1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58 
59 #include "rcu.h"
60 
61 /* Data structures. */
62 
63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64 
65 #define RCU_STATE_INITIALIZER(structname) { \
66 	.level = { &structname##_state.node[0] }, \
67 	.levelcnt = { \
68 		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
69 		NUM_RCU_LVL_1, \
70 		NUM_RCU_LVL_2, \
71 		NUM_RCU_LVL_3, \
72 		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 	}, \
74 	.fqs_state = RCU_GP_IDLE, \
75 	.gpnum = -300, \
76 	.completed = -300, \
77 	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 	.n_force_qs = 0, \
80 	.n_force_qs_ngp = 0, \
81 	.name = #structname, \
82 }
83 
84 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86 
87 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89 
90 static struct rcu_state *rcu_state;
91 
92 /*
93  * The rcu_scheduler_active variable transitions from zero to one just
94  * before the first task is spawned.  So when this variable is zero, RCU
95  * can assume that there is but one task, allowing RCU to (for example)
96  * optimized synchronize_sched() to a simple barrier().  When this variable
97  * is one, RCU must actually do all the hard work required to detect real
98  * grace periods.  This variable is also used to suppress boot-time false
99  * positives from lockdep-RCU error checking.
100  */
101 int rcu_scheduler_active __read_mostly;
102 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103 
104 /*
105  * The rcu_scheduler_fully_active variable transitions from zero to one
106  * during the early_initcall() processing, which is after the scheduler
107  * is capable of creating new tasks.  So RCU processing (for example,
108  * creating tasks for RCU priority boosting) must be delayed until after
109  * rcu_scheduler_fully_active transitions from zero to one.  We also
110  * currently delay invocation of any RCU callbacks until after this point.
111  *
112  * It might later prove better for people registering RCU callbacks during
113  * early boot to take responsibility for these callbacks, but one step at
114  * a time.
115  */
116 static int rcu_scheduler_fully_active __read_mostly;
117 
118 #ifdef CONFIG_RCU_BOOST
119 
120 /*
121  * Control variables for per-CPU and per-rcu_node kthreads.  These
122  * handle all flavors of RCU.
123  */
124 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128 DEFINE_PER_CPU(char, rcu_cpu_has_work);
129 
130 #endif /* #ifdef CONFIG_RCU_BOOST */
131 
132 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133 static void invoke_rcu_core(void);
134 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135 
136 /*
137  * Track the rcutorture test sequence number and the update version
138  * number within a given test.  The rcutorture_testseq is incremented
139  * on every rcutorture module load and unload, so has an odd value
140  * when a test is running.  The rcutorture_vernum is set to zero
141  * when rcutorture starts and is incremented on each rcutorture update.
142  * These variables enable correlating rcutorture output with the
143  * RCU tracing information.
144  */
145 unsigned long rcutorture_testseq;
146 unsigned long rcutorture_vernum;
147 
148 /*
149  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
150  * permit this function to be invoked without holding the root rcu_node
151  * structure's ->lock, but of course results can be subject to change.
152  */
rcu_gp_in_progress(struct rcu_state * rsp)153 static int rcu_gp_in_progress(struct rcu_state *rsp)
154 {
155 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156 }
157 
158 /*
159  * Note a quiescent state.  Because we do not need to know
160  * how many quiescent states passed, just if there was at least
161  * one since the start of the grace period, this just sets a flag.
162  * The caller must have disabled preemption.
163  */
rcu_sched_qs(int cpu)164 void rcu_sched_qs(int cpu)
165 {
166 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167 
168 	rdp->passed_quiesce_gpnum = rdp->gpnum;
169 	barrier();
170 	if (rdp->passed_quiesce == 0)
171 		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 	rdp->passed_quiesce = 1;
173 }
174 
rcu_bh_qs(int cpu)175 void rcu_bh_qs(int cpu)
176 {
177 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178 
179 	rdp->passed_quiesce_gpnum = rdp->gpnum;
180 	barrier();
181 	if (rdp->passed_quiesce == 0)
182 		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183 	rdp->passed_quiesce = 1;
184 }
185 
186 /*
187  * Note a context switch.  This is a quiescent state for RCU-sched,
188  * and requires special handling for preemptible RCU.
189  * The caller must have disabled preemption.
190  */
rcu_note_context_switch(int cpu)191 void rcu_note_context_switch(int cpu)
192 {
193 	trace_rcu_utilization("Start context switch");
194 	rcu_sched_qs(cpu);
195 	rcu_preempt_note_context_switch(cpu);
196 	trace_rcu_utilization("End context switch");
197 }
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199 
200 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
201 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
202 	.dynticks = ATOMIC_INIT(1),
203 };
204 
205 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
206 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
207 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
208 
209 module_param(blimit, long, 0);
210 module_param(qhimark, long, 0);
211 module_param(qlowmark, long, 0);
212 
213 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
215 
216 module_param(rcu_cpu_stall_suppress, int, 0644);
217 module_param(rcu_cpu_stall_timeout, int, 0644);
218 
219 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
220 static int rcu_pending(int cpu);
221 
222 /*
223  * Return the number of RCU-sched batches processed thus far for debug & stats.
224  */
rcu_batches_completed_sched(void)225 long rcu_batches_completed_sched(void)
226 {
227 	return rcu_sched_state.completed;
228 }
229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
230 
231 /*
232  * Return the number of RCU BH batches processed thus far for debug & stats.
233  */
rcu_batches_completed_bh(void)234 long rcu_batches_completed_bh(void)
235 {
236 	return rcu_bh_state.completed;
237 }
238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
239 
240 /*
241  * Force a quiescent state for RCU BH.
242  */
rcu_bh_force_quiescent_state(void)243 void rcu_bh_force_quiescent_state(void)
244 {
245 	force_quiescent_state(&rcu_bh_state, 0);
246 }
247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
248 
249 /*
250  * Record the number of times rcutorture tests have been initiated and
251  * terminated.  This information allows the debugfs tracing stats to be
252  * correlated to the rcutorture messages, even when the rcutorture module
253  * is being repeatedly loaded and unloaded.  In other words, we cannot
254  * store this state in rcutorture itself.
255  */
rcutorture_record_test_transition(void)256 void rcutorture_record_test_transition(void)
257 {
258 	rcutorture_testseq++;
259 	rcutorture_vernum = 0;
260 }
261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
262 
263 /*
264  * Record the number of writer passes through the current rcutorture test.
265  * This is also used to correlate debugfs tracing stats with the rcutorture
266  * messages.
267  */
rcutorture_record_progress(unsigned long vernum)268 void rcutorture_record_progress(unsigned long vernum)
269 {
270 	rcutorture_vernum++;
271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
273 
274 /*
275  * Force a quiescent state for RCU-sched.
276  */
rcu_sched_force_quiescent_state(void)277 void rcu_sched_force_quiescent_state(void)
278 {
279 	force_quiescent_state(&rcu_sched_state, 0);
280 }
281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
282 
283 /*
284  * Does the CPU have callbacks ready to be invoked?
285  */
286 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)287 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288 {
289 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290 }
291 
292 /*
293  * Does the current CPU require a yet-as-unscheduled grace period?
294  */
295 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)296 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297 {
298 	return *rdp->nxttail[RCU_DONE_TAIL +
299 			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
300 	       !rcu_gp_in_progress(rsp);
301 }
302 
303 /*
304  * Return the root node of the specified rcu_state structure.
305  */
rcu_get_root(struct rcu_state * rsp)306 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
307 {
308 	return &rsp->node[0];
309 }
310 
311 /*
312  * If the specified CPU is offline, tell the caller that it is in
313  * a quiescent state.  Otherwise, whack it with a reschedule IPI.
314  * Grace periods can end up waiting on an offline CPU when that
315  * CPU is in the process of coming online -- it will be added to the
316  * rcu_node bitmasks before it actually makes it online.  The same thing
317  * can happen while a CPU is in the process of coming online.  Because this
318  * race is quite rare, we check for it after detecting that the grace
319  * period has been delayed rather than checking each and every CPU
320  * each and every time we start a new grace period.
321  */
rcu_implicit_offline_qs(struct rcu_data * rdp)322 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
323 {
324 	/*
325 	 * If the CPU is offline for more than a jiffy, it is in a quiescent
326 	 * state.  We can trust its state not to change because interrupts
327 	 * are disabled.  The reason for the jiffy's worth of slack is to
328 	 * handle CPUs initializing on the way up and finding their way
329 	 * to the idle loop on the way down.
330 	 */
331 	if (cpu_is_offline(rdp->cpu) &&
332 	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
333 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
334 		rdp->offline_fqs++;
335 		return 1;
336 	}
337 	return 0;
338 }
339 
340 /*
341  * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
342  *
343  * If the new value of the ->dynticks_nesting counter now is zero,
344  * we really have entered idle, and must do the appropriate accounting.
345  * The caller must have disabled interrupts.
346  */
rcu_idle_enter_common(struct rcu_dynticks * rdtp,long long oldval)347 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
348 {
349 	trace_rcu_dyntick("Start", oldval, 0);
350 	if (!is_idle_task(current)) {
351 		struct task_struct *idle = idle_task(smp_processor_id());
352 
353 		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
354 		ftrace_dump(DUMP_ALL);
355 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 			  current->pid, current->comm,
357 			  idle->pid, idle->comm); /* must be idle task! */
358 	}
359 	rcu_prepare_for_idle(smp_processor_id());
360 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 	smp_mb__before_atomic_inc();  /* See above. */
362 	atomic_inc(&rdtp->dynticks);
363 	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
364 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
365 
366 	/*
367 	 * The idle task is not permitted to enter the idle loop while
368 	 * in an RCU read-side critical section.
