1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2020, Oracle and/or its affiliates.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 /* Returns size of largest RPC-over-RDMA header in a Call message
58 *
59 * The largest Call header contains a full-size Read list and a
60 * minimal Reply chunk.
61 */
rpcrdma_max_call_header_size(unsigned int maxsegs)62 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
63 {
64 unsigned int size;
65
66 /* Fixed header fields and list discriminators */
67 size = RPCRDMA_HDRLEN_MIN;
68
69 /* Maximum Read list size */
70 size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
71
72 /* Minimal Read chunk size */
73 size += sizeof(__be32); /* segment count */
74 size += rpcrdma_segment_maxsz * sizeof(__be32);
75 size += sizeof(__be32); /* list discriminator */
76
77 return size;
78 }
79
80 /* Returns size of largest RPC-over-RDMA header in a Reply message
81 *
82 * There is only one Write list or one Reply chunk per Reply
83 * message. The larger list is the Write list.
84 */
rpcrdma_max_reply_header_size(unsigned int maxsegs)85 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
86 {
87 unsigned int size;
88
89 /* Fixed header fields and list discriminators */
90 size = RPCRDMA_HDRLEN_MIN;
91
92 /* Maximum Write list size */
93 size += sizeof(__be32); /* segment count */
94 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
95 size += sizeof(__be32); /* list discriminator */
96
97 return size;
98 }
99
100 /**
101 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
102 * @ep: endpoint to initialize
103 *
104 * The max_inline fields contain the maximum size of an RPC message
105 * so the marshaling code doesn't have to repeat this calculation
106 * for every RPC.
107 */
rpcrdma_set_max_header_sizes(struct rpcrdma_ep * ep)108 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
109 {
110 unsigned int maxsegs = ep->re_max_rdma_segs;
111
112 ep->re_max_inline_send =
113 ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
114 ep->re_max_inline_recv =
115 ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
116 }
117
118 /* The client can send a request inline as long as the RPCRDMA header
119 * plus the RPC call fit under the transport's inline limit. If the
120 * combined call message size exceeds that limit, the client must use
121 * a Read chunk for this operation.
122 *
123 * A Read chunk is also required if sending the RPC call inline would
124 * exceed this device's max_sge limit.
125 */
rpcrdma_args_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)126 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
127 struct rpc_rqst *rqst)
128 {
129 struct xdr_buf *xdr = &rqst->rq_snd_buf;
130 struct rpcrdma_ep *ep = r_xprt->rx_ep;
131 unsigned int count, remaining, offset;
132
133 if (xdr->len > ep->re_max_inline_send)
134 return false;
135
136 if (xdr->page_len) {
137 remaining = xdr->page_len;
138 offset = offset_in_page(xdr->page_base);
139 count = RPCRDMA_MIN_SEND_SGES;
140 while (remaining) {
141 remaining -= min_t(unsigned int,
142 PAGE_SIZE - offset, remaining);
143 offset = 0;
144 if (++count > ep->re_attr.cap.max_send_sge)
145 return false;
146 }
147 }
148
149 return true;
150 }
151
152 /* The client can't know how large the actual reply will be. Thus it
153 * plans for the largest possible reply for that particular ULP
154 * operation. If the maximum combined reply message size exceeds that
155 * limit, the client must provide a write list or a reply chunk for
156 * this request.
157 */
rpcrdma_results_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)158 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
159 struct rpc_rqst *rqst)
160 {
161 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
162 }
163
164 /* The client is required to provide a Reply chunk if the maximum
165 * size of the non-payload part of the RPC Reply is larger than
166 * the inline threshold.
167 */
168 static bool
rpcrdma_nonpayload_inline(const struct rpcrdma_xprt * r_xprt,const struct rpc_rqst * rqst)169 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
170 const struct rpc_rqst *rqst)
171 {
172 const struct xdr_buf *buf = &rqst->rq_rcv_buf;
173
174 return (buf->head[0].iov_len + buf->tail[0].iov_len) <
175 r_xprt->rx_ep->re_max_inline_recv;
176 }
177
178 /* ACL likes to be lazy in allocating pages. For TCP, these
179 * pages can be allocated during receive processing. Not true
180 * for RDMA, which must always provision receive buffers
181 * up front.
182 */
183 static noinline int
rpcrdma_alloc_sparse_pages(struct xdr_buf * buf)184 rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
185 {
186 struct page **ppages;
187 int len;
188
189 len = buf->page_len;
190 ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
191 while (len > 0) {
192 if (!*ppages)
193 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
194 if (!*ppages)
195 return -ENOBUFS;
196 ppages++;
197 len -= PAGE_SIZE;
198 }
199
200 return 0;
201 }
202
203 /* Convert @vec to a single SGL element.
204 *
205 * Returns pointer to next available SGE, and bumps the total number
206 * of SGEs consumed.
207 */
208 static struct rpcrdma_mr_seg *
rpcrdma_convert_kvec(struct kvec * vec,struct rpcrdma_mr_seg * seg,unsigned int * n)209 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
210 unsigned int *n)
211 {
212 seg->mr_page = virt_to_page(vec->iov_base);
213 seg->mr_offset = offset_in_page(vec->iov_base);
214 seg->mr_len = vec->iov_len;
215 ++seg;
216 ++(*n);
217 return seg;
218 }
219
220 /* Convert @xdrbuf into SGEs no larger than a page each. As they
221 * are registered, these SGEs are then coalesced into RDMA segments
222 * when the selected memreg mode supports it.
223 *
224 * Returns positive number of SGEs consumed, or a negative errno.
