
2619 ng->total_faults += diff;
2620 group_faults += ng->faults[mem_idx];
2621 }
2622 }
2623
2624 if (!ng) {
2625 if (faults > max_faults) {
2626 max_faults = faults;
2627 max_nid = nid;
2628 }
2629 } else if (group_faults > max_faults) {
2630 max_faults = group_faults;
2631 max_nid = nid;
2632 }
2633 }
2634
2635 /* Cannot migrate task to CPU-less node */
2636 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2637 int near_nid = max_nid;
2638 int distance, near_distance = INT_MAX;
2639
2640 for_each_node_state(nid, N_CPU) {
2641 distance = node_distance(max_nid, nid);
2642 if (distance < near_distance) {
2643 near_nid = nid;
2644 near_distance = distance;
2645 }
2646 }
2647 max_nid = near_nid;
2648 }
2649
2650 if (ng) {
2651 numa_group_count_active_nodes(ng);
2652 spin_unlock_irq(group_lock);
2653 max_nid = preferred_group_nid(p, max_nid);
2654 }
2655
2656 if (max_faults) {
2657 /* Set the new preferred node */
2658 if (max_nid != p->numa_preferred_nid)
2659 sched_setnuma(p, max_nid);
2660 }
2661
2662 update_task_scan_period(p, fault_types[0], fault_types[1]);
2663 }
2664
get_numa_group(struct numa_group * grp)2665 static inline int get_numa_group(struct numa_group *grp)
2666 {
2667 return refcount_inc_not_zero(&grp->refcount);
2668 }
2669
put_numa_group(struct numa_group * grp)2670 static inline void put_numa_group(struct numa_group *grp)
2671 {
2672 if (refcount_dec_and_test(&grp->refcount))
2673 kfree_rcu(grp, rcu);
2674 }
2675
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2676 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2677 int *priv)
2678 {
2679 struct numa_group *grp, *my_grp;
2680 struct task_struct *tsk;
2681 bool join = false;
2682 int cpu = cpupid_to_cpu(cpupid);
2683 int i;
2684
2685 if (unlikely(!deref_curr_numa_group(p))) {
2686 unsigned int size = sizeof(struct numa_group) +
2687 NR_NUMA_HINT_FAULT_STATS *
2688 nr_node_ids * sizeof(unsigned long);
2689
2690 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2691 if (!grp)
2692 return;
2693
2694 refcount_set(&grp->refcount, 1);
2695 grp->active_nodes = 1;
2696 grp->max_faults_cpu = 0;
2697 spin_lock_init(&grp->lock);
2698 grp->gid = p->pid;
2699
2700 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2701 grp->faults[i] = p->numa_faults[i];
2702
2703 grp->total_faults = p->total_numa_faults;
2704
2705 grp->nr_tasks++;
2706 rcu_assign_pointer(p->numa_group, grp);
2707 }
2708
2709 rcu_read_lock();
2710 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2711
2712 if (!cpupid_match_pid(tsk, cpupid))
2713 goto no_join;
2714
2715 grp = rcu_dereference(tsk->numa_group);
2716 if (!grp)
2717 goto no_join;
2718
2719 my_grp = deref_curr_numa_group(p);
2720 if (grp == my_grp)
2721 goto no_join;
2722
2723 /*
2724 * Only join the other group if its bigger; if we're the bigger group,
2725 * the other task will join us.
2726 */
2727 if (my_grp->nr_tasks > grp->nr_tasks)
2728 goto no_join;
2729
2730 /*
2731 * Tie-break on the grp address.
2732 */
2733 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2734 goto no_join;
2735
2736 /* Always join threads in the same process. */
2737 if (tsk->mm == current->mm)
2738 join = true;
2739
2740 /* Simple filter to avoid false positives due to PID collisions */
2741 if (flags & TNF_SHARED)
2742 join = true;
2743
2744 /* Update priv based on whether false sharing was detected */
2745 *priv = !join;
2746
2747 if (join && !get_numa_group(grp))
2748 goto no_join;
2749
2750 rcu_read_unlock();
2751
2752 if (!join)
2753 return;
2754
2755 WARN_ON_ONCE(irqs_disabled());
2756 double_lock_irq(&my_grp->lock, &grp->lock);
2757
2758 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2759 my_grp->faults[i] -= p->numa_faults[i];
2760 grp->faults[i] += p->numa_faults[i];
2761 }
2762 my_grp->total_faults -= p->total_numa_faults;
2763 grp->total_faults += p->total_numa_faults;
2764
2765 my_grp->nr_tasks--;
2766 grp->nr_tasks++;
2767
2768 spin_unlock(&my_grp->lock);
2769 spin_unlock_irq(&grp->lock);
2770
2771 rcu_assign_pointer(p->numa_group, grp);
2772
2773 put_numa_group(my_grp);
2774 return;
2775
2776 no_join:
2777 rcu_read_unlock();
2778 return;
2779 }
2780
2781 /*
2782 * Get rid of NUMA statistics associated with a task (either current or dead).
2783 * If @final is set, the task is dead and has reached refcount zero, so we can
2784 * safely free all relevant data structures. Otherwise, there might be
2785 * concurrent reads from places like load balancing and procfs, and we should
2786 * reset the data back to default state without freeing ->numa_faults.
2787 */
task_numa_free(struct task_struct * p,bool final)2788 void task_numa_free(struct task_struct *p, bool final)
2789 {
2790 /* safe: p either is current or is being freed by current */
2791 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2792 unsigned long *numa_faults = p->numa_faults;
2793 unsigned long flags;
2794 int i;
2795
2796 if (!numa_faults)
2797 return;
2798
2799 if (grp) {
2800 spin_lock_irqsave(&grp->lock, flags);
2801 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2802 grp->faults[i] -= p->numa_faults[i];
2803 grp->total_faults -= p->total_numa_faults;
2804
2805 grp->nr_tasks--;
2806 spin_unlock_irqrestore(&grp->lock, flags);
2807 RCU_INIT_POINTER(p->numa_group, NULL);
2808 put_numa_group(grp);
2809 }
2810
2811 if (final) {
2812 p->numa_faults = NULL;
2813 kfree(numa_faults);
2814 } else {
2815 p->total_numa_faults = 0;
2816 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2817 numa_faults[i] = 0;
2818 }
2819 }
2820
2821 /*
2822 * Got a PROT_NONE fault for a page on @node.
2823 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2824 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2825 {
2826 struct task_struct *p = current;
2827 bool migrated = flags & TNF_MIGRATED;
2828 int cpu_node = task_node(current);
2829 int local = !!(flags & TNF_FAULT_LOCAL);
2830 struct numa_group *ng;
2831 int priv;
2832
2833 if (!static_branch_likely(&sched_numa_balancing))
2834 return;
2835
2836 /* for example, ksmd faulting in a user's mm */
2837 if (!p->mm)
2838 return;
2839
2840 /*
2841 * NUMA faults statistics are unnecessary for the slow memory
2842 * node for memory tiering mode.
2843 */
2844 if (!node_is_toptier(mem_node) &&
2845 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2846 !cpupid_valid(last_cpupid)))
2847 return;
2848
2849 /* Allocate buffer to track faults on a per-node basis */
2850 if (unlikely(!p->numa_faults)) {
2851 int size = sizeof(*p->numa_faults) *
2852 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2853
2854 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2855 if (!p->numa_faults)
2856 return;
2857
2858 p->total_numa_faults = 0;
2859 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2860 }
2861
2862 /*
2863 * First accesses are treated as private, otherwise consider accesses
2864 * to be private if the accessing pid has not changed
2865 */
2866 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2867 priv = 1;
2868 } else {
2869 priv = cpupid_match_pid(p, last_cpupid);
2870 if (!priv && !(flags & TNF_NO_GROUP))
2871 task_numa_group(p, last_cpupid, flags, &priv);
2872 }
2873
2874 /*
2875 * If a workload spans multiple NUMA nodes, a shared fault that
2876 * occurs wholly within the set of nodes that the workload is
2877 * actively using should be counted as local. This allows the
2878 * scan rate to slow down when a workload has settled down.
2879 */
2880 ng = deref_curr_numa_group(p);
2881 if (!priv && !local && ng && ng->active_nodes > 1 &&
2882 numa_is_active_node(cpu_node, ng) &&
2883 numa_is_active_node(mem_node, ng))
2884 local = 1;
2885
2886 /*
2887 * Retry to migrate task to preferred node periodically, in case it
2888 * previously failed, or the scheduler moved us.
2889 */
2890 if (time_after(jiffies, p->numa_migrate_retry)) {
2891 task_numa_placement(p);
2892 numa_migrate_preferred(p);
2893 }
2894
2895 if (migrated)
2896 p->numa_pages_migrated += pages;
2897 if (flags & TNF_MIGRATE_FAIL)
2898 p->numa_faults_locality[2] += pages;
2899
2900 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2901 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2902 p->numa_faults_locality[local] += pages;
2903 }
2904
reset_ptenuma_scan(struct task_struct * p)2905 static void reset_ptenuma_scan(struct task_struct *p)
2906 {
2907 /*
2908 * We only did a read acquisition of the mmap sem, so
2909 * p->mm->numa_scan_seq is written to without exclusive access
2910 * and the update is not guaranteed to be atomic. That's not
2911 * much of an issue though, since this is just used for
2912 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2913 * expensive, to avoid any form of compiler optimizations:
2914 */
2915 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2916 p->mm->numa_scan_offset = 0;
2917 }
2918
2919 /*
2920 * The expensive part of numa migration is done from task_work context.
2921 * Triggered from task_tick_numa().
2922 */
task_numa_work(struct callback_head * work)2923 static void task_numa_work(struct callback_head *work)
2924 {
2925 unsigned long migrate, next_scan, now = jiffies;
2926 struct task_struct *p = current;
2927 struct mm_struct *mm = p->mm;
2928 u64 runtime = p->se.sum_exec_runtime;
2929 MA_STATE(mas, &mm->mm_mt, 0, 0);
2930 struct vm_area_struct *vma;
2931 unsigned long start, end;
2932 unsigned long nr_pte_updates = 0;
2933 long pages, virtpages;
2934
2935 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2936
2937 work->next = work;
2938 /*
2939 * Who cares about NUMA placement when they're dying.
2940 *
2941 * NOTE: make sure not to dereference p->mm before this check,
2942 * exit_task_work() happens _after_ exit_mm() so we could be called
2943 * without p->mm even though we still had it when we enqueued this
2944 * work.
2945 */
2946 if (p->flags & PF_EXITING)
2947 return;
2948
2949 if (!mm->numa_next_scan) {
2950 mm->numa_next_scan = now +
2951 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2952 }
2953
2954 /*
2955 * Enforce maximal scan/migration frequency..
2956 */
2957 migrate = mm->numa_next_scan;
2958 if (time_before(now, migrate))
2959 return;
2960
2961 if (p->numa_scan_period == 0) {
2962 p->numa_scan_period_max = task_scan_max(p);
2963 p->numa_scan_period = task_scan_start(p);
2964 }
2965
2966 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2967 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2968 return;
2969
2970 /*
2971 * Delay this task enough that another task of this mm will likely win
2972 * the next time around.
2973 */
2974 p->node_stamp += 2 * TICK_NSEC;
2975
2976 start = mm->numa_scan_offset;
2977 pages = sysctl_numa_balancing_scan_size;
2978 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2979 virtpages = pages * 8; /* Scan up to this much virtual space */
2980 if (!pages)
2981 return;
2982
2983
2984 if (!mmap_read_trylock(mm))
2985 return;
2986 mas_set(&mas, start);
2987 vma = mas_find(&mas, ULONG_MAX);
2988 if (!vma) {
2989 reset_ptenuma_scan(p);
2990 start = 0;
2991 mas_set(&mas, start);
2992 vma = mas_find(&mas, ULONG_MAX);
2993 }
2994
2995 for (; vma; vma = mas_find(&mas, ULONG_MAX)) {
2996 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2997 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2998 continue;
2999 }
3000
3001 /*
3002 * Shared library pages mapped by multiple processes are not
3003 * migrated as it is expected they are cache replicated. Avoid
3004 * hinting faults in read-only file-backed mappings or the vdso
3005 * as migrating the pages will be of marginal benefit.
3006 */
3007 if (!vma->vm_mm ||
3008 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3009 continue;
3010
3011 /*
3012 * Skip inaccessible VMAs to avoid any confusion between
3013 * PROT_NONE and NUMA hinting ptes
3014 */
3015 if (!vma_is_accessible(vma))
3016 continue;
3017
3018 do {
3019 start = max(start, vma->vm_start);
3020 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3021 end = min(end, vma->vm_end);
3022 nr_pte_updates = change_prot_numa(vma, start, end);
3023
3024 /*
3025 * Try to scan sysctl_numa_balancing_size worth of
3026 * hpages that have at least one present PTE that
3027 * is not already pte-numa. If the VMA contains
3028 * areas that are unused or already full of prot_numa
3029 * PTEs, scan up to virtpages, to skip through those
3030 * areas faster.
3031 */
3032 if (nr_pte_updates)
3033 pages -= (end - start) >> PAGE_SHIFT;
3034 virtpages -= (end - start) >> PAGE_SHIFT;
3035
3036 start = end;
3037 if (pages <= 0 || virtpages <= 0)
3038 goto out;
3039
3040 cond_resched();
3041 } while (end != vma->vm_end);
3042 }
3043
3044 out:
3045 /*
3046 * It is possible to reach the end of the VMA list but the last few
3047 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3048 * would find the !migratable VMA on the next scan but not reset the
3049 * scanner to the start so check it now.
3050 */
3051 if (vma)
3052 mm->numa_scan_offset = start;
3053 else
3054 reset_ptenuma_scan(p);
3055 mmap_read_unlock(mm);
3056
3057 /*
3058 * Make sure tasks use at least 32x as much time to run other code
3059 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3060 * Usually update_task_scan_period slows down scanning enough; on an
3061 * overloaded system we need to limit overhead on a per task basis.
3062 */
3063 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3064 u64 diff = p->se.sum_exec_runtime - runtime;
3065 p->node_stamp += 32 * diff;
3066 }
3067 }
3068
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3070 {
3071 int mm_users = 0;
3072 struct mm_struct *mm = p->mm;
3073
3074 if (mm) {
3075 mm_users = atomic_read(&mm->mm_users);
3076 if (mm_users == 1) {
3077 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3078 mm->numa_scan_seq = 0;
3079 }
3080 }
3081 p->node_stamp = 0;
3082 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3083 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3084 p->numa_migrate_retry = 0;
3085 /* Protect against double add, see task_tick_numa and task_numa_work */
3086 p->numa_work.next = &p->numa_work;
3087 p->numa_faults = NULL;
3088 p->numa_pages_migrated = 0;
3089 p->total_numa_faults = 0;
3090 RCU_INIT_POINTER(p->numa_group, NULL);
3091 p->last_task_numa_placement = 0;
3092 p->last_sum_exec_runtime = 0;
3093
3094 init_task_work(&p->numa_work, task_numa_work);
3095
3096 /* New address space, reset the preferred nid */
3097 if (!(clone_flags & CLONE_VM)) {
3098 p->numa_preferred_nid = NUMA_NO_NODE;
3099 return;
3100 }
3101
3102 /*
3103 * New thread, keep existing numa_preferred_nid which should be copied
3104 * already by arch_dup_task_struct but stagger when scans start.
3105 */
3106 if (mm) {
3107 unsigned int delay;
3108
3109 delay = min_t(unsigned int, task_scan_max(current),
3110 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3111 delay += 2 * TICK_NSEC;
3112 p->node_stamp = delay;
3113 }
3114 }
3115
3116 /*
3117 * Drive the periodic memory faults..
3118 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3120 {
3121 struct callback_head *work = &curr->numa_work;
3122 u64 period, now;
3123
3124 /*
3125 * We don't care about NUMA placement if we don't have memory.
3126 */
3127 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3128 return;
3129
3130 /*
3131 * Using runtime rather than walltime has the dual advantage that
3132 * we (mostly) drive the selection from busy threads and that the
3133 * task needs to have done some actual work before we bother with
3134 * NUMA placement.
3135 */
3136 now = curr->se.sum_exec_runtime;
3137 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3138
3139 if (now > curr->node_stamp + period) {
3140 if (!curr->node_stamp)
3141 curr->numa_scan_period = task_scan_start(curr);
3142 curr->node_stamp += period;
3143
3144 if (!time_before(jiffies, curr->mm->numa_next_scan))
3145 task_work_add(curr, work, TWA_RESUME);
3146 }
3147 }
3148
update_scan_period(struct task_struct * p,int new_cpu)3149 static void update_scan_period(struct task_struct *p, int new_cpu)
3150 {
3151 int src_nid = cpu_to_node(task_cpu(p));
3152 int dst_nid = cpu_to_node(new_cpu);
3153
3154 if (!static_branch_likely(&sched_numa_balancing))
3155 return;
3156
3157 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3158 return;
3159
3160 if (src_nid == dst_nid)
3161 return;
3162
3163 /*
3164 * Allow resets if faults have been trapped before one scan
3165 * has completed. This is most likely due to a new task that
3166 * is pulled cross-node due to wakeups or load balancing.
3167 */
3168 if (p->numa_scan_seq) {
3169 /*
3170 * Avoid scan adjustments if moving to the preferred
3171 * node or if the task was not previously running on
3172 * the preferred node.
3173 */
3174 if (dst_nid == p->numa_preferred_nid ||
3175 (p->numa_preferred_nid != NUMA_NO_NODE &&
3176 src_nid != p->numa_preferred_nid))
3177 return;
3178 }
3179
3180 p->numa_scan_period = task_scan_start(p);
3181 }
3182
3183 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3185 {
3186 }
3187
account_numa_enqueue(struct rq * rq,struct task_struct * p)3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3189 {
3190 }
3191
account_numa_dequeue(struct rq * rq,struct task_struct * p)3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3193 {
3194 }
3195
update_scan_period(struct task_struct * p,int new_cpu)3196 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3197 {
3198 }
3199
3200 #endif /* CONFIG_NUMA_BALANCING */
3201
3202 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3204 {
3205 update_load_add(&cfs_rq->load, se->load.weight);
3206 #ifdef CONFIG_SMP
3207 if (entity_is_task(se)) {
3208 struct rq *rq = rq_of(cfs_rq);
3209
3210 account_numa_enqueue(rq, task_of(se));
3211 list_add(&se->group_node, &rq->cfs_tasks);
3212 }
3213 #endif
3214 cfs_rq->nr_running++;
3215 if (se_is_idle(se))
3216 cfs_rq->idle_nr_running++;
3217 }
3218
3219 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3221 {
3222 update_load_sub(&cfs_rq->load, se->load.weight);
3223 #ifdef CONFIG_SMP
3224 if (entity_is_task(se)) {
3225 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3226 list_del_init(&se->group_node);
3227 }
3228 #endif
3229 cfs_rq->nr_running--;
3230 if (se_is_idle(se))
3231 cfs_rq->idle_nr_running--;
3232 }
3233
3234 /*
3235 * Signed add and clamp on underflow.
3236 *
3237 * Explicitly do a load-store to ensure the intermediate value never hits
3238 * memory. This allows lockless observations without ever seeing the negative
3239 * values.
3240 */
3241 #define add_positive(_ptr, _val) do { \
3242 typeof(_ptr) ptr = (_ptr); \
3243 typeof(_val) val = (_val); \
3244 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3245 \
3246 res = var + val; \
3247 \
3248 if (val < 0 && res > var) \
3249 res = 0; \
3250 \
3251 WRITE_ONCE(*ptr, res); \
3252 } while (0)
3253
3254 /*
3255 * Unsigned subtract and clamp on underflow.
3256 *
3257 * Explicitly do a load-store to ensure the intermediate value never hits
3258 * memory. This allows lockless observations without ever seeing the negative
3259 * values.
3260 */
3261 #define sub_positive(_ptr, _val) do { \
3262 typeof(_ptr) ptr = (_ptr); \
3263 typeof(*ptr) val = (_val); \
3264 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3265 res = var - val; \
3266 if (res > var) \
3267 res = 0; \
3268 WRITE_ONCE(*ptr, res); \
3269 } while (0)
3270
3271 /*
3272 * Remove and clamp on negative, from a local variable.
3273 *
3274 * A variant of sub_positive(), which does not use explicit load-store
3275 * and is thus optimized for local variable updates.
3276 */
3277 #define lsub_positive(_ptr, _val) do { \
3278 typeof(_ptr) ptr = (_ptr); \
3279 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3280 } while (0)
3281
3282 #ifdef CONFIG_SMP
3283 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3285 {
3286 cfs_rq->avg.load_avg += se->avg.load_avg;
3287 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3288 }
3289
3290 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3292 {
3293 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3294 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3295 /* See update_cfs_rq_load_avg() */
3296 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3297 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3298 }
3299 #else
3300 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3302 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3304 #endif
3305
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3307 unsigned long weight)
3308 {
3309 if (se->on_rq) {
3310 /* commit outstanding execution time */
3311 if (cfs_rq->curr == se)
3312 update_curr(cfs_rq);
3313 update_load_sub(&cfs_rq->load, se->load.weight);
3314 }
3315 dequeue_load_avg(cfs_rq, se);
3316
3317 update_load_set(&se->load, weight);
3318
3319 #ifdef CONFIG_SMP
3320 do {
3321 u32 divider = get_pelt_divider(&se->avg);
3322
3323 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3324 } while (0);
3325 #endif
3326
3327 enqueue_load_avg(cfs_rq, se);
3328 if (se->on_rq)
3329 update_load_add(&cfs_rq->load, se->load.weight);
3330
3331 }
3332
reweight_task(struct task_struct * p,int prio)3333 void reweight_task(struct task_struct *p, int prio)
3334 {
3335 struct sched_entity *se = &p->se;
3336 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3337 struct load_weight *load = &se->load;
3338 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3339
3340 reweight_entity(cfs_rq, se, weight);
3341 load->inv_weight = sched_prio_to_wmult[prio];
3342 }
3343
3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3345
3346 #ifdef CONFIG_FAIR_GROUP_SCHED
3347 #ifdef CONFIG_SMP
3348 /*
3349 * All this does is approximate the hierarchical proportion which includes that
3350 * global sum we all love to hate.
3351 *
3352 * That is, the weight of a group entity, is the proportional share of the
3353 * group weight based on the group runqueue weights. That is:
3354 *
3355 * tg->weight * grq->load.weight
3356 * ge->load.weight = ----------------------------- (1)
3357 * \Sum grq->load.weight
3358 *
3359 * Now, because computing that sum is prohibitively expensive to compute (been
3360 * there, done that) we approximate it with this average stuff. The average
3361 * moves slower and therefore the approximation is cheaper and more stable.
3362 *
3363 * So instead of the above, we substitute:
3364 *
3365 * grq->load.weight -> grq->avg.load_avg (2)
3366 *
3367 * which yields the following:
3368 *
3369 * tg->weight * grq->avg.load_avg
3370 * ge->load.weight = ------------------------------ (3)
3371 * tg->load_avg
3372 *
3373 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3374 *
3375 * That is shares_avg, and it is right (given the approximation (2)).
3376 *
3377 * The problem with it is that because the average is slow -- it was designed
3378 * to be exactly that of course -- this leads to transients in boundary
3379 * conditions. In specific, the case where the group was idle and we start the
3380 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3381 * yielding bad latency etc..
3382 *
3383 * Now, in that special case (1) reduces to:
3384 *
3385 * tg->weight * grq->load.weight
3386 * ge->load.weight = ----------------------------- = tg->weight (4)
3387 * grp->load.weight
3388 *
3389 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3390 *
3391 * So what we do is modify our approximation (3) to approach (4) in the (near)
3392 * UP case, like:
3393 *
3394 * ge->load.weight =
3395 *
3396 * tg->weight * grq->load.weight
3397 * --------------------------------------------------- (5)
3398 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3399 *
3400 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3401 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3402 *
3403 *
3404 * tg->weight * grq->load.weight
3405 * ge->load.weight = ----------------------------- (6)
3406 * tg_load_avg'
3407 *
3408 * Where:
3409 *
3410 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3411 * max(grq->load.weight, grq->avg.load_avg)
3412 *
3413 * And that is shares_weight and is icky. In the (near) UP case it approaches
3414 * (4) while in the normal case it approaches (3). It consistently
3415 * overestimates the ge->load.weight and therefore:
3416 *
3417 * \Sum ge->load.weight >= tg->weight
3418 *
3419 * hence icky!
3420 */
calc_group_shares(struct cfs_rq * cfs_rq)3421 static long calc_group_shares(struct cfs_rq *cfs_rq)
3422 {
3423 long tg_weight, tg_shares, load, shares;
3424 struct task_group *tg = cfs_rq->tg;
3425
3426 tg_shares = READ_ONCE(tg->shares);
3427
3428 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3429
3430 tg_weight = atomic_long_read(&tg->load_avg);
3431
3432 /* Ensure tg_weight >= load */
3433 tg_weight -= cfs_rq->tg_load_avg_contrib;
3434 tg_weight += load;
3435
3436 shares = (tg_shares * load);
3437 if (tg_weight)
3438 shares /= tg_weight;
3439
3440 /*
3441 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3442 * of a group with small tg->shares value. It is a floor value which is
3443 * assigned as a minimum load.weight to the sched_entity representing
3444 * the group on a CPU.
3445 *
3446 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3447 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3448 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3449 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3450 * instead of 0.
3451 */
3452 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3453 }
3454 #endif /* CONFIG_SMP */
3455
3456 /*
3457 * Recomputes the group entity based on the current state of its group
3458 * runqueue.
3459 */
update_cfs_group(struct sched_entity * se)3460 static void update_cfs_group(struct sched_entity *se)
3461 {
3462 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3463 long shares;
3464
3465 if (!gcfs_rq)
3466 return;
3467
3468 if (throttled_hierarchy(gcfs_rq))
3469 return;
3470
3471 #ifndef CONFIG_SMP
3472 shares = READ_ONCE(gcfs_rq->tg->shares);
3473
3474 if (likely(se->load.weight == shares))
3475 return;
3476 #else
3477 shares = calc_group_shares(gcfs_rq);
3478 #endif
3479
3480 reweight_entity(cfs_rq_of(se), se, shares);
3481 }
3482
3483 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3484 static inline void update_cfs_group(struct sched_entity *se)
3485 {
3486 }
3487 #endif /* CONFIG_FAIR_GROUP_SCHED */
3488
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3490 {
3491 struct rq *rq = rq_of(cfs_rq);
3492
3493 if (&rq->cfs == cfs_rq) {
3494 /*
3495 * There are a few boundary cases this might miss but it should
3496 * get called often enough that that should (hopefully) not be
3497 * a real problem.
3498 *
3499 * It will not get called when we go idle, because the idle
3500 * thread is a different class (!fair), nor will the utilization
3501 * number include things like RT tasks.
3502 *
3503 * As is, the util number is not freq-invariant (we'd have to
3504 * implement arch_scale_freq_capacity() for that).
3505 *
3506 * See cpu_util_cfs().
3507 */
3508 cpufreq_update_util(rq, flags);
3509 }
3510 }
3511
3512 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)3513 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3514 {
3515 if (sa->load_sum)
3516 return false;
3517
3518 if (sa->util_sum)
3519 return false;
3520
3521 if (sa->runnable_sum)
3522 return false;
3523
3524 /*
3525 * _avg must be null when _sum are null because _avg = _sum / divider
3526 * Make sure that rounding and/or propagation of PELT values never
3527 * break this.
3528 */
3529 SCHED_WARN_ON(sa->load_avg ||
3530 sa->util_avg ||
3531 sa->runnable_avg);
3532
3533 return true;
3534 }
3535
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3537 {
3538 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3539 cfs_rq->last_update_time_copy);
3540 }
3541 #ifdef CONFIG_FAIR_GROUP_SCHED
3542 /*
3543 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3544 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3545 * bottom-up, we only have to test whether the cfs_rq before us on the list
3546 * is our child.
3547 * If cfs_rq is not on the list, test whether a child needs its to be added to
3548 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3549 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3551 {
3552 struct cfs_rq *prev_cfs_rq;
3553 struct list_head *prev;
3554
3555 if (cfs_rq->on_list) {
3556 prev = cfs_rq->leaf_cfs_rq_list.prev;
3557 } else {
3558 struct rq *rq = rq_of(cfs_rq);
3559
3560 prev = rq->tmp_alone_branch;
3561 }
3562
3563 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3564
3565 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3566 }
3567
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3569 {
3570 if (cfs_rq->load.weight)
3571 return false;
3572
3573 if (!load_avg_is_decayed(&cfs_rq->avg))
3574 return false;
3575
3576 if (child_cfs_rq_on_list(cfs_rq))
3577 return false;
3578
3579 return true;
3580 }
3581
3582 /**
3583 * update_tg_load_avg - update the tg's load avg
3584 * @cfs_rq: the cfs_rq whose avg changed
3585 *
3586 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3587 * However, because tg->load_avg is a global value there are performance
3588 * considerations.
3589 *
3590 * In order to avoid having to look at the other cfs_rq's, we use a
3591 * differential update where we store the last value we propagated. This in
3592 * turn allows skipping updates if the differential is 'small'.
3593 *
3594 * Updating tg's load_avg is necessary before update_cfs_share().
3595 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3597 {
3598 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3599
3600 /*
3601 * No need to update load_avg for root_task_group as it is not used.
3602 */
3603 if (cfs_rq->tg == &root_task_group)
3604 return;
3605
3606 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3607 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3608 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3609 }
3610 }
3611
3612 /*
3613 * Called within set_task_rq() right before setting a task's CPU. The
3614 * caller only guarantees p->pi_lock is held; no other assumptions,
3615 * including the state of rq->lock, should be made.
3616 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3617 void set_task_rq_fair(struct sched_entity *se,
3618 struct cfs_rq *prev, struct cfs_rq *next)
3619 {
3620 u64 p_last_update_time;
3621 u64 n_last_update_time;
3622
3623 if (!sched_feat(ATTACH_AGE_LOAD))
3624 return;
3625
3626 /*
3627 * We are supposed to update the task to "current" time, then its up to
3628 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3629 * getting what current time is, so simply throw away the out-of-date
3630 * time. This will result in the wakee task is less decayed, but giving
3631 * the wakee more load sounds not bad.
3632 */
3633 if (!(se->avg.last_update_time && prev))
3634 return;
3635
3636 p_last_update_time = cfs_rq_last_update_time(prev);
3637 n_last_update_time = cfs_rq_last_update_time(next);
3638
3639 __update_load_avg_blocked_se(p_last_update_time, se);
3640 se->avg.last_update_time = n_last_update_time;
3641 }
3642
3643 /*
3644 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3645 * propagate its contribution. The key to this propagation is the invariant
3646 * that for each group:
3647 *
3648 * ge->avg == grq->avg (1)
3649 *
3650 * _IFF_ we look at the pure running and runnable sums. Because they
3651 * represent the very same entity, just at different points in the hierarchy.
3652 *
3653 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3654 * and simply copies the running/runnable sum over (but still wrong, because
3655 * the group entity and group rq do not have their PELT windows aligned).
3656 *
3657 * However, update_tg_cfs_load() is more complex. So we have:
3658 *
3659 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3660 *
3661 * And since, like util, the runnable part should be directly transferable,
3662 * the following would _appear_ to be the straight forward approach:
3663 *
3664 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3665 *
3666 * And per (1) we have:
3667 *
3668 * ge->avg.runnable_avg == grq->avg.runnable_avg
3669 *
3670 * Which gives:
3671 *
3672 * ge->load.weight * grq->avg.load_avg
3673 * ge->avg.load_avg = ----------------------------------- (4)
3674 * grq->load.weight
3675 *
3676 * Except that is wrong!
3677 *
3678 * Because while for entities historical weight is not important and we
3679 * really only care about our future and therefore can consider a pure
3680 * runnable sum, runqueues can NOT do this.
3681 *
3682 * We specifically want runqueues to have a load_avg that includes
3683 * historical weights. Those represent the blocked load, the load we expect
3684 * to (shortly) return to us. This only works by keeping the weights as
3685 * integral part of the sum. We therefore cannot decompose as per (3).
3686 *
3687 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3688 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3689 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3690 * runnable section of these tasks overlap (or not). If they were to perfectly
3691 * align the rq as a whole would be runnable 2/3 of the time. If however we
3692 * always have at least 1 runnable task, the rq as a whole is always runnable.
3693 *
3694 * So we'll have to approximate.. :/
3695 *
3696 * Given the constraint:
3697 *
3698 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3699 *
3700 * We can construct a rule that adds runnable to a rq by assuming minimal
3701 * overlap.
3702 *
3703 * On removal, we'll assume each task is equally runnable; which yields:
3704 *
3705 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3706 *
3707 * XXX: only do this for the part of runnable > running ?
3708 *
3709 */
3710 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3712 {
3713 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3714 u32 new_sum, divider;
3715
3716 /* Nothing to update */
3717 if (!delta_avg)
3718 return;
3719
3720 /*
3721 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 * See ___update_load_avg() for details.
3723 */
3724 divider = get_pelt_divider(&cfs_rq->avg);
3725
3726
3727 /* Set new sched_entity's utilization */
3728 se->avg.util_avg = gcfs_rq->avg.util_avg;
3729 new_sum = se->avg.util_avg * divider;
3730 delta_sum = (long)new_sum - (long)se->avg.util_sum;
3731 se->avg.util_sum = new_sum;
3732
3733 /* Update parent cfs_rq utilization */
3734 add_positive(&cfs_rq->avg.util_avg, delta_avg);
3735 add_positive(&cfs_rq->avg.util_sum, delta_sum);
3736
3737 /* See update_cfs_rq_load_avg() */
3738 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3739 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3740 }
3741
3742 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3744 {
3745 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3746 u32 new_sum, divider;
3747
3748 /* Nothing to update */
3749 if (!delta_avg)
3750 return;
3751
3752 /*
3753 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 * See ___update_load_avg() for details.
3755 */
3756 divider = get_pelt_divider(&cfs_rq->avg);
3757
3758 /* Set new sched_entity's runnable */
3759 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3760 new_sum = se->avg.runnable_avg * divider;
3761 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3762 se->avg.runnable_sum = new_sum;
3763
3764 /* Update parent cfs_rq runnable */
3765 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3766 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3767 /* See update_cfs_rq_load_avg() */
3768 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3769 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3770 }
3771
3772 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3774 {
3775 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3776 unsigned long load_avg;
3777 u64 load_sum = 0;
3778 s64 delta_sum;
3779 u32 divider;
3780
3781 if (!runnable_sum)
3782 return;
3783
3784 gcfs_rq->prop_runnable_sum = 0;
3785
3786 /*
3787 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3788 * See ___update_load_avg() for details.
3789 */
3790 divider = get_pelt_divider(&cfs_rq->avg);
3791
3792 if (runnable_sum >= 0) {
3793 /*
3794 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3795 * the CPU is saturated running == runnable.
3796 */
3797 runnable_sum += se->avg.load_sum;
3798 runnable_sum = min_t(long, runnable_sum, divider);
3799 } else {
3800 /*
3801 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3802 * assuming all tasks are equally runnable.