369 	 */
370 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
371 			   "Illegal idle entry in RCU read-side critical section.");
372 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
373 			   "Illegal idle entry in RCU-bh read-side critical section.");
374 	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
375 			   "Illegal idle entry in RCU-sched read-side critical section.");
376 }
377 
378 /**
379  * rcu_idle_enter - inform RCU that current CPU is entering idle
380  *
381  * Enter idle mode, in other words, -leave- the mode in which RCU
382  * read-side critical sections can occur.  (Though RCU read-side
383  * critical sections can occur in irq handlers in idle, a possibility
384  * handled by irq_enter() and irq_exit().)
385  *
386  * We crowbar the ->dynticks_nesting field to zero to allow for
387  * the possibility of usermode upcalls having messed up our count
388  * of interrupt nesting level during the prior busy period.
389  */
rcu_idle_enter(void)390 void rcu_idle_enter(void)
391 {
392 	unsigned long flags;
393 	long long oldval;
394 	struct rcu_dynticks *rdtp;
395 
396 	local_irq_save(flags);
397 	rdtp = &__get_cpu_var(rcu_dynticks);
398 	oldval = rdtp->dynticks_nesting;
399 	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
400 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
401 		rdtp->dynticks_nesting = 0;
402 	else
403 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
404 	rcu_idle_enter_common(rdtp, oldval);
405 	local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL_GPL(rcu_idle_enter);
408 
409 /**
410  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
411  *
412  * Exit from an interrupt handler, which might possibly result in entering
413  * idle mode, in other words, leaving the mode in which read-side critical
414  * sections can occur.
415  *
416  * This code assumes that the idle loop never does anything that might
417  * result in unbalanced calls to irq_enter() and irq_exit().  If your
418  * architecture violates this assumption, RCU will give you what you
419  * deserve, good and hard.  But very infrequently and irreproducibly.
420  *
421  * Use things like work queues to work around this limitation.
422  *
423  * You have been warned.
424  */
rcu_irq_exit(void)425 void rcu_irq_exit(void)
426 {
427 	unsigned long flags;
428 	long long oldval;
429 	struct rcu_dynticks *rdtp;
430 
431 	local_irq_save(flags);
432 	rdtp = &__get_cpu_var(rcu_dynticks);
433 	oldval = rdtp->dynticks_nesting;
434 	rdtp->dynticks_nesting--;
435 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
436 	if (rdtp->dynticks_nesting)
437 		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
438 	else
439 		rcu_idle_enter_common(rdtp, oldval);
440 	local_irq_restore(flags);
441 }
442 
443 /*
444  * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
445  *
446  * If the new value of the ->dynticks_nesting counter was previously zero,
447  * we really have exited idle, and must do the appropriate accounting.
448  * The caller must have disabled interrupts.
449  */
rcu_idle_exit_common(struct rcu_dynticks * rdtp,long long oldval)450 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
451 {
452 	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
453 	atomic_inc(&rdtp->dynticks);
454 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
455 	smp_mb__after_atomic_inc();  /* See above. */
456 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
457 	rcu_cleanup_after_idle(smp_processor_id());
458 	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
459 	if (!is_idle_task(current)) {
460 		struct task_struct *idle = idle_task(smp_processor_id());
461 
462 		trace_rcu_dyntick("Error on exit: not idle task",
463 				  oldval, rdtp->dynticks_nesting);
464 		ftrace_dump(DUMP_ALL);
465 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
466 			  current->pid, current->comm,
467 			  idle->pid, idle->comm); /* must be idle task! */
468 	}
469 }
470 
471 /**
472  * rcu_idle_exit - inform RCU that current CPU is leaving idle
473  *
474  * Exit idle mode, in other words, -enter- the mode in which RCU
475  * read-side critical sections can occur.
476  *
477  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
478  * allow for the possibility of usermode upcalls messing up our count
479  * of interrupt nesting level during the busy period that is just
480  * now starting.
481  */
rcu_idle_exit(void)482 void rcu_idle_exit(void)
483 {
484 	unsigned long flags;
485 	struct rcu_dynticks *rdtp;
486 	long long oldval;
487 
488 	local_irq_save(flags);
489 	rdtp = &__get_cpu_var(rcu_dynticks);
490 	oldval = rdtp->dynticks_nesting;
491 	WARN_ON_ONCE(oldval < 0);
492 	if (oldval & DYNTICK_TASK_NEST_MASK)
493 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
494 	else
495 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
496 	rcu_idle_exit_common(rdtp, oldval);
497 	local_irq_restore(flags);
498 }
499 EXPORT_SYMBOL_GPL(rcu_idle_exit);
500 
501 /**
502  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
503  *
504  * Enter an interrupt handler, which might possibly result in exiting
505  * idle mode, in other words, entering the mode in which read-side critical
506  * sections can occur.
507  *
508  * Note that the Linux kernel is fully capable of entering an interrupt
509  * handler that it never exits, for example when doing upcalls to
510  * user mode!  This code assumes that the idle loop never does upcalls to
511  * user mode.  If your architecture does do upcalls from the idle loop (or
512  * does anything else that results in unbalanced calls to the irq_enter()
513  * and irq_exit() functions), RCU will give you what you deserve, good
514  * and hard.  But very infrequently and irreproducibly.
515  *
516  * Use things like work queues to work around this limitation.
517  *
518  * You have been warned.
519  */
rcu_irq_enter(void)520 void rcu_irq_enter(void)
521 {
522 	unsigned long flags;
523 	struct rcu_dynticks *rdtp;
524 	long long oldval;
525 
526 	local_irq_save(flags);
527 	rdtp = &__get_cpu_var(rcu_dynticks);
528 	oldval = rdtp->dynticks_nesting;
529 	rdtp->dynticks_nesting++;
530 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
531 	if (oldval)
532 		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
533 	else
534 		rcu_idle_exit_common(rdtp, oldval);
535 	local_irq_restore(flags);
536 }
537 
538 /**
539  * rcu_nmi_enter - inform RCU of entry to NMI context
540  *
541  * If the CPU was idle with dynamic ticks active, and there is no
542  * irq handler running, this updates rdtp->dynticks_nmi to let the
543  * RCU grace-period handling know that the CPU is active.
544  */
rcu_nmi_enter(void)545 void rcu_nmi_enter(void)
546 {
547 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
548 
549 	if (rdtp->dynticks_nmi_nesting == 0 &&
550 	    (atomic_read(&rdtp->dynticks) & 0x1))
551 		return;
552 	rdtp->dynticks_nmi_nesting++;
553 	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
554 	atomic_inc(&rdtp->dynticks);
555 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
556 	smp_mb__after_atomic_inc();  /* See above. */
557 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
558 }
559 
560 /**
561  * rcu_nmi_exit - inform RCU of exit from NMI context
562  *
563  * If the CPU was idle with dynamic ticks active, and there is no
564  * irq handler running, this updates rdtp->dynticks_nmi to let the
565  * RCU grace-period handling know that the CPU is no longer active.
566  */
rcu_nmi_exit(void)567 void rcu_nmi_exit(void)
568 {
569 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
570 
571 	if (rdtp->dynticks_nmi_nesting == 0 ||
572 	    --rdtp->dynticks_nmi_nesting != 0)
573 		return;
574 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
575 	smp_mb__before_atomic_inc();  /* See above. */
576 	atomic_inc(&rdtp->dynticks);
577 	smp_mb__after_atomic_inc();  /* Force delay to next write. */
578 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
579 }
580 
581 #ifdef CONFIG_PROVE_RCU
582 
583 /**
584  * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
585  *
586  * If the current CPU is in its idle loop and is neither in an interrupt
587  * or NMI handler, return true.
588  */
rcu_is_cpu_idle(void)589 int rcu_is_cpu_idle(void)
590 {
591 	int ret;
592 
593 	preempt_disable();
594 	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
595 	preempt_enable();
596 	return ret;
597 }
598 EXPORT_SYMBOL(rcu_is_cpu_idle);
599 
600 #ifdef CONFIG_HOTPLUG_CPU
601 
602 /*
603  * Is the current CPU online?  Disable preemption to avoid false positives
604  * that could otherwise happen due to the current CPU number being sampled,
605  * this task being preempted, its old CPU being taken offline, resuming
606  * on some other CPU, then determining that its old CPU is now offline.
607  * It is OK to use RCU on an offline processor during initial boot, hence
608  * the check for rcu_scheduler_fully_active.  Note also that it is OK
609  * for a CPU coming online to use RCU for one jiffy prior to marking itself
610  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
611  * offline to continue to use RCU for one jiffy after marking itself
612  * offline in the cpu_online_mask.  This leniency is necessary given the
613  * non-atomic nature of the online and offline processing, for example,
614  * the fact that a CPU enters the scheduler after completing the CPU_DYING
615  * notifiers.
616  *
617  * This is also why RCU internally marks CPUs online during the
618  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
619  *
620  * Disable checking if in an NMI handler because we cannot safely report
621  * errors from NMI handlers anyway.