225 */
226
227 static int
rpcrdma_convert_iovs(struct rpcrdma_xprt * r_xprt,struct xdr_buf * xdrbuf,unsigned int pos,enum rpcrdma_chunktype type,struct rpcrdma_mr_seg * seg)228 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
229 unsigned int pos, enum rpcrdma_chunktype type,
230 struct rpcrdma_mr_seg *seg)
231 {
232 unsigned long page_base;
233 unsigned int len, n;
234 struct page **ppages;
235
236 n = 0;
237 if (pos == 0)
238 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
239
240 len = xdrbuf->page_len;
241 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
242 page_base = offset_in_page(xdrbuf->page_base);
243 while (len) {
244 seg->mr_page = *ppages;
245 seg->mr_offset = page_base;
246 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
247 len -= seg->mr_len;
248 ++ppages;
249 ++seg;
250 ++n;
251 page_base = 0;
252 }
253
254 if (type == rpcrdma_readch || type == rpcrdma_writech)
255 goto out;
256
257 if (xdrbuf->tail[0].iov_len)
258 rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
259
260 out:
261 if (unlikely(n > RPCRDMA_MAX_SEGS))
262 return -EIO;
263 return n;
264 }
265
266 static int
encode_rdma_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr)267 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
268 {
269 __be32 *p;
270
271 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
272 if (unlikely(!p))
273 return -EMSGSIZE;
274
275 xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
276 return 0;
277 }
278
279 static int
encode_read_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr,u32 position)280 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
281 u32 position)
282 {
283 __be32 *p;
284
285 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
286 if (unlikely(!p))
287 return -EMSGSIZE;
288
289 *p++ = xdr_one; /* Item present */
290 xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
291 mr->mr_offset);
292 return 0;
293 }
294
rpcrdma_mr_prepare(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpcrdma_mr_seg * seg,int nsegs,bool writing,struct rpcrdma_mr ** mr)295 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
296 struct rpcrdma_req *req,
297 struct rpcrdma_mr_seg *seg,
298 int nsegs, bool writing,
299 struct rpcrdma_mr **mr)
300 {
301 *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
302 if (!*mr) {
303 *mr = rpcrdma_mr_get(r_xprt);
304 if (!*mr)
305 goto out_getmr_err;
306 (*mr)->mr_req = req;
307 }
308
309 rpcrdma_mr_push(*mr, &req->rl_registered);
310 return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
311
312 out_getmr_err:
313 trace_xprtrdma_nomrs_err(r_xprt, req);
314 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
315 rpcrdma_mrs_refresh(r_xprt);
316 return ERR_PTR(-EAGAIN);
317 }
318
319 /* Register and XDR encode the Read list. Supports encoding a list of read
320 * segments that belong to a single read chunk.
321 *
322 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
323 *
324 * Read chunklist (a linked list):
325 * N elements, position P (same P for all chunks of same arg!):
326 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
327 *
328 * Returns zero on success, or a negative errno if a failure occurred.
329 * @xdr is advanced to the next position in the stream.
330 *
331 * Only a single @pos value is currently supported.
332 */
rpcrdma_encode_read_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype rtype)333 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
334 struct rpcrdma_req *req,
335 struct rpc_rqst *rqst,
336 enum rpcrdma_chunktype rtype)
337 {
338 struct xdr_stream *xdr = &req->rl_stream;
339 struct rpcrdma_mr_seg *seg;
340 struct rpcrdma_mr *mr;
341 unsigned int pos;
342 int nsegs;
343
344 if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
345 goto done;
346
347 pos = rqst->rq_snd_buf.head[0].iov_len;
348 if (rtype == rpcrdma_areadch)
349 pos = 0;
350 seg = req->rl_segments;
351 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
352 rtype, seg);
353 if (nsegs < 0)
354 return nsegs;
355
356 do {
357 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
358 if (IS_ERR(seg))
359 return PTR_ERR(seg);
360
361 if (encode_read_segment(xdr, mr, pos) < 0)
362 return -EMSGSIZE;
363
364 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
365 r_xprt->rx_stats.read_chunk_count++;
366 nsegs -= mr->mr_nents;
367 } while (nsegs);
368
369 done:
370 if (xdr_stream_encode_item_absent(xdr) < 0)
371 return -EMSGSIZE;
372 return 0;
373 }
374
375 /* Register and XDR encode the Write list. Supports encoding a list
376 * containing one array of plain segments that belong to a single
377 * write chunk.
378 *
379 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
380 *
381 * Write chunklist (a list of (one) counted array):
382 * N elements:
383 * 1 - N - HLOO - HLOO - ... - HLOO - 0
384 *
385 * Returns zero on success, or a negative errno if a failure occurred.
386 * @xdr is advanced to the next position in the stream.
387 *
388 * Only a single Write chunk is currently supported.