3803 */
3804 if (scale_load_down(gcfs_rq->load.weight)) {
3805 load_sum = div_u64(gcfs_rq->avg.load_sum,
3806 scale_load_down(gcfs_rq->load.weight));
3807 }
3808
3809 /* But make sure to not inflate se's runnable */
3810 runnable_sum = min(se->avg.load_sum, load_sum);
3811 }
3812
3813 /*
3814 * runnable_sum can't be lower than running_sum
3815 * Rescale running sum to be in the same range as runnable sum
3816 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3817 * runnable_sum is in [0 : LOAD_AVG_MAX]
3818 */
3819 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3820 runnable_sum = max(runnable_sum, running_sum);
3821
3822 load_sum = se_weight(se) * runnable_sum;
3823 load_avg = div_u64(load_sum, divider);
3824
3825 delta_avg = load_avg - se->avg.load_avg;
3826 if (!delta_avg)
3827 return;
3828
3829 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3830
3831 se->avg.load_sum = runnable_sum;
3832 se->avg.load_avg = load_avg;
3833 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3834 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3835 /* See update_cfs_rq_load_avg() */
3836 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3837 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3838 }
3839
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3841 {
3842 cfs_rq->propagate = 1;
3843 cfs_rq->prop_runnable_sum += runnable_sum;
3844 }
3845
3846 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3847 static inline int propagate_entity_load_avg(struct sched_entity *se)
3848 {
3849 struct cfs_rq *cfs_rq, *gcfs_rq;
3850
3851 if (entity_is_task(se))
3852 return 0;
3853
3854 gcfs_rq = group_cfs_rq(se);
3855 if (!gcfs_rq->propagate)
3856 return 0;
3857
3858 gcfs_rq->propagate = 0;
3859
3860 cfs_rq = cfs_rq_of(se);
3861
3862 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3863
3864 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3865 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3866 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3867
3868 trace_pelt_cfs_tp(cfs_rq);
3869 trace_pelt_se_tp(se);
3870
3871 return 1;
3872 }
3873
3874 /*
3875 * Check if we need to update the load and the utilization of a blocked
3876 * group_entity:
3877 */
skip_blocked_update(struct sched_entity * se)3878 static inline bool skip_blocked_update(struct sched_entity *se)
3879 {
3880 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3881
3882 /*
3883 * If sched_entity still have not zero load or utilization, we have to
3884 * decay it:
3885 */
3886 if (se->avg.load_avg || se->avg.util_avg)
3887 return false;
3888
3889 /*
3890 * If there is a pending propagation, we have to update the load and
3891 * the utilization of the sched_entity:
3892 */
3893 if (gcfs_rq->propagate)
3894 return false;
3895
3896 /*
3897 * Otherwise, the load and the utilization of the sched_entity is
3898 * already zero and there is no pending propagation, so it will be a
3899 * waste of time to try to decay it:
3900 */
3901 return true;
3902 }
3903
3904 #else /* CONFIG_FAIR_GROUP_SCHED */
3905
update_tg_load_avg(struct cfs_rq * cfs_rq)3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3907
propagate_entity_load_avg(struct sched_entity * se)3908 static inline int propagate_entity_load_avg(struct sched_entity *se)
3909 {
3910 return 0;
3911 }
3912
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3914
3915 #endif /* CONFIG_FAIR_GROUP_SCHED */
3916
3917 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)3918 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3919 {
3920 u64 throttled = 0, now, lut;
3921 struct cfs_rq *cfs_rq;
3922 struct rq *rq;
3923 bool is_idle;
3924
3925 if (load_avg_is_decayed(&se->avg))
3926 return;
3927
3928 cfs_rq = cfs_rq_of(se);
3929 rq = rq_of(cfs_rq);
3930
3931 rcu_read_lock();
3932 is_idle = is_idle_task(rcu_dereference(rq->curr));
3933 rcu_read_unlock();
3934
3935 /*
3936 * The lag estimation comes with a cost we don't want to pay all the
3937 * time. Hence, limiting to the case where the source CPU is idle and
3938 * we know we are at the greatest risk to have an outdated clock.
3939 */
3940 if (!is_idle)
3941 return;
3942
3943 /*
3944 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3945 *
3946 * last_update_time (the cfs_rq's last_update_time)
3947 * = cfs_rq_clock_pelt()@cfs_rq_idle
3948 * = rq_clock_pelt()@cfs_rq_idle
3949 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
3950 *
3951 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
3952 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3953 *
3954 * rq_idle_lag (delta between now and rq's update)
3955 * = sched_clock_cpu() - rq_clock()@rq_idle
3956 *
3957 * We can then write:
3958 *
3959 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3960 * sched_clock_cpu() - rq_clock()@rq_idle
3961 * Where:
3962 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3963 * rq_clock()@rq_idle is rq->clock_idle
3964 * cfs->throttled_clock_pelt_time@cfs_rq_idle
3965 * is cfs_rq->throttled_pelt_idle
3966 */
3967
3968 #ifdef CONFIG_CFS_BANDWIDTH
3969 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3970 /* The clock has been stopped for throttling */
3971 if (throttled == U64_MAX)
3972 return;
3973 #endif
3974 now = u64_u32_load(rq->clock_pelt_idle);
3975 /*
3976 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3977 * is observed the old clock_pelt_idle value and the new clock_idle,
3978 * which lead to an underestimation. The opposite would lead to an
3979 * overestimation.
3980 */
3981 smp_rmb();
3982 lut = cfs_rq_last_update_time(cfs_rq);
3983
3984 now -= throttled;
3985 if (now < lut)
3986 /*
3987 * cfs_rq->avg.last_update_time is more recent than our
3988 * estimation, let's use it.
3989 */
3990 now = lut;
3991 else
3992 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3993
3994 __update_load_avg_blocked_se(now, se);
3995 }
3996 #else
migrate_se_pelt_lag(struct sched_entity * se)3997 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3998 #endif
3999
4000 /**
4001 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4002 * @now: current time, as per cfs_rq_clock_pelt()
4003 * @cfs_rq: cfs_rq to update
4004 *
4005 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4006 * avg. The immediate corollary is that all (fair) tasks must be attached.
4007 *
4008 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4009 *
4010 * Return: true if the load decayed or we removed load.
4011 *
4012 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4013 * call update_tg_load_avg() when this function returns true.
4014 */
4015 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4016 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4017 {
4018 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4019 struct sched_avg *sa = &cfs_rq->avg;
4020 int decayed = 0;
4021
4022 if (cfs_rq->removed.nr) {
4023 unsigned long r;
4024 u32 divider = get_pelt_divider(&cfs_rq->avg);
4025
4026 raw_spin_lock(&cfs_rq->removed.lock);
4027 swap(cfs_rq->removed.util_avg, removed_util);
4028 swap(cfs_rq->removed.load_avg, removed_load);
4029 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4030 cfs_rq->removed.nr = 0;
4031 raw_spin_unlock(&cfs_rq->removed.lock);
4032
4033 r = removed_load;
4034 sub_positive(&sa->load_avg, r);
4035 sub_positive(&sa->load_sum, r * divider);
4036 /* See sa->util_sum below */
4037 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4038
4039 r = removed_util;
4040 sub_positive(&sa->util_avg, r);
4041 sub_positive(&sa->util_sum, r * divider);
4042 /*
4043 * Because of rounding, se->util_sum might ends up being +1 more than
4044 * cfs->util_sum. Although this is not a problem by itself, detaching
4045 * a lot of tasks with the rounding problem between 2 updates of
4046 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4047 * cfs_util_avg is not.
4048 * Check that util_sum is still above its lower bound for the new
4049 * util_avg. Given that period_contrib might have moved since the last
4050 * sync, we are only sure that util_sum must be above or equal to
4051 * util_avg * minimum possible divider
4052 */
4053 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4054
4055 r = removed_runnable;
4056 sub_positive(&sa->runnable_avg, r);
4057 sub_positive(&sa->runnable_sum, r * divider);
4058 /* See sa->util_sum above */
4059 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4060 sa->runnable_avg * PELT_MIN_DIVIDER);
4061
4062 /*
4063 * removed_runnable is the unweighted version of removed_load so we
4064 * can use it to estimate removed_load_sum.
4065 */
4066 add_tg_cfs_propagate(cfs_rq,
4067 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4068
4069 decayed = 1;
4070 }
4071
4072 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4073 u64_u32_store_copy(sa->last_update_time,
4074 cfs_rq->last_update_time_copy,
4075 sa->last_update_time);
4076 return decayed;
4077 }
4078
4079 /**
4080 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4081 * @cfs_rq: cfs_rq to attach to
4082 * @se: sched_entity to attach
4083 *
4084 * Must call update_cfs_rq_load_avg() before this, since we rely on
4085 * cfs_rq->avg.last_update_time being current.
4086 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4087 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088 {
4089 /*
4090 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4091 * See ___update_load_avg() for details.
4092 */
4093 u32 divider = get_pelt_divider(&cfs_rq->avg);
4094
4095 /*
4096 * When we attach the @se to the @cfs_rq, we must align the decay
4097 * window because without that, really weird and wonderful things can
4098 * happen.
4099 *
4100 * XXX illustrate
4101 */
4102 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4103 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4104
4105 /*
4106 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4107 * period_contrib. This isn't strictly correct, but since we're
4108 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4109 * _sum a little.
4110 */
4111 se->avg.util_sum = se->avg.util_avg * divider;
4112
4113 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4114
4115 se->avg.load_sum = se->avg.load_avg * divider;
4116 if (se_weight(se) < se->avg.load_sum)
4117 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4118 else
4119 se->avg.load_sum = 1;
4120
4121 enqueue_load_avg(cfs_rq, se);
4122 cfs_rq->avg.util_avg += se->avg.util_avg;
4123 cfs_rq->avg.util_sum += se->avg.util_sum;
4124 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4125 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4126
4127 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4128
4129 cfs_rq_util_change(cfs_rq, 0);
4130
4131 trace_pelt_cfs_tp(cfs_rq);
4132 }
4133
4134 /**
4135 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4136 * @cfs_rq: cfs_rq to detach from
4137 * @se: sched_entity to detach
4138 *
4139 * Must call update_cfs_rq_load_avg() before this, since we rely on
4140 * cfs_rq->avg.last_update_time being current.
4141 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4142 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4143 {
4144 dequeue_load_avg(cfs_rq, se);
4145 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4146 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4147 /* See update_cfs_rq_load_avg() */
4148 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4149 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4150
4151 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4152 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4153 /* See update_cfs_rq_load_avg() */
4154 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4155 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4156
4157 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4158
4159 cfs_rq_util_change(cfs_rq, 0);
4160
4161 trace_pelt_cfs_tp(cfs_rq);
4162 }
4163
4164 /*
4165 * Optional action to be done while updating the load average
4166 */
4167 #define UPDATE_TG 0x1
4168 #define SKIP_AGE_LOAD 0x2
4169 #define DO_ATTACH 0x4
4170 #define DO_DETACH 0x8
4171
4172 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4174 {
4175 u64 now = cfs_rq_clock_pelt(cfs_rq);
4176 int decayed;
4177
4178 /*
4179 * Track task load average for carrying it to new CPU after migrated, and
4180 * track group sched_entity load average for task_h_load calc in migration
4181 */
4182 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4183 __update_load_avg_se(now, cfs_rq, se);
4184
4185 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4186 decayed |= propagate_entity_load_avg(se);
4187
4188 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4189
4190 /*
4191 * DO_ATTACH means we're here from enqueue_entity().
4192 * !last_update_time means we've passed through
4193 * migrate_task_rq_fair() indicating we migrated.
4194 *
4195 * IOW we're enqueueing a task on a new CPU.
4196 */
4197 attach_entity_load_avg(cfs_rq, se);
4198 update_tg_load_avg(cfs_rq);
4199
4200 } else if (flags & DO_DETACH) {
4201 /*
4202 * DO_DETACH means we're here from dequeue_entity()
4203 * and we are migrating task out of the CPU.
4204 */
4205 detach_entity_load_avg(cfs_rq, se);
4206 update_tg_load_avg(cfs_rq);
4207 } else if (decayed) {
4208 cfs_rq_util_change(cfs_rq, 0);
4209
4210 if (flags & UPDATE_TG)
4211 update_tg_load_avg(cfs_rq);
4212 }
4213 }
4214
4215 /*
4216 * Synchronize entity load avg of dequeued entity without locking
4217 * the previous rq.
4218 */
sync_entity_load_avg(struct sched_entity * se)4219 static void sync_entity_load_avg(struct sched_entity *se)
4220 {
4221 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4222 u64 last_update_time;
4223
4224 last_update_time = cfs_rq_last_update_time(cfs_rq);
4225 __update_load_avg_blocked_se(last_update_time, se);
4226 }
4227
4228 /*
4229 * Task first catches up with cfs_rq, and then subtract
4230 * itself from the cfs_rq (task must be off the queue now).
4231 */
remove_entity_load_avg(struct sched_entity * se)4232 static void remove_entity_load_avg(struct sched_entity *se)
4233 {
4234 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4235 unsigned long flags;
4236
4237 /*
4238 * tasks cannot exit without having gone through wake_up_new_task() ->
4239 * enqueue_task_fair() which will have added things to the cfs_rq,
4240 * so we can remove unconditionally.
4241 */
4242
4243 sync_entity_load_avg(se);
4244
4245 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4246 ++cfs_rq->removed.nr;
4247 cfs_rq->removed.util_avg += se->avg.util_avg;
4248 cfs_rq->removed.load_avg += se->avg.load_avg;
4249 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4250 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4251 }
4252
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4253 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4254 {
4255 return cfs_rq->avg.runnable_avg;
4256 }
4257
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4258 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4259 {
4260 return cfs_rq->avg.load_avg;
4261 }
4262
4263 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4264
task_util(struct task_struct * p)4265 static inline unsigned long task_util(struct task_struct *p)
4266 {
4267 return READ_ONCE(p->se.avg.util_avg);
4268 }
4269
_task_util_est(struct task_struct * p)4270 static inline unsigned long _task_util_est(struct task_struct *p)
4271 {
4272 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4273
4274 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4275 }
4276
task_util_est(struct task_struct * p)4277 static inline unsigned long task_util_est(struct task_struct *p)
4278 {
4279 return max(task_util(p), _task_util_est(p));
4280 }
4281
4282 #ifdef CONFIG_UCLAMP_TASK
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)4283 static inline unsigned long uclamp_task_util(struct task_struct *p,
4284 unsigned long uclamp_min,
4285 unsigned long uclamp_max)
4286 {
4287 return clamp(task_util_est(p), uclamp_min, uclamp_max);
4288 }
4289 #else
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)4290 static inline unsigned long uclamp_task_util(struct task_struct *p,
4291 unsigned long uclamp_min,
4292 unsigned long uclamp_max)
4293 {
4294 return task_util_est(p);
4295 }
4296 #endif
4297
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4298 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4299 struct task_struct *p)
4300 {
4301 unsigned int enqueued;
4302
4303 if (!sched_feat(UTIL_EST))
4304 return;
4305
4306 /* Update root cfs_rq's estimated utilization */
4307 enqueued = cfs_rq->avg.util_est.enqueued;
4308 enqueued += _task_util_est(p);
4309 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4310
4311 trace_sched_util_est_cfs_tp(cfs_rq);
4312 }
4313
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4314 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4315 struct task_struct *p)
4316 {
4317 unsigned int enqueued;
4318
4319 if (!sched_feat(UTIL_EST))
4320 return;
4321
4322 /* Update root cfs_rq's estimated utilization */
4323 enqueued = cfs_rq->avg.util_est.enqueued;
4324 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4325 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4326
4327 trace_sched_util_est_cfs_tp(cfs_rq);
4328 }
4329
4330 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4331
4332 /*
4333 * Check if a (signed) value is within a specified (unsigned) margin,
4334 * based on the observation that:
4335 *
4336 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4337 *
4338 * NOTE: this only works when value + margin < INT_MAX.
4339 */
within_margin(int value,int margin)4340 static inline bool within_margin(int value, int margin)
4341 {
4342 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4343 }
4344
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4345 static inline void util_est_update(struct cfs_rq *cfs_rq,
4346 struct task_struct *p,
4347 bool task_sleep)
4348 {
4349 long last_ewma_diff, last_enqueued_diff;
4350 struct util_est ue;
4351
4352 if (!sched_feat(UTIL_EST))
4353 return;
4354
4355 /*
4356 * Skip update of task's estimated utilization when the task has not
4357 * yet completed an activation, e.g. being migrated.
4358 */
4359 if (!task_sleep)
4360 return;
4361
4362 /*
4363 * If the PELT values haven't changed since enqueue time,
4364 * skip the util_est update.
4365 */
4366 ue = p->se.avg.util_est;
4367 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4368 return;
4369
4370 last_enqueued_diff = ue.enqueued;
4371
4372 /*
4373 * Reset EWMA on utilization increases, the moving average is used only
4374 * to smooth utilization decreases.
4375 */
4376 ue.enqueued = task_util(p);
4377 if (sched_feat(UTIL_EST_FASTUP)) {
4378 if (ue.ewma < ue.enqueued) {
4379 ue.ewma = ue.enqueued;
4380 goto done;
4381 }
4382 }
4383
4384 /*
4385 * Skip update of task's estimated utilization when its members are
4386 * already ~1% close to its last activation value.
4387 */
4388 last_ewma_diff = ue.enqueued - ue.ewma;
4389 last_enqueued_diff -= ue.enqueued;
4390 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4391 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4392 goto done;
4393
4394 return;
4395 }
4396
4397 /*
4398 * To avoid overestimation of actual task utilization, skip updates if
4399 * we cannot grant there is idle time in this CPU.
4400 */
4401 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4402 return;
4403
4404 /*
4405 * Update Task's estimated utilization
4406 *
4407 * When *p completes an activation we can consolidate another sample
4408 * of the task size. This is done by storing the current PELT value
4409 * as ue.enqueued and by using this value to update the Exponential
4410 * Weighted Moving Average (EWMA):
4411 *
4412 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4413 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4414 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4415 * = w * ( last_ewma_diff ) + ewma(t-1)
4416 * = w * (last_ewma_diff + ewma(t-1) / w)
4417 *
4418 * Where 'w' is the weight of new samples, which is configured to be
4419 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4420 */
4421 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4422 ue.ewma += last_ewma_diff;
4423 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4424 done:
4425 ue.enqueued |= UTIL_AVG_UNCHANGED;
4426 WRITE_ONCE(p->se.avg.util_est, ue);
4427
4428 trace_sched_util_est_se_tp(&p->se);
4429 }
4430
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4431 static inline int util_fits_cpu(unsigned long util,
4432 unsigned long uclamp_min,
4433 unsigned long uclamp_max,
4434 int cpu)
4435 {
4436 unsigned long capacity_orig, capacity_orig_thermal;
4437 unsigned long capacity = capacity_of(cpu);
4438 bool fits, uclamp_max_fits;
4439
4440 /*
4441 * Check if the real util fits without any uclamp boost/cap applied.
4442 */
4443 fits = fits_capacity(util, capacity);
4444
4445 if (!uclamp_is_used())
4446 return fits;
4447
4448 /*
4449 * We must use capacity_orig_of() for comparing against uclamp_min and
4450 * uclamp_max. We only care about capacity pressure (by using
4451 * capacity_of()) for comparing against the real util.
4452 *
4453 * If a task is boosted to 1024 for example, we don't want a tiny
4454 * pressure to skew the check whether it fits a CPU or not.
4455 *
4456 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4457 * should fit a little cpu even if there's some pressure.
4458 *
4459 * Only exception is for thermal pressure since it has a direct impact
4460 * on available OPP of the system.
4461 *
4462 * We honour it for uclamp_min only as a drop in performance level
4463 * could result in not getting the requested minimum performance level.
4464 *
4465 * For uclamp_max, we can tolerate a drop in performance level as the
4466 * goal is to cap the task. So it's okay if it's getting less.
4467 *
4468 * In case of capacity inversion, which is not handled yet, we should
4469 * honour the inverted capacity for both uclamp_min and uclamp_max all
4470 * the time.
4471 */
4472 capacity_orig = capacity_orig_of(cpu);
4473 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4474
4475 /*
4476 * We want to force a task to fit a cpu as implied by uclamp_max.
4477 * But we do have some corner cases to cater for..
4478 *
4479 *
4480 * C=z
4481 * | ___
4482 * | C=y | |
4483 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4484 * | C=x | | | |
4485 * | ___ | | | |
4486 * | | | | | | | (util somewhere in this region)
4487 * | | | | | | |
4488 * | | | | | | |
4489 * +----------------------------------------
4490 * cpu0 cpu1 cpu2
4491 *
4492 * In the above example if a task is capped to a specific performance
4493 * point, y, then when:
4494 *
4495 * * util = 80% of x then it does not fit on cpu0 and should migrate
4496 * to cpu1
4497 * * util = 80% of y then it is forced to fit on cpu1 to honour
4498 * uclamp_max request.
4499 *
4500 * which is what we're enforcing here. A task always fits if
4501 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4502 * the normal upmigration rules should withhold still.
4503 *
4504 * Only exception is when we are on max capacity, then we need to be
4505 * careful not to block overutilized state. This is so because:
4506 *
4507 * 1. There's no concept of capping at max_capacity! We can't go
4508 * beyond this performance level anyway.
4509 * 2. The system is being saturated when we're operating near
4510 * max capacity, it doesn't make sense to block overutilized.
4511 */
4512 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4513 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4514 fits = fits || uclamp_max_fits;
4515
4516 /*
4517 *
4518 * C=z
4519 * | ___ (region a, capped, util >= uclamp_max)
4520 * | C=y | |
4521 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4522 * | C=x | | | |
4523 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4524 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4525 * | | | | | | |
4526 * | | | | | | | (region c, boosted, util < uclamp_min)
4527 * +----------------------------------------
4528 * cpu0 cpu1 cpu2
4529 *
4530 * a) If util > uclamp_max, then we're capped, we don't care about
4531 * actual fitness value here. We only care if uclamp_max fits
4532 * capacity without taking margin/pressure into account.
4533 * See comment above.
4534 *
4535 * b) If uclamp_min <= util <= uclamp_max, then the normal
4536 * fits_capacity() rules apply. Except we need to ensure that we
4537 * enforce we remain within uclamp_max, see comment above.
4538 *
4539 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4540 * need to take into account the boosted value fits the CPU without
4541 * taking margin/pressure into account.
4542 *
4543 * Cases (a) and (b) are handled in the 'fits' variable already. We
4544 * just need to consider an extra check for case (c) after ensuring we
4545 * handle the case uclamp_min > uclamp_max.
4546 */
4547 uclamp_min = min(uclamp_min, uclamp_max);
4548 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
4549 fits = fits && (uclamp_min <= capacity_orig_thermal);
4550
4551 return fits;
4552 }
4553
task_fits_cpu(struct task_struct * p,int cpu)4554 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4555 {
4556 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4557 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4558 unsigned long util = task_util_est(p);
4559 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
4560 }
4561
update_misfit_status(struct task_struct * p,struct rq * rq)4562 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4563 {
4564 if (!sched_asym_cpucap_active())
4565 return;
4566
4567 if (!p || p->nr_cpus_allowed == 1) {
4568 rq->misfit_task_load = 0;
4569 return;
4570 }
4571
4572 if (task_fits_cpu(p, cpu_of(rq))) {
4573 rq->misfit_task_load = 0;
4574 return;
4575 }
4576
4577 /*
4578 * Make sure that misfit_task_load will not be null even if
4579 * task_h_load() returns 0.
4580 */
4581 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4582 }
4583
4584 #else /* CONFIG_SMP */
4585
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4586 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4587 {
4588 return true;
4589 }
4590
4591 #define UPDATE_TG 0x0
4592 #define SKIP_AGE_LOAD 0x0
4593 #define DO_ATTACH 0x0
4594 #define DO_DETACH 0x0
4595
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4596 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4597 {
4598 cfs_rq_util_change(cfs_rq, 0);
4599 }
4600
remove_entity_load_avg(struct sched_entity * se)4601 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4602
4603 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4604 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4605 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4606 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4607
newidle_balance(struct rq * rq,struct rq_flags * rf)4608 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4609 {
4610 return 0;
4611 }
4612
4613 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4614 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4615
4616 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4617 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4618
4619 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4620 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4621 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4622 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4623
4624 #endif /* CONFIG_SMP */
4625
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4626 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4627 {
4628 #ifdef CONFIG_SCHED_DEBUG
4629 s64 d = se->vruntime - cfs_rq->min_vruntime;
4630
4631 if (d < 0)
4632 d = -d;
4633
4634 if (d > 3*sysctl_sched_latency)
4635 schedstat_inc(cfs_rq->nr_spread_over);
4636 #endif
4637 }
4638
4639 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4640 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4641 {
4642 u64 vruntime = cfs_rq->min_vruntime;
4643
4644 /*
4645 * The 'current' period is already promised to the current tasks,
4646 * however the extra weight of the new task will slow them down a
4647 * little, place the new task so that it fits in the slot that
4648 * stays open at the end.
4649 */
4650 if (initial && sched_feat(START_DEBIT))
4651 vruntime += sched_vslice(cfs_rq, se);
4652
4653 /* sleeps up to a single latency don't count. */
4654 if (!initial) {
4655 unsigned long thresh;
4656
4657 if (se_is_idle(se))
4658 thresh = sysctl_sched_min_granularity;
4659 else
4660 thresh = sysctl_sched_latency;
4661
4662 /*
4663 * Halve their sleep time's effect, to allow
4664 * for a gentler effect of sleepers:
4665 */
4666 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4667 thresh >>= 1;
4668
4669 vruntime -= thresh;
4670 }
4671
4672 /* ensure we never gain time by being placed backwards. */
4673 se->vruntime = max_vruntime(se->vruntime, vruntime);
4674 }
4675
4676 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4677
4678 static inline bool cfs_bandwidth_used(void);
4679
4680 /*
4681 * MIGRATION
4682 *
4683 * dequeue
4684 * update_curr()
4685 * update_min_vruntime()
4686 * vruntime -= min_vruntime
4687 *
4688 * enqueue
4689 * update_curr()
4690 * update_min_vruntime()
4691 * vruntime += min_vruntime
4692 *
4693 * this way the vruntime transition between RQs is done when both
4694 * min_vruntime are up-to-date.
4695 *
4696 * WAKEUP (remote)
4697 *
4698 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4699 * vruntime -= min_vruntime
4700 *
4701 * enqueue
4702 * update_curr()
4703 * update_min_vruntime()
4704 * vruntime += min_vruntime
4705 *
4706 * this way we don't have the most up-to-date min_vruntime on the originating
4707 * CPU and an up-to-date min_vruntime on the destination CPU.
4708 */
4709
4710 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4711 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4712 {
4713 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4714 bool curr = cfs_rq->curr == se;
4715
4716 /*
4717 * If we're the current task, we must renormalise before calling
4718 * update_curr().
4719 */
4720 if (renorm && curr)
4721 se->vruntime += cfs_rq->min_vruntime;
4722
4723 update_curr(cfs_rq);
4724
4725 /*
4726 * Otherwise, renormalise after, such that we're placed at the current
4727 * moment in time, instead of some random moment in the past. Being
4728 * placed in the past could significantly boost this task to the
4729 * fairness detriment of existing tasks.
4730 */
4731 if (renorm && !curr)
4732 se->vruntime += cfs_rq->min_vruntime;
4733
4734 /*
4735 * When enqueuing a sched_entity, we must:
4736 * - Update loads to have both entity and cfs_rq synced with now.
4737 * - For group_entity, update its runnable_weight to reflect the new
4738 * h_nr_running of its group cfs_rq.
4739 * - For group_entity, update its weight to reflect the new share of
4740 * its group cfs_rq
4741 * - Add its new weight to cfs_rq->load.weight
4742 */
4743 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4744 se_update_runnable(se);
4745 update_cfs_group(se);
4746 account_entity_enqueue(cfs_rq, se);
4747
4748 if (flags & ENQUEUE_WAKEUP)
4749 place_entity(cfs_rq, se, 0);
4750
4751 check_schedstat_required();
4752 update_stats_enqueue_fair(cfs_rq, se, flags);
4753 check_spread(cfs_rq, se);
4754 if (!curr)
4755 __enqueue_entity(cfs_rq, se);
4756 se->on_rq = 1;
4757
4758 if (cfs_rq->nr_running == 1) {
4759 check_enqueue_throttle(cfs_rq);
4760 if (!throttled_hierarchy(cfs_rq))
4761 list_add_leaf_cfs_rq(cfs_rq);
4762 }
4763 }
4764
__clear_buddies_last(struct sched_entity * se)4765 static void __clear_buddies_last(struct sched_entity *se)
4766 {
4767 for_each_sched_entity(se) {
4768 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4769 if (cfs_rq->last != se)
4770 break;
4771
4772 cfs_rq->last = NULL;
4773 }
4774 }
4775
__clear_buddies_next(struct sched_entity * se)4776 static void __clear_buddies_next(struct sched_entity *se)
4777 {
4778 for_each_sched_entity(se) {
4779 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4780 if (cfs_rq->next != se)
4781 break;
4782
4783 cfs_rq->next = NULL;
4784 }
4785 }
4786
__clear_buddies_skip(struct sched_entity * se)4787 static void __clear_buddies_skip(struct sched_entity *se)
4788 {
4789 for_each_sched_entity(se) {
4790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 if (cfs_rq->skip != se)
4792 break;
4793
4794 cfs_rq->skip = NULL;
4795 }
4796 }
4797
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4798 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4799 {
4800 if (cfs_rq->last == se)
4801 __clear_buddies_last(se);
4802
4803 if (cfs_rq->next == se)
4804 __clear_buddies_next(se);
4805
4806 if (cfs_rq->skip == se)
4807 __clear_buddies_skip(se);
4808 }
4809
4810 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4811
4812 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4813 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4814 {
4815 int action = UPDATE_TG;
4816
4817 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4818 action |= DO_DETACH;
4819
4820 /*
4821 * Update run-time statistics of the 'current'.
4822 */
4823 update_curr(cfs_rq);
4824
4825 /*
4826 * When dequeuing a sched_entity, we must:
4827 * - Update loads to have both entity and cfs_rq synced with now.
4828 * - For group_entity, update its runnable_weight to reflect the new
4829 * h_nr_running of its group cfs_rq.
4830 * - Subtract its previous weight from cfs_rq->load.weight.
4831 * - For group entity, update its weight to reflect the new share
4832 * of its group cfs_rq.
4833 */
4834 update_load_avg(cfs_rq, se, action);
4835 se_update_runnable(se);
4836
4837 update_stats_dequeue_fair(cfs_rq, se, flags);
4838
4839 clear_buddies(cfs_rq, se);
4840
4841 if (se != cfs_rq->curr)
4842 __dequeue_entity(cfs_rq, se);
4843 se->on_rq = 0;
4844 account_entity_dequeue(cfs_rq, se);
4845
4846 /*
4847 * Normalize after update_curr(); which will also have moved
4848 * min_vruntime if @se is the one holding it back. But before doing
4849 * update_min_vruntime() again, which will discount @se's position and
4850 * can move min_vruntime forward still more.
4851 */
4852 if (!(flags & DEQUEUE_SLEEP))
4853 se->vruntime -= cfs_rq->min_vruntime;
4854
4855 /* return excess runtime on last dequeue */
4856 return_cfs_rq_runtime(cfs_rq);
4857
4858 update_cfs_group(se);
4859
4860 /*
4861 * Now advance min_vruntime if @se was the entity holding it back,
4862 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4863 * put back on, and if we advance min_vruntime, we'll be placed back
4864 * further than we started -- ie. we'll be penalized.
4865 */
4866 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4867 update_min_vruntime(cfs_rq);
4868
4869 if (cfs_rq->nr_running == 0)
4870 update_idle_cfs_rq_clock_pelt(cfs_rq);
4871 }
4872
4873 /*
4874 * Preempt the current task with a newly woken task if needed:
4875 */
4876 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4877 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4878 {
4879 unsigned long ideal_runtime, delta_exec;
4880 struct sched_entity *se;
4881 s64 delta;
4882
4883 ideal_runtime = sched_slice(cfs_rq, curr);
4884 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4885 if (delta_exec > ideal_runtime) {
4886 resched_curr(rq_of(cfs_rq));
4887 /*
4888 * The current task ran long enough, ensure it doesn't get
4889 * re-elected due to buddy favours.
4890 */
4891 clear_buddies(cfs_rq, curr);
4892 return;
4893 }
4894
4895 /*
4896 * Ensure that a task that missed wakeup preemption by a
4897 * narrow margin doesn't have to wait for a full slice.
4898 * This also mitigates buddy induced latencies under load.
4899 */
4900 if (delta_exec < sysctl_sched_min_granularity)
4901 return;
4902
4903 se = __pick_first_entity(cfs_rq);
4904 delta = curr->vruntime - se->vruntime;
4905
4906 if (delta < 0)
4907 return;
4908
4909 if (delta > ideal_runtime)
4910 resched_curr(rq_of(cfs_rq));
4911 }
4912
4913 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4914 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4915 {
4916 clear_buddies(cfs_rq, se);
4917
4918 /* 'current' is not kept within the tree. */
4919 if (se->on_rq) {
4920 /*
4921 * Any task has to be enqueued before it get to execute on
4922 * a CPU. So account for the time it spent waiting on the
4923 * runqueue.
4924 */
4925 update_stats_wait_end_fair(cfs_rq, se);
4926 __dequeue_entity(cfs_rq, se);
4927 update_load_avg(cfs_rq, se, UPDATE_TG);
4928 }
4929
4930 update_stats_curr_start(cfs_rq, se);
4931 cfs_rq->curr = se;
4932
4933 /*
4934 * Track our maximum slice length, if the CPU's load is at
4935 * least twice that of our own weight (i.e. dont track it
4936 * when there are only lesser-weight tasks around):
4937 */
4938 if (schedstat_enabled() &&
4939 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4940 struct sched_statistics *stats;
4941
4942 stats = __schedstats_from_se(se);
4943 __schedstat_set(stats->slice_max,
4944 max((u64)stats->slice_max,
4945 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4946 }
4947
4948 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4949 }
4950
4951 static int
4952 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4953
4954 /*
4955 * Pick the next process, keeping these things in mind, in this order:
4956 * 1) keep things fair between processes/task groups
4957 * 2) pick the "next" process, since someone really wants that to run
4958 * 3) pick the "last" process, for cache locality
4959 * 4) do not run the "skip" process, if something else is available
4960 */
4961 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4962 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4963 {
4964 struct sched_entity *left = __pick_first_entity(cfs_rq);
4965 struct sched_entity *se;
4966
4967 /*
4968 * If curr is set we have to see if its left of the leftmost entity
4969 * still in the tree, provided there was anything in the tree at all.
4970 */
4971 if (!left || (curr && entity_before(curr, left)))
4972 left = curr;
4973
4974 se = left; /* ideally we run the leftmost entity */
4975
4976 /*
4977 * Avoid running the skip buddy, if running something else can
4978 * be done without getting too unfair.
4979 */
4980 if (cfs_rq->skip && cfs_rq->skip == se) {
4981 struct sched_entity *second;
4982
4983 if (se == curr) {
4984 second = __pick_first_entity(cfs_rq);
4985 } else {
4986 second = __pick_next_entity(se);
4987 if (!second || (curr && entity_before(curr, second)))
4988 second = curr;
4989 }
4990
4991 if (second && wakeup_preempt_entity(second, left) < 1)
4992 se = second;
4993 }
4994
4995 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4996 /*
4997 * Someone really wants this to run. If it's not unfair, run it.
4998 */
4999 se = cfs_rq->next;
5000 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
5001 /*
5002 * Prefer last buddy, try to return the CPU to a preempted task.
5003 */
5004 se = cfs_rq->last;
5005 }
5006
5007 return se;
5008 }
5009
5010 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5011
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5012 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5013 {
5014 /*
5015 * If still on the runqueue then deactivate_task()
5016 * was not called and update_curr() has to be done:
5017 */
5018 if (prev->on_rq)
5019 update_curr(cfs_rq);
5020
5021 /* throttle cfs_rqs exceeding runtime */
5022 check_cfs_rq_runtime(cfs_rq);
5023
5024 check_spread(cfs_rq, prev);
5025
5026 if (prev->on_rq) {
5027 update_stats_wait_start_fair(cfs_rq, prev);
5028 /* Put 'current' back into the tree. */
5029 __enqueue_entity(cfs_rq, prev);
5030 /* in !on_rq case, update occurred at dequeue */
5031 update_load_avg(cfs_rq, prev, 0);
5032 }
5033 cfs_rq->curr = NULL;
5034 }
5035
5036 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5037 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5038 {
5039 /*
5040 * Update run-time statistics of the 'current'.
5041 */
5042 update_curr(cfs_rq);
5043
5044 /*
5045 * Ensure that runnable average is periodically updated.
5046 */
5047 update_load_avg(cfs_rq, curr, UPDATE_TG);
5048 update_cfs_group(curr);
5049
5050 #ifdef CONFIG_SCHED_HRTICK
5051 /*
5052 * queued ticks are scheduled to match the slice, so don't bother
5053 * validating it and just reschedule.