622  */
rcu_lockdep_current_cpu_online(void)623 bool rcu_lockdep_current_cpu_online(void)
624 {
625 	struct rcu_data *rdp;
626 	struct rcu_node *rnp;
627 	bool ret;
628 
629 	if (in_nmi())
630 		return 1;
631 	preempt_disable();
632 	rdp = &__get_cpu_var(rcu_sched_data);
633 	rnp = rdp->mynode;
634 	ret = (rdp->grpmask & rnp->qsmaskinit) ||
635 	      !rcu_scheduler_fully_active;
636 	preempt_enable();
637 	return ret;
638 }
639 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
640 
641 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
642 
643 #endif /* #ifdef CONFIG_PROVE_RCU */
644 
645 /**
646  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
647  *
648  * If the current CPU is idle or running at a first-level (not nested)
649  * interrupt from idle, return true.  The caller must have at least
650  * disabled preemption.
651  */
rcu_is_cpu_rrupt_from_idle(void)652 int rcu_is_cpu_rrupt_from_idle(void)
653 {
654 	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
655 }
656 
657 /*
658  * Snapshot the specified CPU's dynticks counter so that we can later
659  * credit them with an implicit quiescent state.  Return 1 if this CPU
660  * is in dynticks idle mode, which is an extended quiescent state.
661  */
dyntick_save_progress_counter(struct rcu_data * rdp)662 static int dyntick_save_progress_counter(struct rcu_data *rdp)
663 {
664 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
665 	return (rdp->dynticks_snap & 0x1) == 0;
666 }
667 
668 /*
669  * Return true if the specified CPU has passed through a quiescent
670  * state by virtue of being in or having passed through an dynticks
671  * idle state since the last call to dyntick_save_progress_counter()
672  * for this same CPU.
673  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)674 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
675 {
676 	unsigned int curr;
677 	unsigned int snap;
678 
679 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
680 	snap = (unsigned int)rdp->dynticks_snap;
681 
682 	/*
683 	 * If the CPU passed through or entered a dynticks idle phase with
684 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
685 	 * already acknowledged the request to pass through a quiescent
686 	 * state.  Either way, that CPU cannot possibly be in an RCU
687 	 * read-side critical section that started before the beginning
688 	 * of the current RCU grace period.
689 	 */
690 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
691 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
692 		rdp->dynticks_fqs++;
693 		return 1;
694 	}
695 
696 	/* Go check for the CPU being offline. */
697 	return rcu_implicit_offline_qs(rdp);
698 }
699 
jiffies_till_stall_check(void)700 static int jiffies_till_stall_check(void)
701 {
702 	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
703 
704 	/*
705 	 * Limit check must be consistent with the Kconfig limits
706 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
707 	 */
708 	if (till_stall_check < 3) {
709 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
710 		till_stall_check = 3;
711 	} else if (till_stall_check > 300) {
712 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
713 		till_stall_check = 300;
714 	}
715 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
716 }
717 
record_gp_stall_check_time(struct rcu_state * rsp)718 static void record_gp_stall_check_time(struct rcu_state *rsp)
719 {
720 	rsp->gp_start = jiffies;
721 	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
722 }
723 
print_other_cpu_stall(struct rcu_state * rsp)724 static void print_other_cpu_stall(struct rcu_state *rsp)
725 {
726 	int cpu;
727 	long delta;
728 	unsigned long flags;
729 	int ndetected;
730 	struct rcu_node *rnp = rcu_get_root(rsp);
731 
732 	/* Only let one CPU complain about others per time interval. */
733 
734 	raw_spin_lock_irqsave(&rnp->lock, flags);
735 	delta = jiffies - rsp->jiffies_stall;
736 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
737 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
738 		return;
739 	}
740 	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
741 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
742 
743 	/*
744 	 * OK, time to rat on our buddy...
745 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
746 	 * RCU CPU stall warnings.
747 	 */
748 	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
749 	       rsp->name);
750 	print_cpu_stall_info_begin();
751 	rcu_for_each_leaf_node(rsp, rnp) {
752 		raw_spin_lock_irqsave(&rnp->lock, flags);
753 		ndetected += rcu_print_task_stall(rnp);
754 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
755 		if (rnp->qsmask == 0)
756 			continue;
757 		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
758 			if (rnp->qsmask & (1UL << cpu)) {
759 				print_cpu_stall_info(rsp, rnp->grplo + cpu);
760 				ndetected++;
761 			}
762 	}
763 
764 	/*
765 	 * Now rat on any tasks that got kicked up to the root rcu_node
766 	 * due to CPU offlining.
767 	 */
768 	rnp = rcu_get_root(rsp);
769 	raw_spin_lock_irqsave(&rnp->lock, flags);
770 	ndetected = rcu_print_task_stall(rnp);
771 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
772 
773 	print_cpu_stall_info_end();
774 	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
775 	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
776 	if (ndetected == 0)
777 		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
778 	else if (!trigger_all_cpu_backtrace())
779 		dump_stack();
780 
781 	/* If so configured, complain about tasks blocking the grace period. */
782 
783 	rcu_print_detail_task_stall(rsp);
784 
785 	force_quiescent_state(rsp, 0);  /* Kick them all. */
786 }
787 
print_cpu_stall(struct rcu_state * rsp)788 static void print_cpu_stall(struct rcu_state *rsp)
789 {
790 	unsigned long flags;
791 	struct rcu_node *rnp = rcu_get_root(rsp);
792 
793 	/*
794 	 * OK, time to rat on ourselves...
795 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
796 	 * RCU CPU stall warnings.
797 	 */
798 	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
799 	print_cpu_stall_info_begin();
800 	print_cpu_stall_info(rsp, smp_processor_id());
801 	print_cpu_stall_info_end();
802 	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
803 	if (!trigger_all_cpu_backtrace())
804 		dump_stack();
805 
806 	raw_spin_lock_irqsave(&rnp->lock, flags);
807 	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
808 		rsp->jiffies_stall = jiffies +
809 				     3 * jiffies_till_stall_check() + 3;
810 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
811 
812 	set_need_resched();  /* kick ourselves to get things going. */
813 }
814 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)815 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
816 {
817 	unsigned long j;
818 	unsigned long js;
819 	struct rcu_node *rnp;
820 
821 	if (rcu_cpu_stall_suppress)
822 		return;
823 	j = ACCESS_ONCE(jiffies);
824 	js = ACCESS_ONCE(rsp->jiffies_stall);
825 	rnp = rdp->mynode;
826 	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
827 
828 		/* We haven't checked in, so go dump stack. */
829 		print_cpu_stall(rsp);
830 
831 	} else if (rcu_gp_in_progress(rsp) &&
832 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
833 
834 		/* They had a few time units to dump stack, so complain. */
835 		print_other_cpu_stall(rsp);
836 	}
837 }
838 
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)839 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
840 {
841 	rcu_cpu_stall_suppress = 1;
842 	return NOTIFY_DONE;
843 }
844 
845 /**
846  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
847  *
848  * Set the stall-warning timeout way off into the future, thus preventing
849  * any RCU CPU stall-warning messages from appearing in the current set of
850  * RCU grace periods.
851  *
852  * The caller must disable hard irqs.
853  */
rcu_cpu_stall_reset(void)854 void rcu_cpu_stall_reset(void)
855 {
856 	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
857 	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
858 	rcu_preempt_stall_reset();
859 }
860 
861 static struct notifier_block rcu_panic_block = {
862 	.notifier_call = rcu_panic,
863 };
864 
check_cpu_stall_init(void)865 static void __init check_cpu_stall_init(void)
866 {
867 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
868 }
869 
870 /*
871  * Update CPU-local rcu_data state to record the newly noticed grace period.
872  * This is used both when we started the grace period and when we notice
873  * that someone else started the grace period.  The caller must hold the
874  * ->lock of the leaf rcu_node structure corresponding to the current CPU,
875  *  and must have irqs disabled.
876  */
__note_new_gpnum(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)877 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
878 {
879 	if (rdp->gpnum != rnp->gpnum) {
880 		/*
881 		 * If the current grace period is waiting for this CPU,
882 		 * set up to detect a quiescent state, otherwise don't
883 		 * go looking for one.
884 		 */
885 		rdp->gpnum = rnp->gpnum;
886 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
887 		if (rnp->qsmask & rdp->grpmask) {
888 			rdp->qs_pending = 1;
889 			rdp->passed_quiesce = 0;
890 		} else
891 			rdp->qs_pending = 0;
892 		zero_cpu_stall_ticks(rdp);
893 	}
894 }
895 
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)896 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
897 {
898 	unsigned long flags;
899 	struct rcu_node *rnp;
900 
901 	local_irq_save(flags);
902 	rnp = rdp->mynode;
903 	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
904 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 		local_irq_restore(flags);
906 		return;
907 	}
908 	__note_new_gpnum(rsp, rnp, rdp);
909 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 }
911 
912 /*
913  * Did someone else start a new RCU grace period start since we last
914  * checked?  Update local state appropriately if so.  Must be called
915  * on the CPU corresponding to rdp.