389 */
rpcrdma_encode_write_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)390 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
391 struct rpcrdma_req *req,
392 struct rpc_rqst *rqst,
393 enum rpcrdma_chunktype wtype)
394 {
395 struct xdr_stream *xdr = &req->rl_stream;
396 struct rpcrdma_ep *ep = r_xprt->rx_ep;
397 struct rpcrdma_mr_seg *seg;
398 struct rpcrdma_mr *mr;
399 int nsegs, nchunks;
400 __be32 *segcount;
401
402 if (wtype != rpcrdma_writech)
403 goto done;
404
405 seg = req->rl_segments;
406 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
407 rqst->rq_rcv_buf.head[0].iov_len,
408 wtype, seg);
409 if (nsegs < 0)
410 return nsegs;
411
412 if (xdr_stream_encode_item_present(xdr) < 0)
413 return -EMSGSIZE;
414 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
415 if (unlikely(!segcount))
416 return -EMSGSIZE;
417 /* Actual value encoded below */
418
419 nchunks = 0;
420 do {
421 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
422 if (IS_ERR(seg))
423 return PTR_ERR(seg);
424
425 if (encode_rdma_segment(xdr, mr) < 0)
426 return -EMSGSIZE;
427
428 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
429 r_xprt->rx_stats.write_chunk_count++;
430 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
431 nchunks++;
432 nsegs -= mr->mr_nents;
433 } while (nsegs);
434
435 if (xdr_pad_size(rqst->rq_rcv_buf.page_len)) {
436 if (encode_rdma_segment(xdr, ep->re_write_pad_mr) < 0)
437 return -EMSGSIZE;
438
439 trace_xprtrdma_chunk_wp(rqst->rq_task, ep->re_write_pad_mr,
440 nsegs);
441 r_xprt->rx_stats.write_chunk_count++;
442 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
443 nchunks++;
444 nsegs -= mr->mr_nents;
445 }
446
447 /* Update count of segments in this Write chunk */
448 *segcount = cpu_to_be32(nchunks);
449
450 done:
451 if (xdr_stream_encode_item_absent(xdr) < 0)
452 return -EMSGSIZE;
453 return 0;
454 }
455
456 /* Register and XDR encode the Reply chunk. Supports encoding an array
457 * of plain segments that belong to a single write (reply) chunk.
458 *
459 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
460 *
461 * Reply chunk (a counted array):
462 * N elements:
463 * 1 - N - HLOO - HLOO - ... - HLOO
464 *
465 * Returns zero on success, or a negative errno if a failure occurred.
466 * @xdr is advanced to the next position in the stream.
467 */
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)468 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
469 struct rpcrdma_req *req,
470 struct rpc_rqst *rqst,
471 enum rpcrdma_chunktype wtype)
472 {
473 struct xdr_stream *xdr = &req->rl_stream;
474 struct rpcrdma_mr_seg *seg;
475 struct rpcrdma_mr *mr;
476 int nsegs, nchunks;
477 __be32 *segcount;
478
479 if (wtype != rpcrdma_replych) {
480 if (xdr_stream_encode_item_absent(xdr) < 0)
481 return -EMSGSIZE;
482 return 0;
483 }
484
485 seg = req->rl_segments;
486 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
487 if (nsegs < 0)
488 return nsegs;
489
490 if (xdr_stream_encode_item_present(xdr) < 0)
491 return -EMSGSIZE;
492 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
493 if (unlikely(!segcount))
494 return -EMSGSIZE;
495 /* Actual value encoded below */
496
497 nchunks = 0;
498 do {
499 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
500 if (IS_ERR(seg))
501 return PTR_ERR(seg);
502
503 if (encode_rdma_segment(xdr, mr) < 0)
504 return -EMSGSIZE;
505
506 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
507 r_xprt->rx_stats.reply_chunk_count++;
508 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
509 nchunks++;
510 nsegs -= mr->mr_nents;
511 } while (nsegs);
512
513 /* Update count of segments in the Reply chunk */
514 *segcount = cpu_to_be32(nchunks);
515
516 return 0;
517 }
518
rpcrdma_sendctx_done(struct kref * kref)519 static void rpcrdma_sendctx_done(struct kref *kref)
520 {
521 struct rpcrdma_req *req =
522 container_of(kref, struct rpcrdma_req, rl_kref);
523 struct rpcrdma_rep *rep = req->rl_reply;
524
525 rpcrdma_complete_rqst(rep);
526 rep->rr_rxprt->rx_stats.reply_waits_for_send++;
527 }
528
529 /**
530 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
531 * @sc: sendctx containing SGEs to unmap
532 *
533 */
rpcrdma_sendctx_unmap(struct rpcrdma_sendctx * sc)534 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
535 {
536 struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
537 struct ib_sge *sge;
538
539 if (!sc->sc_unmap_count)
540 return;
541
542 /* The first two SGEs contain the transport header and
543 * the inline buffer. These are always left mapped so
544 * they can be cheaply re-used.
545 */
546 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
547 ++sge, --sc->sc_unmap_count)
548 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
549 DMA_TO_DEVICE);
550
551 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
552 }
553
554 /* Prepare an SGE for the RPC-over-RDMA transport header.
555 */
rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 len)556 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
557 struct rpcrdma_req *req, u32 len)
558 {
559 struct rpcrdma_sendctx *sc = req->rl_sendctx;
560 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
561 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
562
563 sge->addr = rdmab_addr(rb);
564 sge->length = len;
565 sge->lkey = rdmab_lkey(rb);
566
567 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
568 DMA_TO_DEVICE);
569 }
570
571 /* The head iovec is straightforward, as it is usually already
572 * DMA-mapped. Sync the content that has changed.
573 */
rpcrdma_prepare_head_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,unsigned int len)574 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
575 struct rpcrdma_req *req, unsigned int len)
576 {
577 struct rpcrdma_sendctx *sc = req->rl_sendctx;
578 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
579 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
580
581 if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
582 return false;
583
584 sge->addr = rdmab_addr(rb);
585 sge->length = len;
586 sge->lkey = rdmab_lkey(rb);
587
588 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
589 DMA_TO_DEVICE);
590 return true;
591 }
592
593 /* If there is a page list present, DMA map and prepare an
594 * SGE for each page to be sent.