5054 */
5055 if (queued) {
5056 resched_curr(rq_of(cfs_rq));
5057 return;
5058 }
5059 /*
5060 * don't let the period tick interfere with the hrtick preemption
5061 */
5062 if (!sched_feat(DOUBLE_TICK) &&
5063 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5064 return;
5065 #endif
5066
5067 if (cfs_rq->nr_running > 1)
5068 check_preempt_tick(cfs_rq, curr);
5069 }
5070
5071
5072 /**************************************************
5073 * CFS bandwidth control machinery
5074 */
5075
5076 #ifdef CONFIG_CFS_BANDWIDTH
5077
5078 #ifdef CONFIG_JUMP_LABEL
5079 static struct static_key __cfs_bandwidth_used;
5080
cfs_bandwidth_used(void)5081 static inline bool cfs_bandwidth_used(void)
5082 {
5083 return static_key_false(&__cfs_bandwidth_used);
5084 }
5085
cfs_bandwidth_usage_inc(void)5086 void cfs_bandwidth_usage_inc(void)
5087 {
5088 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5089 }
5090
cfs_bandwidth_usage_dec(void)5091 void cfs_bandwidth_usage_dec(void)
5092 {
5093 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5094 }
5095 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5096 static bool cfs_bandwidth_used(void)
5097 {
5098 return true;
5099 }
5100
cfs_bandwidth_usage_inc(void)5101 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5102 void cfs_bandwidth_usage_dec(void) {}
5103 #endif /* CONFIG_JUMP_LABEL */
5104
5105 /*
5106 * default period for cfs group bandwidth.
5107 * default: 0.1s, units: nanoseconds
5108 */
default_cfs_period(void)5109 static inline u64 default_cfs_period(void)
5110 {
5111 return 100000000ULL;
5112 }
5113
sched_cfs_bandwidth_slice(void)5114 static inline u64 sched_cfs_bandwidth_slice(void)
5115 {
5116 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5117 }
5118
5119 /*
5120 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5121 * directly instead of rq->clock to avoid adding additional synchronization
5122 * around rq->lock.
5123 *
5124 * requires cfs_b->lock
5125 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5126 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5127 {
5128 s64 runtime;
5129
5130 if (unlikely(cfs_b->quota == RUNTIME_INF))
5131 return;
5132
5133 cfs_b->runtime += cfs_b->quota;
5134 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5135 if (runtime > 0) {
5136 cfs_b->burst_time += runtime;
5137 cfs_b->nr_burst++;
5138 }
5139
5140 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5141 cfs_b->runtime_snap = cfs_b->runtime;
5142 }
5143
tg_cfs_bandwidth(struct task_group * tg)5144 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5145 {
5146 return &tg->cfs_bandwidth;
5147 }
5148
5149 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5150 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5151 struct cfs_rq *cfs_rq, u64 target_runtime)
5152 {
5153 u64 min_amount, amount = 0;
5154
5155 lockdep_assert_held(&cfs_b->lock);
5156
5157 /* note: this is a positive sum as runtime_remaining <= 0 */
5158 min_amount = target_runtime - cfs_rq->runtime_remaining;
5159
5160 if (cfs_b->quota == RUNTIME_INF)
5161 amount = min_amount;
5162 else {
5163 start_cfs_bandwidth(cfs_b);
5164
5165 if (cfs_b->runtime > 0) {
5166 amount = min(cfs_b->runtime, min_amount);
5167 cfs_b->runtime -= amount;
5168 cfs_b->idle = 0;
5169 }
5170 }
5171
5172 cfs_rq->runtime_remaining += amount;
5173
5174 return cfs_rq->runtime_remaining > 0;
5175 }
5176
5177 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5178 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5179 {
5180 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5181 int ret;
5182
5183 raw_spin_lock(&cfs_b->lock);
5184 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5185 raw_spin_unlock(&cfs_b->lock);
5186
5187 return ret;
5188 }
5189
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5190 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5191 {
5192 /* dock delta_exec before expiring quota (as it could span periods) */
5193 cfs_rq->runtime_remaining -= delta_exec;
5194
5195 if (likely(cfs_rq->runtime_remaining > 0))
5196 return;
5197
5198 if (cfs_rq->throttled)
5199 return;
5200 /*
5201 * if we're unable to extend our runtime we resched so that the active
5202 * hierarchy can be throttled
5203 */
5204 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5205 resched_curr(rq_of(cfs_rq));
5206 }
5207
5208 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5209 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5210 {
5211 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5212 return;
5213
5214 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5215 }
5216
cfs_rq_throttled(struct cfs_rq * cfs_rq)5217 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5218 {
5219 return cfs_bandwidth_used() && cfs_rq->throttled;
5220 }
5221
5222 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5223 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5224 {
5225 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5226 }
5227
5228 /*
5229 * Ensure that neither of the group entities corresponding to src_cpu or
5230 * dest_cpu are members of a throttled hierarchy when performing group
5231 * load-balance operations.
5232 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5233 static inline int throttled_lb_pair(struct task_group *tg,
5234 int src_cpu, int dest_cpu)
5235 {
5236 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5237
5238 src_cfs_rq = tg->cfs_rq[src_cpu];
5239 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5240
5241 return throttled_hierarchy(src_cfs_rq) ||
5242 throttled_hierarchy(dest_cfs_rq);
5243 }
5244
tg_unthrottle_up(struct task_group * tg,void * data)5245 static int tg_unthrottle_up(struct task_group *tg, void *data)
5246 {
5247 struct rq *rq = data;
5248 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5249
5250 cfs_rq->throttle_count--;
5251 if (!cfs_rq->throttle_count) {
5252 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5253 cfs_rq->throttled_clock_pelt;
5254
5255 /* Add cfs_rq with load or one or more already running entities to the list */
5256 if (!cfs_rq_is_decayed(cfs_rq))
5257 list_add_leaf_cfs_rq(cfs_rq);
5258 }
5259
5260 return 0;
5261 }
5262
tg_throttle_down(struct task_group * tg,void * data)5263 static int tg_throttle_down(struct task_group *tg, void *data)
5264 {
5265 struct rq *rq = data;
5266 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5267
5268 /* group is entering throttled state, stop time */
5269 if (!cfs_rq->throttle_count) {
5270 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5271 list_del_leaf_cfs_rq(cfs_rq);
5272 }
5273 cfs_rq->throttle_count++;
5274
5275 return 0;
5276 }
5277
throttle_cfs_rq(struct cfs_rq * cfs_rq)5278 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5279 {
5280 struct rq *rq = rq_of(cfs_rq);
5281 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5282 struct sched_entity *se;
5283 long task_delta, idle_task_delta, dequeue = 1;
5284
5285 raw_spin_lock(&cfs_b->lock);
5286 /* This will start the period timer if necessary */
5287 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5288 /*
5289 * We have raced with bandwidth becoming available, and if we
5290 * actually throttled the timer might not unthrottle us for an
5291 * entire period. We additionally needed to make sure that any
5292 * subsequent check_cfs_rq_runtime calls agree not to throttle
5293 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5294 * for 1ns of runtime rather than just check cfs_b.
5295 */
5296 dequeue = 0;
5297 } else {
5298 list_add_tail_rcu(&cfs_rq->throttled_list,
5299 &cfs_b->throttled_cfs_rq);
5300 }
5301 raw_spin_unlock(&cfs_b->lock);
5302
5303 if (!dequeue)
5304 return false; /* Throttle no longer required. */
5305
5306 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5307
5308 /* freeze hierarchy runnable averages while throttled */
5309 rcu_read_lock();
5310 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5311 rcu_read_unlock();
5312
5313 task_delta = cfs_rq->h_nr_running;
5314 idle_task_delta = cfs_rq->idle_h_nr_running;
5315 for_each_sched_entity(se) {
5316 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5317 /* throttled entity or throttle-on-deactivate */
5318 if (!se->on_rq)
5319 goto done;
5320
5321 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5322
5323 if (cfs_rq_is_idle(group_cfs_rq(se)))
5324 idle_task_delta = cfs_rq->h_nr_running;
5325
5326 qcfs_rq->h_nr_running -= task_delta;
5327 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5328
5329 if (qcfs_rq->load.weight) {
5330 /* Avoid re-evaluating load for this entity: */
5331 se = parent_entity(se);
5332 break;
5333 }
5334 }
5335
5336 for_each_sched_entity(se) {
5337 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5338 /* throttled entity or throttle-on-deactivate */
5339 if (!se->on_rq)
5340 goto done;
5341
5342 update_load_avg(qcfs_rq, se, 0);
5343 se_update_runnable(se);
5344
5345 if (cfs_rq_is_idle(group_cfs_rq(se)))
5346 idle_task_delta = cfs_rq->h_nr_running;
5347
5348 qcfs_rq->h_nr_running -= task_delta;
5349 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5350 }
5351
5352 /* At this point se is NULL and we are at root level*/
5353 sub_nr_running(rq, task_delta);
5354
5355 done:
5356 /*
5357 * Note: distribution will already see us throttled via the
5358 * throttled-list. rq->lock protects completion.
5359 */
5360 cfs_rq->throttled = 1;
5361 cfs_rq->throttled_clock = rq_clock(rq);
5362 return true;
5363 }
5364
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5365 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5366 {
5367 struct rq *rq = rq_of(cfs_rq);
5368 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5369 struct sched_entity *se;
5370 long task_delta, idle_task_delta;
5371
5372 se = cfs_rq->tg->se[cpu_of(rq)];
5373
5374 cfs_rq->throttled = 0;
5375
5376 update_rq_clock(rq);
5377
5378 raw_spin_lock(&cfs_b->lock);
5379 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5380 list_del_rcu(&cfs_rq->throttled_list);
5381 raw_spin_unlock(&cfs_b->lock);
5382
5383 /* update hierarchical throttle state */
5384 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5385
5386 if (!cfs_rq->load.weight) {
5387 if (!cfs_rq->on_list)
5388 return;
5389 /*
5390 * Nothing to run but something to decay (on_list)?
5391 * Complete the branch.
5392 */
5393 for_each_sched_entity(se) {
5394 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5395 break;
5396 }
5397 goto unthrottle_throttle;
5398 }
5399
5400 task_delta = cfs_rq->h_nr_running;
5401 idle_task_delta = cfs_rq->idle_h_nr_running;
5402 for_each_sched_entity(se) {
5403 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5404
5405 if (se->on_rq)
5406 break;
5407 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5408
5409 if (cfs_rq_is_idle(group_cfs_rq(se)))
5410 idle_task_delta = cfs_rq->h_nr_running;
5411
5412 qcfs_rq->h_nr_running += task_delta;
5413 qcfs_rq->idle_h_nr_running += idle_task_delta;
5414
5415 /* end evaluation on encountering a throttled cfs_rq */
5416 if (cfs_rq_throttled(qcfs_rq))
5417 goto unthrottle_throttle;
5418 }
5419
5420 for_each_sched_entity(se) {
5421 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5422
5423 update_load_avg(qcfs_rq, se, UPDATE_TG);
5424 se_update_runnable(se);
5425
5426 if (cfs_rq_is_idle(group_cfs_rq(se)))
5427 idle_task_delta = cfs_rq->h_nr_running;
5428
5429 qcfs_rq->h_nr_running += task_delta;
5430 qcfs_rq->idle_h_nr_running += idle_task_delta;
5431
5432 /* end evaluation on encountering a throttled cfs_rq */
5433 if (cfs_rq_throttled(qcfs_rq))
5434 goto unthrottle_throttle;
5435 }
5436
5437 /* At this point se is NULL and we are at root level*/
5438 add_nr_running(rq, task_delta);
5439
5440 unthrottle_throttle:
5441 assert_list_leaf_cfs_rq(rq);
5442
5443 /* Determine whether we need to wake up potentially idle CPU: */
5444 if (rq->curr == rq->idle && rq->cfs.nr_running)
5445 resched_curr(rq);
5446 }
5447
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5448 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5449 {
5450 struct cfs_rq *cfs_rq;
5451 u64 runtime, remaining = 1;
5452
5453 rcu_read_lock();
5454 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5455 throttled_list) {
5456 struct rq *rq = rq_of(cfs_rq);
5457 struct rq_flags rf;
5458
5459 rq_lock_irqsave(rq, &rf);
5460 if (!cfs_rq_throttled(cfs_rq))
5461 goto next;
5462
5463 /* By the above check, this should never be true */
5464 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5465
5466 raw_spin_lock(&cfs_b->lock);
5467 runtime = -cfs_rq->runtime_remaining + 1;
5468 if (runtime > cfs_b->runtime)
5469 runtime = cfs_b->runtime;
5470 cfs_b->runtime -= runtime;
5471 remaining = cfs_b->runtime;
5472 raw_spin_unlock(&cfs_b->lock);
5473
5474 cfs_rq->runtime_remaining += runtime;
5475
5476 /* we check whether we're throttled above */
5477 if (cfs_rq->runtime_remaining > 0)
5478 unthrottle_cfs_rq(cfs_rq);
5479
5480 next:
5481 rq_unlock_irqrestore(rq, &rf);
5482
5483 if (!remaining)
5484 break;
5485 }
5486 rcu_read_unlock();
5487 }
5488
5489 /*
5490 * Responsible for refilling a task_group's bandwidth and unthrottling its
5491 * cfs_rqs as appropriate. If there has been no activity within the last
5492 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5493 * used to track this state.
5494 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5495 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5496 {
5497 int throttled;
5498
5499 /* no need to continue the timer with no bandwidth constraint */
5500 if (cfs_b->quota == RUNTIME_INF)
5501 goto out_deactivate;
5502
5503 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5504 cfs_b->nr_periods += overrun;
5505
5506 /* Refill extra burst quota even if cfs_b->idle */
5507 __refill_cfs_bandwidth_runtime(cfs_b);
5508
5509 /*
5510 * idle depends on !throttled (for the case of a large deficit), and if
5511 * we're going inactive then everything else can be deferred
5512 */
5513 if (cfs_b->idle && !throttled)
5514 goto out_deactivate;
5515
5516 if (!throttled) {
5517 /* mark as potentially idle for the upcoming period */
5518 cfs_b->idle = 1;
5519 return 0;
5520 }
5521
5522 /* account preceding periods in which throttling occurred */
5523 cfs_b->nr_throttled += overrun;
5524
5525 /*
5526 * This check is repeated as we release cfs_b->lock while we unthrottle.
5527 */
5528 while (throttled && cfs_b->runtime > 0) {
5529 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5530 /* we can't nest cfs_b->lock while distributing bandwidth */
5531 distribute_cfs_runtime(cfs_b);
5532 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5533
5534 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5535 }
5536
5537 /*
5538 * While we are ensured activity in the period following an
5539 * unthrottle, this also covers the case in which the new bandwidth is
5540 * insufficient to cover the existing bandwidth deficit. (Forcing the
5541 * timer to remain active while there are any throttled entities.)
5542 */
5543 cfs_b->idle = 0;
5544
5545 return 0;
5546
5547 out_deactivate:
5548 return 1;
5549 }
5550
5551 /* a cfs_rq won't donate quota below this amount */
5552 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5553 /* minimum remaining period time to redistribute slack quota */
5554 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5555 /* how long we wait to gather additional slack before distributing */
5556 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5557
5558 /*
5559 * Are we near the end of the current quota period?
5560 *
5561 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5562 * hrtimer base being cleared by hrtimer_start. In the case of
5563 * migrate_hrtimers, base is never cleared, so we are fine.
5564 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5565 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5566 {
5567 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5568 s64 remaining;
5569
5570 /* if the call-back is running a quota refresh is already occurring */
5571 if (hrtimer_callback_running(refresh_timer))
5572 return 1;
5573
5574 /* is a quota refresh about to occur? */
5575 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5576 if (remaining < (s64)min_expire)
5577 return 1;
5578
5579 return 0;
5580 }
5581
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5582 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5583 {
5584 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5585
5586 /* if there's a quota refresh soon don't bother with slack */
5587 if (runtime_refresh_within(cfs_b, min_left))
5588 return;
5589
5590 /* don't push forwards an existing deferred unthrottle */
5591 if (cfs_b->slack_started)
5592 return;
5593 cfs_b->slack_started = true;
5594
5595 hrtimer_start(&cfs_b->slack_timer,
5596 ns_to_ktime(cfs_bandwidth_slack_period),
5597 HRTIMER_MODE_REL);
5598 }
5599
5600 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5601 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5602 {
5603 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5604 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5605
5606 if (slack_runtime <= 0)
5607 return;
5608
5609 raw_spin_lock(&cfs_b->lock);
5610 if (cfs_b->quota != RUNTIME_INF) {
5611 cfs_b->runtime += slack_runtime;
5612
5613 /* we are under rq->lock, defer unthrottling using a timer */
5614 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5615 !list_empty(&cfs_b->throttled_cfs_rq))
5616 start_cfs_slack_bandwidth(cfs_b);
5617 }
5618 raw_spin_unlock(&cfs_b->lock);
5619
5620 /* even if it's not valid for return we don't want to try again */
5621 cfs_rq->runtime_remaining -= slack_runtime;
5622 }
5623
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5624 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5625 {
5626 if (!cfs_bandwidth_used())
5627 return;
5628
5629 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5630 return;
5631
5632 __return_cfs_rq_runtime(cfs_rq);
5633 }
5634
5635 /*
5636 * This is done with a timer (instead of inline with bandwidth return) since
5637 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5638 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5639 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5640 {
5641 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5642 unsigned long flags;
5643
5644 /* confirm we're still not at a refresh boundary */
5645 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5646 cfs_b->slack_started = false;
5647
5648 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5649 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5650 return;
5651 }
5652
5653 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5654 runtime = cfs_b->runtime;
5655
5656 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5657
5658 if (!runtime)
5659 return;
5660
5661 distribute_cfs_runtime(cfs_b);
5662 }
5663
5664 /*
5665 * When a group wakes up we want to make sure that its quota is not already
5666 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5667 * runtime as update_curr() throttling can not trigger until it's on-rq.
5668 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5669 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5670 {
5671 if (!cfs_bandwidth_used())
5672 return;
5673
5674 /* an active group must be handled by the update_curr()->put() path */
5675 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5676 return;
5677
5678 /* ensure the group is not already throttled */
5679 if (cfs_rq_throttled(cfs_rq))
5680 return;
5681
5682 /* update runtime allocation */
5683 account_cfs_rq_runtime(cfs_rq, 0);
5684 if (cfs_rq->runtime_remaining <= 0)
5685 throttle_cfs_rq(cfs_rq);
5686 }
5687
sync_throttle(struct task_group * tg,int cpu)5688 static void sync_throttle(struct task_group *tg, int cpu)
5689 {
5690 struct cfs_rq *pcfs_rq, *cfs_rq;
5691
5692 if (!cfs_bandwidth_used())
5693 return;
5694
5695 if (!tg->parent)
5696 return;
5697
5698 cfs_rq = tg->cfs_rq[cpu];
5699 pcfs_rq = tg->parent->cfs_rq[cpu];
5700
5701 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5702 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5703 }
5704
5705 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5706 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5707 {
5708 if (!cfs_bandwidth_used())
5709 return false;
5710
5711 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5712 return false;
5713
5714 /*
5715 * it's possible for a throttled entity to be forced into a running
5716 * state (e.g. set_curr_task), in this case we're finished.
5717 */
5718 if (cfs_rq_throttled(cfs_rq))
5719 return true;
5720
5721 return throttle_cfs_rq(cfs_rq);
5722 }
5723
sched_cfs_slack_timer(struct hrtimer * timer)5724 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5725 {
5726 struct cfs_bandwidth *cfs_b =
5727 container_of(timer, struct cfs_bandwidth, slack_timer);
5728
5729 do_sched_cfs_slack_timer(cfs_b);
5730
5731 return HRTIMER_NORESTART;
5732 }
5733
5734 extern const u64 max_cfs_quota_period;
5735
sched_cfs_period_timer(struct hrtimer * timer)5736 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5737 {
5738 struct cfs_bandwidth *cfs_b =
5739 container_of(timer, struct cfs_bandwidth, period_timer);
5740 unsigned long flags;
5741 int overrun;
5742 int idle = 0;
5743 int count = 0;
5744
5745 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5746 for (;;) {
5747 overrun = hrtimer_forward_now(timer, cfs_b->period);
5748 if (!overrun)
5749 break;
5750
5751 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5752
5753 if (++count > 3) {
5754 u64 new, old = ktime_to_ns(cfs_b->period);
5755
5756 /*
5757 * Grow period by a factor of 2 to avoid losing precision.
5758 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5759 * to fail.
5760 */
5761 new = old * 2;
5762 if (new < max_cfs_quota_period) {
5763 cfs_b->period = ns_to_ktime(new);
5764 cfs_b->quota *= 2;
5765 cfs_b->burst *= 2;
5766
5767 pr_warn_ratelimited(
5768 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5769 smp_processor_id(),
5770 div_u64(new, NSEC_PER_USEC),
5771 div_u64(cfs_b->quota, NSEC_PER_USEC));
5772 } else {
5773 pr_warn_ratelimited(
5774 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5775 smp_processor_id(),
5776 div_u64(old, NSEC_PER_USEC),
5777 div_u64(cfs_b->quota, NSEC_PER_USEC));
5778 }
5779
5780 /* reset count so we don't come right back in here */
5781 count = 0;
5782 }
5783 }
5784 if (idle)
5785 cfs_b->period_active = 0;
5786 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5787
5788 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5789 }
5790
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5791 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5792 {
5793 raw_spin_lock_init(&cfs_b->lock);
5794 cfs_b->runtime = 0;
5795 cfs_b->quota = RUNTIME_INF;
5796 cfs_b->period = ns_to_ktime(default_cfs_period());
5797 cfs_b->burst = 0;
5798
5799 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5800 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5801 cfs_b->period_timer.function = sched_cfs_period_timer;
5802 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5803 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5804 cfs_b->slack_started = false;
5805 }
5806
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5807 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5808 {
5809 cfs_rq->runtime_enabled = 0;
5810 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5811 }
5812
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5813 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5814 {
5815 lockdep_assert_held(&cfs_b->lock);
5816
5817 if (cfs_b->period_active)
5818 return;
5819
5820 cfs_b->period_active = 1;
5821 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5822 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5823 }
5824
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5825 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5826 {
5827 /* init_cfs_bandwidth() was not called */
5828 if (!cfs_b->throttled_cfs_rq.next)
5829 return;
5830
5831 hrtimer_cancel(&cfs_b->period_timer);
5832 hrtimer_cancel(&cfs_b->slack_timer);
5833 }
5834
5835 /*
5836 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5837 *
5838 * The race is harmless, since modifying bandwidth settings of unhooked group
5839 * bits doesn't do much.
5840 */
5841
5842 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5843 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5844 {
5845 struct task_group *tg;
5846
5847 lockdep_assert_rq_held(rq);
5848
5849 rcu_read_lock();
5850 list_for_each_entry_rcu(tg, &task_groups, list) {
5851 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5852 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5853
5854 raw_spin_lock(&cfs_b->lock);
5855 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5856 raw_spin_unlock(&cfs_b->lock);
5857 }
5858 rcu_read_unlock();
5859 }
5860
5861 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5862 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5863 {
5864 struct task_group *tg;
5865
5866 lockdep_assert_rq_held(rq);
5867
5868 rcu_read_lock();
5869 list_for_each_entry_rcu(tg, &task_groups, list) {
5870 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5871
5872 if (!cfs_rq->runtime_enabled)
5873 continue;
5874
5875 /*
5876 * clock_task is not advancing so we just need to make sure
5877 * there's some valid quota amount
5878 */
5879 cfs_rq->runtime_remaining = 1;
5880 /*
5881 * Offline rq is schedulable till CPU is completely disabled
5882 * in take_cpu_down(), so we prevent new cfs throttling here.
5883 */
5884 cfs_rq->runtime_enabled = 0;
5885
5886 if (cfs_rq_throttled(cfs_rq))
5887 unthrottle_cfs_rq(cfs_rq);
5888 }
5889 rcu_read_unlock();
5890 }
5891
5892 #else /* CONFIG_CFS_BANDWIDTH */
5893
cfs_bandwidth_used(void)5894 static inline bool cfs_bandwidth_used(void)
5895 {
5896 return false;
5897 }
5898
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5899 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5900 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5901 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5902 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5903 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5904
cfs_rq_throttled(struct cfs_rq * cfs_rq)5905 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5906 {
5907 return 0;
5908 }
5909
throttled_hierarchy(struct cfs_rq * cfs_rq)5910 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5911 {
5912 return 0;
5913 }
5914
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5915 static inline int throttled_lb_pair(struct task_group *tg,
5916 int src_cpu, int dest_cpu)
5917 {
5918 return 0;
5919 }
5920
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5921 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5922
5923 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5924 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5925 #endif
5926
tg_cfs_bandwidth(struct task_group * tg)5927 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5928 {
5929 return NULL;
5930 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5931 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5932 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5933 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5934
5935 #endif /* CONFIG_CFS_BANDWIDTH */
5936
5937 /**************************************************
5938 * CFS operations on tasks:
5939 */
5940
5941 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5942 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5943 {
5944 struct sched_entity *se = &p->se;
5945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5946
5947 SCHED_WARN_ON(task_rq(p) != rq);
5948
5949 if (rq->cfs.h_nr_running > 1) {
5950 u64 slice = sched_slice(cfs_rq, se);
5951 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5952 s64 delta = slice - ran;
5953
5954 if (delta < 0) {
5955 if (task_current(rq, p))
5956 resched_curr(rq);
5957 return;
5958 }
5959 hrtick_start(rq, delta);
5960 }
5961 }
5962
5963 /*
5964 * called from enqueue/dequeue and updates the hrtick when the
5965 * current task is from our class and nr_running is low enough
5966 * to matter.
5967 */
hrtick_update(struct rq * rq)5968 static void hrtick_update(struct rq *rq)
5969 {
5970 struct task_struct *curr = rq->curr;
5971
5972 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5973 return;
5974
5975 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5976 hrtick_start_fair(rq, curr);
5977 }
5978 #else /* !CONFIG_SCHED_HRTICK */
5979 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5980 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5981 {
5982 }
5983
hrtick_update(struct rq * rq)5984 static inline void hrtick_update(struct rq *rq)
5985 {
5986 }
5987 #endif
5988
5989 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5990 static inline bool cpu_overutilized(int cpu)
5991 {
5992 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
5993 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
5994
5995 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
5996 }
5997
update_overutilized_status(struct rq * rq)5998 static inline void update_overutilized_status(struct rq *rq)
5999 {
6000 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6001 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6002 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6003 }
6004 }
6005 #else
update_overutilized_status(struct rq * rq)6006 static inline void update_overutilized_status(struct rq *rq) { }
6007 #endif
6008
6009 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6010 static int sched_idle_rq(struct rq *rq)
6011 {
6012 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6013 rq->nr_running);
6014 }
6015
6016 /*
6017 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
6018 * of idle_nr_running, which does not consider idle descendants of normal
6019 * entities.
6020 */
sched_idle_cfs_rq(struct cfs_rq * cfs_rq)6021 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
6022 {
6023 return cfs_rq->nr_running &&
6024 cfs_rq->nr_running == cfs_rq->idle_nr_running;
6025 }
6026
6027 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6028 static int sched_idle_cpu(int cpu)
6029 {
6030 return sched_idle_rq(cpu_rq(cpu));
6031 }
6032 #endif
6033
6034 /*
6035 * The enqueue_task method is called before nr_running is
6036 * increased. Here we update the fair scheduling stats and
6037 * then put the task into the rbtree:
6038 */
6039 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6040 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6041 {
6042 struct cfs_rq *cfs_rq;
6043 struct sched_entity *se = &p->se;
6044 int idle_h_nr_running = task_has_idle_policy(p);
6045 int task_new = !(flags & ENQUEUE_WAKEUP);
6046
6047 /*
6048 * The code below (indirectly) updates schedutil which looks at
6049 * the cfs_rq utilization to select a frequency.
6050 * Let's add the task's estimated utilization to the cfs_rq's
6051 * estimated utilization, before we update schedutil.
6052 */
6053 util_est_enqueue(&rq->cfs, p);
6054
6055 /*
6056 * If in_iowait is set, the code below may not trigger any cpufreq
6057 * utilization updates, so do it here explicitly with the IOWAIT flag
6058 * passed.
6059 */
6060 if (p->in_iowait)
6061 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6062
6063 for_each_sched_entity(se) {
6064 if (se->on_rq)
6065 break;
6066 cfs_rq = cfs_rq_of(se);
6067 enqueue_entity(cfs_rq, se, flags);
6068
6069 cfs_rq->h_nr_running++;
6070 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6071
6072 if (cfs_rq_is_idle(cfs_rq))
6073 idle_h_nr_running = 1;
6074
6075 /* end evaluation on encountering a throttled cfs_rq */
6076 if (cfs_rq_throttled(cfs_rq))
6077 goto enqueue_throttle;
6078
6079 flags = ENQUEUE_WAKEUP;
6080 }
6081
6082 for_each_sched_entity(se) {
6083 cfs_rq = cfs_rq_of(se);
6084
6085 update_load_avg(cfs_rq, se, UPDATE_TG);
6086 se_update_runnable(se);
6087 update_cfs_group(se);
6088
6089 cfs_rq->h_nr_running++;
6090 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6091
6092 if (cfs_rq_is_idle(cfs_rq))
6093 idle_h_nr_running = 1;
6094
6095 /* end evaluation on encountering a throttled cfs_rq */
6096 if (cfs_rq_throttled(cfs_rq))
6097 goto enqueue_throttle;
6098 }
6099
6100 /* At this point se is NULL and we are at root level*/
6101 add_nr_running(rq, 1);
6102
6103 /*
6104 * Since new tasks are assigned an initial util_avg equal to
6105 * half of the spare capacity of their CPU, tiny tasks have the
6106 * ability to cross the overutilized threshold, which will
6107 * result in the load balancer ruining all the task placement
6108 * done by EAS. As a way to mitigate that effect, do not account
6109 * for the first enqueue operation of new tasks during the
6110 * overutilized flag detection.
6111 *
6112 * A better way of solving this problem would be to wait for
6113 * the PELT signals of tasks to converge before taking them
6114 * into account, but that is not straightforward to implement,
6115 * and the following generally works well enough in practice.
6116 */
6117 if (!task_new)
6118 update_overutilized_status(rq);
6119
6120 enqueue_throttle:
6121 assert_list_leaf_cfs_rq(rq);
6122
6123 hrtick_update(rq);
6124 }
6125
6126 static void set_next_buddy(struct sched_entity *se);
6127
6128 /*
6129 * The dequeue_task method is called before nr_running is
6130 * decreased. We remove the task from the rbtree and
6131 * update the fair scheduling stats:
6132 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6133 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6134 {
6135 struct cfs_rq *cfs_rq;
6136 struct sched_entity *se = &p->se;
6137 int task_sleep = flags & DEQUEUE_SLEEP;
6138 int idle_h_nr_running = task_has_idle_policy(p);
6139 bool was_sched_idle = sched_idle_rq(rq);
6140
6141 util_est_dequeue(&rq->cfs, p);
6142
6143 for_each_sched_entity(se) {
6144 cfs_rq = cfs_rq_of(se);
6145 dequeue_entity(cfs_rq, se, flags);
6146
6147 cfs_rq->h_nr_running--;
6148 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6149
6150 if (cfs_rq_is_idle(cfs_rq))
6151 idle_h_nr_running = 1;
6152
6153 /* end evaluation on encountering a throttled cfs_rq */
6154 if (cfs_rq_throttled(cfs_rq))
6155 goto dequeue_throttle;
6156
6157 /* Don't dequeue parent if it has other entities besides us */
6158 if (cfs_rq->load.weight) {
6159 /* Avoid re-evaluating load for this entity: */
6160 se = parent_entity(se);
6161 /*
6162 * Bias pick_next to pick a task from this cfs_rq, as
6163 * p is sleeping when it is within its sched_slice.
6164 */
6165 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6166 set_next_buddy(se);
6167 break;
6168 }
6169 flags |= DEQUEUE_SLEEP;
6170 }
6171
6172 for_each_sched_entity(se) {
6173 cfs_rq = cfs_rq_of(se);
6174
6175 update_load_avg(cfs_rq, se, UPDATE_TG);
6176 se_update_runnable(se);
6177 update_cfs_group(se);
6178
6179 cfs_rq->h_nr_running--;
6180 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6181
6182 if (cfs_rq_is_idle(cfs_rq))
6183 idle_h_nr_running = 1;
6184
6185 /* end evaluation on encountering a throttled cfs_rq */
6186 if (cfs_rq_throttled(cfs_rq))
6187 goto dequeue_throttle;
6188
6189 }
6190
6191 /* At this point se is NULL and we are at root level*/
6192 sub_nr_running(rq, 1);
6193
6194 /* balance early to pull high priority tasks */
6195 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6196 rq->next_balance = jiffies;
6197
6198 dequeue_throttle:
6199 util_est_update(&rq->cfs, p, task_sleep);
6200 hrtick_update(rq);
6201 }
6202
6203 #ifdef CONFIG_SMP
6204
6205 /* Working cpumask for: load_balance, load_balance_newidle. */
6206 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6207 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6208
6209 #ifdef CONFIG_NO_HZ_COMMON
6210
6211 static struct {
6212 cpumask_var_t idle_cpus_mask;
6213 atomic_t nr_cpus;
6214 int has_blocked; /* Idle CPUS has blocked load */
6215 int needs_update; /* Newly idle CPUs need their next_balance collated */
6216 unsigned long next_balance; /* in jiffy units */
6217 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6218 } nohz ____cacheline_aligned;
6219
6220 #endif /* CONFIG_NO_HZ_COMMON */
6221
cpu_load(struct rq * rq)6222 static unsigned long cpu_load(struct rq *rq)
6223 {
6224 return cfs_rq_load_avg(&rq->cfs);
6225 }
6226
6227 /*
6228 * cpu_load_without - compute CPU load without any contributions from *p
6229 * @cpu: the CPU which load is requested
6230 * @p: the task which load should be discounted
6231 *
6232 * The load of a CPU is defined by the load of tasks currently enqueued on that
6233 * CPU as well as tasks which are currently sleeping after an execution on that
6234 * CPU.
6235 *
6236 * This method returns the load of the specified CPU by discounting the load of
6237 * the specified task, whenever the task is currently contributing to the CPU
6238 * load.
6239 */
cpu_load_without(struct rq * rq,struct task_struct * p)6240 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6241 {
6242 struct cfs_rq *cfs_rq;
6243 unsigned int load;
6244
6245 /* Task has no contribution or is new */
6246 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6247 return cpu_load(rq);
6248
6249 cfs_rq = &rq->cfs;
6250 load = READ_ONCE(cfs_rq->avg.load_avg);
6251
6252 /* Discount task's util from CPU's util */
6253 lsub_positive(&load, task_h_load(p));
6254
6255 return load;
6256 }
6257
cpu_runnable(struct rq * rq)6258 static unsigned long cpu_runnable(struct rq *rq)
6259 {
6260 return cfs_rq_runnable_avg(&rq->cfs);
6261 }
6262
cpu_runnable_without(struct rq * rq,struct task_struct * p)6263 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6264 {
6265 struct cfs_rq *cfs_rq;
6266 unsigned int runnable;
6267
6268 /* Task has no contribution or is new */
6269 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6270 return cpu_runnable(rq);
6271
6272 cfs_rq = &rq->cfs;
6273 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6274
6275 /* Discount task's runnable from CPU's runnable */
6276 lsub_positive(&runnable, p->se.avg.runnable_avg);
6277
6278 return runnable;
6279 }
6280
capacity_of(int cpu)6281 static unsigned long capacity_of(int cpu)
6282 {
6283 return cpu_rq(cpu)->cpu_capacity;
6284 }
6285
record_wakee(struct task_struct * p)6286 static void record_wakee(struct task_struct *p)
6287 {
6288 /*
6289 * Only decay a single time; tasks that have less then 1 wakeup per
6290 * jiffy will not have built up many flips.
6291 */
6292 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6293 current->wakee_flips >>= 1;
6294 current->wakee_flip_decay_ts = jiffies;
6295 }
6296
6297 if (current->last_wakee != p) {
6298 current->last_wakee = p;
6299 current->wakee_flips++;
6300 }
6301 }
6302
6303 /*
6304 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6305 *
6306 * A waker of many should wake a different task than the one last awakened
6307 * at a frequency roughly N times higher than one of its wakees.
6308 *
6309 * In order to determine whether we should let the load spread vs consolidating
6310 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6311 * partner, and a factor of lls_size higher frequency in the other.
6312 *
6313 * With both conditions met, we can be relatively sure that the relationship is
6314 * non-monogamous, with partner count exceeding socket size.
6315 *
6316 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6317 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6318 * socket size.