916  */
917 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)918 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
919 {
920 	unsigned long flags;
921 	int ret = 0;
922 
923 	local_irq_save(flags);
924 	if (rdp->gpnum != rsp->gpnum) {
925 		note_new_gpnum(rsp, rdp);
926 		ret = 1;
927 	}
928 	local_irq_restore(flags);
929 	return ret;
930 }
931 
932 /*
933  * Advance this CPU's callbacks, but only if the current grace period
934  * has ended.  This may be called only from the CPU to whom the rdp
935  * belongs.  In addition, the corresponding leaf rcu_node structure's
936  * ->lock must be held by the caller, with irqs disabled.
937  */
938 static void
__rcu_process_gp_end(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)939 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
940 {
941 	/* Did another grace period end? */
942 	if (rdp->completed != rnp->completed) {
943 
944 		/* Advance callbacks.  No harm if list empty. */
945 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
946 		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
947 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
948 
949 		/* Remember that we saw this grace-period completion. */
950 		rdp->completed = rnp->completed;
951 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
952 
953 		/*
954 		 * If we were in an extended quiescent state, we may have
955 		 * missed some grace periods that others CPUs handled on
956 		 * our behalf. Catch up with this state to avoid noting
957 		 * spurious new grace periods.  If another grace period
958 		 * has started, then rnp->gpnum will have advanced, so
959 		 * we will detect this later on.
960 		 */
961 		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
962 			rdp->gpnum = rdp->completed;
963 
964 		/*
965 		 * If RCU does not need a quiescent state from this CPU,
966 		 * then make sure that this CPU doesn't go looking for one.
967 		 */
968 		if ((rnp->qsmask & rdp->grpmask) == 0)
969 			rdp->qs_pending = 0;
970 	}
971 }
972 
973 /*
974  * Advance this CPU's callbacks, but only if the current grace period
975  * has ended.  This may be called only from the CPU to whom the rdp
976  * belongs.
977  */
978 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)979 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
980 {
981 	unsigned long flags;
982 	struct rcu_node *rnp;
983 
984 	local_irq_save(flags);
985 	rnp = rdp->mynode;
986 	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
987 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
988 		local_irq_restore(flags);
989 		return;
990 	}
991 	__rcu_process_gp_end(rsp, rnp, rdp);
992 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
993 }
994 
995 /*
996  * Do per-CPU grace-period initialization for running CPU.  The caller
997  * must hold the lock of the leaf rcu_node structure corresponding to
998  * this CPU.
999  */
1000 static void
rcu_start_gp_per_cpu(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1001 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1002 {
1003 	/* Prior grace period ended, so advance callbacks for current CPU. */
1004 	__rcu_process_gp_end(rsp, rnp, rdp);
1005 
1006 	/*
1007 	 * Because this CPU just now started the new grace period, we know
1008 	 * that all of its callbacks will be covered by this upcoming grace
1009 	 * period, even the ones that were registered arbitrarily recently.
1010 	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1011 	 *
1012 	 * Other CPUs cannot be sure exactly when the grace period started.
1013 	 * Therefore, their recently registered callbacks must pass through
1014 	 * an additional RCU_NEXT_READY stage, so that they will be handled
1015 	 * by the next RCU grace period.
1016 	 */
1017 	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1018 	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1019 
1020 	/* Set state so that this CPU will detect the next quiescent state. */
1021 	__note_new_gpnum(rsp, rnp, rdp);
1022 }
1023 
1024 /*
1025  * Start a new RCU grace period if warranted, re-initializing the hierarchy
1026  * in preparation for detecting the next grace period.  The caller must hold
1027  * the root node's ->lock, which is released before return.  Hard irqs must
1028  * be disabled.
1029  *
1030  * Note that it is legal for a dying CPU (which is marked as offline) to
1031  * invoke this function.  This can happen when the dying CPU reports its
1032  * quiescent state.
1033  */
1034 static void
rcu_start_gp(struct rcu_state * rsp,unsigned long flags)1035 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1036 	__releases(rcu_get_root(rsp)->lock)
1037 {
1038 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1039 	struct rcu_node *rnp = rcu_get_root(rsp);
1040 
1041 	if (!rcu_scheduler_fully_active ||
1042 	    !cpu_needs_another_gp(rsp, rdp)) {
1043 		/*
1044 		 * Either the scheduler hasn't yet spawned the first
1045 		 * non-idle task or this CPU does not need another
1046 		 * grace period.  Either way, don't start a new grace
1047 		 * period.
1048 		 */
1049 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1050 		return;
1051 	}
1052 
1053 	if (rsp->fqs_active) {
1054 		/*
1055 		 * This CPU needs a grace period, but force_quiescent_state()
1056 		 * is running.  Tell it to start one on this CPU's behalf.
1057 		 */
1058 		rsp->fqs_need_gp = 1;
1059 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1060 		return;
1061 	}
1062 
1063 	/* Advance to a new grace period and initialize state. */
1064 	rsp->gpnum++;
1065 	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1066 	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1067 	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1068 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1069 	record_gp_stall_check_time(rsp);
1070 	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1071 
1072 	/* Exclude any concurrent CPU-hotplug operations. */
1073 	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1074 
1075 	/*
1076 	 * Set the quiescent-state-needed bits in all the rcu_node
1077 	 * structures for all currently online CPUs in breadth-first
1078 	 * order, starting from the root rcu_node structure.  This
1079 	 * operation relies on the layout of the hierarchy within the
1080 	 * rsp->node[] array.  Note that other CPUs will access only
1081 	 * the leaves of the hierarchy, which still indicate that no
1082 	 * grace period is in progress, at least until the corresponding
1083 	 * leaf node has been initialized.  In addition, we have excluded
1084 	 * CPU-hotplug operations.
1085 	 *
1086 	 * Note that the grace period cannot complete until we finish
1087 	 * the initialization process, as there will be at least one
1088 	 * qsmask bit set in the root node until that time, namely the
1089 	 * one corresponding to this CPU, due to the fact that we have
1090 	 * irqs disabled.
1091 	 */
1092 	rcu_for_each_node_breadth_first(rsp, rnp) {
1093 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1094 		rcu_preempt_check_blocked_tasks(rnp);
1095 		rnp->qsmask = rnp->qsmaskinit;
1096 		rnp->gpnum = rsp->gpnum;
1097 		rnp->completed = rsp->completed;
1098 		if (rnp == rdp->mynode)
1099 			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1100 		rcu_preempt_boost_start_gp(rnp);
1101 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1102 					    rnp->level, rnp->grplo,
1103 					    rnp->grphi, rnp->qsmask);
1104 		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1105 	}
1106 
1107 	rnp = rcu_get_root(rsp);
1108 	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1109 	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1110 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1111 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1112 }
1113 
1114 /*
1115  * Report a full set of quiescent states to the specified rcu_state
1116  * data structure.  This involves cleaning up after the prior grace
1117  * period and letting rcu_start_gp() start up the next grace period
1118  * if one is needed.  Note that the caller must hold rnp->lock, as
1119  * required by rcu_start_gp(), which will release it.
1120  */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1121 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1122 	__releases(rcu_get_root(rsp)->lock)
1123 {
1124 	unsigned long gp_duration;
1125 	struct rcu_node *rnp = rcu_get_root(rsp);
1126 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1127 
1128 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1129 
1130 	/*
1131 	 * Ensure that all grace-period and pre-grace-period activity
1132 	 * is seen before the assignment to rsp->completed.
1133 	 */
1134 	smp_mb(); /* See above block comment. */
1135 	gp_duration = jiffies - rsp->gp_start;
1136 	if (gp_duration > rsp->gp_max)
1137 		rsp->gp_max = gp_duration;
1138 
1139 	/*
1140 	 * We know the grace period is complete, but to everyone else
1141 	 * it appears to still be ongoing.  But it is also the case
1142 	 * that to everyone else it looks like there is nothing that
1143 	 * they can do to advance the grace period.  It is therefore
1144 	 * safe for us to drop the lock in order to mark the grace
1145 	 * period as completed in all of the rcu_node structures.
1146 	 *
1147 	 * But if this CPU needs another grace period, it will take
1148 	 * care of this while initializing the next grace period.
1149 	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1150 	 * because the callbacks have not yet been advanced: Those
1151 	 * callbacks are waiting on the grace period that just now
1152 	 * completed.
1153 	 */
1154 	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1155 		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
1156 
1157 		/*
1158 		 * Propagate new ->completed value to rcu_node structures
1159 		 * so that other CPUs don't have to wait until the start
1160 		 * of the next grace period to process their callbacks.
1161 		 */
1162 		rcu_for_each_node_breadth_first(rsp, rnp) {
1163 			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1164 			rnp->completed = rsp->gpnum;
1165 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1166 		}
1167 		rnp = rcu_get_root(rsp);
1168 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1169 	}
1170 
1171 	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1172 	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1173 	rsp->fqs_state = RCU_GP_IDLE;
1174 	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
1175 }
1176 
1177 /*
1178  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1179  * Allows quiescent states for a group of CPUs to be reported at one go
1180  * to the specified rcu_node structure, though all the CPUs in the group
1181  * must be represented by the same rcu_node structure (which need not be
1182  * a leaf rcu_node structure, though it often will be).  That structure's
1183  * lock must be held upon entry, and it is released before return.
