1/* Copyright (C) 2004-2022 Free Software Foundation, Inc. 2 This file is part of the GNU C Library. 3 4 The GNU C Library is free software; you can redistribute it and/or 5 modify it under the terms of the GNU Lesser General Public 6 License as published by the Free Software Foundation; either 7 version 2.1 of the License, or (at your option) any later version. 8 9 The GNU C Library is distributed in the hope that it will be useful, 10 but WITHOUT ANY WARRANTY; without even the implied warranty of 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 Lesser General Public License for more details. 13 14 You should have received a copy of the GNU Lesser General Public 15 License along with the GNU C Library. If not, see 16 <https://www.gnu.org/licenses/>. */ 17 18#include "div_libc.h" 19 20 21/* 64-bit unsigned long remainder. These are not normal C functions. Argument 22 registers are t10 and t11, the result goes in t12. Only t12 and AT may be 23 clobbered. 24 25 Theory of operation here is that we can use the FPU divider for virtually 26 all operands that we see: all dividend values between -2**53 and 2**53-1 27 can be computed directly. Note that divisor values need not be checked 28 against that range because the rounded fp value will be close enough such 29 that the quotient is < 1, which will properly be truncated to zero when we 30 convert back to integer. 31 32 When the dividend is outside the range for which we can compute exact 33 results, we use the fp quotent as an estimate from which we begin refining 34 an exact integral value. This reduces the number of iterations in the 35 shift-and-subtract loop significantly. 36 37 The FPCR save/restore is due to the fact that the EV6 _will_ set FPCR_INE 38 for cvttq/c even without /sui being set. It will not, however, properly 39 raise the exception, so we don't have to worry about FPCR_INED being clear 40 and so dying by SIGFPE. */ 41 42 .text 43 .align 4 44 .globl __remqu 45 .type __remqu, @funcnoplt 46 .usepv __remqu, no 47 48 cfi_startproc 49 cfi_return_column (RA) 50__remqu: 51 lda sp, -FRAME(sp) 52 cfi_def_cfa_offset (FRAME) 53 CALL_MCOUNT 54 55 /* Get the fp divide insn issued as quickly as possible. After 56 that's done, we have at least 22 cycles until its results are 57 ready -- all the time in the world to figure out how we're 58 going to use the results. */ 59 subq Y, 1, AT 60 and Y, AT, AT 61 beq AT, $powerof2 62 63 stt $f0, 0(sp) 64 excb 65 stt $f1, 8(sp) 66 stt $f3, 48(sp) 67 cfi_rel_offset ($f0, 0) 68 cfi_rel_offset ($f1, 8) 69 cfi_rel_offset ($f3, 48) 70 mf_fpcr $f3 71 72 _ITOFT2 X, $f0, 16, Y, $f1, 24 73 cvtqt $f0, $f0 74 cvtqt $f1, $f1 75 76 blt X, $x_is_neg 77 divt/c $f0, $f1, $f0 78 79 /* Check to see if Y was mis-converted as signed value. */ 80 ldt $f1, 8(sp) 81 blt Y, $y_is_neg 82 83 /* Check to see if X fit in the double as an exact value. */ 84 srl X, 53, AT 85 bne AT, $x_big 86 87 /* If we get here, we're expecting exact results from the division. 88 Do nothing else besides convert, compute remainder, clean up. */ 89 cvttq/c $f0, $f0 90 excb 91 mt_fpcr $f3 92 _FTOIT $f0, AT, 16 93 94 mulq AT, Y, AT 95 ldt $f0, 0(sp) 96 ldt $f3, 48(sp) 97 lda sp, FRAME(sp) 98 cfi_remember_state 99 cfi_restore ($f0) 100 cfi_restore ($f1) 101 cfi_restore ($f3) 102 cfi_def_cfa_offset (0) 103 104 .align 4 105 subq X, AT, RV 106 ret $31, (RA), 1 107 108 .align 4 109 cfi_restore_state 110$x_is_neg: 111 /* If we get here, X is so big that bit 63 is set, which made the 112 conversion come out negative. Fix it up lest we not even get 113 a good estimate. */ 114 ldah AT, 0x5f80 /* 2**64 as float. */ 115 stt $f2, 24(sp) 116 cfi_rel_offset ($f2, 24) 117 _ITOFS AT, $f2, 