6319 */
wake_wide(struct task_struct * p)6320 static int wake_wide(struct task_struct *p)
6321 {
6322 unsigned int master = current->wakee_flips;
6323 unsigned int slave = p->wakee_flips;
6324 int factor = __this_cpu_read(sd_llc_size);
6325
6326 if (master < slave)
6327 swap(master, slave);
6328 if (slave < factor || master < slave * factor)
6329 return 0;
6330 return 1;
6331 }
6332
6333 /*
6334 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6335 * soonest. For the purpose of speed we only consider the waking and previous
6336 * CPU.
6337 *
6338 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6339 * cache-affine and is (or will be) idle.
6340 *
6341 * wake_affine_weight() - considers the weight to reflect the average
6342 * scheduling latency of the CPUs. This seems to work
6343 * for the overloaded case.
6344 */
6345 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6346 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6347 {
6348 /*
6349 * If this_cpu is idle, it implies the wakeup is from interrupt
6350 * context. Only allow the move if cache is shared. Otherwise an
6351 * interrupt intensive workload could force all tasks onto one
6352 * node depending on the IO topology or IRQ affinity settings.
6353 *
6354 * If the prev_cpu is idle and cache affine then avoid a migration.
6355 * There is no guarantee that the cache hot data from an interrupt
6356 * is more important than cache hot data on the prev_cpu and from
6357 * a cpufreq perspective, it's better to have higher utilisation
6358 * on one CPU.
6359 */
6360 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6361 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6362
6363 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6364 return this_cpu;
6365
6366 if (available_idle_cpu(prev_cpu))
6367 return prev_cpu;
6368
6369 return nr_cpumask_bits;
6370 }
6371
6372 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6373 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6374 int this_cpu, int prev_cpu, int sync)
6375 {
6376 s64 this_eff_load, prev_eff_load;
6377 unsigned long task_load;
6378
6379 this_eff_load = cpu_load(cpu_rq(this_cpu));
6380
6381 if (sync) {
6382 unsigned long current_load = task_h_load(current);
6383
6384 if (current_load > this_eff_load)
6385 return this_cpu;
6386
6387 this_eff_load -= current_load;
6388 }
6389
6390 task_load = task_h_load(p);
6391
6392 this_eff_load += task_load;
6393 if (sched_feat(WA_BIAS))
6394 this_eff_load *= 100;
6395 this_eff_load *= capacity_of(prev_cpu);
6396
6397 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6398 prev_eff_load -= task_load;
6399 if (sched_feat(WA_BIAS))
6400 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6401 prev_eff_load *= capacity_of(this_cpu);
6402
6403 /*
6404 * If sync, adjust the weight of prev_eff_load such that if
6405 * prev_eff == this_eff that select_idle_sibling() will consider
6406 * stacking the wakee on top of the waker if no other CPU is
6407 * idle.
6408 */
6409 if (sync)
6410 prev_eff_load += 1;
6411
6412 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6413 }
6414
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6415 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6416 int this_cpu, int prev_cpu, int sync)
6417 {
6418 int target = nr_cpumask_bits;
6419
6420 if (sched_feat(WA_IDLE))
6421 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6422
6423 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6424 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6425
6426 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6427 if (target == nr_cpumask_bits)
6428 return prev_cpu;
6429
6430 schedstat_inc(sd->ttwu_move_affine);
6431 schedstat_inc(p->stats.nr_wakeups_affine);
6432 return target;
6433 }
6434
6435 static struct sched_group *
6436 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6437
6438 /*
6439 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6440 */
6441 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6442 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6443 {
6444 unsigned long load, min_load = ULONG_MAX;
6445 unsigned int min_exit_latency = UINT_MAX;
6446 u64 latest_idle_timestamp = 0;
6447 int least_loaded_cpu = this_cpu;
6448 int shallowest_idle_cpu = -1;
6449 int i;
6450
6451 /* Check if we have any choice: */
6452 if (group->group_weight == 1)
6453 return cpumask_first(sched_group_span(group));
6454
6455 /* Traverse only the allowed CPUs */
6456 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6457 struct rq *rq = cpu_rq(i);
6458
6459 if (!sched_core_cookie_match(rq, p))
6460 continue;
6461
6462 if (sched_idle_cpu(i))
6463 return i;
6464
6465 if (available_idle_cpu(i)) {
6466 struct cpuidle_state *idle = idle_get_state(rq);
6467 if (idle && idle->exit_latency < min_exit_latency) {
6468 /*
6469 * We give priority to a CPU whose idle state
6470 * has the smallest exit latency irrespective
6471 * of any idle timestamp.
6472 */
6473 min_exit_latency = idle->exit_latency;
6474 latest_idle_timestamp = rq->idle_stamp;
6475 shallowest_idle_cpu = i;
6476 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6477 rq->idle_stamp > latest_idle_timestamp) {
6478 /*
6479 * If equal or no active idle state, then
6480 * the most recently idled CPU might have
6481 * a warmer cache.
6482 */
6483 latest_idle_timestamp = rq->idle_stamp;
6484 shallowest_idle_cpu = i;
6485 }
6486 } else if (shallowest_idle_cpu == -1) {
6487 load = cpu_load(cpu_rq(i));
6488 if (load < min_load) {
6489 min_load = load;
6490 least_loaded_cpu = i;
6491 }
6492 }
6493 }
6494
6495 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6496 }
6497
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6498 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6499 int cpu, int prev_cpu, int sd_flag)
6500 {
6501 int new_cpu = cpu;
6502
6503 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6504 return prev_cpu;
6505
6506 /*
6507 * We need task's util for cpu_util_without, sync it up to
6508 * prev_cpu's last_update_time.
6509 */
6510 if (!(sd_flag & SD_BALANCE_FORK))
6511 sync_entity_load_avg(&p->se);
6512
6513 while (sd) {
6514 struct sched_group *group;
6515 struct sched_domain *tmp;
6516 int weight;
6517
6518 if (!(sd->flags & sd_flag)) {
6519 sd = sd->child;
6520 continue;
6521 }
6522
6523 group = find_idlest_group(sd, p, cpu);
6524 if (!group) {
6525 sd = sd->child;
6526 continue;
6527 }
6528
6529 new_cpu = find_idlest_group_cpu(group, p, cpu);
6530 if (new_cpu == cpu) {
6531 /* Now try balancing at a lower domain level of 'cpu': */
6532 sd = sd->child;
6533 continue;
6534 }
6535
6536 /* Now try balancing at a lower domain level of 'new_cpu': */
6537 cpu = new_cpu;
6538 weight = sd->span_weight;
6539 sd = NULL;
6540 for_each_domain(cpu, tmp) {
6541 if (weight <= tmp->span_weight)
6542 break;
6543 if (tmp->flags & sd_flag)
6544 sd = tmp;
6545 }
6546 }
6547
6548 return new_cpu;
6549 }
6550
__select_idle_cpu(int cpu,struct task_struct * p)6551 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6552 {
6553 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6554 sched_cpu_cookie_match(cpu_rq(cpu), p))
6555 return cpu;
6556
6557 return -1;
6558 }
6559
6560 #ifdef CONFIG_SCHED_SMT
6561 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6562 EXPORT_SYMBOL_GPL(sched_smt_present);
6563
set_idle_cores(int cpu,int val)6564 static inline void set_idle_cores(int cpu, int val)
6565 {
6566 struct sched_domain_shared *sds;
6567
6568 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6569 if (sds)
6570 WRITE_ONCE(sds->has_idle_cores, val);
6571 }
6572
test_idle_cores(int cpu)6573 static inline bool test_idle_cores(int cpu)
6574 {
6575 struct sched_domain_shared *sds;
6576
6577 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6578 if (sds)
6579 return READ_ONCE(sds->has_idle_cores);
6580
6581 return false;
6582 }
6583
6584 /*
6585 * Scans the local SMT mask to see if the entire core is idle, and records this
6586 * information in sd_llc_shared->has_idle_cores.
6587 *
6588 * Since SMT siblings share all cache levels, inspecting this limited remote
6589 * state should be fairly cheap.
6590 */
__update_idle_core(struct rq * rq)6591 void __update_idle_core(struct rq *rq)
6592 {
6593 int core = cpu_of(rq);
6594 int cpu;
6595
6596 rcu_read_lock();
6597 if (test_idle_cores(core))
6598 goto unlock;
6599
6600 for_each_cpu(cpu, cpu_smt_mask(core)) {
6601 if (cpu == core)
6602 continue;
6603
6604 if (!available_idle_cpu(cpu))
6605 goto unlock;
6606 }
6607
6608 set_idle_cores(core, 1);
6609 unlock:
6610 rcu_read_unlock();
6611 }
6612
6613 /*
6614 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6615 * there are no idle cores left in the system; tracked through
6616 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6617 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6618 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6619 {
6620 bool idle = true;
6621 int cpu;
6622
6623 for_each_cpu(cpu, cpu_smt_mask(core)) {
6624 if (!available_idle_cpu(cpu)) {
6625 idle = false;
6626 if (*idle_cpu == -1) {
6627 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6628 *idle_cpu = cpu;
6629 break;
6630 }
6631 continue;
6632 }
6633 break;
6634 }
6635 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6636 *idle_cpu = cpu;
6637 }
6638
6639 if (idle)
6640 return core;
6641
6642 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6643 return -1;
6644 }
6645
6646 /*
6647 * Scan the local SMT mask for idle CPUs.
6648 */
select_idle_smt(struct task_struct * p,int target)6649 static int select_idle_smt(struct task_struct *p, int target)
6650 {
6651 int cpu;
6652
6653 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6654 if (cpu == target)
6655 continue;
6656 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6657 return cpu;
6658 }
6659
6660 return -1;
6661 }
6662
6663 #else /* CONFIG_SCHED_SMT */
6664
set_idle_cores(int cpu,int val)6665 static inline void set_idle_cores(int cpu, int val)
6666 {
6667 }
6668
test_idle_cores(int cpu)6669 static inline bool test_idle_cores(int cpu)
6670 {
6671 return false;
6672 }
6673
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6674 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6675 {
6676 return __select_idle_cpu(core, p);
6677 }
6678
select_idle_smt(struct task_struct * p,int target)6679 static inline int select_idle_smt(struct task_struct *p, int target)
6680 {
6681 return -1;
6682 }
6683
6684 #endif /* CONFIG_SCHED_SMT */
6685
6686 /*
6687 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6688 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6689 * average idle time for this rq (as found in rq->avg_idle).
6690 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6691 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6692 {
6693 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6694 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6695 struct sched_domain_shared *sd_share;
6696 struct rq *this_rq = this_rq();
6697 int this = smp_processor_id();
6698 struct sched_domain *this_sd = NULL;
6699 u64 time = 0;
6700
6701 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6702
6703 if (sched_feat(SIS_PROP) && !has_idle_core) {
6704 u64 avg_cost, avg_idle, span_avg;
6705 unsigned long now = jiffies;
6706
6707 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6708 if (!this_sd)
6709 return -1;
6710
6711 /*
6712 * If we're busy, the assumption that the last idle period
6713 * predicts the future is flawed; age away the remaining
6714 * predicted idle time.
6715 */
6716 if (unlikely(this_rq->wake_stamp < now)) {
6717 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6718 this_rq->wake_stamp++;
6719 this_rq->wake_avg_idle >>= 1;
6720 }
6721 }
6722
6723 avg_idle = this_rq->wake_avg_idle;
6724 avg_cost = this_sd->avg_scan_cost + 1;
6725
6726 span_avg = sd->span_weight * avg_idle;
6727 if (span_avg > 4*avg_cost)
6728 nr = div_u64(span_avg, avg_cost);
6729 else
6730 nr = 4;
6731
6732 time = cpu_clock(this);
6733 }
6734
6735 if (sched_feat(SIS_UTIL)) {
6736 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6737 if (sd_share) {
6738 /* because !--nr is the condition to stop scan */
6739 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6740 /* overloaded LLC is unlikely to have idle cpu/core */
6741 if (nr == 1)
6742 return -1;
6743 }
6744 }
6745
6746 for_each_cpu_wrap(cpu, cpus, target + 1) {
6747 if (has_idle_core) {
6748 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6749 if ((unsigned int)i < nr_cpumask_bits)
6750 return i;
6751
6752 } else {
6753 if (!--nr)
6754 return -1;
6755 idle_cpu = __select_idle_cpu(cpu, p);
6756 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6757 break;
6758 }
6759 }
6760
6761 if (has_idle_core)
6762 set_idle_cores(target, false);
6763
6764 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6765 time = cpu_clock(this) - time;
6766
6767 /*
6768 * Account for the scan cost of wakeups against the average
6769 * idle time.
6770 */
6771 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6772
6773 update_avg(&this_sd->avg_scan_cost, time);
6774 }
6775
6776 return idle_cpu;
6777 }
6778
6779 /*
6780 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6781 * the task fits. If no CPU is big enough, but there are idle ones, try to
6782 * maximize capacity.
6783 */
6784 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6785 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6786 {
6787 unsigned long task_util, util_min, util_max, best_cap = 0;
6788 int cpu, best_cpu = -1;
6789 struct cpumask *cpus;
6790
6791 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6792 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6793
6794 task_util = task_util_est(p);
6795 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6796 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6797
6798 for_each_cpu_wrap(cpu, cpus, target) {
6799 unsigned long cpu_cap = capacity_of(cpu);
6800
6801 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6802 continue;
6803 if (util_fits_cpu(task_util, util_min, util_max, cpu))
6804 return cpu;
6805
6806 if (cpu_cap > best_cap) {
6807 best_cap = cpu_cap;
6808 best_cpu = cpu;
6809 }
6810 }
6811
6812 return best_cpu;
6813 }
6814
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6815 static inline bool asym_fits_cpu(unsigned long util,
6816 unsigned long util_min,
6817 unsigned long util_max,
6818 int cpu)
6819 {
6820 if (sched_asym_cpucap_active())
6821 return util_fits_cpu(util, util_min, util_max, cpu);
6822
6823 return true;
6824 }
6825
6826 /*
6827 * Try and locate an idle core/thread in the LLC cache domain.
6828 */
select_idle_sibling(struct task_struct * p,int prev,int target)6829 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6830 {
6831 bool has_idle_core = false;
6832 struct sched_domain *sd;
6833 unsigned long task_util, util_min, util_max;
6834 int i, recent_used_cpu;
6835
6836 /*
6837 * On asymmetric system, update task utilization because we will check
6838 * that the task fits with cpu's capacity.
6839 */
6840 if (sched_asym_cpucap_active()) {
6841 sync_entity_load_avg(&p->se);
6842 task_util = task_util_est(p);
6843 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6844 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6845 }
6846
6847 /*
6848 * per-cpu select_rq_mask usage
6849 */
6850 lockdep_assert_irqs_disabled();
6851
6852 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6853 asym_fits_cpu(task_util, util_min, util_max, target))
6854 return target;
6855
6856 /*
6857 * If the previous CPU is cache affine and idle, don't be stupid:
6858 */
6859 if (prev != target && cpus_share_cache(prev, target) &&
6860 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6861 asym_fits_cpu(task_util, util_min, util_max, prev))
6862 return prev;
6863
6864 /*
6865 * Allow a per-cpu kthread to stack with the wakee if the
6866 * kworker thread and the tasks previous CPUs are the same.
6867 * The assumption is that the wakee queued work for the
6868 * per-cpu kthread that is now complete and the wakeup is
6869 * essentially a sync wakeup. An obvious example of this
6870 * pattern is IO completions.
6871 */
6872 if (is_per_cpu_kthread(current) &&
6873 in_task() &&
6874 prev == smp_processor_id() &&
6875 this_rq()->nr_running <= 1 &&
6876 asym_fits_cpu(task_util, util_min, util_max, prev)) {
6877 return prev;
6878 }
6879
6880 /* Check a recently used CPU as a potential idle candidate: */
6881 recent_used_cpu = p->recent_used_cpu;
6882 p->recent_used_cpu = prev;
6883 if (recent_used_cpu != prev &&
6884 recent_used_cpu != target &&
6885 cpus_share_cache(recent_used_cpu, target) &&
6886 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6887 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6888 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
6889 return recent_used_cpu;
6890 }
6891
6892 /*
6893 * For asymmetric CPU capacity systems, our domain of interest is
6894 * sd_asym_cpucapacity rather than sd_llc.
6895 */
6896 if (sched_asym_cpucap_active()) {
6897 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6898 /*
6899 * On an asymmetric CPU capacity system where an exclusive
6900 * cpuset defines a symmetric island (i.e. one unique
6901 * capacity_orig value through the cpuset), the key will be set
6902 * but the CPUs within that cpuset will not have a domain with
6903 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6904 * capacity path.
6905 */
6906 if (sd) {
6907 i = select_idle_capacity(p, sd, target);
6908 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6909 }
6910 }
6911
6912 sd = rcu_dereference(per_cpu(sd_llc, target));
6913 if (!sd)
6914 return target;
6915
6916 if (sched_smt_active()) {
6917 has_idle_core = test_idle_cores(target);
6918
6919 if (!has_idle_core && cpus_share_cache(prev, target)) {
6920 i = select_idle_smt(p, prev);
6921 if ((unsigned int)i < nr_cpumask_bits)
6922 return i;
6923 }
6924 }
6925
6926 i = select_idle_cpu(p, sd, has_idle_core, target);
6927 if ((unsigned)i < nr_cpumask_bits)
6928 return i;
6929
6930 return target;
6931 }
6932
6933 /*
6934 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6935 * (@dst_cpu = -1) or migrated to @dst_cpu.
6936 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6937 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6938 {
6939 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6940 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6941
6942 /*
6943 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6944 * contribution. If @p migrates from another CPU to @cpu add its
6945 * contribution. In all the other cases @cpu is not impacted by the
6946 * migration so its util_avg is already correct.
6947 */
6948 if (task_cpu(p) == cpu && dst_cpu != cpu)
6949 lsub_positive(&util, task_util(p));
6950 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6951 util += task_util(p);
6952
6953 if (sched_feat(UTIL_EST)) {
6954 unsigned long util_est;
6955
6956 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6957
6958 /*
6959 * During wake-up @p isn't enqueued yet and doesn't contribute
6960 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6961 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6962 * has been enqueued.
6963 *
6964 * During exec (@dst_cpu = -1) @p is enqueued and does
6965 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6966 * Remove it to "simulate" cpu_util without @p's contribution.
6967 *
6968 * Despite the task_on_rq_queued(@p) check there is still a
6969 * small window for a possible race when an exec
6970 * select_task_rq_fair() races with LB's detach_task().
6971 *
6972 * detach_task()
6973 * deactivate_task()
6974 * p->on_rq = TASK_ON_RQ_MIGRATING;
6975 * -------------------------------- A
6976 * dequeue_task() \
6977 * dequeue_task_fair() + Race Time
6978 * util_est_dequeue() /
6979 * -------------------------------- B
6980 *
6981 * The additional check "current == p" is required to further
6982 * reduce the race window.
6983 */
6984 if (dst_cpu == cpu)
6985 util_est += _task_util_est(p);
6986 else if (unlikely(task_on_rq_queued(p) || current == p))
6987 lsub_positive(&util_est, _task_util_est(p));
6988
6989 util = max(util, util_est);
6990 }
6991
6992 return min(util, capacity_orig_of(cpu));
6993 }
6994
6995 /*
6996 * cpu_util_without: compute cpu utilization without any contributions from *p
6997 * @cpu: the CPU which utilization is requested
6998 * @p: the task which utilization should be discounted
6999 *
7000 * The utilization of a CPU is defined by the utilization of tasks currently
7001 * enqueued on that CPU as well as tasks which are currently sleeping after an
7002 * execution on that CPU.
7003 *
7004 * This method returns the utilization of the specified CPU by discounting the
7005 * utilization of the specified task, whenever the task is currently
7006 * contributing to the CPU utilization.
7007 */
cpu_util_without(int cpu,struct task_struct * p)7008 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7009 {
7010 /* Task has no contribution or is new */
7011 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7012 return cpu_util_cfs(cpu);
7013
7014 return cpu_util_next(cpu, p, -1);
7015 }
7016
7017 /*
7018 * energy_env - Utilization landscape for energy estimation.
7019 * @task_busy_time: Utilization contribution by the task for which we test the
7020 * placement. Given by eenv_task_busy_time().
7021 * @pd_busy_time: Utilization of the whole perf domain without the task
7022 * contribution. Given by eenv_pd_busy_time().
7023 * @cpu_cap: Maximum CPU capacity for the perf domain.
7024 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7025 */
7026 struct energy_env {
7027 unsigned long task_busy_time;
7028 unsigned long pd_busy_time;
7029 unsigned long cpu_cap;
7030 unsigned long pd_cap;
7031 };
7032
7033 /*
7034 * Compute the task busy time for compute_energy(). This time cannot be
7035 * injected directly into effective_cpu_util() because of the IRQ scaling.
7036 * The latter only makes sense with the most recent CPUs where the task has
7037 * run.
7038 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7039 static inline void eenv_task_busy_time(struct energy_env *eenv,
7040 struct task_struct *p, int prev_cpu)
7041 {
7042 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7043 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7044
7045 if (unlikely(irq >= max_cap))
7046 busy_time = max_cap;
7047 else
7048 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7049
7050 eenv->task_busy_time = busy_time;
7051 }
7052
7053 /*
7054 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7055 * utilization for each @pd_cpus, it however doesn't take into account
7056 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7057 * scale the EM reported power consumption at the (eventually clamped)
7058 * cpu_capacity.
7059 *
7060 * The contribution of the task @p for which we want to estimate the
7061 * energy cost is removed (by cpu_util_next()) and must be calculated
7062 * separately (see eenv_task_busy_time). This ensures:
7063 *
7064 * - A stable PD utilization, no matter which CPU of that PD we want to place
7065 * the task on.
7066 *
7067 * - A fair comparison between CPUs as the task contribution (task_util())
7068 * will always be the same no matter which CPU utilization we rely on
7069 * (util_avg or util_est).
7070 *
7071 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7072 * exceed @eenv->pd_cap.
7073 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7074 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7075 struct cpumask *pd_cpus,
7076 struct task_struct *p)
7077 {
7078 unsigned long busy_time = 0;
7079 int cpu;
7080
7081 for_each_cpu(cpu, pd_cpus) {
7082 unsigned long util = cpu_util_next(cpu, p, -1);
7083
7084 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7085 }
7086
7087 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7088 }
7089
7090 /*
7091 * Compute the maximum utilization for compute_energy() when the task @p
7092 * is placed on the cpu @dst_cpu.
7093 *
7094 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7095 * exceed @eenv->cpu_cap.
7096 */
7097 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7098 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7099 struct task_struct *p, int dst_cpu)
7100 {
7101 unsigned long max_util = 0;
7102 int cpu;
7103
7104 for_each_cpu(cpu, pd_cpus) {
7105 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7106 unsigned long util = cpu_util_next(cpu, p, dst_cpu);
7107 unsigned long cpu_util;
7108
7109 /*
7110 * Performance domain frequency: utilization clamping
7111 * must be considered since it affects the selection
7112 * of the performance domain frequency.
7113 * NOTE: in case RT tasks are running, by default the
7114 * FREQUENCY_UTIL's utilization can be max OPP.
7115 */
7116 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7117 max_util = max(max_util, cpu_util);
7118 }
7119
7120 return min(max_util, eenv->cpu_cap);
7121 }
7122
7123 /*
7124 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7125 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7126 * contribution is ignored.
7127 */
7128 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7129 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7130 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7131 {
7132 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7133 unsigned long busy_time = eenv->pd_busy_time;
7134
7135 if (dst_cpu >= 0)
7136 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7137
7138 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7139 }
7140
7141 /*
7142 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7143 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7144 * spare capacity in each performance domain and uses it as a potential
7145 * candidate to execute the task. Then, it uses the Energy Model to figure
7146 * out which of the CPU candidates is the most energy-efficient.
7147 *
7148 * The rationale for this heuristic is as follows. In a performance domain,
7149 * all the most energy efficient CPU candidates (according to the Energy
7150 * Model) are those for which we'll request a low frequency. When there are
7151 * several CPUs for which the frequency request will be the same, we don't
7152 * have enough data to break the tie between them, because the Energy Model
7153 * only includes active power costs. With this model, if we assume that
7154 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7155 * the maximum spare capacity in a performance domain is guaranteed to be among
7156 * the best candidates of the performance domain.
7157 *
7158 * In practice, it could be preferable from an energy standpoint to pack
7159 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7160 * but that could also hurt our chances to go cluster idle, and we have no
7161 * ways to tell with the current Energy Model if this is actually a good
7162 * idea or not. So, find_energy_efficient_cpu() basically favors
7163 * cluster-packing, and spreading inside a cluster. That should at least be
7164 * a good thing for latency, and this is consistent with the idea that most
7165 * of the energy savings of EAS come from the asymmetry of the system, and
7166 * not so much from breaking the tie between identical CPUs. That's also the
7167 * reason why EAS is enabled in the topology code only for systems where
7168 * SD_ASYM_CPUCAPACITY is set.
7169 *
7170 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7171 * they don't have any useful utilization data yet and it's not possible to
7172 * forecast their impact on energy consumption. Consequently, they will be
7173 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7174 * to be energy-inefficient in some use-cases. The alternative would be to
7175 * bias new tasks towards specific types of CPUs first, or to try to infer
7176 * their util_avg from the parent task, but those heuristics could hurt
7177 * other use-cases too. So, until someone finds a better way to solve this,
7178 * let's keep things simple by re-using the existing slow path.
7179 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7180 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7181 {
7182 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7183 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7184 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7185 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7186 struct root_domain *rd = this_rq()->rd;
7187 int cpu, best_energy_cpu, target = -1;
7188 struct sched_domain *sd;
7189 struct perf_domain *pd;
7190 struct energy_env eenv;
7191
7192 rcu_read_lock();
7193 pd = rcu_dereference(rd->pd);
7194 if (!pd || READ_ONCE(rd->overutilized))
7195 goto unlock;
7196
7197 /*
7198 * Energy-aware wake-up happens on the lowest sched_domain starting
7199 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7200 */
7201 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7202 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7203 sd = sd->parent;
7204 if (!sd)
7205 goto unlock;
7206
7207 target = prev_cpu;
7208
7209 sync_entity_load_avg(&p->se);
7210 if (!uclamp_task_util(p, p_util_min, p_util_max))
7211 goto unlock;
7212
7213 eenv_task_busy_time(&eenv, p, prev_cpu);
7214
7215 for (; pd; pd = pd->next) {
7216 unsigned long util_min = p_util_min, util_max = p_util_max;
7217 unsigned long cpu_cap, cpu_thermal_cap, util;
7218 unsigned long cur_delta, max_spare_cap = 0;
7219 unsigned long rq_util_min, rq_util_max;
7220 unsigned long prev_spare_cap = 0;
7221 int max_spare_cap_cpu = -1;
7222 unsigned long base_energy;
7223
7224 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7225
7226 if (cpumask_empty(cpus))
7227 continue;
7228
7229 /* Account thermal pressure for the energy estimation */
7230 cpu = cpumask_first(cpus);
7231 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7232 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7233
7234 eenv.cpu_cap = cpu_thermal_cap;
7235 eenv.pd_cap = 0;
7236
7237 for_each_cpu(cpu, cpus) {
7238 struct rq *rq = cpu_rq(cpu);
7239
7240 eenv.pd_cap += cpu_thermal_cap;
7241
7242 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7243 continue;
7244
7245 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7246 continue;
7247
7248 util = cpu_util_next(cpu, p, cpu);
7249 cpu_cap = capacity_of(cpu);
7250
7251 /*
7252 * Skip CPUs that cannot satisfy the capacity request.
7253 * IOW, placing the task there would make the CPU
7254 * overutilized. Take uclamp into account to see how
7255 * much capacity we can get out of the CPU; this is
7256 * aligned with sched_cpu_util().
7257 */
7258 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7259 /*
7260 * Open code uclamp_rq_util_with() except for
7261 * the clamp() part. Ie: apply max aggregation
7262 * only. util_fits_cpu() logic requires to
7263 * operate on non clamped util but must use the
7264 * max-aggregated uclamp_{min, max}.
7265 */
7266 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7267 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7268
7269 util_min = max(rq_util_min, p_util_min);
7270 util_max = max(rq_util_max, p_util_max);
7271 }
7272 if (!util_fits_cpu(util, util_min, util_max, cpu))
7273 continue;
7274
7275 lsub_positive(&cpu_cap, util);
7276
7277 if (cpu == prev_cpu) {
7278 /* Always use prev_cpu as a candidate. */
7279 prev_spare_cap = cpu_cap;
7280 } else if (cpu_cap > max_spare_cap) {
7281 /*
7282 * Find the CPU with the maximum spare capacity
7283 * among the remaining CPUs in the performance
7284 * domain.
7285 */
7286 max_spare_cap = cpu_cap;
7287 max_spare_cap_cpu = cpu;
7288 }
7289 }
7290
7291 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7292 continue;
7293
7294 eenv_pd_busy_time(&eenv, cpus, p);
7295 /* Compute the 'base' energy of the pd, without @p */
7296 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7297
7298 /* Evaluate the energy impact of using prev_cpu. */
7299 if (prev_spare_cap > 0) {
7300 prev_delta = compute_energy(&eenv, pd, cpus, p,
7301 prev_cpu);
7302 /* CPU utilization has changed */
7303 if (prev_delta < base_energy)
7304 goto unlock;
7305 prev_delta -= base_energy;
7306 best_delta = min(best_delta, prev_delta);
7307 }
7308
7309 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7310 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7311 cur_delta = compute_energy(&eenv, pd, cpus, p,
7312 max_spare_cap_cpu);
7313 /* CPU utilization has changed */
7314 if (cur_delta < base_energy)
7315 goto unlock;
7316 cur_delta -= base_energy;
7317 if (cur_delta < best_delta) {
7318 best_delta = cur_delta;
7319 best_energy_cpu = max_spare_cap_cpu;
7320 }
7321 }
7322 }
7323 rcu_read_unlock();
7324
7325 if (best_delta < prev_delta)
7326 target = best_energy_cpu;
7327
7328 return target;
7329
7330 unlock:
7331 rcu_read_unlock();
7332
7333 return target;
7334 }
7335
7336 /*
7337 * select_task_rq_fair: Select target runqueue for the waking task in domains
7338 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7339 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7340 *
7341 * Balances load by selecting the idlest CPU in the idlest group, or under
7342 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7343 *
7344 * Returns the target CPU number.
7345 */
7346 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)7347 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7348 {
7349 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7350 struct sched_domain *tmp, *sd = NULL;
7351 int cpu = smp_processor_id();
7352 int new_cpu = prev_cpu;
7353 int want_affine = 0;
7354 /* SD_flags and WF_flags share the first nibble */
7355 int sd_flag = wake_flags & 0xF;
7356
7357 /*
7358 * required for stable ->cpus_allowed
7359 */
7360 lockdep_assert_held(&p->pi_lock);
7361 if (wake_flags & WF_TTWU) {
7362 record_wakee(p);
7363
7364 if (sched_energy_enabled()) {
7365 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7366 if (new_cpu >= 0)
7367 return new_cpu;
7368 new_cpu = prev_cpu;
7369 }
7370
7371 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7372 }
7373
7374 rcu_read_lock();
7375 for_each_domain(cpu, tmp) {
7376 /*
7377 * If both 'cpu' and 'prev_cpu' are part of this domain,
7378 * cpu is a valid SD_WAKE_AFFINE target.
7379 */
7380 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7381 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7382 if (cpu != prev_cpu)
7383 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7384
7385 sd = NULL; /* Prefer wake_affine over balance flags */
7386 break;
7387 }
7388
7389 /*
7390 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7391 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7392 * will usually go to the fast path.
7393 */
7394 if (tmp->flags & sd_flag)
7395 sd = tmp;
7396 else if (!want_affine)
7397 break;
7398 }
7399
7400 if (unlikely(sd)) {
7401 /* Slow path */
7402 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7403 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7404 /* Fast path */
7405 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7406 }
7407 rcu_read_unlock();
7408
7409 return new_cpu;
7410 }
7411
7412 /*
7413 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7414 * cfs_rq_of(p) references at time of call are still valid and identify the
7415 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7416 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7417 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7418 {
7419 struct sched_entity *se = &p->se;
7420
7421 /*
7422 * As blocked tasks retain absolute vruntime the migration needs to
7423 * deal with this by subtracting the old and adding the new
7424 * min_vruntime -- the latter is done by enqueue_entity() when placing
7425 * the task on the new runqueue.
7426 */
7427 if (READ_ONCE(p->__state) == TASK_WAKING) {
7428 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7429
7430 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7431 }
7432
7433 if (!task_on_rq_migrating(p)) {
7434 remove_entity_load_avg(se);
7435
7436 /*
7437 * Here, the task's PELT values have been updated according to
7438 * the current rq's clock. But if that clock hasn't been
7439 * updated in a while, a substantial idle time will be missed,
7440 * leading to an inflation after wake-up on the new rq.
7441 *
7442 * Estimate the missing time from the cfs_rq last_update_time
7443 * and update sched_avg to improve the PELT continuity after
7444 * migration.
7445 */
7446 migrate_se_pelt_lag(se);
7447 }
7448
7449 /* Tell new CPU we are migrated */
7450 se->avg.last_update_time = 0;
7451
7452 /* We have migrated, no longer consider this task hot */
7453 se->exec_start = 0;
7454
7455 update_scan_period(p, new_cpu);
7456 }
7457
task_dead_fair(struct task_struct * p)7458 static void task_dead_fair(struct task_struct *p)
7459 {
7460 remove_entity_load_avg(&p->se);
7461 }
7462
7463 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7464 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7465 {
7466 if (rq->nr_running)
7467 return 1;
7468
7469 return newidle_balance(rq, rf) != 0;
7470 }
7471 #endif /* CONFIG_SMP */
7472
wakeup_gran(struct sched_entity * se)7473 static unsigned long wakeup_gran(struct sched_entity *se)
7474 {
7475 unsigned long gran = sysctl_sched_wakeup_granularity;
7476
7477 /*
7478 * Since its curr running now, convert the gran from real-time
7479 * to virtual-time in his units.
7480 *
7481 * By using 'se' instead of 'curr' we penalize light tasks, so
7482 * they get preempted easier. That is, if 'se' < 'curr' then
7483 * the resulting gran will be larger, therefore penalizing the
7484 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7485 * be smaller, again penalizing the lighter task.
7486 *
7487 * This is especially important for buddies when the leftmost
7488 * task is higher priority than the buddy.
7489 */
7490 return calc_delta_fair(gran, se);
7491 }
7492
7493 /*
7494 * Should 'se' preempt 'curr'.
7495 *
7496 * |s1
7497 * |s2
7498 * |s3
7499 * g
7500 * |<--->|c
7501 *
7502 * w(c, s1) = -1
7503 * w(c, s2) = 0
7504 * w(c, s3) = 1
7505 *
7506 */
7507 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7508 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7509 {
7510 s64 gran, vdiff = curr->vruntime - se->vruntime;
7511
7512 if (vdiff <= 0)
7513 return -1;
7514
7515 gran = wakeup_gran(se);
7516 if (vdiff > gran)
7517 return 1;
7518
7519 return 0;
7520 }
7521
set_last_buddy(struct sched_entity * se)7522 static void set_last_buddy(struct sched_entity *se)
7523 {
7524 for_each_sched_entity(se) {
7525 if (SCHED_WARN_ON(!se->on_rq))
7526 return;
7527 if (se_is_idle(se))
7528 return;
7529 cfs_rq_of(se)->last = se;
7530 }
7531 }
7532
set_next_buddy(struct sched_entity * se)7533 static void set_next_buddy(struct sched_entity *se)
7534 {
7535 for_each_sched_entity(se) {
7536 if (SCHED_WARN_ON(!se->on_rq))
7537 return;
7538 if (se_is_idle(se))
7539 return;
7540 cfs_rq_of(se)->next = se;
7541 }
7542 }
7543
set_skip_buddy(struct sched_entity * se)7544 static void set_skip_buddy(struct sched_entity *se)
7545 {
7546 for_each_sched_entity(se)
7547 cfs_rq_of(se)->skip = se;
7548 }
7549
7550 /*
7551 * Preempt the current task with a newly woken task if needed:
7552 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7553 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7554 {
7555 struct task_struct *curr = rq->curr;
7556 struct sched_entity *se = &curr->se, *pse = &p->se;
7557 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7558 int scale = cfs_rq->nr_running >= sched_nr_latency;
7559 int next_buddy_marked = 0;
7560 int cse_is_idle, pse_is_idle;
7561
7562 if (unlikely(se == pse))
7563 return;
7564
7565 /*
7566 * This is possible from callers such as attach_tasks(), in which we
7567 * unconditionally check_preempt_curr() after an enqueue (which may have
7568 * lead to a throttle). This both saves work and prevents false
7569 * next-buddy nomination below.