1184  */
1185 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1186 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1187 		  struct rcu_node *rnp, unsigned long flags)
1188 	__releases(rnp->lock)
1189 {
1190 	struct rcu_node *rnp_c;
1191 
1192 	/* Walk up the rcu_node hierarchy. */
1193 	for (;;) {
1194 		if (!(rnp->qsmask & mask)) {
1195 
1196 			/* Our bit has already been cleared, so done. */
1197 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1198 			return;
1199 		}
1200 		rnp->qsmask &= ~mask;
1201 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1202 						 mask, rnp->qsmask, rnp->level,
1203 						 rnp->grplo, rnp->grphi,
1204 						 !!rnp->gp_tasks);
1205 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1206 
1207 			/* Other bits still set at this level, so done. */
1208 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1209 			return;
1210 		}
1211 		mask = rnp->grpmask;
1212 		if (rnp->parent == NULL) {
1213 
1214 			/* No more levels.  Exit loop holding root lock. */
1215 
1216 			break;
1217 		}
1218 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1219 		rnp_c = rnp;
1220 		rnp = rnp->parent;
1221 		raw_spin_lock_irqsave(&rnp->lock, flags);
1222 		WARN_ON_ONCE(rnp_c->qsmask);
1223 	}
1224 
1225 	/*
1226 	 * Get here if we are the last CPU to pass through a quiescent
1227 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1228 	 * to clean up and start the next grace period if one is needed.
1229 	 */
1230 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1231 }
1232 
1233 /*
1234  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1235  * structure.  This must be either called from the specified CPU, or
1236  * called when the specified CPU is known to be offline (and when it is
1237  * also known that no other CPU is concurrently trying to help the offline
1238  * CPU).  The lastcomp argument is used to make sure we are still in the
1239  * grace period of interest.  We don't want to end the current grace period
1240  * based on quiescent states detected in an earlier grace period!
1241  */
1242 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp,long lastgp)1243 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1244 {
1245 	unsigned long flags;
1246 	unsigned long mask;
1247 	struct rcu_node *rnp;
1248 
1249 	rnp = rdp->mynode;
1250 	raw_spin_lock_irqsave(&rnp->lock, flags);
1251 	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1252 
1253 		/*
1254 		 * The grace period in which this quiescent state was
1255 		 * recorded has ended, so don't report it upwards.
1256 		 * We will instead need a new quiescent state that lies
1257 		 * within the current grace period.
1258 		 */
1259 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1260 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1261 		return;
1262 	}
1263 	mask = rdp->grpmask;
1264 	if ((rnp->qsmask & mask) == 0) {
1265 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1266 	} else {
1267 		rdp->qs_pending = 0;
1268 
1269 		/*
1270 		 * This GP can't end until cpu checks in, so all of our
1271 		 * callbacks can be processed during the next GP.
1272 		 */
1273 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1274 
1275 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1276 	}
1277 }
1278 
1279 /*
1280  * Check to see if there is a new grace period of which this CPU
1281  * is not yet aware, and if so, set up local rcu_data state for it.
1282  * Otherwise, see if this CPU has just passed through its first
1283  * quiescent state for this grace period, and record that fact if so.
1284  */
1285 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)1286 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1287 {
1288 	/* If there is now a new grace period, record and return. */
1289 	if (check_for_new_grace_period(rsp, rdp))
1290 		return;
1291 
1292 	/*
1293 	 * Does this CPU still need to do its part for current grace period?
1294 	 * If no, return and let the other CPUs do their part as well.
1295 	 */
1296 	if (!rdp->qs_pending)
1297 		return;
1298 
1299 	/*
1300 	 * Was there a quiescent state since the beginning of the grace
1301 	 * period? If no, then exit and wait for the next call.
1302 	 */
1303 	if (!rdp->passed_quiesce)
1304 		return;
1305 
1306 	/*
1307 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1308 	 * judge of that).
1309 	 */
1310 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1311 }
1312 
1313 #ifdef CONFIG_HOTPLUG_CPU
1314 
1315 /*
1316  * Move a dying CPU's RCU callbacks to online CPU's callback list.
1317  * Also record a quiescent state for this CPU for the current grace period.
1318  * Synchronization and interrupt disabling are not required because
1319  * this function executes in stop_machine() context.  Therefore, cleanup
1320  * operations that might block must be done later from the CPU_DEAD
1321  * notifier.
1322  *
1323  * Note that the outgoing CPU's bit has already been cleared in the
1324  * cpu_online_mask.  This allows us to randomly pick a callback
1325  * destination from the bits set in that mask.
1326  */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1327 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1328 {
1329 	int i;
1330 	unsigned long mask;
1331 	int receive_cpu = cpumask_any(cpu_online_mask);
1332 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1333 	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1334 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1335 
1336 	/* First, adjust the counts. */
1337 	if (rdp->nxtlist != NULL) {
1338 		receive_rdp->qlen_lazy += rdp->qlen_lazy;
1339 		receive_rdp->qlen += rdp->qlen;
1340 		rdp->qlen_lazy = 0;
1341 		rdp->qlen = 0;
1342 	}
1343 
1344 	/*
1345 	 * Next, move ready-to-invoke callbacks to be invoked on some
1346 	 * other CPU.  These will not be required to pass through another
1347 	 * grace period:  They are done, regardless of CPU.
1348 	 */
1349 	if (rdp->nxtlist != NULL &&
1350 	    rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1351 		struct rcu_head *oldhead;
1352 		struct rcu_head **oldtail;
1353 		struct rcu_head **newtail;
1354 
1355 		oldhead = rdp->nxtlist;
1356 		oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1357 		rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1358 		*rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1359 		*receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1360 		newtail = rdp->nxttail[RCU_DONE_TAIL];
1361 		for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1362 			if (receive_rdp->nxttail[i] == oldtail)
1363 				receive_rdp->nxttail[i] = newtail;
1364 			if (rdp->nxttail[i] == newtail)
1365 				rdp->nxttail[i] = &rdp->nxtlist;
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * Finally, put the rest of the callbacks at the end of the list.
1371 	 * The ones that made it partway through get to start over:  We
1372 	 * cannot assume that grace periods are synchronized across CPUs.
1373 	 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1374 	 * this does not seem compelling.  Not yet, anyway.)
1375 	 */
1376 	if (rdp->nxtlist != NULL) {
1377 		*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1378 		receive_rdp->nxttail[RCU_NEXT_TAIL] =
1379 				rdp->nxttail[RCU_NEXT_TAIL];
1380 		receive_rdp->n_cbs_adopted += rdp->qlen;
1381 		rdp->n_cbs_orphaned += rdp->qlen;
1382 
1383 		rdp->nxtlist = NULL;
1384 		for (i = 0; i < RCU_NEXT_SIZE; i++)
1385 			rdp->nxttail[i] = &rdp->nxtlist;
1386 	}
1387 
1388 	/*
1389 	 * Record a quiescent state for the dying CPU.  This is safe
1390 	 * only because we have already cleared out the callbacks.
1391 	 * (Otherwise, the RCU core might try to schedule the invocation
1392 	 * of callbacks on this now-offline CPU, which would be bad.)
1393 	 */
1394 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1395 	trace_rcu_grace_period(rsp->name,
1396 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1397 			       "cpuofl");
1398 	rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1399 	/* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1400 }
1401 
1402 /*
1403  * The CPU has been completely removed, and some other CPU is reporting
1404  * this fact from process context.  Do the remainder of the cleanup.
1405  * There can only be one CPU hotplug operation at a time, so no other
1406  * CPU can be attempting to update rcu_cpu_kthread_task.
1407  */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1408 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1409 {
1410 	unsigned long flags;
1411 	unsigned long mask;
1412 	int need_report = 0;
1413 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1414 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rnp. */
1415 
1416 	/* Adjust any no-longer-needed kthreads. */
1417 	rcu_stop_cpu_kthread(cpu);
1418 	rcu_node_kthread_setaffinity(rnp, -1);
1419 
1420 	/* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1421 
1422 	/* Exclude any attempts to start a new grace period. */
1423 	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1424 
1425 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1426 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1427 	do {
1428 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1429 		rnp->qsmaskinit &= ~mask;
1430 		if (rnp->qsmaskinit != 0) {
1431 			if (rnp != rdp->mynode)
1432 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1433 			break;
1434 		}
1435 		if (rnp == rdp->mynode)
1436 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1437 		else
1438 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1439 		mask = rnp->grpmask;
1440 		rnp = rnp->parent;
1441 	} while (rnp != NULL);
1442 
1443 	/*
1444 	 * We still hold the leaf rcu_node structure lock here, and
1445 	 * irqs are still disabled.  The reason for this subterfuge is
1446 	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1447 	 * held leads to deadlock.
1448 	 */
1449 	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1450 	rnp = rdp->mynode;
1451 	if (need_report & RCU_OFL_TASKS_NORM_GP)
1452 		rcu_report_unblock_qs_rnp(rnp, flags);
1453 	else
1454 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1455 	if (need_report & RCU_OFL_TASKS_EXP_GP)
1456 		rcu_report_exp_rnp(rsp, rnp, true);
1457 }
1458 
1459 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1460 
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1461 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1462 {
1463 }
1464 
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1465 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1466 {
1467 }
1468 
1469 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1470 
1471 /*
1472  * Invoke any RCU callbacks that have made it to the end of their grace
1473  * period.  Thottle as specified by rdp->blimit.