595 */
rpcrdma_prepare_pagelist(struct rpcrdma_req * req,struct xdr_buf * xdr)596 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
597 struct xdr_buf *xdr)
598 {
599 struct rpcrdma_sendctx *sc = req->rl_sendctx;
600 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
601 unsigned int page_base, len, remaining;
602 struct page **ppages;
603 struct ib_sge *sge;
604
605 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
606 page_base = offset_in_page(xdr->page_base);
607 remaining = xdr->page_len;
608 while (remaining) {
609 sge = &sc->sc_sges[req->rl_wr.num_sge++];
610 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
611 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
612 page_base, len, DMA_TO_DEVICE);
613 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
614 goto out_mapping_err;
615
616 sge->length = len;
617 sge->lkey = rdmab_lkey(rb);
618
619 sc->sc_unmap_count++;
620 ppages++;
621 remaining -= len;
622 page_base = 0;
623 }
624
625 return true;
626
627 out_mapping_err:
628 trace_xprtrdma_dma_maperr(sge->addr);
629 return false;
630 }
631
632 /* The tail iovec may include an XDR pad for the page list,
633 * as well as additional content, and may not reside in the
634 * same page as the head iovec.
635 */
rpcrdma_prepare_tail_iov(struct rpcrdma_req * req,struct xdr_buf * xdr,unsigned int page_base,unsigned int len)636 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
637 struct xdr_buf *xdr,
638 unsigned int page_base, unsigned int len)
639 {
640 struct rpcrdma_sendctx *sc = req->rl_sendctx;
641 struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
642 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
643 struct page *page = virt_to_page(xdr->tail[0].iov_base);
644
645 sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
646 DMA_TO_DEVICE);
647 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
648 goto out_mapping_err;
649
650 sge->length = len;
651 sge->lkey = rdmab_lkey(rb);
652 ++sc->sc_unmap_count;
653 return true;
654
655 out_mapping_err:
656 trace_xprtrdma_dma_maperr(sge->addr);
657 return false;
658 }
659
660 /* Copy the tail to the end of the head buffer.
661 */
rpcrdma_pullup_tail_iov(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)662 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
663 struct rpcrdma_req *req,
664 struct xdr_buf *xdr)
665 {
666 unsigned char *dst;
667
668 dst = (unsigned char *)xdr->head[0].iov_base;
669 dst += xdr->head[0].iov_len + xdr->page_len;
670 memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
671 r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
672 }
673
674 /* Copy pagelist content into the head buffer.
675 */
rpcrdma_pullup_pagelist(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)676 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
677 struct rpcrdma_req *req,
678 struct xdr_buf *xdr)
679 {
680 unsigned int len, page_base, remaining;
681 struct page **ppages;
682 unsigned char *src, *dst;
683
684 dst = (unsigned char *)xdr->head[0].iov_base;
685 dst += xdr->head[0].iov_len;
686 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
687 page_base = offset_in_page(xdr->page_base);
688 remaining = xdr->page_len;
689 while (remaining) {
690 src = page_address(*ppages);
691 src += page_base;
692 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
693 memcpy(dst, src, len);
694 r_xprt->rx_stats.pullup_copy_count += len;
695
696 ppages++;
697 dst += len;
698 remaining -= len;
699 page_base = 0;
700 }
701 }
702
703 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
704 * When the head, pagelist, and tail are small, a pull-up copy
705 * is considerably less costly than DMA mapping the components
706 * of @xdr.
707 *
708 * Assumptions:
709 * - the caller has already verified that the total length
710 * of the RPC Call body will fit into @rl_sendbuf.
711 */
rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)712 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
713 struct rpcrdma_req *req,
714 struct xdr_buf *xdr)
715 {
716 if (unlikely(xdr->tail[0].iov_len))
717 rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
718
719 if (unlikely(xdr->page_len))
720 rpcrdma_pullup_pagelist(r_xprt, req, xdr);
721
722 /* The whole RPC message resides in the head iovec now */
723 return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
724 }
725
rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)726 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
727 struct rpcrdma_req *req,
728 struct xdr_buf *xdr)
729 {
730 struct kvec *tail = &xdr->tail[0];
731
732 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
733 return false;
734 if (xdr->page_len)
735 if (!rpcrdma_prepare_pagelist(req, xdr))
736 return false;
737 if (tail->iov_len)
738 if (!rpcrdma_prepare_tail_iov(req, xdr,
739 offset_in_page(tail->iov_base),
740 tail->iov_len))
741 return false;
742
743 if (req->rl_sendctx->sc_unmap_count)
744 kref_get(&req->rl_kref);
745 return true;
746 }
747
rpcrdma_prepare_readch(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr)748 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
749 struct rpcrdma_req *req,
750 struct xdr_buf *xdr)
751 {
752 if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
753 return false;
754
755 /* If there is a Read chunk, the page list is being handled
756 * via explicit RDMA, and thus is skipped here.
757 */
758
759 /* Do not include the tail if it is only an XDR pad */
760 if (xdr->tail[0].iov_len > 3) {
761 unsigned int page_base, len;
762
763 /* If the content in the page list is an odd length,
764 * xdr_write_pages() adds a pad at the beginning of
765 * the tail iovec. Force the tail's non-pad content to
766 * land at the next XDR position in the Send message.
767 */
768 page_base = offset_in_page(xdr->tail[0].iov_base);
769 len = xdr->tail[0].iov_len;
770 page_base += len & 3;
771 len -= len & 3;
772 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
773 return false;
774 kref_get(&req->rl_kref);
775 }
776
777 return true;
778 }
779
780 /**
781 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
782 * @r_xprt: controlling transport
783 * @req: context of RPC Call being marshalled
784 * @hdrlen: size of transport header, in bytes
785 * @xdr: xdr_buf containing RPC Call
786 * @rtype: chunk type being encoded
787 *
788 * Returns 0 on success; otherwise a negative errno is returned.