7570 */
7571 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7572 return;
7573
7574 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7575 set_next_buddy(pse);
7576 next_buddy_marked = 1;
7577 }
7578
7579 /*
7580 * We can come here with TIF_NEED_RESCHED already set from new task
7581 * wake up path.
7582 *
7583 * Note: this also catches the edge-case of curr being in a throttled
7584 * group (e.g. via set_curr_task), since update_curr() (in the
7585 * enqueue of curr) will have resulted in resched being set. This
7586 * prevents us from potentially nominating it as a false LAST_BUDDY
7587 * below.
7588 */
7589 if (test_tsk_need_resched(curr))
7590 return;
7591
7592 /* Idle tasks are by definition preempted by non-idle tasks. */
7593 if (unlikely(task_has_idle_policy(curr)) &&
7594 likely(!task_has_idle_policy(p)))
7595 goto preempt;
7596
7597 /*
7598 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7599 * is driven by the tick):
7600 */
7601 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7602 return;
7603
7604 find_matching_se(&se, &pse);
7605 WARN_ON_ONCE(!pse);
7606
7607 cse_is_idle = se_is_idle(se);
7608 pse_is_idle = se_is_idle(pse);
7609
7610 /*
7611 * Preempt an idle group in favor of a non-idle group (and don't preempt
7612 * in the inverse case).
7613 */
7614 if (cse_is_idle && !pse_is_idle)
7615 goto preempt;
7616 if (cse_is_idle != pse_is_idle)
7617 return;
7618
7619 update_curr(cfs_rq_of(se));
7620 if (wakeup_preempt_entity(se, pse) == 1) {
7621 /*
7622 * Bias pick_next to pick the sched entity that is
7623 * triggering this preemption.
7624 */
7625 if (!next_buddy_marked)
7626 set_next_buddy(pse);
7627 goto preempt;
7628 }
7629
7630 return;
7631
7632 preempt:
7633 resched_curr(rq);
7634 /*
7635 * Only set the backward buddy when the current task is still
7636 * on the rq. This can happen when a wakeup gets interleaved
7637 * with schedule on the ->pre_schedule() or idle_balance()
7638 * point, either of which can * drop the rq lock.
7639 *
7640 * Also, during early boot the idle thread is in the fair class,
7641 * for obvious reasons its a bad idea to schedule back to it.
7642 */
7643 if (unlikely(!se->on_rq || curr == rq->idle))
7644 return;
7645
7646 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7647 set_last_buddy(se);
7648 }
7649
7650 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7651 static struct task_struct *pick_task_fair(struct rq *rq)
7652 {
7653 struct sched_entity *se;
7654 struct cfs_rq *cfs_rq;
7655
7656 again:
7657 cfs_rq = &rq->cfs;
7658 if (!cfs_rq->nr_running)
7659 return NULL;
7660
7661 do {
7662 struct sched_entity *curr = cfs_rq->curr;
7663
7664 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7665 if (curr) {
7666 if (curr->on_rq)
7667 update_curr(cfs_rq);
7668 else
7669 curr = NULL;
7670
7671 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7672 goto again;
7673 }
7674
7675 se = pick_next_entity(cfs_rq, curr);
7676 cfs_rq = group_cfs_rq(se);
7677 } while (cfs_rq);
7678
7679 return task_of(se);
7680 }
7681 #endif
7682
7683 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7684 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7685 {
7686 struct cfs_rq *cfs_rq = &rq->cfs;
7687 struct sched_entity *se;
7688 struct task_struct *p;
7689 int new_tasks;
7690
7691 again:
7692 if (!sched_fair_runnable(rq))
7693 goto idle;
7694
7695 #ifdef CONFIG_FAIR_GROUP_SCHED
7696 if (!prev || prev->sched_class != &fair_sched_class)
7697 goto simple;
7698
7699 /*
7700 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7701 * likely that a next task is from the same cgroup as the current.
7702 *
7703 * Therefore attempt to avoid putting and setting the entire cgroup
7704 * hierarchy, only change the part that actually changes.
7705 */
7706
7707 do {
7708 struct sched_entity *curr = cfs_rq->curr;
7709
7710 /*
7711 * Since we got here without doing put_prev_entity() we also
7712 * have to consider cfs_rq->curr. If it is still a runnable
7713 * entity, update_curr() will update its vruntime, otherwise
7714 * forget we've ever seen it.
7715 */
7716 if (curr) {
7717 if (curr->on_rq)
7718 update_curr(cfs_rq);
7719 else
7720 curr = NULL;
7721
7722 /*
7723 * This call to check_cfs_rq_runtime() will do the
7724 * throttle and dequeue its entity in the parent(s).
7725 * Therefore the nr_running test will indeed
7726 * be correct.
7727 */
7728 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7729 cfs_rq = &rq->cfs;
7730
7731 if (!cfs_rq->nr_running)
7732 goto idle;
7733
7734 goto simple;
7735 }
7736 }
7737
7738 se = pick_next_entity(cfs_rq, curr);
7739 cfs_rq = group_cfs_rq(se);
7740 } while (cfs_rq);
7741
7742 p = task_of(se);
7743
7744 /*
7745 * Since we haven't yet done put_prev_entity and if the selected task
7746 * is a different task than we started out with, try and touch the
7747 * least amount of cfs_rqs.
7748 */
7749 if (prev != p) {
7750 struct sched_entity *pse = &prev->se;
7751
7752 while (!(cfs_rq = is_same_group(se, pse))) {
7753 int se_depth = se->depth;
7754 int pse_depth = pse->depth;
7755
7756 if (se_depth <= pse_depth) {
7757 put_prev_entity(cfs_rq_of(pse), pse);
7758 pse = parent_entity(pse);
7759 }
7760 if (se_depth >= pse_depth) {
7761 set_next_entity(cfs_rq_of(se), se);
7762 se = parent_entity(se);
7763 }
7764 }
7765
7766 put_prev_entity(cfs_rq, pse);
7767 set_next_entity(cfs_rq, se);
7768 }
7769
7770 goto done;
7771 simple:
7772 #endif
7773 if (prev)
7774 put_prev_task(rq, prev);
7775
7776 do {
7777 se = pick_next_entity(cfs_rq, NULL);
7778 set_next_entity(cfs_rq, se);
7779 cfs_rq = group_cfs_rq(se);
7780 } while (cfs_rq);
7781
7782 p = task_of(se);
7783
7784 done: __maybe_unused;
7785 #ifdef CONFIG_SMP
7786 /*
7787 * Move the next running task to the front of
7788 * the list, so our cfs_tasks list becomes MRU
7789 * one.
7790 */
7791 list_move(&p->se.group_node, &rq->cfs_tasks);
7792 #endif
7793
7794 if (hrtick_enabled_fair(rq))
7795 hrtick_start_fair(rq, p);
7796
7797 update_misfit_status(p, rq);
7798
7799 return p;
7800
7801 idle:
7802 if (!rf)
7803 return NULL;
7804
7805 new_tasks = newidle_balance(rq, rf);
7806
7807 /*
7808 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7809 * possible for any higher priority task to appear. In that case we
7810 * must re-start the pick_next_entity() loop.
7811 */
7812 if (new_tasks < 0)
7813 return RETRY_TASK;
7814
7815 if (new_tasks > 0)
7816 goto again;
7817
7818 /*
7819 * rq is about to be idle, check if we need to update the
7820 * lost_idle_time of clock_pelt
7821 */
7822 update_idle_rq_clock_pelt(rq);
7823
7824 return NULL;
7825 }
7826
__pick_next_task_fair(struct rq * rq)7827 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7828 {
7829 return pick_next_task_fair(rq, NULL, NULL);
7830 }
7831
7832 /*
7833 * Account for a descheduled task:
7834 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7835 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7836 {
7837 struct sched_entity *se = &prev->se;
7838 struct cfs_rq *cfs_rq;
7839
7840 for_each_sched_entity(se) {
7841 cfs_rq = cfs_rq_of(se);
7842 put_prev_entity(cfs_rq, se);
7843 }
7844 }
7845
7846 /*
7847 * sched_yield() is very simple
7848 *
7849 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7850 */
yield_task_fair(struct rq * rq)7851 static void yield_task_fair(struct rq *rq)
7852 {
7853 struct task_struct *curr = rq->curr;
7854 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7855 struct sched_entity *se = &curr->se;
7856
7857 /*
7858 * Are we the only task in the tree?
7859 */
7860 if (unlikely(rq->nr_running == 1))
7861 return;
7862
7863 clear_buddies(cfs_rq, se);
7864
7865 if (curr->policy != SCHED_BATCH) {
7866 update_rq_clock(rq);
7867 /*
7868 * Update run-time statistics of the 'current'.
7869 */
7870 update_curr(cfs_rq);
7871 /*
7872 * Tell update_rq_clock() that we've just updated,
7873 * so we don't do microscopic update in schedule()
7874 * and double the fastpath cost.
7875 */
7876 rq_clock_skip_update(rq);
7877 }
7878
7879 set_skip_buddy(se);
7880 }
7881
yield_to_task_fair(struct rq * rq,struct task_struct * p)7882 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7883 {
7884 struct sched_entity *se = &p->se;
7885
7886 /* throttled hierarchies are not runnable */
7887 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7888 return false;
7889
7890 /* Tell the scheduler that we'd really like pse to run next. */
7891 set_next_buddy(se);
7892
7893 yield_task_fair(rq);
7894
7895 return true;
7896 }
7897
7898 #ifdef CONFIG_SMP
7899 /**************************************************
7900 * Fair scheduling class load-balancing methods.
7901 *
7902 * BASICS
7903 *
7904 * The purpose of load-balancing is to achieve the same basic fairness the
7905 * per-CPU scheduler provides, namely provide a proportional amount of compute
7906 * time to each task. This is expressed in the following equation:
7907 *
7908 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7909 *
7910 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7911 * W_i,0 is defined as:
7912 *
7913 * W_i,0 = \Sum_j w_i,j (2)
7914 *
7915 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7916 * is derived from the nice value as per sched_prio_to_weight[].
7917 *
7918 * The weight average is an exponential decay average of the instantaneous
7919 * weight:
7920 *
7921 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7922 *
7923 * C_i is the compute capacity of CPU i, typically it is the
7924 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7925 * can also include other factors [XXX].
7926 *
7927 * To achieve this balance we define a measure of imbalance which follows
7928 * directly from (1):
7929 *
7930 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7931 *
7932 * We them move tasks around to minimize the imbalance. In the continuous
7933 * function space it is obvious this converges, in the discrete case we get
7934 * a few fun cases generally called infeasible weight scenarios.
7935 *
7936 * [XXX expand on:
7937 * - infeasible weights;
7938 * - local vs global optima in the discrete case. ]
7939 *
7940 *
7941 * SCHED DOMAINS
7942 *
7943 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7944 * for all i,j solution, we create a tree of CPUs that follows the hardware
7945 * topology where each level pairs two lower groups (or better). This results
7946 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7947 * tree to only the first of the previous level and we decrease the frequency
7948 * of load-balance at each level inv. proportional to the number of CPUs in
7949 * the groups.
7950 *
7951 * This yields:
7952 *
7953 * log_2 n 1 n
7954 * \Sum { --- * --- * 2^i } = O(n) (5)
7955 * i = 0 2^i 2^i
7956 * `- size of each group
7957 * | | `- number of CPUs doing load-balance
7958 * | `- freq
7959 * `- sum over all levels
7960 *
7961 * Coupled with a limit on how many tasks we can migrate every balance pass,
7962 * this makes (5) the runtime complexity of the balancer.
7963 *
7964 * An important property here is that each CPU is still (indirectly) connected
7965 * to every other CPU in at most O(log n) steps:
7966 *
7967 * The adjacency matrix of the resulting graph is given by:
7968 *
7969 * log_2 n
7970 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7971 * k = 0
7972 *
7973 * And you'll find that:
7974 *
7975 * A^(log_2 n)_i,j != 0 for all i,j (7)
7976 *
7977 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7978 * The task movement gives a factor of O(m), giving a convergence complexity
7979 * of:
7980 *
7981 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7982 *
7983 *
7984 * WORK CONSERVING
7985 *
7986 * In order to avoid CPUs going idle while there's still work to do, new idle
7987 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7988 * tree itself instead of relying on other CPUs to bring it work.
7989 *
7990 * This adds some complexity to both (5) and (8) but it reduces the total idle
7991 * time.
7992 *
7993 * [XXX more?]
7994 *
7995 *
7996 * CGROUPS
7997 *
7998 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7999 *
8000 * s_k,i
8001 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8002 * S_k
8003 *
8004 * Where
8005 *
8006 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8007 *
8008 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8009 *
8010 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8011 * property.
8012 *
8013 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8014 * rewrite all of this once again.]
8015 */
8016
8017 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8018
8019 enum fbq_type { regular, remote, all };
8020
8021 /*
8022 * 'group_type' describes the group of CPUs at the moment of load balancing.
8023 *
8024 * The enum is ordered by pulling priority, with the group with lowest priority
8025 * first so the group_type can simply be compared when selecting the busiest
8026 * group. See update_sd_pick_busiest().
8027 */
8028 enum group_type {
8029 /* The group has spare capacity that can be used to run more tasks. */
8030 group_has_spare = 0,
8031 /*
8032 * The group is fully used and the tasks don't compete for more CPU
8033 * cycles. Nevertheless, some tasks might wait before running.
8034 */
8035 group_fully_busy,
8036 /*
8037 * One task doesn't fit with CPU's capacity and must be migrated to a
8038 * more powerful CPU.
8039 */
8040 group_misfit_task,
8041 /*
8042 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8043 * and the task should be migrated to it instead of running on the
8044 * current CPU.
8045 */
8046 group_asym_packing,
8047 /*
8048 * The tasks' affinity constraints previously prevented the scheduler
8049 * from balancing the load across the system.
8050 */
8051 group_imbalanced,
8052 /*
8053 * The CPU is overloaded and can't provide expected CPU cycles to all
8054 * tasks.
8055 */
8056 group_overloaded
8057 };
8058
8059 enum migration_type {
8060 migrate_load = 0,
8061 migrate_util,
8062 migrate_task,
8063 migrate_misfit
8064 };
8065
8066 #define LBF_ALL_PINNED 0x01
8067 #define LBF_NEED_BREAK 0x02
8068 #define LBF_DST_PINNED 0x04
8069 #define LBF_SOME_PINNED 0x08
8070 #define LBF_ACTIVE_LB 0x10
8071
8072 struct lb_env {
8073 struct sched_domain *sd;
8074
8075 struct rq *src_rq;
8076 int src_cpu;
8077
8078 int dst_cpu;
8079 struct rq *dst_rq;
8080
8081 struct cpumask *dst_grpmask;
8082 int new_dst_cpu;
8083 enum cpu_idle_type idle;
8084 long imbalance;
8085 /* The set of CPUs under consideration for load-balancing */
8086 struct cpumask *cpus;
8087
8088 unsigned int flags;
8089
8090 unsigned int loop;
8091 unsigned int loop_break;
8092 unsigned int loop_max;
8093
8094 enum fbq_type fbq_type;
8095 enum migration_type migration_type;
8096 struct list_head tasks;
8097 };
8098
8099 /*
8100 * Is this task likely cache-hot:
8101 */
task_hot(struct task_struct * p,struct lb_env * env)8102 static int task_hot(struct task_struct *p, struct lb_env *env)
8103 {
8104 s64 delta;
8105
8106 lockdep_assert_rq_held(env->src_rq);
8107
8108 if (p->sched_class != &fair_sched_class)
8109 return 0;
8110
8111 if (unlikely(task_has_idle_policy(p)))
8112 return 0;
8113
8114 /* SMT siblings share cache */
8115 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8116 return 0;
8117
8118 /*
8119 * Buddy candidates are cache hot:
8120 */
8121 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8122 (&p->se == cfs_rq_of(&p->se)->next ||
8123 &p->se == cfs_rq_of(&p->se)->last))
8124 return 1;
8125
8126 if (sysctl_sched_migration_cost == -1)
8127 return 1;
8128
8129 /*
8130 * Don't migrate task if the task's cookie does not match
8131 * with the destination CPU's core cookie.
8132 */
8133 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8134 return 1;
8135
8136 if (sysctl_sched_migration_cost == 0)
8137 return 0;
8138
8139 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8140
8141 return delta < (s64)sysctl_sched_migration_cost;
8142 }
8143
8144 #ifdef CONFIG_NUMA_BALANCING
8145 /*
8146 * Returns 1, if task migration degrades locality
8147 * Returns 0, if task migration improves locality i.e migration preferred.
8148 * Returns -1, if task migration is not affected by locality.
8149 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8150 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8151 {
8152 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8153 unsigned long src_weight, dst_weight;
8154 int src_nid, dst_nid, dist;
8155
8156 if (!static_branch_likely(&sched_numa_balancing))
8157 return -1;
8158
8159 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8160 return -1;
8161
8162 src_nid = cpu_to_node(env->src_cpu);
8163 dst_nid = cpu_to_node(env->dst_cpu);
8164
8165 if (src_nid == dst_nid)
8166 return -1;
8167
8168 /* Migrating away from the preferred node is always bad. */
8169 if (src_nid == p->numa_preferred_nid) {
8170 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8171 return 1;
8172 else
8173 return -1;
8174 }
8175
8176 /* Encourage migration to the preferred node. */
8177 if (dst_nid == p->numa_preferred_nid)
8178 return 0;
8179
8180 /* Leaving a core idle is often worse than degrading locality. */
8181 if (env->idle == CPU_IDLE)
8182 return -1;
8183
8184 dist = node_distance(src_nid, dst_nid);
8185 if (numa_group) {
8186 src_weight = group_weight(p, src_nid, dist);
8187 dst_weight = group_weight(p, dst_nid, dist);
8188 } else {
8189 src_weight = task_weight(p, src_nid, dist);
8190 dst_weight = task_weight(p, dst_nid, dist);
8191 }
8192
8193 return dst_weight < src_weight;
8194 }
8195
8196 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8197 static inline int migrate_degrades_locality(struct task_struct *p,
8198 struct lb_env *env)
8199 {
8200 return -1;
8201 }
8202 #endif
8203
8204 /*
8205 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8206 */
8207 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8208 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8209 {
8210 int tsk_cache_hot;
8211
8212 lockdep_assert_rq_held(env->src_rq);
8213
8214 /*
8215 * We do not migrate tasks that are:
8216 * 1) throttled_lb_pair, or
8217 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8218 * 3) running (obviously), or
8219 * 4) are cache-hot on their current CPU.
8220 */
8221 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8222 return 0;
8223
8224 /* Disregard pcpu kthreads; they are where they need to be. */
8225 if (kthread_is_per_cpu(p))
8226 return 0;
8227
8228 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8229 int cpu;
8230
8231 schedstat_inc(p->stats.nr_failed_migrations_affine);
8232
8233 env->flags |= LBF_SOME_PINNED;
8234
8235 /*
8236 * Remember if this task can be migrated to any other CPU in
8237 * our sched_group. We may want to revisit it if we couldn't
8238 * meet load balance goals by pulling other tasks on src_cpu.
8239 *
8240 * Avoid computing new_dst_cpu
8241 * - for NEWLY_IDLE
8242 * - if we have already computed one in current iteration
8243 * - if it's an active balance
8244 */
8245 if (env->idle == CPU_NEWLY_IDLE ||
8246 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8247 return 0;
8248
8249 /* Prevent to re-select dst_cpu via env's CPUs: */
8250 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8251 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8252 env->flags |= LBF_DST_PINNED;
8253 env->new_dst_cpu = cpu;
8254 break;
8255 }
8256 }
8257
8258 return 0;
8259 }
8260
8261 /* Record that we found at least one task that could run on dst_cpu */
8262 env->flags &= ~LBF_ALL_PINNED;
8263
8264 if (task_on_cpu(env->src_rq, p)) {
8265 schedstat_inc(p->stats.nr_failed_migrations_running);
8266 return 0;
8267 }
8268
8269 /*
8270 * Aggressive migration if:
8271 * 1) active balance
8272 * 2) destination numa is preferred
8273 * 3) task is cache cold, or
8274 * 4) too many balance attempts have failed.
8275 */
8276 if (env->flags & LBF_ACTIVE_LB)
8277 return 1;
8278
8279 tsk_cache_hot = migrate_degrades_locality(p, env);
8280 if (tsk_cache_hot == -1)
8281 tsk_cache_hot = task_hot(p, env);
8282
8283 if (tsk_cache_hot <= 0 ||
8284 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8285 if (tsk_cache_hot == 1) {
8286 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8287 schedstat_inc(p->stats.nr_forced_migrations);
8288 }
8289 return 1;
8290 }
8291
8292 schedstat_inc(p->stats.nr_failed_migrations_hot);
8293 return 0;
8294 }
8295
8296 /*
8297 * detach_task() -- detach the task for the migration specified in env
8298 */
detach_task(struct task_struct * p,struct lb_env * env)8299 static void detach_task(struct task_struct *p, struct lb_env *env)
8300 {
8301 lockdep_assert_rq_held(env->src_rq);
8302
8303 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8304 set_task_cpu(p, env->dst_cpu);
8305 }
8306
8307 /*
8308 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8309 * part of active balancing operations within "domain".
8310 *
8311 * Returns a task if successful and NULL otherwise.
8312 */
detach_one_task(struct lb_env * env)8313 static struct task_struct *detach_one_task(struct lb_env *env)
8314 {
8315 struct task_struct *p;
8316
8317 lockdep_assert_rq_held(env->src_rq);
8318
8319 list_for_each_entry_reverse(p,
8320 &env->src_rq->cfs_tasks, se.group_node) {
8321 if (!can_migrate_task(p, env))
8322 continue;
8323
8324 detach_task(p, env);
8325
8326 /*
8327 * Right now, this is only the second place where
8328 * lb_gained[env->idle] is updated (other is detach_tasks)
8329 * so we can safely collect stats here rather than
8330 * inside detach_tasks().
8331 */
8332 schedstat_inc(env->sd->lb_gained[env->idle]);
8333 return p;
8334 }
8335 return NULL;
8336 }
8337
8338 /*
8339 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8340 * busiest_rq, as part of a balancing operation within domain "sd".
8341 *
8342 * Returns number of detached tasks if successful and 0 otherwise.
8343 */
detach_tasks(struct lb_env * env)8344 static int detach_tasks(struct lb_env *env)
8345 {
8346 struct list_head *tasks = &env->src_rq->cfs_tasks;
8347 unsigned long util, load;
8348 struct task_struct *p;
8349 int detached = 0;
8350
8351 lockdep_assert_rq_held(env->src_rq);
8352
8353 /*
8354 * Source run queue has been emptied by another CPU, clear
8355 * LBF_ALL_PINNED flag as we will not test any task.
8356 */
8357 if (env->src_rq->nr_running <= 1) {
8358 env->flags &= ~LBF_ALL_PINNED;
8359 return 0;
8360 }
8361
8362 if (env->imbalance <= 0)
8363 return 0;
8364
8365 while (!list_empty(tasks)) {
8366 /*
8367 * We don't want to steal all, otherwise we may be treated likewise,
8368 * which could at worst lead to a livelock crash.
8369 */
8370 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8371 break;
8372
8373 env->loop++;
8374 /*
8375 * We've more or less seen every task there is, call it quits
8376 * unless we haven't found any movable task yet.
8377 */
8378 if (env->loop > env->loop_max &&
8379 !(env->flags & LBF_ALL_PINNED))
8380 break;
8381
8382 /* take a breather every nr_migrate tasks */
8383 if (env->loop > env->loop_break) {
8384 env->loop_break += SCHED_NR_MIGRATE_BREAK;
8385 env->flags |= LBF_NEED_BREAK;
8386 break;
8387 }
8388
8389 p = list_last_entry(tasks, struct task_struct, se.group_node);
8390
8391 if (!can_migrate_task(p, env))
8392 goto next;
8393
8394 switch (env->migration_type) {
8395 case migrate_load:
8396 /*
8397 * Depending of the number of CPUs and tasks and the
8398 * cgroup hierarchy, task_h_load() can return a null
8399 * value. Make sure that env->imbalance decreases
8400 * otherwise detach_tasks() will stop only after
8401 * detaching up to loop_max tasks.
8402 */
8403 load = max_t(unsigned long, task_h_load(p), 1);
8404
8405 if (sched_feat(LB_MIN) &&
8406 load < 16 && !env->sd->nr_balance_failed)
8407 goto next;
8408
8409 /*
8410 * Make sure that we don't migrate too much load.
8411 * Nevertheless, let relax the constraint if
8412 * scheduler fails to find a good waiting task to
8413 * migrate.
8414 */
8415 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8416 goto next;
8417
8418 env->imbalance -= load;
8419 break;
8420
8421 case migrate_util:
8422 util = task_util_est(p);
8423
8424 if (util > env->imbalance)
8425 goto next;
8426
8427 env->imbalance -= util;
8428 break;
8429
8430 case migrate_task:
8431 env->imbalance--;
8432 break;
8433
8434 case migrate_misfit:
8435 /* This is not a misfit task */
8436 if (task_fits_cpu(p, env->src_cpu))
8437 goto next;
8438
8439 env->imbalance = 0;
8440 break;
8441 }
8442
8443 detach_task(p, env);
8444 list_add(&p->se.group_node, &env->tasks);
8445
8446 detached++;
8447
8448 #ifdef CONFIG_PREEMPTION
8449 /*
8450 * NEWIDLE balancing is a source of latency, so preemptible
8451 * kernels will stop after the first task is detached to minimize
8452 * the critical section.
8453 */
8454 if (env->idle == CPU_NEWLY_IDLE)
8455 break;
8456 #endif
8457
8458 /*
8459 * We only want to steal up to the prescribed amount of
8460 * load/util/tasks.
8461 */
8462 if (env->imbalance <= 0)
8463 break;
8464
8465 continue;
8466 next:
8467 list_move(&p->se.group_node, tasks);
8468 }
8469
8470 /*
8471 * Right now, this is one of only two places we collect this stat
8472 * so we can safely collect detach_one_task() stats here rather
8473 * than inside detach_one_task().
8474 */
8475 schedstat_add(env->sd->lb_gained[env->idle], detached);
8476
8477 return detached;
8478 }
8479
8480 /*
8481 * attach_task() -- attach the task detached by detach_task() to its new rq.
8482 */
attach_task(struct rq * rq,struct task_struct * p)8483 static void attach_task(struct rq *rq, struct task_struct *p)
8484 {
8485 lockdep_assert_rq_held(rq);
8486
8487 WARN_ON_ONCE(task_rq(p) != rq);
8488 activate_task(rq, p, ENQUEUE_NOCLOCK);
8489 check_preempt_curr(rq, p, 0);
8490 }
8491
8492 /*
8493 * attach_one_task() -- attaches the task returned from detach_one_task() to
8494 * its new rq.
8495 */
attach_one_task(struct rq * rq,struct task_struct * p)8496 static void attach_one_task(struct rq *rq, struct task_struct *p)
8497 {
8498 struct rq_flags rf;
8499
8500 rq_lock(rq, &rf);
8501 update_rq_clock(rq);
8502 attach_task(rq, p);
8503 rq_unlock(rq, &rf);
8504 }
8505
8506 /*
8507 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8508 * new rq.
8509 */
attach_tasks(struct lb_env * env)8510 static void attach_tasks(struct lb_env *env)
8511 {
8512 struct list_head *tasks = &env->tasks;
8513 struct task_struct *p;
8514 struct rq_flags rf;
8515
8516 rq_lock(env->dst_rq, &rf);
8517 update_rq_clock(env->dst_rq);
8518
8519 while (!list_empty(tasks)) {
8520 p = list_first_entry(tasks, struct task_struct, se.group_node);
8521 list_del_init(&p->se.group_node);
8522
8523 attach_task(env->dst_rq, p);
8524 }
8525
8526 rq_unlock(env->dst_rq, &rf);
8527 }
8528
8529 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8530 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8531 {
8532 if (cfs_rq->avg.load_avg)
8533 return true;
8534
8535 if (cfs_rq->avg.util_avg)
8536 return true;
8537
8538 return false;
8539 }
8540
others_have_blocked(struct rq * rq)8541 static inline bool others_have_blocked(struct rq *rq)
8542 {
8543 if (READ_ONCE(rq->avg_rt.util_avg))
8544 return true;
8545
8546 if (READ_ONCE(rq->avg_dl.util_avg))
8547 return true;
8548
8549 if (thermal_load_avg(rq))
8550 return true;
8551
8552 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8553 if (READ_ONCE(rq->avg_irq.util_avg))
8554 return true;
8555 #endif
8556
8557 return false;
8558 }
8559
update_blocked_load_tick(struct rq * rq)8560 static inline void update_blocked_load_tick(struct rq *rq)
8561 {
8562 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8563 }
8564
update_blocked_load_status(struct rq * rq,bool has_blocked)8565 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8566 {
8567 if (!has_blocked)
8568 rq->has_blocked_load = 0;
8569 }
8570 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8571 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8572 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8573 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8574 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8575 #endif
8576
__update_blocked_others(struct rq * rq,bool * done)8577 static bool __update_blocked_others(struct rq *rq, bool *done)
8578 {
8579 const struct sched_class *curr_class;
8580 u64 now = rq_clock_pelt(rq);
8581 unsigned long thermal_pressure;
8582 bool decayed;
8583
8584 /*
8585 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8586 * DL and IRQ signals have been updated before updating CFS.
8587 */
8588 curr_class = rq->curr->sched_class;
8589
8590 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8591
8592 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8593 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8594 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8595 update_irq_load_avg(rq, 0);
8596
8597 if (others_have_blocked(rq))
8598 *done = false;
8599
8600 return decayed;
8601 }
8602
8603 #ifdef CONFIG_FAIR_GROUP_SCHED
8604
__update_blocked_fair(struct rq * rq,bool * done)8605 static bool __update_blocked_fair(struct rq *rq, bool *done)
8606 {
8607 struct cfs_rq *cfs_rq, *pos;
8608 bool decayed = false;
8609 int cpu = cpu_of(rq);
8610
8611 /*
8612 * Iterates the task_group tree in a bottom up fashion, see
8613 * list_add_leaf_cfs_rq() for details.
8614 */
8615 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8616 struct sched_entity *se;
8617
8618 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8619 update_tg_load_avg(cfs_rq);
8620
8621 if (cfs_rq->nr_running == 0)
8622 update_idle_cfs_rq_clock_pelt(cfs_rq);
8623
8624 if (cfs_rq == &rq->cfs)
8625 decayed = true;
8626 }
8627
8628 /* Propagate pending load changes to the parent, if any: */
8629 se = cfs_rq->tg->se[cpu];
8630 if (se && !skip_blocked_update(se))
8631 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8632
8633 /*
8634 * There can be a lot of idle CPU cgroups. Don't let fully
8635 * decayed cfs_rqs linger on the list.
8636 */
8637 if (cfs_rq_is_decayed(cfs_rq))
8638 list_del_leaf_cfs_rq(cfs_rq);
8639
8640 /* Don't need periodic decay once load/util_avg are null */
8641 if (cfs_rq_has_blocked(cfs_rq))
8642 *done = false;
8643 }
8644
8645 return decayed;
8646 }
8647
8648 /*
8649 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8650 * This needs to be done in a top-down fashion because the load of a child
8651 * group is a fraction of its parents load.
8652 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8653 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8654 {
8655 struct rq *rq = rq_of(cfs_rq);
8656 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8657 unsigned long now = jiffies;
8658 unsigned long load;
8659
8660 if (cfs_rq->last_h_load_update == now)
8661 return;
8662
8663 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8664 for_each_sched_entity(se) {
8665 cfs_rq = cfs_rq_of(se);
8666 WRITE_ONCE(cfs_rq->h_load_next, se);
8667 if (cfs_rq->last_h_load_update == now)
8668 break;
8669 }
8670
8671 if (!se) {
8672 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8673 cfs_rq->last_h_load_update = now;
8674 }
8675
8676 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8677 load = cfs_rq->h_load;
8678 load = div64_ul(load * se->avg.load_avg,
8679 cfs_rq_load_avg(cfs_rq) + 1);
8680 cfs_rq = group_cfs_rq(se);
8681 cfs_rq->h_load = load;
8682 cfs_rq->last_h_load_update = now;
8683 }
8684 }
8685
task_h_load(struct task_struct * p)8686 static unsigned long task_h_load(struct task_struct *p)
8687 {
8688 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8689
8690 update_cfs_rq_h_load(cfs_rq);
8691 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8692 cfs_rq_load_avg(cfs_rq) + 1);
8693 }
8694 #else
__update_blocked_fair(struct rq * rq,bool * done)8695 static bool __update_blocked_fair(struct rq *rq, bool *done)
8696 {
8697 struct cfs_rq *cfs_rq = &rq->cfs;
8698 bool decayed;
8699
8700 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8701 if (cfs_rq_has_blocked(cfs_rq))
8702 *done = false;
8703
8704 return decayed;
8705 }
8706
task_h_load(struct task_struct * p)8707 static unsigned long task_h_load(struct task_struct *p)
8708 {
8709 return p->se.avg.load_avg;
8710 }
8711 #endif
8712
update_blocked_averages(int cpu)8713 static void update_blocked_averages(int cpu)
8714 {
8715 bool decayed = false, done = true;
8716 struct rq *rq = cpu_rq(cpu);
8717 struct rq_flags rf;
8718
8719 rq_lock_irqsave(rq, &rf);
8720 update_blocked_load_tick(rq);
8721 update_rq_clock(rq);
8722
8723 decayed |= __update_blocked_others(rq, &done);
8724 decayed |= __update_blocked_fair(rq, &done);
8725
8726 update_blocked_load_status(rq, !done);
8727 if (decayed)
8728 cpufreq_update_util(rq, 0);
8729 rq_unlock_irqrestore(rq, &rf);
8730 }
8731
8732 /********** Helpers for find_busiest_group ************************/
8733
8734 /*
8735 * sg_lb_stats - stats of a sched_group required for load_balancing
8736 */
8737 struct sg_lb_stats {
8738 unsigned long avg_load; /*Avg load across the CPUs of the group */
8739 unsigned long group_load; /* Total load over the CPUs of the group */
8740 unsigned long group_capacity;
8741 unsigned long group_util; /* Total utilization over the CPUs of the group */
8742 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8743 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8744 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8745 unsigned int idle_cpus;
8746 unsigned int group_weight;
8747 enum group_type group_type;
8748 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8749 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8750 #ifdef CONFIG_NUMA_BALANCING
8751 unsigned int nr_numa_running;
8752 unsigned int nr_preferred_running;
8753 #endif
8754 };
8755
8756 /*
8757 * sd_lb_stats - Structure to store the statistics of a sched_domain
8758 * during load balancing.
8759 */
8760 struct sd_lb_stats {
8761 struct sched_group *busiest; /* Busiest group in this sd */
8762 struct sched_group *local; /* Local group in this sd */
8763 unsigned long total_load; /* Total load of all groups in sd */
8764 unsigned long total_capacity; /* Total capacity of all groups in sd */
8765 unsigned long avg_load; /* Average load across all groups in sd */
8766 unsigned int prefer_sibling; /* tasks should go to sibling first */
8767
8768 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8769 struct sg_lb_stats local_stat; /* Statistics of the local group */
8770 };
8771
init_sd_lb_stats(struct sd_lb_stats * sds)8772 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8773 {
8774 /*
8775 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8776 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8777 * We must however set busiest_stat::group_type and
8778 * busiest_stat::idle_cpus to the worst busiest group because
8779 * update_sd_pick_busiest() reads these before assignment.
8780 */
8781 *sds = (struct sd_lb_stats){
8782 .busiest = NULL,
8783 .local = NULL,
8784 .total_load = 0UL,
8785 .total_capacity = 0UL,
8786 .busiest_stat = {
8787 .idle_cpus = UINT_MAX,
8788 .group_type = group_has_spare,
8789 },
8790 };
8791 }
8792
scale_rt_capacity(int cpu)8793 static unsigned long scale_rt_capacity(int cpu)
8794 {
8795 struct rq *rq = cpu_rq(cpu);
8796 unsigned long max = arch_scale_cpu_capacity(cpu);
8797 unsigned long used, free;
8798 unsigned long irq;
8799
8800 irq = cpu_util_irq(rq);
8801
8802 if (unlikely(irq >= max))
8803 return 1;
8804
8805 /*
8806 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8807 * (running and not running) with weights 0 and 1024 respectively.