1474  */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)1475 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1476 {
1477 	unsigned long flags;
1478 	struct rcu_head *next, *list, **tail;
1479 	long bl, count, count_lazy;
1480 
1481 	/* If no callbacks are ready, just return.*/
1482 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1483 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1484 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1485 				    need_resched(), is_idle_task(current),
1486 				    rcu_is_callbacks_kthread());
1487 		return;
1488 	}
1489 
1490 	/*
1491 	 * Extract the list of ready callbacks, disabling to prevent
1492 	 * races with call_rcu() from interrupt handlers.
1493 	 */
1494 	local_irq_save(flags);
1495 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1496 	bl = rdp->blimit;
1497 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1498 	list = rdp->nxtlist;
1499 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1500 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1501 	tail = rdp->nxttail[RCU_DONE_TAIL];
1502 	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1503 		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1504 			rdp->nxttail[count] = &rdp->nxtlist;
1505 	local_irq_restore(flags);
1506 
1507 	/* Invoke callbacks. */
1508 	count = count_lazy = 0;
1509 	while (list) {
1510 		next = list->next;
1511 		prefetch(next);
1512 		debug_rcu_head_unqueue(list);
1513 		if (__rcu_reclaim(rsp->name, list))
1514 			count_lazy++;
1515 		list = next;
1516 		/* Stop only if limit reached and CPU has something to do. */
1517 		if (++count >= bl &&
1518 		    (need_resched() ||
1519 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1520 			break;
1521 	}
1522 
1523 	local_irq_save(flags);
1524 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1525 			    is_idle_task(current),
1526 			    rcu_is_callbacks_kthread());
1527 
1528 	/* Update count, and requeue any remaining callbacks. */
1529 	rdp->qlen_lazy -= count_lazy;
1530 	rdp->qlen -= count;
1531 	rdp->n_cbs_invoked += count;
1532 	if (list != NULL) {
1533 		*tail = rdp->nxtlist;
1534 		rdp->nxtlist = list;
1535 		for (count = 0; count < RCU_NEXT_SIZE; count++)
1536 			if (&rdp->nxtlist == rdp->nxttail[count])
1537 				rdp->nxttail[count] = tail;
1538 			else
1539 				break;
1540 	}
1541 
1542 	/* Reinstate batch limit if we have worked down the excess. */
1543 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1544 		rdp->blimit = blimit;
1545 
1546 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1547 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1548 		rdp->qlen_last_fqs_check = 0;
1549 		rdp->n_force_qs_snap = rsp->n_force_qs;
1550 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1551 		rdp->qlen_last_fqs_check = rdp->qlen;
1552 
1553 	local_irq_restore(flags);
1554 
1555 	/* Re-invoke RCU core processing if there are callbacks remaining. */
1556 	if (cpu_has_callbacks_ready_to_invoke(rdp))
1557 		invoke_rcu_core();
1558 }
1559 
1560 /*
1561  * Check to see if this CPU is in a non-context-switch quiescent state
1562  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1563  * Also schedule RCU core processing.
1564  *
1565  * This function must be called from hardirq context.  It is normally
1566  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
1567  * false, there is no point in invoking rcu_check_callbacks().
1568  */
rcu_check_callbacks(int cpu,int user)1569 void rcu_check_callbacks(int cpu, int user)
1570 {
1571 	trace_rcu_utilization("Start scheduler-tick");
1572 	increment_cpu_stall_ticks();
1573 	if (user || rcu_is_cpu_rrupt_from_idle()) {
1574 
1575 		/*
1576 		 * Get here if this CPU took its interrupt from user
1577 		 * mode or from the idle loop, and if this is not a
1578 		 * nested interrupt.  In this case, the CPU is in
1579 		 * a quiescent state, so note it.
1580 		 *
1581 		 * No memory barrier is required here because both
1582 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1583 		 * variables that other CPUs neither access nor modify,
1584 		 * at least not while the corresponding CPU is online.
1585 		 */
1586 
1587 		rcu_sched_qs(cpu);
1588 		rcu_bh_qs(cpu);
1589 
1590 	} else if (!in_softirq()) {
1591 
1592 		/*
1593 		 * Get here if this CPU did not take its interrupt from
1594 		 * softirq, in other words, if it is not interrupting
1595 		 * a rcu_bh read-side critical section.  This is an _bh
1596 		 * critical section, so note it.
1597 		 */
1598 
1599 		rcu_bh_qs(cpu);
1600 	}
1601 	rcu_preempt_check_callbacks(cpu);
1602 	if (rcu_pending(cpu))
1603 		invoke_rcu_core();
1604 	trace_rcu_utilization("End scheduler-tick");
1605 }
1606 
1607 /*
1608  * Scan the leaf rcu_node structures, processing dyntick state for any that
1609  * have not yet encountered a quiescent state, using the function specified.
1610  * Also initiate boosting for any threads blocked on the root rcu_node.
1611  *
1612  * The caller must have suppressed start of new grace periods.
1613  */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data *))1614 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1615 {
1616 	unsigned long bit;
1617 	int cpu;
1618 	unsigned long flags;
1619 	unsigned long mask;
1620 	struct rcu_node *rnp;
1621 
1622 	rcu_for_each_leaf_node(rsp, rnp) {
1623 		mask = 0;
1624 		raw_spin_lock_irqsave(&rnp->lock, flags);
1625 		if (!rcu_gp_in_progress(rsp)) {
1626 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1627 			return;
1628 		}
1629 		if (rnp->qsmask == 0) {
1630 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1631 			continue;
1632 		}
1633 		cpu = rnp->grplo;
1634 		bit = 1;
1635 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1636 			if ((rnp->qsmask & bit) != 0 &&
1637 			    f(per_cpu_ptr(rsp->rda, cpu)))
1638 				mask |= bit;
1639 		}
1640 		if (mask != 0) {
1641 
1642 			/* rcu_report_qs_rnp() releases rnp->lock. */
1643 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1644 			continue;
1645 		}
1646 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1647 	}
1648 	rnp = rcu_get_root(rsp);
1649 	if (rnp->qsmask == 0) {
1650 		raw_spin_lock_irqsave(&rnp->lock, flags);
1651 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1652 	}
1653 }
1654 
1655 /*
1656  * Force quiescent states on reluctant CPUs, and also detect which
1657  * CPUs are in dyntick-idle mode.
1658  */
force_quiescent_state(struct rcu_state * rsp,int relaxed)1659 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1660 {
1661 	unsigned long flags;
1662 	struct rcu_node *rnp = rcu_get_root(rsp);
1663 
1664 	trace_rcu_utilization("Start fqs");
1665 	if (!rcu_gp_in_progress(rsp)) {
1666 		trace_rcu_utilization("End fqs");
1667 		return;  /* No grace period in progress, nothing to force. */
1668 	}
1669 	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1670 		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1671 		trace_rcu_utilization("End fqs");
1672 		return;	/* Someone else is already on the job. */
1673 	}
1674 	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1675 		goto unlock_fqs_ret; /* no emergency and done recently. */
1676 	rsp->n_force_qs++;
1677 	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1678 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1679 	if(!rcu_gp_in_progress(rsp)) {
1680 		rsp->n_force_qs_ngp++;
1681 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1682 		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1683 	}
1684 	rsp->fqs_active = 1;
1685 	switch (rsp->fqs_state) {
1686 	case RCU_GP_IDLE:
1687 	case RCU_GP_INIT:
1688 
1689 		break; /* grace period idle or initializing, ignore. */
1690 
1691 	case RCU_SAVE_DYNTICK:
1692 		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1693 			break; /* So gcc recognizes the dead code. */
1694 
1695 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1696 
1697 		/* Record dyntick-idle state. */
1698 		force_qs_rnp(rsp, dyntick_save_progress_counter);
1699 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1700 		if (rcu_gp_in_progress(rsp))
1701 			rsp->fqs_state = RCU_FORCE_QS;
1702 		break;
1703 
1704 	case RCU_FORCE_QS:
1705 
1706 		/* Check dyntick-idle state, send IPI to laggarts. */
1707 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1708 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1709 
1710 		/* Leave state in case more forcing is required. */
1711 
1712 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1713 		break;
1714 	}
1715 	rsp->fqs_active = 0;
1716 	if (rsp->fqs_need_gp) {
1717 		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1718 		rsp->fqs_need_gp = 0;
1719 		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1720 		trace_rcu_utilization("End fqs");
1721 		return;
1722 	}
1723 	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1724 unlock_fqs_ret:
1725 	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1726 	trace_rcu_utilization("End fqs");
1727 }
1728 
1729 /*
1730  * This does the RCU core processing work for the specified rcu_state
1731  * and rcu_data structures.  This may be called only from the CPU to
1732  * whom the rdp belongs.
1733  */
1734 static void
__rcu_process_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1735 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1736 {
1737 	unsigned long flags;
1738 
1739 	WARN_ON_ONCE(rdp->beenonline == 0);
1740 
1741 	/*
1742 	 * If an RCU GP has gone long enough, go check for dyntick
1743 	 * idle CPUs and, if needed, send resched IPIs.
1744 	 */
1745 	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1746 		force_quiescent_state(rsp, 1);
1747 
1748 	/*
1749 	 * Advance callbacks in response to end of earlier grace
1750 	 * period that some other CPU ended.