789 */
rpcrdma_prepare_send_sges(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 hdrlen,struct xdr_buf * xdr,enum rpcrdma_chunktype rtype)790 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
791 struct rpcrdma_req *req, u32 hdrlen,
792 struct xdr_buf *xdr,
793 enum rpcrdma_chunktype rtype)
794 {
795 int ret;
796
797 ret = -EAGAIN;
798 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
799 if (!req->rl_sendctx)
800 goto out_nosc;
801 req->rl_sendctx->sc_unmap_count = 0;
802 req->rl_sendctx->sc_req = req;
803 kref_init(&req->rl_kref);
804 req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
805 req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
806 req->rl_wr.num_sge = 0;
807 req->rl_wr.opcode = IB_WR_SEND;
808
809 rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
810
811 ret = -EIO;
812 switch (rtype) {
813 case rpcrdma_noch_pullup:
814 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
815 goto out_unmap;
816 break;
817 case rpcrdma_noch_mapped:
818 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
819 goto out_unmap;
820 break;
821 case rpcrdma_readch:
822 if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
823 goto out_unmap;
824 break;
825 case rpcrdma_areadch:
826 break;
827 default:
828 goto out_unmap;
829 }
830
831 return 0;
832
833 out_unmap:
834 rpcrdma_sendctx_unmap(req->rl_sendctx);
835 out_nosc:
836 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
837 return ret;
838 }
839
840 /**
841 * rpcrdma_marshal_req - Marshal and send one RPC request
842 * @r_xprt: controlling transport
843 * @rqst: RPC request to be marshaled
844 *
845 * For the RPC in "rqst", this function:
846 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
847 * - Registers Read, Write, and Reply chunks
848 * - Constructs the transport header
849 * - Posts a Send WR to send the transport header and request
850 *
851 * Returns:
852 * %0 if the RPC was sent successfully,
853 * %-ENOTCONN if the connection was lost,
854 * %-EAGAIN if the caller should call again with the same arguments,
855 * %-ENOBUFS if the caller should call again after a delay,
856 * %-EMSGSIZE if the transport header is too small,
857 * %-EIO if a permanent problem occurred while marshaling.
858 */
859 int
rpcrdma_marshal_req(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)860 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
861 {
862 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
863 struct xdr_stream *xdr = &req->rl_stream;
864 enum rpcrdma_chunktype rtype, wtype;
865 struct xdr_buf *buf = &rqst->rq_snd_buf;
866 bool ddp_allowed;
867 __be32 *p;
868 int ret;
869
870 if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
871 ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
872 if (ret)
873 return ret;
874 }
875
876 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
877 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
878 rqst);
879
880 /* Fixed header fields */
881 ret = -EMSGSIZE;
882 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
883 if (!p)
884 goto out_err;
885 *p++ = rqst->rq_xid;
886 *p++ = rpcrdma_version;
887 *p++ = r_xprt->rx_buf.rb_max_requests;
888
889 /* When the ULP employs a GSS flavor that guarantees integrity
890 * or privacy, direct data placement of individual data items
891 * is not allowed.
892 */
893 ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
894 &rqst->rq_cred->cr_auth->au_flags);
895
896 /*
897 * Chunks needed for results?
898 *
899 * o If the expected result is under the inline threshold, all ops
900 * return as inline.
901 * o Large read ops return data as write chunk(s), header as
902 * inline.
903 * o Large non-read ops return as a single reply chunk.
904 */
905 if (rpcrdma_results_inline(r_xprt, rqst))
906 wtype = rpcrdma_noch;
907 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
908 rpcrdma_nonpayload_inline(r_xprt, rqst))
909 wtype = rpcrdma_writech;
910 else
911 wtype = rpcrdma_replych;
912
913 /*
914 * Chunks needed for arguments?
915 *
916 * o If the total request is under the inline threshold, all ops
917 * are sent as inline.
918 * o Large write ops transmit data as read chunk(s), header as
919 * inline.
920 * o Large non-write ops are sent with the entire message as a
921 * single read chunk (protocol 0-position special case).
922 *
923 * This assumes that the upper layer does not present a request
924 * that both has a data payload, and whose non-data arguments
925 * by themselves are larger than the inline threshold.
926 */
927 if (rpcrdma_args_inline(r_xprt, rqst)) {
928 *p++ = rdma_msg;
929 rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
930 rpcrdma_noch_pullup : rpcrdma_noch_mapped;
931 } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
932 *p++ = rdma_msg;
933 rtype = rpcrdma_readch;
934 } else {
935 r_xprt->rx_stats.nomsg_call_count++;
936 *p++ = rdma_nomsg;
937 rtype = rpcrdma_areadch;
938 }
939
940 /* This implementation supports the following combinations
941 * of chunk lists in one RPC-over-RDMA Call message:
942 *
943 * - Read list
944 * - Write list
945 * - Reply chunk
946 * - Read list + Reply chunk
947 *
948 * It might not yet support the following combinations:
949 *
950 * - Read list + Write list
951 *
952 * It does not support the following combinations:
953 *
954 * - Write list + Reply chunk
955 * - Read list + Write list + Reply chunk
956 *
957 * This implementation supports only a single chunk in each
958 * Read or Write list. Thus for example the client cannot
959 * send a Call message with a Position Zero Read chunk and a
960 * regular Read chunk at the same time.
961 */
962 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
963 if (ret)
964 goto out_err;
965 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
966 if (ret)
967 goto out_err;
968 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
969 if (ret)
970 goto out_err;
971
972 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
973 buf, rtype);
974 if (ret)
975 goto out_err;
976
977 trace_xprtrdma_marshal(req, rtype, wtype);
978 return 0;
979
980 out_err:
981 trace_xprtrdma_marshal_failed(rqst, ret);
982 r_xprt->rx_stats.failed_marshal_count++;
983 frwr_reset(req);
984 return ret;
985 }
986
__rpcrdma_update_cwnd_locked(struct rpc_xprt * xprt,struct rpcrdma_buffer * buf,u32 grant)987 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
988 struct rpcrdma_buffer *buf,
989 u32 grant)
990 {
991 buf->rb_credits = grant;
992 xprt->cwnd = grant << RPC_CWNDSHIFT;
993 }
994
rpcrdma_update_cwnd(struct rpcrdma_xprt * r_xprt,u32 grant)995 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
996 {
997 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
998
999 spin_lock(&xprt->transport_lock);
1000 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1001 spin_unlock(&xprt->transport_lock);
1002 }
1003
1004 /**
1005 * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1006 * @r_xprt: controlling transport instance
1007 *
1008 * Prepare @r_xprt for the next connection by reinitializing
1009 * its credit grant to one (see RFC 8166, Section 3.3.3).