8808 * avg_thermal.load_avg tracks thermal pressure and the weighted
8809 * average uses the actual delta max capacity(load).
8810 */
8811 used = READ_ONCE(rq->avg_rt.util_avg);
8812 used += READ_ONCE(rq->avg_dl.util_avg);
8813 used += thermal_load_avg(rq);
8814
8815 if (unlikely(used >= max))
8816 return 1;
8817
8818 free = max - used;
8819
8820 return scale_irq_capacity(free, irq, max);
8821 }
8822
update_cpu_capacity(struct sched_domain * sd,int cpu)8823 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8824 {
8825 unsigned long capacity = scale_rt_capacity(cpu);
8826 struct sched_group *sdg = sd->groups;
8827
8828 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8829
8830 if (!capacity)
8831 capacity = 1;
8832
8833 cpu_rq(cpu)->cpu_capacity = capacity;
8834 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8835
8836 sdg->sgc->capacity = capacity;
8837 sdg->sgc->min_capacity = capacity;
8838 sdg->sgc->max_capacity = capacity;
8839 }
8840
update_group_capacity(struct sched_domain * sd,int cpu)8841 void update_group_capacity(struct sched_domain *sd, int cpu)
8842 {
8843 struct sched_domain *child = sd->child;
8844 struct sched_group *group, *sdg = sd->groups;
8845 unsigned long capacity, min_capacity, max_capacity;
8846 unsigned long interval;
8847
8848 interval = msecs_to_jiffies(sd->balance_interval);
8849 interval = clamp(interval, 1UL, max_load_balance_interval);
8850 sdg->sgc->next_update = jiffies + interval;
8851
8852 if (!child) {
8853 update_cpu_capacity(sd, cpu);
8854 return;
8855 }
8856
8857 capacity = 0;
8858 min_capacity = ULONG_MAX;
8859 max_capacity = 0;
8860
8861 if (child->flags & SD_OVERLAP) {
8862 /*
8863 * SD_OVERLAP domains cannot assume that child groups
8864 * span the current group.
8865 */
8866
8867 for_each_cpu(cpu, sched_group_span(sdg)) {
8868 unsigned long cpu_cap = capacity_of(cpu);
8869
8870 capacity += cpu_cap;
8871 min_capacity = min(cpu_cap, min_capacity);
8872 max_capacity = max(cpu_cap, max_capacity);
8873 }
8874 } else {
8875 /*
8876 * !SD_OVERLAP domains can assume that child groups
8877 * span the current group.
8878 */
8879
8880 group = child->groups;
8881 do {
8882 struct sched_group_capacity *sgc = group->sgc;
8883
8884 capacity += sgc->capacity;
8885 min_capacity = min(sgc->min_capacity, min_capacity);
8886 max_capacity = max(sgc->max_capacity, max_capacity);
8887 group = group->next;
8888 } while (group != child->groups);
8889 }
8890
8891 sdg->sgc->capacity = capacity;
8892 sdg->sgc->min_capacity = min_capacity;
8893 sdg->sgc->max_capacity = max_capacity;
8894 }
8895
8896 /*
8897 * Check whether the capacity of the rq has been noticeably reduced by side
8898 * activity. The imbalance_pct is used for the threshold.
8899 * Return true is the capacity is reduced
8900 */
8901 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8902 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8903 {
8904 return ((rq->cpu_capacity * sd->imbalance_pct) <
8905 (rq->cpu_capacity_orig * 100));
8906 }
8907
8908 /*
8909 * Check whether a rq has a misfit task and if it looks like we can actually
8910 * help that task: we can migrate the task to a CPU of higher capacity, or
8911 * the task's current CPU is heavily pressured.
8912 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8913 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8914 {
8915 return rq->misfit_task_load &&
8916 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8917 check_cpu_capacity(rq, sd));
8918 }
8919
8920 /*
8921 * Group imbalance indicates (and tries to solve) the problem where balancing
8922 * groups is inadequate due to ->cpus_ptr constraints.
8923 *
8924 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8925 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8926 * Something like:
8927 *
8928 * { 0 1 2 3 } { 4 5 6 7 }
8929 * * * * *
8930 *
8931 * If we were to balance group-wise we'd place two tasks in the first group and
8932 * two tasks in the second group. Clearly this is undesired as it will overload
8933 * cpu 3 and leave one of the CPUs in the second group unused.
8934 *
8935 * The current solution to this issue is detecting the skew in the first group
8936 * by noticing the lower domain failed to reach balance and had difficulty
8937 * moving tasks due to affinity constraints.
8938 *
8939 * When this is so detected; this group becomes a candidate for busiest; see
8940 * update_sd_pick_busiest(). And calculate_imbalance() and
8941 * find_busiest_group() avoid some of the usual balance conditions to allow it
8942 * to create an effective group imbalance.
8943 *
8944 * This is a somewhat tricky proposition since the next run might not find the
8945 * group imbalance and decide the groups need to be balanced again. A most
8946 * subtle and fragile situation.
8947 */
8948
sg_imbalanced(struct sched_group * group)8949 static inline int sg_imbalanced(struct sched_group *group)
8950 {
8951 return group->sgc->imbalance;
8952 }
8953
8954 /*
8955 * group_has_capacity returns true if the group has spare capacity that could
8956 * be used by some tasks.
8957 * We consider that a group has spare capacity if the number of task is
8958 * smaller than the number of CPUs or if the utilization is lower than the
8959 * available capacity for CFS tasks.
8960 * For the latter, we use a threshold to stabilize the state, to take into
8961 * account the variance of the tasks' load and to return true if the available
8962 * capacity in meaningful for the load balancer.
8963 * As an example, an available capacity of 1% can appear but it doesn't make
8964 * any benefit for the load balance.
8965 */
8966 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8967 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8968 {
8969 if (sgs->sum_nr_running < sgs->group_weight)
8970 return true;
8971
8972 if ((sgs->group_capacity * imbalance_pct) <
8973 (sgs->group_runnable * 100))
8974 return false;
8975
8976 if ((sgs->group_capacity * 100) >
8977 (sgs->group_util * imbalance_pct))
8978 return true;
8979
8980 return false;
8981 }
8982
8983 /*
8984 * group_is_overloaded returns true if the group has more tasks than it can
8985 * handle.
8986 * group_is_overloaded is not equals to !group_has_capacity because a group
8987 * with the exact right number of tasks, has no more spare capacity but is not
8988 * overloaded so both group_has_capacity and group_is_overloaded return
8989 * false.
8990 */
8991 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8992 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8993 {
8994 if (sgs->sum_nr_running <= sgs->group_weight)
8995 return false;
8996
8997 if ((sgs->group_capacity * 100) <
8998 (sgs->group_util * imbalance_pct))
8999 return true;
9000
9001 if ((sgs->group_capacity * imbalance_pct) <
9002 (sgs->group_runnable * 100))
9003 return true;
9004
9005 return false;
9006 }
9007
9008 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9009 group_type group_classify(unsigned int imbalance_pct,
9010 struct sched_group *group,
9011 struct sg_lb_stats *sgs)
9012 {
9013 if (group_is_overloaded(imbalance_pct, sgs))
9014 return group_overloaded;
9015
9016 if (sg_imbalanced(group))
9017 return group_imbalanced;
9018
9019 if (sgs->group_asym_packing)
9020 return group_asym_packing;
9021
9022 if (sgs->group_misfit_task_load)
9023 return group_misfit_task;
9024
9025 if (!group_has_capacity(imbalance_pct, sgs))
9026 return group_fully_busy;
9027
9028 return group_has_spare;
9029 }
9030
9031 /**
9032 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
9033 * @dst_cpu: Destination CPU of the load balancing
9034 * @sds: Load-balancing data with statistics of the local group
9035 * @sgs: Load-balancing statistics of the candidate busiest group
9036 * @sg: The candidate busiest group
9037 *
9038 * Check the state of the SMT siblings of both @sds::local and @sg and decide
9039 * if @dst_cpu can pull tasks.
9040 *
9041 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
9042 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
9043 * only if @dst_cpu has higher priority.
9044 *
9045 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
9046 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
9047 * Bigger imbalances in the number of busy CPUs will be dealt with in
9048 * update_sd_pick_busiest().
9049 *
9050 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
9051 * of @dst_cpu are idle and @sg has lower priority.
9052 *
9053 * Return: true if @dst_cpu can pull tasks, false otherwise.
9054 */
asym_smt_can_pull_tasks(int dst_cpu,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * sg)9055 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
9056 struct sg_lb_stats *sgs,
9057 struct sched_group *sg)
9058 {
9059 #ifdef CONFIG_SCHED_SMT
9060 bool local_is_smt, sg_is_smt;
9061 int sg_busy_cpus;
9062
9063 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
9064 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
9065
9066 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
9067
9068 if (!local_is_smt) {
9069 /*
9070 * If we are here, @dst_cpu is idle and does not have SMT
9071 * siblings. Pull tasks if candidate group has two or more
9072 * busy CPUs.
9073 */
9074 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
9075 return true;
9076
9077 /*
9078 * @dst_cpu does not have SMT siblings. @sg may have SMT
9079 * siblings and only one is busy. In such case, @dst_cpu
9080 * can help if it has higher priority and is idle (i.e.,
9081 * it has no running tasks).
9082 */
9083 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9084 }
9085
9086 /* @dst_cpu has SMT siblings. */
9087
9088 if (sg_is_smt) {
9089 int local_busy_cpus = sds->local->group_weight -
9090 sds->local_stat.idle_cpus;
9091 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
9092
9093 if (busy_cpus_delta == 1)
9094 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9095
9096 return false;
9097 }
9098
9099 /*
9100 * @sg does not have SMT siblings. Ensure that @sds::local does not end
9101 * up with more than one busy SMT sibling and only pull tasks if there
9102 * are not busy CPUs (i.e., no CPU has running tasks).
9103 */
9104 if (!sds->local_stat.sum_nr_running)
9105 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
9106
9107 return false;
9108 #else
9109 /* Always return false so that callers deal with non-SMT cases. */
9110 return false;
9111 #endif
9112 }
9113
9114 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9115 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9116 struct sched_group *group)
9117 {
9118 /* Only do SMT checks if either local or candidate have SMT siblings */
9119 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
9120 (group->flags & SD_SHARE_CPUCAPACITY))
9121 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
9122
9123 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9124 }
9125
9126 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9127 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9128 {
9129 /*
9130 * When there is more than 1 task, the group_overloaded case already
9131 * takes care of cpu with reduced capacity
9132 */
9133 if (rq->cfs.h_nr_running != 1)
9134 return false;
9135
9136 return check_cpu_capacity(rq, sd);
9137 }
9138
9139 /**
9140 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9141 * @env: The load balancing environment.
9142 * @sds: Load-balancing data with statistics of the local group.
9143 * @group: sched_group whose statistics are to be updated.
9144 * @sgs: variable to hold the statistics for this group.
9145 * @sg_status: Holds flag indicating the status of the sched_group
9146 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9147 static inline void update_sg_lb_stats(struct lb_env *env,
9148 struct sd_lb_stats *sds,
9149 struct sched_group *group,
9150 struct sg_lb_stats *sgs,
9151 int *sg_status)
9152 {
9153 int i, nr_running, local_group;
9154
9155 memset(sgs, 0, sizeof(*sgs));
9156
9157 local_group = group == sds->local;
9158
9159 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9160 struct rq *rq = cpu_rq(i);
9161 unsigned long load = cpu_load(rq);
9162
9163 sgs->group_load += load;
9164 sgs->group_util += cpu_util_cfs(i);
9165 sgs->group_runnable += cpu_runnable(rq);
9166 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9167
9168 nr_running = rq->nr_running;
9169 sgs->sum_nr_running += nr_running;
9170
9171 if (nr_running > 1)
9172 *sg_status |= SG_OVERLOAD;
9173
9174 if (cpu_overutilized(i))
9175 *sg_status |= SG_OVERUTILIZED;
9176
9177 #ifdef CONFIG_NUMA_BALANCING
9178 sgs->nr_numa_running += rq->nr_numa_running;
9179 sgs->nr_preferred_running += rq->nr_preferred_running;
9180 #endif
9181 /*
9182 * No need to call idle_cpu() if nr_running is not 0
9183 */
9184 if (!nr_running && idle_cpu(i)) {
9185 sgs->idle_cpus++;
9186 /* Idle cpu can't have misfit task */
9187 continue;
9188 }
9189
9190 if (local_group)
9191 continue;
9192
9193 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9194 /* Check for a misfit task on the cpu */
9195 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9196 sgs->group_misfit_task_load = rq->misfit_task_load;
9197 *sg_status |= SG_OVERLOAD;
9198 }
9199 } else if ((env->idle != CPU_NOT_IDLE) &&
9200 sched_reduced_capacity(rq, env->sd)) {
9201 /* Check for a task running on a CPU with reduced capacity */
9202 if (sgs->group_misfit_task_load < load)
9203 sgs->group_misfit_task_load = load;
9204 }
9205 }
9206
9207 sgs->group_capacity = group->sgc->capacity;
9208
9209 sgs->group_weight = group->group_weight;
9210
9211 /* Check if dst CPU is idle and preferred to this group */
9212 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9213 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9214 sched_asym(env, sds, sgs, group)) {
9215 sgs->group_asym_packing = 1;
9216 }
9217
9218 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9219
9220 /* Computing avg_load makes sense only when group is overloaded */
9221 if (sgs->group_type == group_overloaded)
9222 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9223 sgs->group_capacity;
9224 }
9225
9226 /**
9227 * update_sd_pick_busiest - return 1 on busiest group
9228 * @env: The load balancing environment.
9229 * @sds: sched_domain statistics
9230 * @sg: sched_group candidate to be checked for being the busiest
9231 * @sgs: sched_group statistics
9232 *
9233 * Determine if @sg is a busier group than the previously selected
9234 * busiest group.
9235 *
9236 * Return: %true if @sg is a busier group than the previously selected
9237 * busiest group. %false otherwise.
9238 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9239 static bool update_sd_pick_busiest(struct lb_env *env,
9240 struct sd_lb_stats *sds,
9241 struct sched_group *sg,
9242 struct sg_lb_stats *sgs)
9243 {
9244 struct sg_lb_stats *busiest = &sds->busiest_stat;
9245
9246 /* Make sure that there is at least one task to pull */
9247 if (!sgs->sum_h_nr_running)
9248 return false;
9249
9250 /*
9251 * Don't try to pull misfit tasks we can't help.
9252 * We can use max_capacity here as reduction in capacity on some
9253 * CPUs in the group should either be possible to resolve
9254 * internally or be covered by avg_load imbalance (eventually).
9255 */
9256 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9257 (sgs->group_type == group_misfit_task) &&
9258 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9259 sds->local_stat.group_type != group_has_spare))
9260 return false;
9261
9262 if (sgs->group_type > busiest->group_type)
9263 return true;
9264
9265 if (sgs->group_type < busiest->group_type)
9266 return false;
9267
9268 /*
9269 * The candidate and the current busiest group are the same type of
9270 * group. Let check which one is the busiest according to the type.
9271 */
9272
9273 switch (sgs->group_type) {
9274 case group_overloaded:
9275 /* Select the overloaded group with highest avg_load. */
9276 if (sgs->avg_load <= busiest->avg_load)
9277 return false;
9278 break;
9279
9280 case group_imbalanced:
9281 /*
9282 * Select the 1st imbalanced group as we don't have any way to
9283 * choose one more than another.
9284 */
9285 return false;
9286
9287 case group_asym_packing:
9288 /* Prefer to move from lowest priority CPU's work */
9289 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9290 return false;
9291 break;
9292
9293 case group_misfit_task:
9294 /*
9295 * If we have more than one misfit sg go with the biggest
9296 * misfit.
9297 */
9298 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9299 return false;
9300 break;
9301
9302 case group_fully_busy:
9303 /*
9304 * Select the fully busy group with highest avg_load. In
9305 * theory, there is no need to pull task from such kind of
9306 * group because tasks have all compute capacity that they need
9307 * but we can still improve the overall throughput by reducing
9308 * contention when accessing shared HW resources.
9309 *
9310 * XXX for now avg_load is not computed and always 0 so we
9311 * select the 1st one.
9312 */
9313 if (sgs->avg_load <= busiest->avg_load)
9314 return false;
9315 break;
9316
9317 case group_has_spare:
9318 /*
9319 * Select not overloaded group with lowest number of idle cpus
9320 * and highest number of running tasks. We could also compare
9321 * the spare capacity which is more stable but it can end up
9322 * that the group has less spare capacity but finally more idle
9323 * CPUs which means less opportunity to pull tasks.
9324 */
9325 if (sgs->idle_cpus > busiest->idle_cpus)
9326 return false;
9327 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9328 (sgs->sum_nr_running <= busiest->sum_nr_running))
9329 return false;
9330
9331 break;
9332 }
9333
9334 /*
9335 * Candidate sg has no more than one task per CPU and has higher
9336 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9337 * throughput. Maximize throughput, power/energy consequences are not
9338 * considered.
9339 */
9340 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9341 (sgs->group_type <= group_fully_busy) &&
9342 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9343 return false;
9344
9345 return true;
9346 }
9347
9348 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9349 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9350 {
9351 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9352 return regular;
9353 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9354 return remote;
9355 return all;
9356 }
9357
fbq_classify_rq(struct rq * rq)9358 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9359 {
9360 if (rq->nr_running > rq->nr_numa_running)
9361 return regular;
9362 if (rq->nr_running > rq->nr_preferred_running)
9363 return remote;
9364 return all;
9365 }
9366 #else
fbq_classify_group(struct sg_lb_stats * sgs)9367 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9368 {
9369 return all;
9370 }
9371
fbq_classify_rq(struct rq * rq)9372 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9373 {
9374 return regular;
9375 }
9376 #endif /* CONFIG_NUMA_BALANCING */
9377
9378
9379 struct sg_lb_stats;
9380
9381 /*
9382 * task_running_on_cpu - return 1 if @p is running on @cpu.
9383 */
9384
task_running_on_cpu(int cpu,struct task_struct * p)9385 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9386 {
9387 /* Task has no contribution or is new */
9388 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9389 return 0;
9390
9391 if (task_on_rq_queued(p))
9392 return 1;
9393
9394 return 0;
9395 }
9396
9397 /**
9398 * idle_cpu_without - would a given CPU be idle without p ?
9399 * @cpu: the processor on which idleness is tested.
9400 * @p: task which should be ignored.
9401 *
9402 * Return: 1 if the CPU would be idle. 0 otherwise.
9403 */
idle_cpu_without(int cpu,struct task_struct * p)9404 static int idle_cpu_without(int cpu, struct task_struct *p)
9405 {
9406 struct rq *rq = cpu_rq(cpu);
9407
9408 if (rq->curr != rq->idle && rq->curr != p)
9409 return 0;
9410
9411 /*
9412 * rq->nr_running can't be used but an updated version without the
9413 * impact of p on cpu must be used instead. The updated nr_running
9414 * be computed and tested before calling idle_cpu_without().
9415 */
9416
9417 #ifdef CONFIG_SMP
9418 if (rq->ttwu_pending)
9419 return 0;
9420 #endif
9421
9422 return 1;
9423 }
9424
9425 /*
9426 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9427 * @sd: The sched_domain level to look for idlest group.
9428 * @group: sched_group whose statistics are to be updated.
9429 * @sgs: variable to hold the statistics for this group.
9430 * @p: The task for which we look for the idlest group/CPU.
9431 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9432 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9433 struct sched_group *group,
9434 struct sg_lb_stats *sgs,
9435 struct task_struct *p)
9436 {
9437 int i, nr_running;
9438
9439 memset(sgs, 0, sizeof(*sgs));
9440
9441 /* Assume that task can't fit any CPU of the group */
9442 if (sd->flags & SD_ASYM_CPUCAPACITY)
9443 sgs->group_misfit_task_load = 1;
9444
9445 for_each_cpu(i, sched_group_span(group)) {
9446 struct rq *rq = cpu_rq(i);
9447 unsigned int local;
9448
9449 sgs->group_load += cpu_load_without(rq, p);
9450 sgs->group_util += cpu_util_without(i, p);
9451 sgs->group_runnable += cpu_runnable_without(rq, p);
9452 local = task_running_on_cpu(i, p);
9453 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9454
9455 nr_running = rq->nr_running - local;
9456 sgs->sum_nr_running += nr_running;
9457
9458 /*
9459 * No need to call idle_cpu_without() if nr_running is not 0
9460 */
9461 if (!nr_running && idle_cpu_without(i, p))
9462 sgs->idle_cpus++;
9463
9464 /* Check if task fits in the CPU */
9465 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9466 sgs->group_misfit_task_load &&
9467 task_fits_cpu(p, i))
9468 sgs->group_misfit_task_load = 0;
9469
9470 }
9471
9472 sgs->group_capacity = group->sgc->capacity;
9473
9474 sgs->group_weight = group->group_weight;
9475
9476 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9477
9478 /*
9479 * Computing avg_load makes sense only when group is fully busy or
9480 * overloaded
9481 */
9482 if (sgs->group_type == group_fully_busy ||
9483 sgs->group_type == group_overloaded)
9484 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9485 sgs->group_capacity;
9486 }
9487
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9488 static bool update_pick_idlest(struct sched_group *idlest,
9489 struct sg_lb_stats *idlest_sgs,
9490 struct sched_group *group,
9491 struct sg_lb_stats *sgs)
9492 {
9493 if (sgs->group_type < idlest_sgs->group_type)
9494 return true;
9495
9496 if (sgs->group_type > idlest_sgs->group_type)
9497 return false;
9498
9499 /*
9500 * The candidate and the current idlest group are the same type of
9501 * group. Let check which one is the idlest according to the type.
9502 */
9503
9504 switch (sgs->group_type) {
9505 case group_overloaded:
9506 case group_fully_busy:
9507 /* Select the group with lowest avg_load. */
9508 if (idlest_sgs->avg_load <= sgs->avg_load)
9509 return false;
9510 break;
9511
9512 case group_imbalanced:
9513 case group_asym_packing:
9514 /* Those types are not used in the slow wakeup path */
9515 return false;
9516
9517 case group_misfit_task:
9518 /* Select group with the highest max capacity */
9519 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9520 return false;
9521 break;
9522
9523 case group_has_spare:
9524 /* Select group with most idle CPUs */
9525 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9526 return false;
9527
9528 /* Select group with lowest group_util */
9529 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9530 idlest_sgs->group_util <= sgs->group_util)
9531 return false;
9532
9533 break;
9534 }
9535
9536 return true;
9537 }
9538
9539 /*
9540 * find_idlest_group() finds and returns the least busy CPU group within the
9541 * domain.
9542 *
9543 * Assumes p is allowed on at least one CPU in sd.
9544 */
9545 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9546 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9547 {
9548 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9549 struct sg_lb_stats local_sgs, tmp_sgs;
9550 struct sg_lb_stats *sgs;
9551 unsigned long imbalance;
9552 struct sg_lb_stats idlest_sgs = {
9553 .avg_load = UINT_MAX,
9554 .group_type = group_overloaded,
9555 };
9556
9557 do {
9558 int local_group;
9559
9560 /* Skip over this group if it has no CPUs allowed */
9561 if (!cpumask_intersects(sched_group_span(group),
9562 p->cpus_ptr))
9563 continue;
9564
9565 /* Skip over this group if no cookie matched */
9566 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9567 continue;
9568
9569 local_group = cpumask_test_cpu(this_cpu,
9570 sched_group_span(group));
9571
9572 if (local_group) {
9573 sgs = &local_sgs;
9574 local = group;
9575 } else {
9576 sgs = &tmp_sgs;
9577 }
9578
9579 update_sg_wakeup_stats(sd, group, sgs, p);
9580
9581 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9582 idlest = group;
9583 idlest_sgs = *sgs;
9584 }
9585
9586 } while (group = group->next, group != sd->groups);
9587
9588
9589 /* There is no idlest group to push tasks to */
9590 if (!idlest)
9591 return NULL;
9592
9593 /* The local group has been skipped because of CPU affinity */
9594 if (!local)
9595 return idlest;
9596
9597 /*
9598 * If the local group is idler than the selected idlest group
9599 * don't try and push the task.
9600 */
9601 if (local_sgs.group_type < idlest_sgs.group_type)
9602 return NULL;
9603
9604 /*
9605 * If the local group is busier than the selected idlest group
9606 * try and push the task.
9607 */
9608 if (local_sgs.group_type > idlest_sgs.group_type)
9609 return idlest;
9610
9611 switch (local_sgs.group_type) {
9612 case group_overloaded:
9613 case group_fully_busy:
9614
9615 /* Calculate allowed imbalance based on load */
9616 imbalance = scale_load_down(NICE_0_LOAD) *
9617 (sd->imbalance_pct-100) / 100;
9618
9619 /*
9620 * When comparing groups across NUMA domains, it's possible for
9621 * the local domain to be very lightly loaded relative to the
9622 * remote domains but "imbalance" skews the comparison making
9623 * remote CPUs look much more favourable. When considering
9624 * cross-domain, add imbalance to the load on the remote node
9625 * and consider staying local.
9626 */
9627
9628 if ((sd->flags & SD_NUMA) &&
9629 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9630 return NULL;
9631
9632 /*
9633 * If the local group is less loaded than the selected
9634 * idlest group don't try and push any tasks.
9635 */
9636 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9637 return NULL;
9638
9639 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9640 return NULL;
9641 break;
9642
9643 case group_imbalanced:
9644 case group_asym_packing:
9645 /* Those type are not used in the slow wakeup path */
9646 return NULL;
9647
9648 case group_misfit_task:
9649 /* Select group with the highest max capacity */
9650 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9651 return NULL;
9652 break;
9653
9654 case group_has_spare:
9655 #ifdef CONFIG_NUMA
9656 if (sd->flags & SD_NUMA) {
9657 int imb_numa_nr = sd->imb_numa_nr;
9658 #ifdef CONFIG_NUMA_BALANCING
9659 int idlest_cpu;
9660 /*
9661 * If there is spare capacity at NUMA, try to select
9662 * the preferred node
9663 */
9664 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9665 return NULL;
9666
9667 idlest_cpu = cpumask_first(sched_group_span(idlest));
9668 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9669 return idlest;
9670 #endif /* CONFIG_NUMA_BALANCING */
9671 /*
9672 * Otherwise, keep the task close to the wakeup source
9673 * and improve locality if the number of running tasks
9674 * would remain below threshold where an imbalance is
9675 * allowed while accounting for the possibility the
9676 * task is pinned to a subset of CPUs. If there is a
9677 * real need of migration, periodic load balance will
9678 * take care of it.
9679 */
9680 if (p->nr_cpus_allowed != NR_CPUS) {
9681 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9682
9683 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9684 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9685 }
9686
9687 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9688 if (!adjust_numa_imbalance(imbalance,
9689 local_sgs.sum_nr_running + 1,
9690 imb_numa_nr)) {
9691 return NULL;
9692 }
9693 }
9694 #endif /* CONFIG_NUMA */
9695
9696 /*
9697 * Select group with highest number of idle CPUs. We could also
9698 * compare the utilization which is more stable but it can end
9699 * up that the group has less spare capacity but finally more
9700 * idle CPUs which means more opportunity to run task.
9701 */
9702 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9703 return NULL;
9704 break;
9705 }
9706
9707 return idlest;
9708 }
9709
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)9710 static void update_idle_cpu_scan(struct lb_env *env,
9711 unsigned long sum_util)
9712 {
9713 struct sched_domain_shared *sd_share;
9714 int llc_weight, pct;
9715 u64 x, y, tmp;
9716 /*
9717 * Update the number of CPUs to scan in LLC domain, which could
9718 * be used as a hint in select_idle_cpu(). The update of sd_share
9719 * could be expensive because it is within a shared cache line.
9720 * So the write of this hint only occurs during periodic load
9721 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9722 * can fire way more frequently than the former.
9723 */
9724 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9725 return;
9726
9727 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9728 if (env->sd->span_weight != llc_weight)
9729 return;
9730
9731 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9732 if (!sd_share)
9733 return;
9734
9735 /*
9736 * The number of CPUs to search drops as sum_util increases, when
9737 * sum_util hits 85% or above, the scan stops.
9738 * The reason to choose 85% as the threshold is because this is the
9739 * imbalance_pct(117) when a LLC sched group is overloaded.
9740 *
9741 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
9742 * and y'= y / SCHED_CAPACITY_SCALE
9743 *
9744 * x is the ratio of sum_util compared to the CPU capacity:
9745 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9746 * y' is the ratio of CPUs to be scanned in the LLC domain,
9747 * and the number of CPUs to scan is calculated by:
9748 *
9749 * nr_scan = llc_weight * y' [2]
9750 *
9751 * When x hits the threshold of overloaded, AKA, when
9752 * x = 100 / pct, y drops to 0. According to [1],
9753 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9754 *
9755 * Scale x by SCHED_CAPACITY_SCALE:
9756 * x' = sum_util / llc_weight; [3]
9757 *
9758 * and finally [1] becomes:
9759 * y = SCHED_CAPACITY_SCALE -
9760 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
9761 *
9762 */
9763 /* equation [3] */
9764 x = sum_util;
9765 do_div(x, llc_weight);
9766
9767 /* equation [4] */
9768 pct = env->sd->imbalance_pct;
9769 tmp = x * x * pct * pct;
9770 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9771 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9772 y = SCHED_CAPACITY_SCALE - tmp;
9773
9774 /* equation [2] */
9775 y *= llc_weight;
9776 do_div(y, SCHED_CAPACITY_SCALE);
9777 if ((int)y != sd_share->nr_idle_scan)
9778 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9779 }
9780
9781 /**
9782 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9783 * @env: The load balancing environment.
9784 * @sds: variable to hold the statistics for this sched_domain.
9785 */
9786
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9787 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9788 {
9789 struct sched_domain *child = env->sd->child;
9790 struct sched_group *sg = env->sd->groups;
9791 struct sg_lb_stats *local = &sds->local_stat;
9792 struct sg_lb_stats tmp_sgs;
9793 unsigned long sum_util = 0;
9794 int sg_status = 0;
9795
9796 do {
9797 struct sg_lb_stats *sgs = &tmp_sgs;
9798 int local_group;
9799
9800 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9801 if (local_group) {
9802 sds->local = sg;
9803 sgs = local;
9804
9805 if (env->idle != CPU_NEWLY_IDLE ||
9806 time_after_eq(jiffies, sg->sgc->next_update))
9807 update_group_capacity(env->sd, env->dst_cpu);
9808 }
9809
9810 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9811
9812 if (local_group)
9813 goto next_group;
9814
9815
9816 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9817 sds->busiest = sg;
9818 sds->busiest_stat = *sgs;
9819 }
9820
9821 next_group:
9822 /* Now, start updating sd_lb_stats */
9823 sds->total_load += sgs->group_load;
9824 sds->total_capacity += sgs->group_capacity;
9825
9826 sum_util += sgs->group_util;
9827 sg = sg->next;
9828 } while (sg != env->sd->groups);
9829
9830 /* Tag domain that child domain prefers tasks go to siblings first */
9831 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9832
9833
9834 if (env->sd->flags & SD_NUMA)
9835 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9836
9837 if (!env->sd->parent) {
9838 struct root_domain *rd = env->dst_rq->rd;
9839
9840 /* update overload indicator if we are at root domain */
9841 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9842
9843 /* Update over-utilization (tipping point, U >= 0) indicator */
9844 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9845 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9846 } else if (sg_status & SG_OVERUTILIZED) {
9847 struct root_domain *rd = env->dst_rq->rd;
9848
9849 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9850 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9851 }
9852
9853 update_idle_cpu_scan(env, sum_util);
9854 }
9855
9856 /**
9857 * calculate_imbalance - Calculate the amount of imbalance present within the
9858 * groups of a given sched_domain during load balance.
9859 * @env: load balance environment
9860 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9861 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9862 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9863 {
9864 struct sg_lb_stats *local, *busiest;
9865
9866 local = &sds->local_stat;
9867 busiest = &sds->busiest_stat;
9868
9869 if (busiest->group_type == group_misfit_task) {
9870 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9871 /* Set imbalance to allow misfit tasks to be balanced. */
9872 env->migration_type = migrate_misfit;
9873 env->imbalance = 1;
9874 } else {
9875 /*
9876 * Set load imbalance to allow moving task from cpu
9877 * with reduced capacity.
9878 */
9879 env->migration_type = migrate_load;
9880 env->imbalance = busiest->group_misfit_task_load;
9881 }
9882 return;
9883 }
9884
9885 if (busiest->group_type == group_asym_packing) {
9886 /*
9887 * In case of asym capacity, we will try to migrate all load to
9888 * the preferred CPU.
9889 */
9890 env->migration_type = migrate_task;
9891 env->imbalance = busiest->sum_h_nr_running;
9892 return;
9893 }
9894
9895 if (busiest->group_type == group_imbalanced) {
9896 /*
9897 * In the group_imb case we cannot rely on group-wide averages
9898 * to ensure CPU-load equilibrium, try to move any task to fix
9899 * the imbalance. The next load balance will take care of
9900 * balancing back the system.
9901 */
9902 env->migration_type = migrate_task;
9903 env->imbalance = 1;
9904 return;
9905 }
9906
9907 /*
9908 * Try to use spare capacity of local group without overloading it or
9909 * emptying busiest.
9910 */
9911 if (local->group_type == group_has_spare) {
9912 if ((busiest->group_type > group_fully_busy) &&
9913 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9914 /*
9915 * If busiest is overloaded, try to fill spare
9916 * capacity. This might end up creating spare capacity
9917 * in busiest or busiest still being overloaded but
9918 * there is no simple way to directly compute the
9919 * amount of load to migrate in order to balance the
9920 * system.
9921 */
9922 env->migration_type = migrate_util;
9923 env->imbalance = max(local->group_capacity, local->group_util) -
9924 local->group_util;
9925
9926 /*
9927 * In some cases, the group's utilization is max or even
9928 * higher than capacity because of migrations but the
9929 * local CPU is (newly) idle. There is at least one
9930 * waiting task in this overloaded busiest group. Let's
9931 * try to pull it.
9932 */
9933 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9934 env->migration_type = migrate_task;
9935 env->imbalance = 1;
9936 }
9937
9938 return;
9939 }
9940
9941 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9942 unsigned int nr_diff = busiest->sum_nr_running;
9943 /*
9944 * When prefer sibling, evenly spread running tasks on
9945 * groups.
9946 */
9947 env->migration_type = migrate_task;
9948 lsub_positive(&nr_diff, local->sum_nr_running);
9949 env->imbalance = nr_diff;
9950 } else {
9951
9952 /*
9953 * If there is no overload, we just want to even the number of
9954 * idle cpus.
9955 */
9956 env->migration_type = migrate_task;
9957 env->imbalance = max_t(long, 0,
9958 (local->idle_cpus - busiest->idle_cpus));
9959 }
9960
9961 #ifdef CONFIG_NUMA
9962 /* Consider allowing a small imbalance between NUMA groups */
9963 if (env->sd->flags & SD_NUMA) {
9964 env->imbalance = adjust_numa_imbalance(env->imbalance,
9965 local->sum_nr_running + 1,
9966 env->sd->imb_numa_nr);
9967 }
9968 #endif
9969
9970 /* Number of tasks to move to restore balance */
9971 env->imbalance >>= 1;
9972
9973 return;
9974 }
9975
9976 /*
9977 * Local is fully busy but has to take more load to relieve the
9978 * busiest group
9979 */
9980 if (local->group_type < group_overloaded) {
9981 /*
9982 * Local will become overloaded so the avg_load metrics are
9983 * finally needed.
9984 */
9985
9986 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9987 local->group_capacity;
9988
9989 /*
9990 * If the local group is more loaded than the selected
9991 * busiest group don't try to pull any tasks.
9992 */
9993 if (local->avg_load >= busiest->avg_load) {
9994 env->imbalance = 0;
9995 return;
9996 }
9997
9998 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9999 sds->total_capacity;
10000 }
10001
10002 /*
10003 * Both group are or will become overloaded and we're trying to get all
10004 * the CPUs to the average_load, so we don't want to push ourselves
10005 * above the average load, nor do we wish to reduce the max loaded CPU
10006 * below the average load. At the same time, we also don't want to
10007 * reduce the group load below the group capacity. Thus we look for
10008 * the minimum possible imbalance.