1751 	 */
1752 	rcu_process_gp_end(rsp, rdp);
1753 
1754 	/* Update RCU state based on any recent quiescent states. */
1755 	rcu_check_quiescent_state(rsp, rdp);
1756 
1757 	/* Does this CPU require a not-yet-started grace period? */
1758 	if (cpu_needs_another_gp(rsp, rdp)) {
1759 		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1760 		rcu_start_gp(rsp, flags);  /* releases above lock */
1761 	}
1762 
1763 	/* If there are callbacks ready, invoke them. */
1764 	if (cpu_has_callbacks_ready_to_invoke(rdp))
1765 		invoke_rcu_callbacks(rsp, rdp);
1766 }
1767 
1768 /*
1769  * Do RCU core processing for the current CPU.
1770  */
rcu_process_callbacks(struct softirq_action * unused)1771 static void rcu_process_callbacks(struct softirq_action *unused)
1772 {
1773 	trace_rcu_utilization("Start RCU core");
1774 	__rcu_process_callbacks(&rcu_sched_state,
1775 				&__get_cpu_var(rcu_sched_data));
1776 	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1777 	rcu_preempt_process_callbacks();
1778 	trace_rcu_utilization("End RCU core");
1779 }
1780 
1781 /*
1782  * Schedule RCU callback invocation.  If the specified type of RCU
1783  * does not support RCU priority boosting, just do a direct call,
1784  * otherwise wake up the per-CPU kernel kthread.  Note that because we
1785  * are running on the current CPU with interrupts disabled, the
1786  * rcu_cpu_kthread_task cannot disappear out from under us.
1787  */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1788 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1789 {
1790 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1791 		return;
1792 	if (likely(!rsp->boost)) {
1793 		rcu_do_batch(rsp, rdp);
1794 		return;
1795 	}
1796 	invoke_rcu_callbacks_kthread();
1797 }
1798 
invoke_rcu_core(void)1799 static void invoke_rcu_core(void)
1800 {
1801 	raise_softirq(RCU_SOFTIRQ);
1802 }
1803 
1804 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,bool lazy)1805 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1806 	   struct rcu_state *rsp, bool lazy)
1807 {
1808 	unsigned long flags;
1809 	struct rcu_data *rdp;
1810 
1811 	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1812 	debug_rcu_head_queue(head);
1813 	head->func = func;
1814 	head->next = NULL;
1815 
1816 	smp_mb(); /* Ensure RCU update seen before callback registry. */
1817 
1818 	/*
1819 	 * Opportunistically note grace-period endings and beginnings.
1820 	 * Note that we might see a beginning right after we see an
1821 	 * end, but never vice versa, since this CPU has to pass through
1822 	 * a quiescent state betweentimes.
1823 	 */
1824 	local_irq_save(flags);
1825 	rdp = this_cpu_ptr(rsp->rda);
1826 
1827 	/* Add the callback to our list. */
1828 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
1829 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1830 	rdp->qlen++;
1831 	if (lazy)
1832 		rdp->qlen_lazy++;
1833 
1834 	if (__is_kfree_rcu_offset((unsigned long)func))
1835 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1836 					 rdp->qlen_lazy, rdp->qlen);
1837 	else
1838 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1839 
1840 	/* If interrupts were disabled, don't dive into RCU core. */
1841 	if (irqs_disabled_flags(flags)) {
1842 		local_irq_restore(flags);
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * Force the grace period if too many callbacks or too long waiting.
1848 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
1849 	 * if some other CPU has recently done so.  Also, don't bother
1850 	 * invoking force_quiescent_state() if the newly enqueued callback
1851 	 * is the only one waiting for a grace period to complete.
1852 	 */
1853 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1854 
1855 		/* Are we ignoring a completed grace period? */
1856 		rcu_process_gp_end(rsp, rdp);
1857 		check_for_new_grace_period(rsp, rdp);
1858 
1859 		/* Start a new grace period if one not already started. */
1860 		if (!rcu_gp_in_progress(rsp)) {
1861 			unsigned long nestflag;
1862 			struct rcu_node *rnp_root = rcu_get_root(rsp);
1863 
1864 			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1865 			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
1866 		} else {
1867 			/* Give the grace period a kick. */
1868 			rdp->blimit = LONG_MAX;
1869 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1870 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1871 				force_quiescent_state(rsp, 0);
1872 			rdp->n_force_qs_snap = rsp->n_force_qs;
1873 			rdp->qlen_last_fqs_check = rdp->qlen;
1874 		}
1875 	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1876 		force_quiescent_state(rsp, 1);
1877 	local_irq_restore(flags);
1878 }
1879 
1880 /*
1881  * Queue an RCU-sched callback for invocation after a grace period.
1882  */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1883 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1884 {
1885 	__call_rcu(head, func, &rcu_sched_state, 0);
1886 }
1887 EXPORT_SYMBOL_GPL(call_rcu_sched);
1888 
1889 /*
1890  * Queue an RCU callback for invocation after a quicker grace period.
1891  */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1892 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1893 {
1894 	__call_rcu(head, func, &rcu_bh_state, 0);
1895 }
1896 EXPORT_SYMBOL_GPL(call_rcu_bh);
1897 
1898 /**
1899  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1900  *
1901  * Control will return to the caller some time after a full rcu-sched
1902  * grace period has elapsed, in other words after all currently executing
1903  * rcu-sched read-side critical sections have completed.   These read-side
1904  * critical sections are delimited by rcu_read_lock_sched() and
1905  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
1906  * local_irq_disable(), and so on may be used in place of
1907  * rcu_read_lock_sched().
1908  *
1909  * This means that all preempt_disable code sequences, including NMI and
1910  * hardware-interrupt handlers, in progress on entry will have completed
1911  * before this primitive returns.  However, this does not guarantee that
1912  * softirq handlers will have completed, since in some kernels, these
1913  * handlers can run in process context, and can block.
1914  *
1915  * This primitive provides the guarantees made by the (now removed)
1916  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
1917  * guarantees that rcu_read_lock() sections will have completed.
1918  * In "classic RCU", these two guarantees happen to be one and
1919  * the same, but can differ in realtime RCU implementations.
1920  */
synchronize_sched(void)1921 void synchronize_sched(void)
1922 {
1923 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1924 			   !lock_is_held(&rcu_lock_map) &&
1925 			   !lock_is_held(&rcu_sched_lock_map),
1926 			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
1927 	if (rcu_blocking_is_gp())
1928 		return;
1929 	wait_rcu_gp(call_rcu_sched);
1930 }
1931 EXPORT_SYMBOL_GPL(synchronize_sched);
1932 
1933 /**
1934  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1935  *
1936  * Control will return to the caller some time after a full rcu_bh grace
1937  * period has elapsed, in other words after all currently executing rcu_bh
1938  * read-side critical sections have completed.  RCU read-side critical
1939  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1940  * and may be nested.
1941  */
synchronize_rcu_bh(void)1942 void synchronize_rcu_bh(void)
1943 {
1944 	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1945 			   !lock_is_held(&rcu_lock_map) &&
1946 			   !lock_is_held(&rcu_sched_lock_map),
1947 			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1948 	if (rcu_blocking_is_gp())
1949 		return;
1950 	wait_rcu_gp(call_rcu_bh);
1951 }
1952 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1953 
1954 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1955 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1956 
synchronize_sched_expedited_cpu_stop(void * data)1957 static int synchronize_sched_expedited_cpu_stop(void *data)
1958 {
1959 	/*
1960 	 * There must be a full memory barrier on each affected CPU
1961 	 * between the time that try_stop_cpus() is called and the
1962 	 * time that it returns.
1963 	 *
1964 	 * In the current initial implementation of cpu_stop, the
1965 	 * above condition is already met when the control reaches
1966 	 * this point and the following smp_mb() is not strictly
1967 	 * necessary.  Do smp_mb() anyway for documentation and
1968 	 * robustness against future implementation changes.
1969 	 */
1970 	smp_mb(); /* See above comment block. */
1971 	return 0;
1972 }
1973 
1974 /**
1975  * synchronize_sched_expedited - Brute-force RCU-sched grace period
1976  *
1977  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1978  * approach to force the grace period to end quickly.  This consumes
1979  * significant time on all CPUs and is unfriendly to real-time workloads,
1980  * so is thus not recommended for any sort of common-case code.  In fact,
1981  * if you are using synchronize_sched_expedited() in a loop, please
1982  * restructure your code to batch your updates, and then use a single
1983  * synchronize_sched() instead.
1984  *
1985  * Note that it is illegal to call this function while holding any lock
1986  * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
1987  * to call this function from a CPU-hotplug notifier.  Failing to observe
1988  * these restriction will result in deadlock.
1989  *
1990  * This implementation can be thought of as an application of ticket
1991  * locking to RCU, with sync_sched_expedited_started and
1992  * sync_sched_expedited_done taking on the roles of the halves
1993  * of the ticket-lock word.  Each task atomically increments
1994  * sync_sched_expedited_started upon entry, snapshotting the old value,
1995  * then attempts to stop all the CPUs.  If this succeeds, then each
1996  * CPU will have executed a context switch, resulting in an RCU-sched
1997  * grace period.  We are then done, so we use atomic_cmpxchg() to
1998  * update sync_sched_expedited_done to match our snapshot -- but
1999  * only if someone else has not already advanced past our snapshot.