1010 */
rpcrdma_reset_cwnd(struct rpcrdma_xprt * r_xprt)1011 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1012 {
1013 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1014
1015 spin_lock(&xprt->transport_lock);
1016 xprt->cong = 0;
1017 __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1018 spin_unlock(&xprt->transport_lock);
1019 }
1020
1021 /**
1022 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1023 * @rqst: controlling RPC request
1024 * @srcp: points to RPC message payload in receive buffer
1025 * @copy_len: remaining length of receive buffer content
1026 * @pad: Write chunk pad bytes needed (zero for pure inline)
1027 *
1028 * The upper layer has set the maximum number of bytes it can
1029 * receive in each component of rq_rcv_buf. These values are set in
1030 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1031 *
1032 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1033 * many cases this function simply updates iov_base pointers in
1034 * rq_rcv_buf to point directly to the received reply data, to
1035 * avoid copying reply data.
1036 *
1037 * Returns the count of bytes which had to be memcopied.
1038 */
1039 static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst * rqst,char * srcp,int copy_len,int pad)1040 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1041 {
1042 unsigned long fixup_copy_count;
1043 int i, npages, curlen;
1044 char *destp;
1045 struct page **ppages;
1046 int page_base;
1047
1048 /* The head iovec is redirected to the RPC reply message
1049 * in the receive buffer, to avoid a memcopy.
1050 */
1051 rqst->rq_rcv_buf.head[0].iov_base = srcp;
1052 rqst->rq_private_buf.head[0].iov_base = srcp;
1053
1054 /* The contents of the receive buffer that follow
1055 * head.iov_len bytes are copied into the page list.
1056 */
1057 curlen = rqst->rq_rcv_buf.head[0].iov_len;
1058 if (curlen > copy_len)
1059 curlen = copy_len;
1060 srcp += curlen;
1061 copy_len -= curlen;
1062
1063 ppages = rqst->rq_rcv_buf.pages +
1064 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1065 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1066 fixup_copy_count = 0;
1067 if (copy_len && rqst->rq_rcv_buf.page_len) {
1068 int pagelist_len;
1069
1070 pagelist_len = rqst->rq_rcv_buf.page_len;
1071 if (pagelist_len > copy_len)
1072 pagelist_len = copy_len;
1073 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1074 for (i = 0; i < npages; i++) {
1075 curlen = PAGE_SIZE - page_base;
1076 if (curlen > pagelist_len)
1077 curlen = pagelist_len;
1078
1079 destp = kmap_atomic(ppages[i]);
1080 memcpy(destp + page_base, srcp, curlen);
1081 flush_dcache_page(ppages[i]);
1082 kunmap_atomic(destp);
1083 srcp += curlen;
1084 copy_len -= curlen;
1085 fixup_copy_count += curlen;
1086 pagelist_len -= curlen;
1087 if (!pagelist_len)
1088 break;
1089 page_base = 0;
1090 }
1091
1092 /* Implicit padding for the last segment in a Write
1093 * chunk is inserted inline at the front of the tail
1094 * iovec. The upper layer ignores the content of
1095 * the pad. Simply ensure inline content in the tail
1096 * that follows the Write chunk is properly aligned.
1097 */
1098 if (pad)
1099 srcp -= pad;
1100 }
1101
1102 /* The tail iovec is redirected to the remaining data
1103 * in the receive buffer, to avoid a memcopy.
1104 */
1105 if (copy_len || pad) {
1106 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1107 rqst->rq_private_buf.tail[0].iov_base = srcp;
1108 }
1109
1110 if (fixup_copy_count)
1111 trace_xprtrdma_fixup(rqst, fixup_copy_count);
1112 return fixup_copy_count;
1113 }
1114
1115 /* By convention, backchannel calls arrive via rdma_msg type
1116 * messages, and never populate the chunk lists. This makes
1117 * the RPC/RDMA header small and fixed in size, so it is
1118 * straightforward to check the RPC header's direction field.
1119 */
1120 static bool
rpcrdma_is_bcall(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1121 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1122 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1123 {
1124 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1125 struct xdr_stream *xdr = &rep->rr_stream;
1126 __be32 *p;
1127
1128 if (rep->rr_proc != rdma_msg)
1129 return false;
1130
1131 /* Peek at stream contents without advancing. */
1132 p = xdr_inline_decode(xdr, 0);
1133
1134 /* Chunk lists */
1135 if (xdr_item_is_present(p++))
1136 return false;
1137 if (xdr_item_is_present(p++))
1138 return false;
1139 if (xdr_item_is_present(p++))
1140 return false;
1141
1142 /* RPC header */
1143 if (*p++ != rep->rr_xid)
1144 return false;
1145 if (*p != cpu_to_be32(RPC_CALL))
1146 return false;
1147
1148 /* No bc service. */
1149 if (xprt->bc_serv == NULL)
1150 return false;
1151
1152 /* Now that we are sure this is a backchannel call,
1153 * advance to the RPC header.