10009 */
10010 env->migration_type = migrate_load;
10011 env->imbalance = min(
10012 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10013 (sds->avg_load - local->avg_load) * local->group_capacity
10014 ) / SCHED_CAPACITY_SCALE;
10015 }
10016
10017 /******* find_busiest_group() helpers end here *********************/
10018
10019 /*
10020 * Decision matrix according to the local and busiest group type:
10021 *
10022 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10023 * has_spare nr_idle balanced N/A N/A balanced balanced
10024 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10025 * misfit_task force N/A N/A N/A N/A N/A
10026 * asym_packing force force N/A N/A force force
10027 * imbalanced force force N/A N/A force force
10028 * overloaded force force N/A N/A force avg_load
10029 *
10030 * N/A : Not Applicable because already filtered while updating
10031 * statistics.
10032 * balanced : The system is balanced for these 2 groups.
10033 * force : Calculate the imbalance as load migration is probably needed.
10034 * avg_load : Only if imbalance is significant enough.
10035 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10036 * different in groups.
10037 */
10038
10039 /**
10040 * find_busiest_group - Returns the busiest group within the sched_domain
10041 * if there is an imbalance.
10042 * @env: The load balancing environment.
10043 *
10044 * Also calculates the amount of runnable load which should be moved
10045 * to restore balance.
10046 *
10047 * Return: - The busiest group if imbalance exists.
10048 */
find_busiest_group(struct lb_env * env)10049 static struct sched_group *find_busiest_group(struct lb_env *env)
10050 {
10051 struct sg_lb_stats *local, *busiest;
10052 struct sd_lb_stats sds;
10053
10054 init_sd_lb_stats(&sds);
10055
10056 /*
10057 * Compute the various statistics relevant for load balancing at
10058 * this level.
10059 */
10060 update_sd_lb_stats(env, &sds);
10061
10062 if (sched_energy_enabled()) {
10063 struct root_domain *rd = env->dst_rq->rd;
10064
10065 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10066 goto out_balanced;
10067 }
10068
10069 local = &sds.local_stat;
10070 busiest = &sds.busiest_stat;
10071
10072 /* There is no busy sibling group to pull tasks from */
10073 if (!sds.busiest)
10074 goto out_balanced;
10075
10076 /* Misfit tasks should be dealt with regardless of the avg load */
10077 if (busiest->group_type == group_misfit_task)
10078 goto force_balance;
10079
10080 /* ASYM feature bypasses nice load balance check */
10081 if (busiest->group_type == group_asym_packing)
10082 goto force_balance;
10083
10084 /*
10085 * If the busiest group is imbalanced the below checks don't
10086 * work because they assume all things are equal, which typically
10087 * isn't true due to cpus_ptr constraints and the like.
10088 */
10089 if (busiest->group_type == group_imbalanced)
10090 goto force_balance;
10091
10092 /*
10093 * If the local group is busier than the selected busiest group
10094 * don't try and pull any tasks.
10095 */
10096 if (local->group_type > busiest->group_type)
10097 goto out_balanced;
10098
10099 /*
10100 * When groups are overloaded, use the avg_load to ensure fairness
10101 * between tasks.
10102 */
10103 if (local->group_type == group_overloaded) {
10104 /*
10105 * If the local group is more loaded than the selected
10106 * busiest group don't try to pull any tasks.
10107 */
10108 if (local->avg_load >= busiest->avg_load)
10109 goto out_balanced;
10110
10111 /* XXX broken for overlapping NUMA groups */
10112 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10113 sds.total_capacity;
10114
10115 /*
10116 * Don't pull any tasks if this group is already above the
10117 * domain average load.
10118 */
10119 if (local->avg_load >= sds.avg_load)
10120 goto out_balanced;
10121
10122 /*
10123 * If the busiest group is more loaded, use imbalance_pct to be
10124 * conservative.
10125 */
10126 if (100 * busiest->avg_load <=
10127 env->sd->imbalance_pct * local->avg_load)
10128 goto out_balanced;
10129 }
10130
10131 /* Try to move all excess tasks to child's sibling domain */
10132 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10133 busiest->sum_nr_running > local->sum_nr_running + 1)
10134 goto force_balance;
10135
10136 if (busiest->group_type != group_overloaded) {
10137 if (env->idle == CPU_NOT_IDLE)
10138 /*
10139 * If the busiest group is not overloaded (and as a
10140 * result the local one too) but this CPU is already
10141 * busy, let another idle CPU try to pull task.
10142 */
10143 goto out_balanced;
10144
10145 if (busiest->group_weight > 1 &&
10146 local->idle_cpus <= (busiest->idle_cpus + 1))
10147 /*
10148 * If the busiest group is not overloaded
10149 * and there is no imbalance between this and busiest
10150 * group wrt idle CPUs, it is balanced. The imbalance
10151 * becomes significant if the diff is greater than 1
10152 * otherwise we might end up to just move the imbalance
10153 * on another group. Of course this applies only if
10154 * there is more than 1 CPU per group.
10155 */
10156 goto out_balanced;
10157
10158 if (busiest->sum_h_nr_running == 1)
10159 /*
10160 * busiest doesn't have any tasks waiting to run
10161 */
10162 goto out_balanced;
10163 }
10164
10165 force_balance:
10166 /* Looks like there is an imbalance. Compute it */
10167 calculate_imbalance(env, &sds);
10168 return env->imbalance ? sds.busiest : NULL;
10169
10170 out_balanced:
10171 env->imbalance = 0;
10172 return NULL;
10173 }
10174
10175 /*
10176 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10177 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10178 static struct rq *find_busiest_queue(struct lb_env *env,
10179 struct sched_group *group)
10180 {
10181 struct rq *busiest = NULL, *rq;
10182 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10183 unsigned int busiest_nr = 0;
10184 int i;
10185
10186 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10187 unsigned long capacity, load, util;
10188 unsigned int nr_running;
10189 enum fbq_type rt;
10190
10191 rq = cpu_rq(i);
10192 rt = fbq_classify_rq(rq);
10193
10194 /*
10195 * We classify groups/runqueues into three groups:
10196 * - regular: there are !numa tasks
10197 * - remote: there are numa tasks that run on the 'wrong' node
10198 * - all: there is no distinction
10199 *
10200 * In order to avoid migrating ideally placed numa tasks,
10201 * ignore those when there's better options.
10202 *
10203 * If we ignore the actual busiest queue to migrate another
10204 * task, the next balance pass can still reduce the busiest
10205 * queue by moving tasks around inside the node.
10206 *
10207 * If we cannot move enough load due to this classification
10208 * the next pass will adjust the group classification and
10209 * allow migration of more tasks.
10210 *
10211 * Both cases only affect the total convergence complexity.
10212 */
10213 if (rt > env->fbq_type)
10214 continue;
10215
10216 nr_running = rq->cfs.h_nr_running;
10217 if (!nr_running)
10218 continue;
10219
10220 capacity = capacity_of(i);
10221
10222 /*
10223 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10224 * eventually lead to active_balancing high->low capacity.
10225 * Higher per-CPU capacity is considered better than balancing
10226 * average load.
10227 */
10228 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10229 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10230 nr_running == 1)
10231 continue;
10232
10233 /* Make sure we only pull tasks from a CPU of lower priority */
10234 if ((env->sd->flags & SD_ASYM_PACKING) &&
10235 sched_asym_prefer(i, env->dst_cpu) &&
10236 nr_running == 1)
10237 continue;
10238
10239 switch (env->migration_type) {
10240 case migrate_load:
10241 /*
10242 * When comparing with load imbalance, use cpu_load()
10243 * which is not scaled with the CPU capacity.
10244 */
10245 load = cpu_load(rq);
10246
10247 if (nr_running == 1 && load > env->imbalance &&
10248 !check_cpu_capacity(rq, env->sd))
10249 break;
10250
10251 /*
10252 * For the load comparisons with the other CPUs,
10253 * consider the cpu_load() scaled with the CPU
10254 * capacity, so that the load can be moved away
10255 * from the CPU that is potentially running at a
10256 * lower capacity.
10257 *
10258 * Thus we're looking for max(load_i / capacity_i),
10259 * crosswise multiplication to rid ourselves of the
10260 * division works out to:
10261 * load_i * capacity_j > load_j * capacity_i;
10262 * where j is our previous maximum.
10263 */
10264 if (load * busiest_capacity > busiest_load * capacity) {
10265 busiest_load = load;
10266 busiest_capacity = capacity;
10267 busiest = rq;
10268 }
10269 break;
10270
10271 case migrate_util:
10272 util = cpu_util_cfs(i);
10273
10274 /*
10275 * Don't try to pull utilization from a CPU with one
10276 * running task. Whatever its utilization, we will fail
10277 * detach the task.
10278 */
10279 if (nr_running <= 1)
10280 continue;
10281
10282 if (busiest_util < util) {
10283 busiest_util = util;
10284 busiest = rq;
10285 }
10286 break;
10287
10288 case migrate_task:
10289 if (busiest_nr < nr_running) {
10290 busiest_nr = nr_running;
10291 busiest = rq;
10292 }
10293 break;
10294
10295 case migrate_misfit:
10296 /*
10297 * For ASYM_CPUCAPACITY domains with misfit tasks we
10298 * simply seek the "biggest" misfit task.
10299 */
10300 if (rq->misfit_task_load > busiest_load) {
10301 busiest_load = rq->misfit_task_load;
10302 busiest = rq;
10303 }
10304
10305 break;
10306
10307 }
10308 }
10309
10310 return busiest;
10311 }
10312
10313 /*
10314 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10315 * so long as it is large enough.
10316 */
10317 #define MAX_PINNED_INTERVAL 512
10318
10319 static inline bool
asym_active_balance(struct lb_env * env)10320 asym_active_balance(struct lb_env *env)
10321 {
10322 /*
10323 * ASYM_PACKING needs to force migrate tasks from busy but
10324 * lower priority CPUs in order to pack all tasks in the
10325 * highest priority CPUs.
10326 */
10327 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10328 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10329 }
10330
10331 static inline bool
imbalanced_active_balance(struct lb_env * env)10332 imbalanced_active_balance(struct lb_env *env)
10333 {
10334 struct sched_domain *sd = env->sd;
10335
10336 /*
10337 * The imbalanced case includes the case of pinned tasks preventing a fair
10338 * distribution of the load on the system but also the even distribution of the
10339 * threads on a system with spare capacity
10340 */
10341 if ((env->migration_type == migrate_task) &&
10342 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10343 return 1;
10344
10345 return 0;
10346 }
10347
need_active_balance(struct lb_env * env)10348 static int need_active_balance(struct lb_env *env)
10349 {
10350 struct sched_domain *sd = env->sd;
10351
10352 if (asym_active_balance(env))
10353 return 1;
10354
10355 if (imbalanced_active_balance(env))
10356 return 1;
10357
10358 /*
10359 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10360 * It's worth migrating the task if the src_cpu's capacity is reduced
10361 * because of other sched_class or IRQs if more capacity stays
10362 * available on dst_cpu.
10363 */
10364 if ((env->idle != CPU_NOT_IDLE) &&
10365 (env->src_rq->cfs.h_nr_running == 1)) {
10366 if ((check_cpu_capacity(env->src_rq, sd)) &&
10367 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10368 return 1;
10369 }
10370
10371 if (env->migration_type == migrate_misfit)
10372 return 1;
10373
10374 return 0;
10375 }
10376
10377 static int active_load_balance_cpu_stop(void *data);
10378
should_we_balance(struct lb_env * env)10379 static int should_we_balance(struct lb_env *env)
10380 {
10381 struct sched_group *sg = env->sd->groups;
10382 int cpu;
10383
10384 /*
10385 * Ensure the balancing environment is consistent; can happen
10386 * when the softirq triggers 'during' hotplug.
10387 */
10388 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10389 return 0;
10390
10391 /*
10392 * In the newly idle case, we will allow all the CPUs
10393 * to do the newly idle load balance.
10394 *
10395 * However, we bail out if we already have tasks or a wakeup pending,
10396 * to optimize wakeup latency.
10397 */
10398 if (env->idle == CPU_NEWLY_IDLE) {
10399 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10400 return 0;
10401 return 1;
10402 }
10403
10404 /* Try to find first idle CPU */
10405 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10406 if (!idle_cpu(cpu))
10407 continue;
10408
10409 /* Are we the first idle CPU? */
10410 return cpu == env->dst_cpu;
10411 }
10412
10413 /* Are we the first CPU of this group ? */
10414 return group_balance_cpu(sg) == env->dst_cpu;
10415 }
10416
10417 /*
10418 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10419 * tasks if there is an imbalance.
10420 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10421 static int load_balance(int this_cpu, struct rq *this_rq,
10422 struct sched_domain *sd, enum cpu_idle_type idle,
10423 int *continue_balancing)
10424 {
10425 int ld_moved, cur_ld_moved, active_balance = 0;
10426 struct sched_domain *sd_parent = sd->parent;
10427 struct sched_group *group;
10428 struct rq *busiest;
10429 struct rq_flags rf;
10430 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10431 struct lb_env env = {
10432 .sd = sd,
10433 .dst_cpu = this_cpu,
10434 .dst_rq = this_rq,
10435 .dst_grpmask = sched_group_span(sd->groups),
10436 .idle = idle,
10437 .loop_break = SCHED_NR_MIGRATE_BREAK,
10438 .cpus = cpus,
10439 .fbq_type = all,
10440 .tasks = LIST_HEAD_INIT(env.tasks),
10441 };
10442
10443 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10444
10445 schedstat_inc(sd->lb_count[idle]);
10446
10447 redo:
10448 if (!should_we_balance(&env)) {
10449 *continue_balancing = 0;
10450 goto out_balanced;
10451 }
10452
10453 group = find_busiest_group(&env);
10454 if (!group) {
10455 schedstat_inc(sd->lb_nobusyg[idle]);
10456 goto out_balanced;
10457 }
10458
10459 busiest = find_busiest_queue(&env, group);
10460 if (!busiest) {
10461 schedstat_inc(sd->lb_nobusyq[idle]);
10462 goto out_balanced;
10463 }
10464
10465 WARN_ON_ONCE(busiest == env.dst_rq);
10466
10467 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10468
10469 env.src_cpu = busiest->cpu;
10470 env.src_rq = busiest;
10471
10472 ld_moved = 0;
10473 /* Clear this flag as soon as we find a pullable task */
10474 env.flags |= LBF_ALL_PINNED;
10475 if (busiest->nr_running > 1) {
10476 /*
10477 * Attempt to move tasks. If find_busiest_group has found
10478 * an imbalance but busiest->nr_running <= 1, the group is
10479 * still unbalanced. ld_moved simply stays zero, so it is
10480 * correctly treated as an imbalance.
10481 */
10482 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10483
10484 more_balance:
10485 rq_lock_irqsave(busiest, &rf);
10486 update_rq_clock(busiest);
10487
10488 /*
10489 * cur_ld_moved - load moved in current iteration
10490 * ld_moved - cumulative load moved across iterations
10491 */
10492 cur_ld_moved = detach_tasks(&env);
10493
10494 /*
10495 * We've detached some tasks from busiest_rq. Every
10496 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10497 * unlock busiest->lock, and we are able to be sure
10498 * that nobody can manipulate the tasks in parallel.
10499 * See task_rq_lock() family for the details.
10500 */
10501
10502 rq_unlock(busiest, &rf);
10503
10504 if (cur_ld_moved) {
10505 attach_tasks(&env);
10506 ld_moved += cur_ld_moved;
10507 }
10508
10509 local_irq_restore(rf.flags);
10510
10511 if (env.flags & LBF_NEED_BREAK) {
10512 env.flags &= ~LBF_NEED_BREAK;
10513 /* Stop if we tried all running tasks */
10514 if (env.loop < busiest->nr_running)
10515 goto more_balance;
10516 }
10517
10518 /*
10519 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10520 * us and move them to an alternate dst_cpu in our sched_group
10521 * where they can run. The upper limit on how many times we
10522 * iterate on same src_cpu is dependent on number of CPUs in our
10523 * sched_group.
10524 *
10525 * This changes load balance semantics a bit on who can move
10526 * load to a given_cpu. In addition to the given_cpu itself
10527 * (or a ilb_cpu acting on its behalf where given_cpu is
10528 * nohz-idle), we now have balance_cpu in a position to move
10529 * load to given_cpu. In rare situations, this may cause
10530 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10531 * _independently_ and at _same_ time to move some load to
10532 * given_cpu) causing excess load to be moved to given_cpu.
10533 * This however should not happen so much in practice and
10534 * moreover subsequent load balance cycles should correct the
10535 * excess load moved.
10536 */
10537 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10538
10539 /* Prevent to re-select dst_cpu via env's CPUs */
10540 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10541
10542 env.dst_rq = cpu_rq(env.new_dst_cpu);
10543 env.dst_cpu = env.new_dst_cpu;
10544 env.flags &= ~LBF_DST_PINNED;
10545 env.loop = 0;
10546 env.loop_break = SCHED_NR_MIGRATE_BREAK;
10547
10548 /*
10549 * Go back to "more_balance" rather than "redo" since we
10550 * need to continue with same src_cpu.
10551 */
10552 goto more_balance;
10553 }
10554
10555 /*
10556 * We failed to reach balance because of affinity.
10557 */
10558 if (sd_parent) {
10559 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10560
10561 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10562 *group_imbalance = 1;
10563 }
10564
10565 /* All tasks on this runqueue were pinned by CPU affinity */
10566 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10567 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10568 /*
10569 * Attempting to continue load balancing at the current
10570 * sched_domain level only makes sense if there are
10571 * active CPUs remaining as possible busiest CPUs to
10572 * pull load from which are not contained within the
10573 * destination group that is receiving any migrated
10574 * load.
10575 */
10576 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10577 env.loop = 0;
10578 env.loop_break = SCHED_NR_MIGRATE_BREAK;
10579 goto redo;
10580 }
10581 goto out_all_pinned;
10582 }
10583 }
10584
10585 if (!ld_moved) {
10586 schedstat_inc(sd->lb_failed[idle]);
10587 /*
10588 * Increment the failure counter only on periodic balance.
10589 * We do not want newidle balance, which can be very
10590 * frequent, pollute the failure counter causing
10591 * excessive cache_hot migrations and active balances.
10592 */
10593 if (idle != CPU_NEWLY_IDLE)
10594 sd->nr_balance_failed++;
10595
10596 if (need_active_balance(&env)) {
10597 unsigned long flags;
10598
10599 raw_spin_rq_lock_irqsave(busiest, flags);
10600
10601 /*
10602 * Don't kick the active_load_balance_cpu_stop,
10603 * if the curr task on busiest CPU can't be
10604 * moved to this_cpu:
10605 */
10606 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10607 raw_spin_rq_unlock_irqrestore(busiest, flags);
10608 goto out_one_pinned;
10609 }
10610
10611 /* Record that we found at least one task that could run on this_cpu */
10612 env.flags &= ~LBF_ALL_PINNED;
10613
10614 /*
10615 * ->active_balance synchronizes accesses to
10616 * ->active_balance_work. Once set, it's cleared
10617 * only after active load balance is finished.
10618 */
10619 if (!busiest->active_balance) {
10620 busiest->active_balance = 1;
10621 busiest->push_cpu = this_cpu;
10622 active_balance = 1;
10623 }
10624 raw_spin_rq_unlock_irqrestore(busiest, flags);
10625
10626 if (active_balance) {
10627 stop_one_cpu_nowait(cpu_of(busiest),
10628 active_load_balance_cpu_stop, busiest,
10629 &busiest->active_balance_work);
10630 }
10631 }
10632 } else {
10633 sd->nr_balance_failed = 0;
10634 }
10635
10636 if (likely(!active_balance) || need_active_balance(&env)) {
10637 /* We were unbalanced, so reset the balancing interval */
10638 sd->balance_interval = sd->min_interval;
10639 }
10640
10641 goto out;
10642
10643 out_balanced:
10644 /*
10645 * We reach balance although we may have faced some affinity
10646 * constraints. Clear the imbalance flag only if other tasks got
10647 * a chance to move and fix the imbalance.
10648 */
10649 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10650 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10651
10652 if (*group_imbalance)
10653 *group_imbalance = 0;
10654 }
10655
10656 out_all_pinned:
10657 /*
10658 * We reach balance because all tasks are pinned at this level so
10659 * we can't migrate them. Let the imbalance flag set so parent level
10660 * can try to migrate them.
10661 */
10662 schedstat_inc(sd->lb_balanced[idle]);
10663
10664 sd->nr_balance_failed = 0;
10665
10666 out_one_pinned:
10667 ld_moved = 0;
10668
10669 /*
10670 * newidle_balance() disregards balance intervals, so we could
10671 * repeatedly reach this code, which would lead to balance_interval
10672 * skyrocketing in a short amount of time. Skip the balance_interval
10673 * increase logic to avoid that.
10674 */
10675 if (env.idle == CPU_NEWLY_IDLE)
10676 goto out;
10677
10678 /* tune up the balancing interval */
10679 if ((env.flags & LBF_ALL_PINNED &&
10680 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10681 sd->balance_interval < sd->max_interval)
10682 sd->balance_interval *= 2;
10683 out:
10684 return ld_moved;
10685 }
10686
10687 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10688 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10689 {
10690 unsigned long interval = sd->balance_interval;
10691
10692 if (cpu_busy)
10693 interval *= sd->busy_factor;
10694
10695 /* scale ms to jiffies */
10696 interval = msecs_to_jiffies(interval);
10697
10698 /*
10699 * Reduce likelihood of busy balancing at higher domains racing with
10700 * balancing at lower domains by preventing their balancing periods
10701 * from being multiples of each other.
10702 */
10703 if (cpu_busy)
10704 interval -= 1;
10705
10706 interval = clamp(interval, 1UL, max_load_balance_interval);
10707
10708 return interval;
10709 }
10710
10711 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10712 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10713 {
10714 unsigned long interval, next;
10715
10716 /* used by idle balance, so cpu_busy = 0 */
10717 interval = get_sd_balance_interval(sd, 0);
10718 next = sd->last_balance + interval;
10719
10720 if (time_after(*next_balance, next))
10721 *next_balance = next;
10722 }
10723
10724 /*
10725 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10726 * running tasks off the busiest CPU onto idle CPUs. It requires at
10727 * least 1 task to be running on each physical CPU where possible, and
10728 * avoids physical / logical imbalances.
10729 */
active_load_balance_cpu_stop(void * data)10730 static int active_load_balance_cpu_stop(void *data)
10731 {
10732 struct rq *busiest_rq = data;
10733 int busiest_cpu = cpu_of(busiest_rq);
10734 int target_cpu = busiest_rq->push_cpu;
10735 struct rq *target_rq = cpu_rq(target_cpu);
10736 struct sched_domain *sd;
10737 struct task_struct *p = NULL;
10738 struct rq_flags rf;
10739
10740 rq_lock_irq(busiest_rq, &rf);
10741 /*
10742 * Between queueing the stop-work and running it is a hole in which
10743 * CPUs can become inactive. We should not move tasks from or to
10744 * inactive CPUs.
10745 */
10746 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10747 goto out_unlock;
10748
10749 /* Make sure the requested CPU hasn't gone down in the meantime: */
10750 if (unlikely(busiest_cpu != smp_processor_id() ||
10751 !busiest_rq->active_balance))
10752 goto out_unlock;
10753
10754 /* Is there any task to move? */
10755 if (busiest_rq->nr_running <= 1)
10756 goto out_unlock;
10757
10758 /*
10759 * This condition is "impossible", if it occurs
10760 * we need to fix it. Originally reported by
10761 * Bjorn Helgaas on a 128-CPU setup.
10762 */
10763 WARN_ON_ONCE(busiest_rq == target_rq);
10764
10765 /* Search for an sd spanning us and the target CPU. */
10766 rcu_read_lock();
10767 for_each_domain(target_cpu, sd) {
10768 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10769 break;
10770 }
10771
10772 if (likely(sd)) {
10773 struct lb_env env = {
10774 .sd = sd,
10775 .dst_cpu = target_cpu,
10776 .dst_rq = target_rq,
10777 .src_cpu = busiest_rq->cpu,
10778 .src_rq = busiest_rq,
10779 .idle = CPU_IDLE,
10780 .flags = LBF_ACTIVE_LB,
10781 };
10782
10783 schedstat_inc(sd->alb_count);
10784 update_rq_clock(busiest_rq);
10785
10786 p = detach_one_task(&env);
10787 if (p) {
10788 schedstat_inc(sd->alb_pushed);
10789 /* Active balancing done, reset the failure counter. */
10790 sd->nr_balance_failed = 0;
10791 } else {
10792 schedstat_inc(sd->alb_failed);
10793 }
10794 }
10795 rcu_read_unlock();
10796 out_unlock:
10797 busiest_rq->active_balance = 0;
10798 rq_unlock(busiest_rq, &rf);
10799
10800 if (p)
10801 attach_one_task(target_rq, p);
10802
10803 local_irq_enable();
10804
10805 return 0;
10806 }
10807
10808 static DEFINE_SPINLOCK(balancing);
10809
10810 /*
10811 * Scale the max load_balance interval with the number of CPUs in the system.
10812 * This trades load-balance latency on larger machines for less cross talk.
10813 */
update_max_interval(void)10814 void update_max_interval(void)
10815 {
10816 max_load_balance_interval = HZ*num_online_cpus()/10;
10817 }
10818
update_newidle_cost(struct sched_domain * sd,u64 cost)10819 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10820 {
10821 if (cost > sd->max_newidle_lb_cost) {
10822 /*
10823 * Track max cost of a domain to make sure to not delay the
10824 * next wakeup on the CPU.
10825 */
10826 sd->max_newidle_lb_cost = cost;
10827 sd->last_decay_max_lb_cost = jiffies;
10828 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10829 /*
10830 * Decay the newidle max times by ~1% per second to ensure that
10831 * it is not outdated and the current max cost is actually
10832 * shorter.
10833 */
10834 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10835 sd->last_decay_max_lb_cost = jiffies;
10836
10837 return true;
10838 }
10839
10840 return false;
10841 }
10842
10843 /*
10844 * It checks each scheduling domain to see if it is due to be balanced,
10845 * and initiates a balancing operation if so.
10846 *
10847 * Balancing parameters are set up in init_sched_domains.
10848 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10849 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10850 {
10851 int continue_balancing = 1;
10852 int cpu = rq->cpu;
10853 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10854 unsigned long interval;
10855 struct sched_domain *sd;
10856 /* Earliest time when we have to do rebalance again */
10857 unsigned long next_balance = jiffies + 60*HZ;
10858 int update_next_balance = 0;
10859 int need_serialize, need_decay = 0;
10860 u64 max_cost = 0;
10861
10862 rcu_read_lock();
10863 for_each_domain(cpu, sd) {
10864 /*
10865 * Decay the newidle max times here because this is a regular
10866 * visit to all the domains.
10867 */
10868 need_decay = update_newidle_cost(sd, 0);
10869 max_cost += sd->max_newidle_lb_cost;
10870
10871 /*
10872 * Stop the load balance at this level. There is another
10873 * CPU in our sched group which is doing load balancing more
10874 * actively.
10875 */
10876 if (!continue_balancing) {
10877 if (need_decay)
10878 continue;
10879 break;
10880 }
10881
10882 interval = get_sd_balance_interval(sd, busy);
10883
10884 need_serialize = sd->flags & SD_SERIALIZE;
10885 if (need_serialize) {
10886 if (!spin_trylock(&balancing))
10887 goto out;
10888 }
10889
10890 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10891 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10892 /*
10893 * The LBF_DST_PINNED logic could have changed
10894 * env->dst_cpu, so we can't know our idle
10895 * state even if we migrated tasks. Update it.
10896 */
10897 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10898 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10899 }
10900 sd->last_balance = jiffies;
10901 interval = get_sd_balance_interval(sd, busy);
10902 }
10903 if (need_serialize)
10904 spin_unlock(&balancing);
10905 out:
10906 if (time_after(next_balance, sd->last_balance + interval)) {
10907 next_balance = sd->last_balance + interval;
10908 update_next_balance = 1;
10909 }
10910 }
10911 if (need_decay) {
10912 /*
10913 * Ensure the rq-wide value also decays but keep it at a
10914 * reasonable floor to avoid funnies with rq->avg_idle.
10915 */
10916 rq->max_idle_balance_cost =
10917 max((u64)sysctl_sched_migration_cost, max_cost);
10918 }
10919 rcu_read_unlock();
10920
10921 /*
10922 * next_balance will be updated only when there is a need.
10923 * When the cpu is attached to null domain for ex, it will not be
10924 * updated.
10925 */
10926 if (likely(update_next_balance))
10927 rq->next_balance = next_balance;
10928
10929 }
10930
on_null_domain(struct rq * rq)10931 static inline int on_null_domain(struct rq *rq)
10932 {
10933 return unlikely(!rcu_dereference_sched(rq->sd));
10934 }
10935
10936 #ifdef CONFIG_NO_HZ_COMMON
10937 /*
10938 * idle load balancing details
10939 * - When one of the busy CPUs notice that there may be an idle rebalancing
10940 * needed, they will kick the idle load balancer, which then does idle
10941 * load balancing for all the idle CPUs.
10942 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10943 * anywhere yet.
10944 */
10945
find_new_ilb(void)10946 static inline int find_new_ilb(void)
10947 {
10948 int ilb;
10949 const struct cpumask *hk_mask;
10950
10951 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10952
10953 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10954
10955 if (ilb == smp_processor_id())
10956 continue;
10957
10958 if (idle_cpu(ilb))
10959 return ilb;
10960 }
10961
10962 return nr_cpu_ids;
10963 }
10964
10965 /*
10966 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10967 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10968 */
kick_ilb(unsigned int flags)10969 static void kick_ilb(unsigned int flags)
10970 {
10971 int ilb_cpu;
10972
10973 /*
10974 * Increase nohz.next_balance only when if full ilb is triggered but
10975 * not if we only update stats.
10976 */
10977 if (flags & NOHZ_BALANCE_KICK)
10978 nohz.next_balance = jiffies+1;
10979
10980 ilb_cpu = find_new_ilb();
10981
10982 if (ilb_cpu >= nr_cpu_ids)
10983 return;
10984
10985 /*
10986 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10987 * the first flag owns it; cleared by nohz_csd_func().
10988 */
10989 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10990 if (flags & NOHZ_KICK_MASK)
10991 return;
10992
10993 /*
10994 * This way we generate an IPI on the target CPU which
10995 * is idle. And the softirq performing nohz idle load balance
10996 * will be run before returning from the IPI.
10997 */
10998 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10999 }
11000
11001 /*
11002 * Current decision point for kicking the idle load balancer in the presence
11003 * of idle CPUs in the system.
11004 */
nohz_balancer_kick(struct rq * rq)11005 static void nohz_balancer_kick(struct rq *rq)
11006 {
11007 unsigned long now = jiffies;
11008 struct sched_domain_shared *sds;
11009 struct sched_domain *sd;
11010 int nr_busy, i, cpu = rq->cpu;
11011 unsigned int flags = 0;
11012
11013 if (unlikely(rq->idle_balance))
11014 return;
11015
11016 /*
11017 * We may be recently in ticked or tickless idle mode. At the first
11018 * busy tick after returning from idle, we will update the busy stats.
11019 */
11020 nohz_balance_exit_idle(rq);
11021
11022 /*
11023 * None are in tickless mode and hence no need for NOHZ idle load
11024 * balancing.
11025 */
11026 if (likely(!atomic_read(&nohz.nr_cpus)))
11027 return;
11028
11029 if (READ_ONCE(nohz.has_blocked) &&
11030 time_after(now, READ_ONCE(nohz.next_blocked)))
11031 flags = NOHZ_STATS_KICK;
11032
11033 if (time_before(now, nohz.next_balance))
11034 goto out;
11035
11036 if (rq->nr_running >= 2) {
11037 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11038 goto out;
11039 }
11040
11041 rcu_read_lock();
11042
11043 sd = rcu_dereference(rq->sd);
11044 if (sd) {
11045 /*
11046 * If there's a CFS task and the current CPU has reduced
11047 * capacity; kick the ILB to see if there's a better CPU to run
11048 * on.
11049 */
11050 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11051 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11052 goto unlock;
11053 }
11054 }
11055
11056 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11057 if (sd) {
11058 /*
11059 * When ASYM_PACKING; see if there's a more preferred CPU
11060 * currently idle; in which case, kick the ILB to move tasks
11061 * around.
11062 */
11063 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11064 if (sched_asym_prefer(i, cpu)) {
11065 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11066 goto unlock;
11067 }
11068 }
11069 }
11070
11071 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11072 if (sd) {
11073 /*
11074 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11075 * to run the misfit task on.
11076 */
11077 if (check_misfit_status(rq, sd)) {
11078 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11079 goto unlock;
11080 }
11081
11082 /*
11083 * For asymmetric systems, we do not want to nicely balance
11084 * cache use, instead we want to embrace asymmetry and only
11085 * ensure tasks have enough CPU capacity.
11086 *
11087 * Skip the LLC logic because it's not relevant in that case.
11088 */
11089 goto unlock;
11090 }
11091
11092 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11093 if (sds) {
11094 /*
11095 * If there is an imbalance between LLC domains (IOW we could
11096 * increase the overall cache use), we need some less-loaded LLC
11097 * domain to pull some load. Likewise, we may need to spread
11098 * load within the current LLC domain (e.g. packed SMT cores but
11099 * other CPUs are idle). We can't really know from here how busy
11100 * the others are - so just get a nohz balance going if it looks
11101 * like this LLC domain has tasks we could move.
11102 */
11103 nr_busy = atomic_read(&sds->nr_busy_cpus);
11104 if (nr_busy > 1) {
11105 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11106 goto unlock;
11107 }
11108 }
11109 unlock:
11110 rcu_read_unlock();
11111 out:
11112 if (READ_ONCE(nohz.needs_update))
11113 flags |= NOHZ_NEXT_KICK;
11114
11115 if (flags)
11116 kick_ilb(flags);
11117 }
11118
set_cpu_sd_state_busy(int cpu)11119 static void set_cpu_sd_state_busy(int cpu)
11120 {
11121 struct sched_domain *sd;
11122
11123 rcu_read_lock();
11124 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11125
11126 if (!sd || !sd->nohz_idle)
11127 goto unlock;
11128 sd->nohz_idle = 0;
11129
11130 atomic_inc(&sd->shared->nr_busy_cpus);
11131 unlock:
11132 rcu_read_unlock();
11133 }
11134
nohz_balance_exit_idle(struct rq * rq)11135 void nohz_balance_exit_idle(struct rq *rq)
11136 {
11137 SCHED_WARN_ON(rq != this_rq());
11138
11139 if (likely(!rq->nohz_tick_stopped))
11140 return;
11141
11142 rq->nohz_tick_stopped = 0;
11143 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11144 atomic_dec(&nohz.nr_cpus);
11145
11146 set_cpu_sd_state_busy(rq->cpu);
11147 }
11148
set_cpu_sd_state_idle(int cpu)11149 static void set_cpu_sd_state_idle(int cpu)
11150 {
11151 struct sched_domain *sd;
11152
11153 rcu_read_lock();
11154 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11155
11156 if (!sd || sd->nohz_idle)
11157 goto unlock;
11158 sd->nohz_idle = 1;
11159
11160 atomic_dec(&sd->shared->nr_busy_cpus);
11161 unlock:
11162 rcu_read_unlock();
11163 }
11164
11165 /*
11166 * This routine will record that the CPU is going idle with tick stopped.
11167 * This info will be used in performing idle load balancing in the future.
11168 */
nohz_balance_enter_idle(int cpu)11169 void nohz_balance_enter_idle(int cpu)
11170 {
11171 struct rq *rq = cpu_rq(cpu);
11172
11173 SCHED_WARN_ON(cpu != smp_processor_id());
11174
11175 /* If this CPU is going down, then nothing needs to be done: */
11176 if (!cpu_active(cpu))
11177 return;
11178
11179 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11180 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11181 return;
11182
11183 /*
11184 * Can be set safely without rq->lock held
11185 * If a clear happens, it will have evaluated last additions because
11186 * rq->lock is held during the check and the clear
11187 */
11188 rq->has_blocked_load = 1;
11189
11190 /*
11191 * The tick is still stopped but load could have been added in the
11192 * meantime. We set the nohz.has_blocked flag to trig a check of the
11193 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11194 * of nohz.has_blocked can only happen after checking the new load
11195 */
11196 if (rq->nohz_tick_stopped)
11197 goto out;
11198
11199 /* If we're a completely isolated CPU, we don't play: */
11200 if (on_null_domain(rq))
11201 return;
11202
11203 rq->nohz_tick_stopped = 1;
11204
11205 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11206 atomic_inc(&nohz.nr_cpus);
11207
11208 /*
11209 * Ensures that if nohz_idle_balance() fails to observe our
11210 * @idle_cpus_mask store, it must observe the @has_blocked
11211 * and @needs_update stores.