16 118 119 .align 4 120 addt $f0, $f2, $f0 121 unop 122 divt/c $f0, $f1, $f0 123 unop 124 125 /* Ok, we've now the divide issued. Continue with other checks. */ 126 ldt $f1, 8(sp) 127 unop 128 ldt $f2, 24(sp) 129 blt Y, $y_is_neg 130 cfi_restore ($f1) 131 cfi_restore ($f2) 132 cfi_remember_state /* for y_is_neg */ 133 134 .align 4 135$x_big: 136 /* If we get here, X is large enough that we don't expect exact 137 results, and neither X nor Y got mis-translated for the fp 138 division. Our task is to take the fp result, figure out how 139 far it's off from the correct result and compute a fixup. */ 140 stq t0, 16(sp) 141 stq t1, 24(sp) 142 stq t2, 32(sp) 143 stq t3, 40(sp) 144 cfi_rel_offset (t0, 16) 145 cfi_rel_offset (t1, 24) 146 cfi_rel_offset (t2, 32) 147 cfi_rel_offset (t3, 40) 148 149#define Q t0 /* quotient */ 150#define R RV /* remainder */ 151#define SY t1 /* scaled Y */ 152#define S t2 /* scalar */ 153#define QY t3 /* Q*Y */ 154 155 cvttq/c $f0, $f0 156 _FTOIT $f0, Q, 8 157 mulq Q, Y, QY 158 159 .align 4 160 stq t4, 8(sp) 161 excb 162 ldt $f0, 0(sp) 163 mt_fpcr $f3 164 cfi_rel_offset (t4, 8) 165 cfi_restore ($f0) 166 167 subq QY, X, R 168 mov Y, SY 169 mov 1, S 170 bgt R, $q_high 171 172$q_high_ret: 173 subq X, QY, R 174 mov Y, SY 175 mov 1, S 176 bgt R, $q_low 177 178$q_low_ret: 179 ldq t4, 8(sp) 180 ldq t0, 16(sp) 181 ldq t1, 24(sp) 182 ldq t2, 32(sp) 183 184 ldq t3, 40(sp) 185 ldt $f3, 48(sp) 186 lda sp, FRAME(sp) 187 cfi_remember_state 188 cfi_restore (t0) 189 cfi_restore (t1) 190 cfi_restore (t2) 191 cfi_restore (t3) 192 cfi_restore (t4) 193 cfi_restore ($f3) 194 cfi_def_cfa_offset (0) 195 ret $31, (RA), 1 196 197 .align 4 198 cfi_restore_state 199 /* The quotient that we computed was too large. We need to reduce 200 it by S such that Y*S >= R. Obviously the closer we get to the 201 correct value the better, but overshooting high is ok, as we'll 202 fix that up later. */ 2030: 204 addq SY, SY, SY 205 addq S, S, S 206$q_high: 207 cmpult SY, R, AT 208 bne AT, 0b 209 210 subq Q, S, Q 211 unop 212 subq QY, SY, QY 213 br $q_high_ret 214 215 .align 4 216 /* The quotient that we computed was too small. Divide Y by the 217 current remainder (R) and add that to the existing quotient (Q). 218 The expectation, of course, is that R is much smaller than X. */ 219 /* Begin with a shift-up loop. Compute S such that Y*S >= R. We 220 already have a copy of Y in SY and the value 1 in S. */ 2210: 222 addq SY, SY, SY 223 addq S, S, S 224$q_low: 225 cmpult SY, R, AT 226 bne AT, 0b 227 228 /* Shift-down and subtract loop. Each iteration compares our scaled 229 Y (SY) with the remainder (R); if SY <= R then X is divisible by 230 Y's scalar (S) so add it to the quotient (Q). */ 2312: addq Q, S, t3 232 srl S, 1, S 233 cmpule SY, R, AT 234 subq R, SY, t4 235 236 cmovne AT, t3, Q 237 cmovne AT, t4, R 238 srl SY, 1, SY 239 bne S, 2b 240 241 br $q_low_ret 242 243 .align 4 244 cfi_restore_state 245$y_is_neg: 246 /* If we get here, Y is so big that bit 63 is set. The results 247 from the divide will be completely wrong. Fortunately, the 248 quotient must be either 0 or 1, so the remainder must be X 249 or X-Y, so just compute it directly. */ 250 cmpule Y, X, AT 251 excb 252 mt_fpcr $f3 253 subq X, Y, RV 254 ldt $f0, 0(sp) 255 ldt $f3, 48(sp) 256 cmoveq AT, X, RV 257 258 lda sp, FRAME(sp) 259 cfi_restore ($f0) 260 cfi_restore ($f3) 261 cfi_def_cfa_offset (0) 262 ret $31, (RA), 1 263 264 .align 4 265 cfi_def_cfa_offset (FRAME) 266$powerof2: 267 subq Y, 1, AT 268 beq Y, DIVBYZERO 269 and X, AT, RV 270 lda sp, FRAME(sp) 271 cfi_def_cfa_offset (0) 272 ret $31, (RA), 1 273 274 cfi_endproc 275 .size __remqu, .-__remqu 276 277 DO_DIVBYZERO 278