1154 */
1155 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1156 if (unlikely(!p))
1157 return true;
1158
1159 rpcrdma_bc_receive_call(r_xprt, rep);
1160 return true;
1161 }
1162 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1163 {
1164 return false;
1165 }
1166 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1167
decode_rdma_segment(struct xdr_stream * xdr,u32 * length)1168 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1169 {
1170 u32 handle;
1171 u64 offset;
1172 __be32 *p;
1173
1174 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1175 if (unlikely(!p))
1176 return -EIO;
1177
1178 xdr_decode_rdma_segment(p, &handle, length, &offset);
1179 trace_xprtrdma_decode_seg(handle, *length, offset);
1180 return 0;
1181 }
1182
decode_write_chunk(struct xdr_stream * xdr,u32 * length)1183 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1184 {
1185 u32 segcount, seglength;
1186 __be32 *p;
1187
1188 p = xdr_inline_decode(xdr, sizeof(*p));
1189 if (unlikely(!p))
1190 return -EIO;
1191
1192 *length = 0;
1193 segcount = be32_to_cpup(p);
1194 while (segcount--) {
1195 if (decode_rdma_segment(xdr, &seglength))
1196 return -EIO;
1197 *length += seglength;
1198 }
1199
1200 return 0;
1201 }
1202
1203 /* In RPC-over-RDMA Version One replies, a Read list is never
1204 * expected. This decoder is a stub that returns an error if
1205 * a Read list is present.
1206 */
decode_read_list(struct xdr_stream * xdr)1207 static int decode_read_list(struct xdr_stream *xdr)
1208 {
1209 __be32 *p;
1210
1211 p = xdr_inline_decode(xdr, sizeof(*p));
1212 if (unlikely(!p))
1213 return -EIO;
1214 if (unlikely(xdr_item_is_present(p)))
1215 return -EIO;
1216 return 0;
1217 }
1218
1219 /* Supports only one Write chunk in the Write list
1220 */
decode_write_list(struct xdr_stream * xdr,u32 * length)1221 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1222 {
1223 u32 chunklen;
1224 bool first;
1225 __be32 *p;
1226
1227 *length = 0;
1228 first = true;
1229 do {
1230 p = xdr_inline_decode(xdr, sizeof(*p));
1231 if (unlikely(!p))
1232 return -EIO;
1233 if (xdr_item_is_absent(p))
1234 break;
1235 if (!first)
1236 return -EIO;
1237
1238 if (decode_write_chunk(xdr, &chunklen))
1239 return -EIO;
1240 *length += chunklen;
1241 first = false;
1242 } while (true);
1243 return 0;
1244 }
1245
decode_reply_chunk(struct xdr_stream * xdr,u32 * length)1246 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1247 {
1248 __be32 *p;
1249
1250 p = xdr_inline_decode(xdr, sizeof(*p));
1251 if (unlikely(!p))
1252 return -EIO;
1253
1254 *length = 0;
1255 if (xdr_item_is_present(p))
1256 if (decode_write_chunk(xdr, length))
1257 return -EIO;
1258 return 0;
1259 }
1260
1261 static int
rpcrdma_decode_msg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1262 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1263 struct rpc_rqst *rqst)
1264 {
1265 struct xdr_stream *xdr = &rep->rr_stream;
1266 u32 writelist, replychunk, rpclen;
1267 char *base;
1268
1269 /* Decode the chunk lists */
1270 if (decode_read_list(xdr))
1271 return -EIO;
1272 if (decode_write_list(xdr, &writelist))
1273 return -EIO;
1274 if (decode_reply_chunk(xdr, &replychunk))
1275 return -EIO;
1276
1277 /* RDMA_MSG sanity checks */
1278 if (unlikely(replychunk))
1279 return -EIO;
1280
1281 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1282 base = (char *)xdr_inline_decode(xdr, 0);
1283 rpclen = xdr_stream_remaining(xdr);
1284 r_xprt->rx_stats.fixup_copy_count +=
1285 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1286
1287 r_xprt->rx_stats.total_rdma_reply += writelist;
1288 return rpclen + xdr_align_size(writelist);
1289 }
1290
1291 static noinline int
rpcrdma_decode_nomsg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1292 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1293 {
1294 struct xdr_stream *xdr = &rep->rr_stream;
1295 u32 writelist, replychunk;
1296
1297 /* Decode the chunk lists */
1298 if (decode_read_list(xdr))
1299 return -EIO;
1300 if (decode_write_list(xdr, &writelist))
1301 return -EIO;
1302 if (decode_reply_chunk(xdr, &replychunk))
1303 return -EIO;
1304
1305 /* RDMA_NOMSG sanity checks */
1306 if (unlikely(writelist))
1307 return -EIO;
1308 if (unlikely(!replychunk))
1309 return -EIO;
1310
1311 /* Reply chunk buffer already is the reply vector */
1312 r_xprt->rx_stats.total_rdma_reply += replychunk;
1313 return replychunk;
1314 }
1315
1316 static noinline int
rpcrdma_decode_error(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1317 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1318 struct rpc_rqst *rqst)
1319 {
1320 struct xdr_stream *xdr = &rep->rr_stream;
1321 __be32 *p;
1322
1323 p = xdr_inline_decode(xdr, sizeof(*p));
1324 if (unlikely(!p))
1325 return -EIO;
1326
1327 switch (*p) {
1328 case err_vers:
1329 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1330 if (!p)
1331 break;
1332 trace_xprtrdma_err_vers(rqst, p, p + 1);
1333 break;
1334 case err_chunk:
1335 trace_xprtrdma_err_chunk(rqst);
1336 break;
1337 default:
1338 trace_xprtrdma_err_unrecognized(rqst, p);
1339 }
1340
1341 return -EIO;
1342 }
1343
1344 /**
1345 * rpcrdma_unpin_rqst - Release rqst without completing it
1346 * @rep: RPC/RDMA Receive context
1347 *
1348 * This is done when a connection is lost so that a Reply
1349 * can be dropped and its matching Call can be subsequently
1350 * retransmitted on a new connection.