11212 */
11213 smp_mb__after_atomic();
11214
11215 set_cpu_sd_state_idle(cpu);
11216
11217 WRITE_ONCE(nohz.needs_update, 1);
11218 out:
11219 /*
11220 * Each time a cpu enter idle, we assume that it has blocked load and
11221 * enable the periodic update of the load of idle cpus
11222 */
11223 WRITE_ONCE(nohz.has_blocked, 1);
11224 }
11225
update_nohz_stats(struct rq * rq)11226 static bool update_nohz_stats(struct rq *rq)
11227 {
11228 unsigned int cpu = rq->cpu;
11229
11230 if (!rq->has_blocked_load)
11231 return false;
11232
11233 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11234 return false;
11235
11236 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11237 return true;
11238
11239 update_blocked_averages(cpu);
11240
11241 return rq->has_blocked_load;
11242 }
11243
11244 /*
11245 * Internal function that runs load balance for all idle cpus. The load balance
11246 * can be a simple update of blocked load or a complete load balance with
11247 * tasks movement depending of flags.
11248 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)11249 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11250 {
11251 /* Earliest time when we have to do rebalance again */
11252 unsigned long now = jiffies;
11253 unsigned long next_balance = now + 60*HZ;
11254 bool has_blocked_load = false;
11255 int update_next_balance = 0;
11256 int this_cpu = this_rq->cpu;
11257 int balance_cpu;
11258 struct rq *rq;
11259
11260 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11261
11262 /*
11263 * We assume there will be no idle load after this update and clear
11264 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11265 * set the has_blocked flag and trigger another update of idle load.
11266 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11267 * setting the flag, we are sure to not clear the state and not
11268 * check the load of an idle cpu.
11269 *
11270 * Same applies to idle_cpus_mask vs needs_update.
11271 */
11272 if (flags & NOHZ_STATS_KICK)
11273 WRITE_ONCE(nohz.has_blocked, 0);
11274 if (flags & NOHZ_NEXT_KICK)
11275 WRITE_ONCE(nohz.needs_update, 0);
11276
11277 /*
11278 * Ensures that if we miss the CPU, we must see the has_blocked
11279 * store from nohz_balance_enter_idle().
11280 */
11281 smp_mb();
11282
11283 /*
11284 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11285 * chance for other idle cpu to pull load.
11286 */
11287 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
11288 if (!idle_cpu(balance_cpu))
11289 continue;
11290
11291 /*
11292 * If this CPU gets work to do, stop the load balancing
11293 * work being done for other CPUs. Next load
11294 * balancing owner will pick it up.
11295 */
11296 if (need_resched()) {
11297 if (flags & NOHZ_STATS_KICK)
11298 has_blocked_load = true;
11299 if (flags & NOHZ_NEXT_KICK)
11300 WRITE_ONCE(nohz.needs_update, 1);
11301 goto abort;
11302 }
11303
11304 rq = cpu_rq(balance_cpu);
11305
11306 if (flags & NOHZ_STATS_KICK)
11307 has_blocked_load |= update_nohz_stats(rq);
11308
11309 /*
11310 * If time for next balance is due,
11311 * do the balance.
11312 */
11313 if (time_after_eq(jiffies, rq->next_balance)) {
11314 struct rq_flags rf;
11315
11316 rq_lock_irqsave(rq, &rf);
11317 update_rq_clock(rq);
11318 rq_unlock_irqrestore(rq, &rf);
11319
11320 if (flags & NOHZ_BALANCE_KICK)
11321 rebalance_domains(rq, CPU_IDLE);
11322 }
11323
11324 if (time_after(next_balance, rq->next_balance)) {
11325 next_balance = rq->next_balance;
11326 update_next_balance = 1;
11327 }
11328 }
11329
11330 /*
11331 * next_balance will be updated only when there is a need.
11332 * When the CPU is attached to null domain for ex, it will not be
11333 * updated.
11334 */
11335 if (likely(update_next_balance))
11336 nohz.next_balance = next_balance;
11337
11338 if (flags & NOHZ_STATS_KICK)
11339 WRITE_ONCE(nohz.next_blocked,
11340 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11341
11342 abort:
11343 /* There is still blocked load, enable periodic update */
11344 if (has_blocked_load)
11345 WRITE_ONCE(nohz.has_blocked, 1);
11346 }
11347
11348 /*
11349 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11350 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11351 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11352 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11353 {
11354 unsigned int flags = this_rq->nohz_idle_balance;
11355
11356 if (!flags)
11357 return false;
11358
11359 this_rq->nohz_idle_balance = 0;
11360
11361 if (idle != CPU_IDLE)
11362 return false;
11363
11364 _nohz_idle_balance(this_rq, flags);
11365
11366 return true;
11367 }
11368
11369 /*
11370 * Check if we need to run the ILB for updating blocked load before entering
11371 * idle state.
11372 */
nohz_run_idle_balance(int cpu)11373 void nohz_run_idle_balance(int cpu)
11374 {
11375 unsigned int flags;
11376
11377 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11378
11379 /*
11380 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11381 * (ie NOHZ_STATS_KICK set) and will do the same.
11382 */
11383 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11384 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11385 }
11386
nohz_newidle_balance(struct rq * this_rq)11387 static void nohz_newidle_balance(struct rq *this_rq)
11388 {
11389 int this_cpu = this_rq->cpu;
11390
11391 /*
11392 * This CPU doesn't want to be disturbed by scheduler
11393 * housekeeping
11394 */
11395 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11396 return;
11397
11398 /* Will wake up very soon. No time for doing anything else*/
11399 if (this_rq->avg_idle < sysctl_sched_migration_cost)
11400 return;
11401
11402 /* Don't need to update blocked load of idle CPUs*/
11403 if (!READ_ONCE(nohz.has_blocked) ||
11404 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11405 return;
11406
11407 /*
11408 * Set the need to trigger ILB in order to update blocked load
11409 * before entering idle state.
11410 */
11411 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11412 }
11413
11414 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11415 static inline void nohz_balancer_kick(struct rq *rq) { }
11416
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11417 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11418 {
11419 return false;
11420 }
11421
nohz_newidle_balance(struct rq * this_rq)11422 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11423 #endif /* CONFIG_NO_HZ_COMMON */
11424
11425 /*
11426 * newidle_balance is called by schedule() if this_cpu is about to become
11427 * idle. Attempts to pull tasks from other CPUs.
11428 *
11429 * Returns:
11430 * < 0 - we released the lock and there are !fair tasks present
11431 * 0 - failed, no new tasks
11432 * > 0 - success, new (fair) tasks present
11433 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11434 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11435 {
11436 unsigned long next_balance = jiffies + HZ;
11437 int this_cpu = this_rq->cpu;
11438 u64 t0, t1, curr_cost = 0;
11439 struct sched_domain *sd;
11440 int pulled_task = 0;
11441
11442 update_misfit_status(NULL, this_rq);
11443
11444 /*
11445 * There is a task waiting to run. No need to search for one.
11446 * Return 0; the task will be enqueued when switching to idle.
11447 */
11448 if (this_rq->ttwu_pending)
11449 return 0;
11450
11451 /*
11452 * We must set idle_stamp _before_ calling idle_balance(), such that we
11453 * measure the duration of idle_balance() as idle time.
11454 */
11455 this_rq->idle_stamp = rq_clock(this_rq);
11456
11457 /*
11458 * Do not pull tasks towards !active CPUs...
11459 */
11460 if (!cpu_active(this_cpu))
11461 return 0;
11462
11463 /*
11464 * This is OK, because current is on_cpu, which avoids it being picked
11465 * for load-balance and preemption/IRQs are still disabled avoiding
11466 * further scheduler activity on it and we're being very careful to
11467 * re-start the picking loop.
11468 */
11469 rq_unpin_lock(this_rq, rf);
11470
11471 rcu_read_lock();
11472 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11473
11474 if (!READ_ONCE(this_rq->rd->overload) ||
11475 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11476
11477 if (sd)
11478 update_next_balance(sd, &next_balance);
11479 rcu_read_unlock();
11480
11481 goto out;
11482 }
11483 rcu_read_unlock();
11484
11485 raw_spin_rq_unlock(this_rq);
11486
11487 t0 = sched_clock_cpu(this_cpu);
11488 update_blocked_averages(this_cpu);
11489
11490 rcu_read_lock();
11491 for_each_domain(this_cpu, sd) {
11492 int continue_balancing = 1;
11493 u64 domain_cost;
11494
11495 update_next_balance(sd, &next_balance);
11496
11497 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11498 break;
11499
11500 if (sd->flags & SD_BALANCE_NEWIDLE) {
11501
11502 pulled_task = load_balance(this_cpu, this_rq,
11503 sd, CPU_NEWLY_IDLE,
11504 &continue_balancing);
11505
11506 t1 = sched_clock_cpu(this_cpu);
11507 domain_cost = t1 - t0;
11508 update_newidle_cost(sd, domain_cost);
11509
11510 curr_cost += domain_cost;
11511 t0 = t1;
11512 }
11513
11514 /*
11515 * Stop searching for tasks to pull if there are
11516 * now runnable tasks on this rq.
11517 */
11518 if (pulled_task || this_rq->nr_running > 0 ||
11519 this_rq->ttwu_pending)
11520 break;
11521 }
11522 rcu_read_unlock();
11523
11524 raw_spin_rq_lock(this_rq);
11525
11526 if (curr_cost > this_rq->max_idle_balance_cost)
11527 this_rq->max_idle_balance_cost = curr_cost;
11528
11529 /*
11530 * While browsing the domains, we released the rq lock, a task could
11531 * have been enqueued in the meantime. Since we're not going idle,
11532 * pretend we pulled a task.
11533 */
11534 if (this_rq->cfs.h_nr_running && !pulled_task)
11535 pulled_task = 1;
11536
11537 /* Is there a task of a high priority class? */
11538 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11539 pulled_task = -1;
11540
11541 out:
11542 /* Move the next balance forward */
11543 if (time_after(this_rq->next_balance, next_balance))
11544 this_rq->next_balance = next_balance;
11545
11546 if (pulled_task)
11547 this_rq->idle_stamp = 0;
11548 else
11549 nohz_newidle_balance(this_rq);
11550
11551 rq_repin_lock(this_rq, rf);
11552
11553 return pulled_task;
11554 }
11555
11556 /*
11557 * run_rebalance_domains is triggered when needed from the scheduler tick.
11558 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11559 */
run_rebalance_domains(struct softirq_action * h)11560 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11561 {
11562 struct rq *this_rq = this_rq();
11563 enum cpu_idle_type idle = this_rq->idle_balance ?
11564 CPU_IDLE : CPU_NOT_IDLE;
11565
11566 /*
11567 * If this CPU has a pending nohz_balance_kick, then do the
11568 * balancing on behalf of the other idle CPUs whose ticks are
11569 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11570 * give the idle CPUs a chance to load balance. Else we may
11571 * load balance only within the local sched_domain hierarchy
11572 * and abort nohz_idle_balance altogether if we pull some load.
11573 */
11574 if (nohz_idle_balance(this_rq, idle))
11575 return;
11576
11577 /* normal load balance */
11578 update_blocked_averages(this_rq->cpu);
11579 rebalance_domains(this_rq, idle);
11580 }
11581
11582 /*
11583 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11584 */
trigger_load_balance(struct rq * rq)11585 void trigger_load_balance(struct rq *rq)
11586 {
11587 /*
11588 * Don't need to rebalance while attached to NULL domain or
11589 * runqueue CPU is not active
11590 */
11591 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11592 return;
11593
11594 if (time_after_eq(jiffies, rq->next_balance))
11595 raise_softirq(SCHED_SOFTIRQ);
11596
11597 nohz_balancer_kick(rq);
11598 }
11599
rq_online_fair(struct rq * rq)11600 static void rq_online_fair(struct rq *rq)
11601 {
11602 update_sysctl();
11603
11604 update_runtime_enabled(rq);
11605 }
11606
rq_offline_fair(struct rq * rq)11607 static void rq_offline_fair(struct rq *rq)
11608 {
11609 update_sysctl();
11610
11611 /* Ensure any throttled groups are reachable by pick_next_task */
11612 unthrottle_offline_cfs_rqs(rq);
11613 }
11614
11615 #endif /* CONFIG_SMP */
11616
11617 #ifdef CONFIG_SCHED_CORE
11618 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11619 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11620 {
11621 u64 slice = sched_slice(cfs_rq_of(se), se);
11622 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11623
11624 return (rtime * min_nr_tasks > slice);
11625 }
11626
11627 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)11628 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11629 {
11630 if (!sched_core_enabled(rq))
11631 return;
11632
11633 /*
11634 * If runqueue has only one task which used up its slice and
11635 * if the sibling is forced idle, then trigger schedule to
11636 * give forced idle task a chance.
11637 *
11638 * sched_slice() considers only this active rq and it gets the
11639 * whole slice. But during force idle, we have siblings acting
11640 * like a single runqueue and hence we need to consider runnable
11641 * tasks on this CPU and the forced idle CPU. Ideally, we should
11642 * go through the forced idle rq, but that would be a perf hit.
11643 * We can assume that the forced idle CPU has at least
11644 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11645 * if we need to give up the CPU.
11646 */
11647 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11648 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11649 resched_curr(rq);
11650 }
11651
11652 /*
11653 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11654 */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11655 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11656 {
11657 for_each_sched_entity(se) {
11658 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11659
11660 if (forceidle) {
11661 if (cfs_rq->forceidle_seq == fi_seq)
11662 break;
11663 cfs_rq->forceidle_seq = fi_seq;
11664 }
11665
11666 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11667 }
11668 }
11669
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11670 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11671 {
11672 struct sched_entity *se = &p->se;
11673
11674 if (p->sched_class != &fair_sched_class)
11675 return;
11676
11677 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11678 }
11679
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11680 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11681 {
11682 struct rq *rq = task_rq(a);
11683 struct sched_entity *sea = &a->se;
11684 struct sched_entity *seb = &b->se;
11685 struct cfs_rq *cfs_rqa;
11686 struct cfs_rq *cfs_rqb;
11687 s64 delta;
11688
11689 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11690
11691 #ifdef CONFIG_FAIR_GROUP_SCHED
11692 /*
11693 * Find an se in the hierarchy for tasks a and b, such that the se's
11694 * are immediate siblings.
11695 */
11696 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11697 int sea_depth = sea->depth;
11698 int seb_depth = seb->depth;
11699
11700 if (sea_depth >= seb_depth)
11701 sea = parent_entity(sea);
11702 if (sea_depth <= seb_depth)
11703 seb = parent_entity(seb);
11704 }
11705
11706 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11707 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11708
11709 cfs_rqa = sea->cfs_rq;
11710 cfs_rqb = seb->cfs_rq;
11711 #else
11712 cfs_rqa = &task_rq(a)->cfs;
11713 cfs_rqb = &task_rq(b)->cfs;
11714 #endif
11715
11716 /*
11717 * Find delta after normalizing se's vruntime with its cfs_rq's
11718 * min_vruntime_fi, which would have been updated in prior calls
11719 * to se_fi_update().
11720 */
11721 delta = (s64)(sea->vruntime - seb->vruntime) +
11722 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11723
11724 return delta > 0;
11725 }
11726 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11727 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11728 #endif
11729
11730 /*
11731 * scheduler tick hitting a task of our scheduling class.
11732 *
11733 * NOTE: This function can be called remotely by the tick offload that
11734 * goes along full dynticks. Therefore no local assumption can be made
11735 * and everything must be accessed through the @rq and @curr passed in
11736 * parameters.
11737 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11738 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11739 {
11740 struct cfs_rq *cfs_rq;
11741 struct sched_entity *se = &curr->se;
11742
11743 for_each_sched_entity(se) {
11744 cfs_rq = cfs_rq_of(se);
11745 entity_tick(cfs_rq, se, queued);
11746 }
11747
11748 if (static_branch_unlikely(&sched_numa_balancing))
11749 task_tick_numa(rq, curr);
11750
11751 update_misfit_status(curr, rq);
11752 update_overutilized_status(task_rq(curr));
11753
11754 task_tick_core(rq, curr);
11755 }
11756
11757 /*
11758 * called on fork with the child task as argument from the parent's context
11759 * - child not yet on the tasklist
11760 * - preemption disabled
11761 */
task_fork_fair(struct task_struct * p)11762 static void task_fork_fair(struct task_struct *p)
11763 {
11764 struct cfs_rq *cfs_rq;
11765 struct sched_entity *se = &p->se, *curr;
11766 struct rq *rq = this_rq();
11767 struct rq_flags rf;
11768
11769 rq_lock(rq, &rf);
11770 update_rq_clock(rq);
11771
11772 cfs_rq = task_cfs_rq(current);
11773 curr = cfs_rq->curr;
11774 if (curr) {
11775 update_curr(cfs_rq);
11776 se->vruntime = curr->vruntime;
11777 }
11778 place_entity(cfs_rq, se, 1);
11779
11780 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11781 /*
11782 * Upon rescheduling, sched_class::put_prev_task() will place
11783 * 'current' within the tree based on its new key value.
11784 */
11785 swap(curr->vruntime, se->vruntime);
11786 resched_curr(rq);
11787 }
11788
11789 se->vruntime -= cfs_rq->min_vruntime;
11790 rq_unlock(rq, &rf);
11791 }
11792
11793 /*
11794 * Priority of the task has changed. Check to see if we preempt
11795 * the current task.
11796 */
11797 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11798 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11799 {
11800 if (!task_on_rq_queued(p))
11801 return;
11802
11803 if (rq->cfs.nr_running == 1)
11804 return;
11805
11806 /*
11807 * Reschedule if we are currently running on this runqueue and
11808 * our priority decreased, or if we are not currently running on
11809 * this runqueue and our priority is higher than the current's
11810 */
11811 if (task_current(rq, p)) {
11812 if (p->prio > oldprio)
11813 resched_curr(rq);
11814 } else
11815 check_preempt_curr(rq, p, 0);
11816 }
11817
vruntime_normalized(struct task_struct * p)11818 static inline bool vruntime_normalized(struct task_struct *p)
11819 {
11820 struct sched_entity *se = &p->se;
11821
11822 /*
11823 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11824 * the dequeue_entity(.flags=0) will already have normalized the
11825 * vruntime.
11826 */
11827 if (p->on_rq)
11828 return true;
11829
11830 /*
11831 * When !on_rq, vruntime of the task has usually NOT been normalized.
11832 * But there are some cases where it has already been normalized:
11833 *
11834 * - A forked child which is waiting for being woken up by
11835 * wake_up_new_task().
11836 * - A task which has been woken up by try_to_wake_up() and
11837 * waiting for actually being woken up by sched_ttwu_pending().
11838 */
11839 if (!se->sum_exec_runtime ||
11840 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11841 return true;
11842
11843 return false;
11844 }
11845
11846 #ifdef CONFIG_FAIR_GROUP_SCHED
11847 /*
11848 * Propagate the changes of the sched_entity across the tg tree to make it
11849 * visible to the root
11850 */
propagate_entity_cfs_rq(struct sched_entity * se)11851 static void propagate_entity_cfs_rq(struct sched_entity *se)
11852 {
11853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11854
11855 if (cfs_rq_throttled(cfs_rq))
11856 return;
11857
11858 if (!throttled_hierarchy(cfs_rq))
11859 list_add_leaf_cfs_rq(cfs_rq);
11860
11861 /* Start to propagate at parent */
11862 se = se->parent;
11863
11864 for_each_sched_entity(se) {
11865 cfs_rq = cfs_rq_of(se);
11866
11867 update_load_avg(cfs_rq, se, UPDATE_TG);
11868
11869 if (cfs_rq_throttled(cfs_rq))
11870 break;
11871
11872 if (!throttled_hierarchy(cfs_rq))
11873 list_add_leaf_cfs_rq(cfs_rq);
11874 }
11875 }
11876 #else
propagate_entity_cfs_rq(struct sched_entity * se)11877 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11878 #endif
11879
detach_entity_cfs_rq(struct sched_entity * se)11880 static void detach_entity_cfs_rq(struct sched_entity *se)
11881 {
11882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11883
11884 #ifdef CONFIG_SMP
11885 /*
11886 * In case the task sched_avg hasn't been attached:
11887 * - A forked task which hasn't been woken up by wake_up_new_task().
11888 * - A task which has been woken up by try_to_wake_up() but is
11889 * waiting for actually being woken up by sched_ttwu_pending().
11890 */
11891 if (!se->avg.last_update_time)
11892 return;
11893 #endif
11894
11895 /* Catch up with the cfs_rq and remove our load when we leave */
11896 update_load_avg(cfs_rq, se, 0);
11897 detach_entity_load_avg(cfs_rq, se);
11898 update_tg_load_avg(cfs_rq);
11899 propagate_entity_cfs_rq(se);
11900 }
11901
attach_entity_cfs_rq(struct sched_entity * se)11902 static void attach_entity_cfs_rq(struct sched_entity *se)
11903 {
11904 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11905
11906 /* Synchronize entity with its cfs_rq */
11907 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11908 attach_entity_load_avg(cfs_rq, se);
11909 update_tg_load_avg(cfs_rq);
11910 propagate_entity_cfs_rq(se);
11911 }
11912
detach_task_cfs_rq(struct task_struct * p)11913 static void detach_task_cfs_rq(struct task_struct *p)
11914 {
11915 struct sched_entity *se = &p->se;
11916 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11917
11918 if (!vruntime_normalized(p)) {
11919 /*
11920 * Fix up our vruntime so that the current sleep doesn't
11921 * cause 'unlimited' sleep bonus.
11922 */
11923 place_entity(cfs_rq, se, 0);
11924 se->vruntime -= cfs_rq->min_vruntime;
11925 }
11926
11927 detach_entity_cfs_rq(se);
11928 }
11929
attach_task_cfs_rq(struct task_struct * p)11930 static void attach_task_cfs_rq(struct task_struct *p)
11931 {
11932 struct sched_entity *se = &p->se;
11933 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11934
11935 attach_entity_cfs_rq(se);
11936
11937 if (!vruntime_normalized(p))
11938 se->vruntime += cfs_rq->min_vruntime;
11939 }
11940
switched_from_fair(struct rq * rq,struct task_struct * p)11941 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11942 {
11943 detach_task_cfs_rq(p);
11944 }
11945
switched_to_fair(struct rq * rq,struct task_struct * p)11946 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11947 {
11948 attach_task_cfs_rq(p);
11949
11950 if (task_on_rq_queued(p)) {
11951 /*
11952 * We were most likely switched from sched_rt, so
11953 * kick off the schedule if running, otherwise just see
11954 * if we can still preempt the current task.
11955 */
11956 if (task_current(rq, p))
11957 resched_curr(rq);
11958 else
11959 check_preempt_curr(rq, p, 0);
11960 }
11961 }
11962
11963 /* Account for a task changing its policy or group.
11964 *
11965 * This routine is mostly called to set cfs_rq->curr field when a task
11966 * migrates between groups/classes.
11967 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11968 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11969 {
11970 struct sched_entity *se = &p->se;
11971
11972 #ifdef CONFIG_SMP
11973 if (task_on_rq_queued(p)) {
11974 /*
11975 * Move the next running task to the front of the list, so our
11976 * cfs_tasks list becomes MRU one.
11977 */
11978 list_move(&se->group_node, &rq->cfs_tasks);
11979 }
11980 #endif
11981
11982 for_each_sched_entity(se) {
11983 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11984
11985 set_next_entity(cfs_rq, se);
11986 /* ensure bandwidth has been allocated on our new cfs_rq */
11987 account_cfs_rq_runtime(cfs_rq, 0);
11988 }
11989 }
11990
init_cfs_rq(struct cfs_rq * cfs_rq)11991 void init_cfs_rq(struct cfs_rq *cfs_rq)
11992 {
11993 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11994 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
11995 #ifdef CONFIG_SMP
11996 raw_spin_lock_init(&cfs_rq->removed.lock);
11997 #endif
11998 }
11999
12000 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12001 static void task_change_group_fair(struct task_struct *p)
12002 {
12003 /*
12004 * We couldn't detach or attach a forked task which
12005 * hasn't been woken up by wake_up_new_task().
12006 */
12007 if (READ_ONCE(p->__state) == TASK_NEW)
12008 return;
12009
12010 detach_task_cfs_rq(p);
12011
12012 #ifdef CONFIG_SMP
12013 /* Tell se's cfs_rq has been changed -- migrated */
12014 p->se.avg.last_update_time = 0;
12015 #endif
12016 set_task_rq(p, task_cpu(p));
12017 attach_task_cfs_rq(p);
12018 }
12019
free_fair_sched_group(struct task_group * tg)12020 void free_fair_sched_group(struct task_group *tg)
12021 {
12022 int i;
12023
12024 for_each_possible_cpu(i) {
12025 if (tg->cfs_rq)
12026 kfree(tg->cfs_rq[i]);
12027 if (tg->se)
12028 kfree(tg->se[i]);
12029 }
12030
12031 kfree(tg->cfs_rq);
12032 kfree(tg->se);
12033 }
12034
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12035 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12036 {
12037 struct sched_entity *se;
12038 struct cfs_rq *cfs_rq;
12039 int i;
12040
12041 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12042 if (!tg->cfs_rq)
12043 goto err;
12044 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12045 if (!tg->se)
12046 goto err;
12047
12048 tg->shares = NICE_0_LOAD;
12049
12050 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
12051
12052 for_each_possible_cpu(i) {
12053 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12054 GFP_KERNEL, cpu_to_node(i));
12055 if (!cfs_rq)
12056 goto err;
12057
12058 se = kzalloc_node(sizeof(struct sched_entity_stats),
12059 GFP_KERNEL, cpu_to_node(i));
12060 if (!se)
12061 goto err_free_rq;
12062
12063 init_cfs_rq(cfs_rq);
12064 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12065 init_entity_runnable_average(se);
12066 }
12067
12068 return 1;
12069
12070 err_free_rq:
12071 kfree(cfs_rq);
12072 err:
12073 return 0;
12074 }
12075
online_fair_sched_group(struct task_group * tg)12076 void online_fair_sched_group(struct task_group *tg)
12077 {
12078 struct sched_entity *se;
12079 struct rq_flags rf;
12080 struct rq *rq;
12081 int i;
12082
12083 for_each_possible_cpu(i) {
12084 rq = cpu_rq(i);
12085 se = tg->se[i];
12086 rq_lock_irq(rq, &rf);
12087 update_rq_clock(rq);
12088 attach_entity_cfs_rq(se);
12089 sync_throttle(tg, i);
12090 rq_unlock_irq(rq, &rf);
12091 }
12092 }
12093
unregister_fair_sched_group(struct task_group * tg)12094 void unregister_fair_sched_group(struct task_group *tg)
12095 {
12096 unsigned long flags;
12097 struct rq *rq;
12098 int cpu;
12099
12100 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12101
12102 for_each_possible_cpu(cpu) {
12103 if (tg->se[cpu])
12104 remove_entity_load_avg(tg->se[cpu]);
12105
12106 /*
12107 * Only empty task groups can be destroyed; so we can speculatively
12108 * check on_list without danger of it being re-added.
12109 */
12110 if (!tg->cfs_rq[cpu]->on_list)
12111 continue;
12112
12113 rq = cpu_rq(cpu);
12114
12115 raw_spin_rq_lock_irqsave(rq, flags);
12116 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12117 raw_spin_rq_unlock_irqrestore(rq, flags);
12118 }
12119 }
12120
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12121 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12122 struct sched_entity *se, int cpu,
12123 struct sched_entity *parent)
12124 {
12125 struct rq *rq = cpu_rq(cpu);
12126
12127 cfs_rq->tg = tg;
12128 cfs_rq->rq = rq;
12129 init_cfs_rq_runtime(cfs_rq);
12130
12131 tg->cfs_rq[cpu] = cfs_rq;
12132 tg->se[cpu] = se;
12133
12134 /* se could be NULL for root_task_group */
12135 if (!se)
12136 return;
12137
12138 if (!parent) {
12139 se->cfs_rq = &rq->cfs;
12140 se->depth = 0;
12141 } else {
12142 se->cfs_rq = parent->my_q;
12143 se->depth = parent->depth + 1;
12144 }
12145
12146 se->my_q = cfs_rq;
12147 /* guarantee group entities always have weight */
12148 update_load_set(&se->load, NICE_0_LOAD);
12149 se->parent = parent;
12150 }
12151
12152 static DEFINE_MUTEX(shares_mutex);
12153
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12154 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12155 {
12156 int i;
12157
12158 lockdep_assert_held(&shares_mutex);
12159
12160 /*
12161 * We can't change the weight of the root cgroup.
12162 */
12163 if (!tg->se[0])
12164 return -EINVAL;
12165
12166 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12167
12168 if (tg->shares == shares)
12169 return 0;
12170
12171 tg->shares = shares;
12172 for_each_possible_cpu(i) {
12173 struct rq *rq = cpu_rq(i);
12174 struct sched_entity *se = tg->se[i];
12175 struct rq_flags rf;
12176
12177 /* Propagate contribution to hierarchy */
12178 rq_lock_irqsave(rq, &rf);
12179 update_rq_clock(rq);
12180 for_each_sched_entity(se) {
12181 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12182 update_cfs_group(se);
12183 }
12184 rq_unlock_irqrestore(rq, &rf);
12185 }
12186
12187 return 0;
12188 }
12189
sched_group_set_shares(struct task_group * tg,unsigned long shares)12190 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12191 {
12192 int ret;
12193
12194 mutex_lock(&shares_mutex);
12195 if (tg_is_idle(tg))
12196 ret = -EINVAL;
12197 else
12198 ret = __sched_group_set_shares(tg, shares);
12199 mutex_unlock(&shares_mutex);
12200
12201 return ret;
12202 }
12203
sched_group_set_idle(struct task_group * tg,long idle)12204 int sched_group_set_idle(struct task_group *tg, long idle)
12205 {
12206 int i;
12207
12208 if (tg == &root_task_group)
12209 return -EINVAL;
12210
12211 if (idle < 0 || idle > 1)
12212 return -EINVAL;
12213
12214 mutex_lock(&shares_mutex);
12215
12216 if (tg->idle == idle) {
12217 mutex_unlock(&shares_mutex);
12218 return 0;
12219 }
12220
12221 tg->idle = idle;
12222
12223 for_each_possible_cpu(i) {
12224 struct rq *rq = cpu_rq(i);
12225 struct sched_entity *se = tg->se[i];
12226 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12227 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12228 long idle_task_delta;
12229 struct rq_flags rf;
12230
12231 rq_lock_irqsave(rq, &rf);
12232
12233 grp_cfs_rq->idle = idle;
12234 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12235 goto next_cpu;
12236
12237 if (se->on_rq) {
12238 parent_cfs_rq = cfs_rq_of(se);
12239 if (cfs_rq_is_idle(grp_cfs_rq))
12240 parent_cfs_rq->idle_nr_running++;
12241 else
12242 parent_cfs_rq->idle_nr_running--;
12243 }
12244
12245 idle_task_delta = grp_cfs_rq->h_nr_running -
12246 grp_cfs_rq->idle_h_nr_running;
12247 if (!cfs_rq_is_idle(grp_cfs_rq))
12248 idle_task_delta *= -1;
12249
12250 for_each_sched_entity(se) {
12251 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12252
12253 if (!se->on_rq)
12254 break;
12255
12256 cfs_rq->idle_h_nr_running += idle_task_delta;
12257
12258 /* Already accounted at parent level and above. */
12259 if (cfs_rq_is_idle(cfs_rq))
12260 break;
12261 }
12262
12263 next_cpu:
12264 rq_unlock_irqrestore(rq, &rf);
12265 }
12266
12267 /* Idle groups have minimum weight. */
12268 if (tg_is_idle(tg))
12269 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12270 else
12271 __sched_group_set_shares(tg, NICE_0_LOAD);
12272
12273 mutex_unlock(&shares_mutex);
12274 return 0;
12275 }
12276
12277 #else /* CONFIG_FAIR_GROUP_SCHED */
12278
free_fair_sched_group(struct task_group * tg)12279 void free_fair_sched_group(struct task_group *tg) { }
12280
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12281 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12282 {
12283 return 1;
12284 }
12285
online_fair_sched_group(struct task_group * tg)12286 void online_fair_sched_group(struct task_group *tg) { }
12287
unregister_fair_sched_group(struct task_group * tg)12288 void unregister_fair_sched_group(struct task_group *tg) { }
12289
12290 #endif /* CONFIG_FAIR_GROUP_SCHED */
12291
12292
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12293 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12294 {
12295 struct sched_entity *se = &task->se;
12296 unsigned int rr_interval = 0;
12297
12298 /*
12299 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12300 * idle runqueue:
12301 */
12302 if (rq->cfs.load.weight)
12303 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12304
12305 return rr_interval;
12306 }
12307
12308 /*
12309 * All the scheduling class methods:
12310 */
12311 DEFINE_SCHED_CLASS(fair) = {
12312
12313 .enqueue_task = enqueue_task_fair,
12314 .dequeue_task = dequeue_task_fair,
12315 .yield_task = yield_task_fair,
12316 .yield_to_task = yield_to_task_fair,
12317
12318 .check_preempt_curr = check_preempt_wakeup,
12319
12320 .pick_next_task = __pick_next_task_fair,
12321 .put_prev_task = put_prev_task_fair,
12322 .set_next_task = set_next_task_fair,
12323
12324 #ifdef CONFIG_SMP
12325 .balance = balance_fair,
12326 .pick_task = pick_task_fair,
12327 .select_task_rq = select_task_rq_fair,
12328 .migrate_task_rq = migrate_task_rq_fair,
12329
12330 .rq_online = rq_online_fair,
12331 .rq_offline = rq_offline_fair,
12332
12333 .task_dead = task_dead_fair,
12334 .set_cpus_allowed = set_cpus_allowed_common,
12335 #endif
12336
12337 .task_tick = task_tick_fair,
12338 .task_fork = task_fork_fair,
12339
12340 .prio_changed = prio_changed_fair,
12341 .switched_from = switched_from_fair,
12342 .switched_to = switched_to_fair,
12343
12344 .get_rr_interval = get_rr_interval_fair,
12345
12346 .update_curr = update_curr_fair,
12347
12348 #ifdef CONFIG_FAIR_GROUP_SCHED
12349 .task_change_group = task_change_group_fair,
12350 #endif
12351
12352 #ifdef CONFIG_UCLAMP_TASK
12353 .uclamp_enabled = 1,
12354 #endif
12355 };
12356
12357 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12358 void print_cfs_stats(struct seq_file *m, int cpu)
12359 {
12360 struct cfs_rq *cfs_rq, *pos;
12361
12362 rcu_read_lock();
12363 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12364 print_cfs_rq(m, cpu, cfs_rq);
12365 rcu_read_unlock();
12366 }
12367
12368 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12369 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12370 {
12371 int node;
12372 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12373 struct numa_group *ng;
12374
12375 rcu_read_lock();
12376 ng = rcu_dereference(p->numa_group);
12377 for_each_online_node(node) {
12378 if (p->numa_faults) {
12379 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12380 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12381 }
12382 if (ng) {
12383 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12384 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12385 }
12386 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12387 }
12388 rcu_read_unlock();
12389 }
12390 #endif /* CONFIG_NUMA_BALANCING */
12391 #endif /* CONFIG_SCHED_DEBUG */
12392
init_sched_fair_class(void)12393 __init void init_sched_fair_class(void)
12394 {
12395 #ifdef CONFIG_SMP
12396 int i;
12397
12398 for_each_possible_cpu(i) {
12399 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12400 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
12401 }
12402
12403 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12404
12405 #ifdef CONFIG_NO_HZ_COMMON
12406 nohz.next_balance = jiffies;
12407 nohz.next_blocked = jiffies;
12408 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12409 #endif
12410 #endif /* SMP */
12411
12412 }
12413