1351 */
rpcrdma_unpin_rqst(struct rpcrdma_rep * rep)1352 void rpcrdma_unpin_rqst(struct rpcrdma_rep *rep)
1353 {
1354 struct rpc_xprt *xprt = &rep->rr_rxprt->rx_xprt;
1355 struct rpc_rqst *rqst = rep->rr_rqst;
1356 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
1357
1358 req->rl_reply = NULL;
1359 rep->rr_rqst = NULL;
1360
1361 spin_lock(&xprt->queue_lock);
1362 xprt_unpin_rqst(rqst);
1363 spin_unlock(&xprt->queue_lock);
1364 }
1365
1366 /**
1367 * rpcrdma_complete_rqst - Pass completed rqst back to RPC
1368 * @rep: RPC/RDMA Receive context
1369 *
1370 * Reconstruct the RPC reply and complete the transaction
1371 * while @rqst is still pinned to ensure the rep, rqst, and
1372 * rq_task pointers remain stable.
1373 */
rpcrdma_complete_rqst(struct rpcrdma_rep * rep)1374 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1375 {
1376 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1377 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1378 struct rpc_rqst *rqst = rep->rr_rqst;
1379 int status;
1380
1381 switch (rep->rr_proc) {
1382 case rdma_msg:
1383 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1384 break;
1385 case rdma_nomsg:
1386 status = rpcrdma_decode_nomsg(r_xprt, rep);
1387 break;
1388 case rdma_error:
1389 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1390 break;
1391 default:
1392 status = -EIO;
1393 }
1394 if (status < 0)
1395 goto out_badheader;
1396
1397 out:
1398 spin_lock(&xprt->queue_lock);
1399 xprt_complete_rqst(rqst->rq_task, status);
1400 xprt_unpin_rqst(rqst);
1401 spin_unlock(&xprt->queue_lock);
1402 return;
1403
1404 out_badheader:
1405 trace_xprtrdma_reply_hdr_err(rep);
1406 r_xprt->rx_stats.bad_reply_count++;
1407 rqst->rq_task->tk_status = status;
1408 status = 0;
1409 goto out;
1410 }
1411
rpcrdma_reply_done(struct kref * kref)1412 static void rpcrdma_reply_done(struct kref *kref)
1413 {
1414 struct rpcrdma_req *req =
1415 container_of(kref, struct rpcrdma_req, rl_kref);
1416
1417 rpcrdma_complete_rqst(req->rl_reply);
1418 }
1419
1420 /**
1421 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1422 * @rep: Incoming rpcrdma_rep object to process
1423 *
1424 * Errors must result in the RPC task either being awakened, or
1425 * allowed to timeout, to discover the errors at that time.
1426 */
rpcrdma_reply_handler(struct rpcrdma_rep * rep)1427 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1428 {
1429 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1430 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1431 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1432 struct rpcrdma_req *req;
1433 struct rpc_rqst *rqst;
1434 u32 credits;
1435 __be32 *p;
1436
1437 /* Any data means we had a useful conversation, so
1438 * then we don't need to delay the next reconnect.
1439 */
1440 if (xprt->reestablish_timeout)
1441 xprt->reestablish_timeout = 0;
1442
1443 /* Fixed transport header fields */
1444 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1445 rep->rr_hdrbuf.head[0].iov_base, NULL);
1446 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1447 if (unlikely(!p))
1448 goto out_shortreply;
1449 rep->rr_xid = *p++;
1450 rep->rr_vers = *p++;
1451 credits = be32_to_cpu(*p++);
1452 rep->rr_proc = *p++;
1453
1454 if (rep->rr_vers != rpcrdma_version)
1455 goto out_badversion;
1456
1457 if (rpcrdma_is_bcall(r_xprt, rep))
1458 return;
1459
1460 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1461 * get context for handling any incoming chunks.
1462 */
1463 spin_lock(&xprt->queue_lock);
1464 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1465 if (!rqst)
1466 goto out_norqst;
1467 xprt_pin_rqst(rqst);
1468 spin_unlock(&xprt->queue_lock);
1469
1470 if (credits == 0)
1471 credits = 1; /* don't deadlock */
1472 else if (credits > r_xprt->rx_ep->re_max_requests)
1473 credits = r_xprt->rx_ep->re_max_requests;
1474 rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1),
1475 false);
1476 if (buf->rb_credits != credits)
1477 rpcrdma_update_cwnd(r_xprt, credits);
1478
1479 req = rpcr_to_rdmar(rqst);
1480 if (unlikely(req->rl_reply))
1481 rpcrdma_rep_put(buf, req->rl_reply);
1482 req->rl_reply = rep;
1483 rep->rr_rqst = rqst;
1484
1485 trace_xprtrdma_reply(rqst->rq_task, rep, credits);
1486
1487 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1488 frwr_reminv(rep, &req->rl_registered);
1489 if (!list_empty(&req->rl_registered))
1490 frwr_unmap_async(r_xprt, req);
1491 /* LocalInv completion will complete the RPC */
1492 else
1493 kref_put(&req->rl_kref, rpcrdma_reply_done);
1494 return;
1495
1496 out_badversion:
1497 trace_xprtrdma_reply_vers_err(rep);
1498 goto out;
1499
1500 out_norqst:
1501 spin_unlock(&xprt->queue_lock);
1502 trace_xprtrdma_reply_rqst_err(rep);
1503 goto out;
1504
1505 out_shortreply:
1506 trace_xprtrdma_reply_short_err(rep);
1507
1508 out:
1509 rpcrdma_rep_put(buf, rep);
1510 }
1511