2000  *
2001  * On the other hand, if try_stop_cpus() fails, we check the value
2002  * of sync_sched_expedited_done.  If it has advanced past our
2003  * initial snapshot, then someone else must have forced a grace period
2004  * some time after we took our snapshot.  In this case, our work is
2005  * done for us, and we can simply return.  Otherwise, we try again,
2006  * but keep our initial snapshot for purposes of checking for someone
2007  * doing our work for us.
2008  *
2009  * If we fail too many times in a row, we fall back to synchronize_sched().
2010  */
synchronize_sched_expedited(void)2011 void synchronize_sched_expedited(void)
2012 {
2013 	int firstsnap, s, snap, trycount = 0;
2014 
2015 	/* Note that atomic_inc_return() implies full memory barrier. */
2016 	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2017 	get_online_cpus();
2018 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2019 
2020 	/*
2021 	 * Each pass through the following loop attempts to force a
2022 	 * context switch on each CPU.
2023 	 */
2024 	while (try_stop_cpus(cpu_online_mask,
2025 			     synchronize_sched_expedited_cpu_stop,
2026 			     NULL) == -EAGAIN) {
2027 		put_online_cpus();
2028 
2029 		/* No joy, try again later.  Or just synchronize_sched(). */
2030 		if (trycount++ < 10)
2031 			udelay(trycount * num_online_cpus());
2032 		else {
2033 			synchronize_sched();
2034 			return;
2035 		}
2036 
2037 		/* Check to see if someone else did our work for us. */
2038 		s = atomic_read(&sync_sched_expedited_done);
2039 		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2040 			smp_mb(); /* ensure test happens before caller kfree */
2041 			return;
2042 		}
2043 
2044 		/*
2045 		 * Refetching sync_sched_expedited_started allows later
2046 		 * callers to piggyback on our grace period.  We subtract
2047 		 * 1 to get the same token that the last incrementer got.
2048 		 * We retry after they started, so our grace period works
2049 		 * for them, and they started after our first try, so their
2050 		 * grace period works for us.
2051 		 */
2052 		get_online_cpus();
2053 		snap = atomic_read(&sync_sched_expedited_started);
2054 		smp_mb(); /* ensure read is before try_stop_cpus(). */
2055 	}
2056 
2057 	/*
2058 	 * Everyone up to our most recent fetch is covered by our grace
2059 	 * period.  Update the counter, but only if our work is still
2060 	 * relevant -- which it won't be if someone who started later
2061 	 * than we did beat us to the punch.
2062 	 */
2063 	do {
2064 		s = atomic_read(&sync_sched_expedited_done);
2065 		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2066 			smp_mb(); /* ensure test happens before caller kfree */
2067 			break;
2068 		}
2069 	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2070 
2071 	put_online_cpus();
2072 }
2073 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2074 
2075 /*
2076  * Check to see if there is any immediate RCU-related work to be done
2077  * by the current CPU, for the specified type of RCU, returning 1 if so.
2078  * The checks are in order of increasing expense: checks that can be
2079  * carried out against CPU-local state are performed first.  However,
2080  * we must check for CPU stalls first, else we might not get a chance.
2081  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)2082 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2083 {
2084 	struct rcu_node *rnp = rdp->mynode;
2085 
2086 	rdp->n_rcu_pending++;
2087 
2088 	/* Check for CPU stalls, if enabled. */
2089 	check_cpu_stall(rsp, rdp);
2090 
2091 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2092 	if (rcu_scheduler_fully_active &&
2093 	    rdp->qs_pending && !rdp->passed_quiesce) {
2094 
2095 		/*
2096 		 * If force_quiescent_state() coming soon and this CPU
2097 		 * needs a quiescent state, and this is either RCU-sched
2098 		 * or RCU-bh, force a local reschedule.
2099 		 */
2100 		rdp->n_rp_qs_pending++;
2101 		if (!rdp->preemptible &&
2102 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2103 				 jiffies))
2104 			set_need_resched();
2105 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2106 		rdp->n_rp_report_qs++;
2107 		return 1;
2108 	}
2109 
2110 	/* Does this CPU have callbacks ready to invoke? */
2111 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2112 		rdp->n_rp_cb_ready++;
2113 		return 1;
2114 	}
2115 
2116 	/* Has RCU gone idle with this CPU needing another grace period? */
2117 	if (cpu_needs_another_gp(rsp, rdp)) {
2118 		rdp->n_rp_cpu_needs_gp++;
2119 		return 1;
2120 	}
2121 
2122 	/* Has another RCU grace period completed?  */
2123 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2124 		rdp->n_rp_gp_completed++;
2125 		return 1;
2126 	}
2127 
2128 	/* Has a new RCU grace period started? */
2129 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2130 		rdp->n_rp_gp_started++;
2131 		return 1;
2132 	}
2133 
2134 	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2135 	if (rcu_gp_in_progress(rsp) &&
2136 	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2137 		rdp->n_rp_need_fqs++;
2138 		return 1;
2139 	}
2140 
2141 	/* nothing to do */
2142 	rdp->n_rp_need_nothing++;
2143 	return 0;
2144 }
2145 
2146 /*
2147  * Check to see if there is any immediate RCU-related work to be done
2148  * by the current CPU, returning 1 if so.  This function is part of the
2149  * RCU implementation; it is -not- an exported member of the RCU API.
2150  */
rcu_pending(int cpu)2151 static int rcu_pending(int cpu)
2152 {
2153 	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2154 	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2155 	       rcu_preempt_pending(cpu);
2156 }
2157 
2158 /*
2159  * Check to see if any future RCU-related work will need to be done
2160  * by the current CPU, even if none need be done immediately, returning
2161  * 1 if so.
2162  */
rcu_cpu_has_callbacks(int cpu)2163 static int rcu_cpu_has_callbacks(int cpu)
2164 {
2165 	/* RCU callbacks either ready or pending? */
2166 	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2167 	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2168 	       rcu_preempt_cpu_has_callbacks(cpu);
2169 }
2170 
2171 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2172 static atomic_t rcu_barrier_cpu_count;
2173 static DEFINE_MUTEX(rcu_barrier_mutex);
2174 static struct completion rcu_barrier_completion;
2175 
rcu_barrier_callback(struct rcu_head * notused)2176 static void rcu_barrier_callback(struct rcu_head *notused)
2177 {
2178 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2179 		complete(&rcu_barrier_completion);
2180 }
2181 
2182 /*
2183  * Called with preemption disabled, and from cross-cpu IRQ context.
2184  */
rcu_barrier_func(void * type)2185 static void rcu_barrier_func(void *type)
2186 {
2187 	int cpu = smp_processor_id();
2188 	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2189 	void (*call_rcu_func)(struct rcu_head *head,
2190 			      void (*func)(struct rcu_head *head));
2191 
2192 	atomic_inc(&rcu_barrier_cpu_count);
2193 	call_rcu_func = type;
2194 	call_rcu_func(head, rcu_barrier_callback);
2195 }
2196 
2197 /*
2198  * Orchestrate the specified type of RCU barrier, waiting for all
2199  * RCU callbacks of the specified type to complete.
2200  */
_rcu_barrier(struct rcu_state * rsp,void (* call_rcu_func)(struct rcu_head * head,void (* func)(struct rcu_head * head)))2201 static void _rcu_barrier(struct rcu_state *rsp,
2202 			 void (*call_rcu_func)(struct rcu_head *head,
2203 					       void (*func)(struct rcu_head *head)))
2204 {
2205 	BUG_ON(in_interrupt());
2206 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2207 	mutex_lock(&rcu_barrier_mutex);
2208 	init_completion(&rcu_barrier_completion);
2209 	/*
2210 	 * Initialize rcu_barrier_cpu_count to 1, then invoke
2211 	 * rcu_barrier_func() on each CPU, so that each CPU also has
2212 	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
2213 	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2214 	 * might complete its grace period before all of the other CPUs
2215 	 * did their increment, causing this function to return too
2216 	 * early.  Note that on_each_cpu() disables irqs, which prevents
2217 	 * any CPUs from coming online or going offline until each online
2218 	 * CPU has queued its RCU-barrier callback.
2219 	 */
2220 	atomic_set(&rcu_barrier_cpu_count, 1);
2221 	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2222 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2223 		complete(&rcu_barrier_completion);
2224 	wait_for_completion(&rcu_barrier_completion);
2225 	mutex_unlock(&rcu_barrier_mutex);
2226 }
2227 
2228 /**
2229  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2230  */
rcu_barrier_bh(void)2231 void rcu_barrier_bh(void)
2232 {
2233 	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2234 }
2235 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2236 
2237 /**
2238  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2239  */
rcu_barrier_sched(void)2240 void rcu_barrier_sched(void)
2241 {
2242 	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2243 }
2244 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2245 
2246 /*
2247  * Do boot-time initialization of a CPU's per-CPU RCU data.
2248  */
2249 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)2250 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2251 {
2252 	unsigned long flags;
2253 	int i;
2254 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2255 	struct rcu_node *rnp = rcu_get_root(rsp);
2256 
2257 	/* Set up local state, ensuring consistent view of global state. */
2258 	raw_spin_lock_irqsave(&rnp->lock, flags);
2259 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2260 	rdp->nxtlist = NULL;
2261 	for (i = 0; i < RCU_NEXT_SIZE; i++)
2262 		rdp->nxttail[i] = &rdp->nxtlist;
2263 	rdp->qlen_lazy = 0;
2264 	rdp->qlen = 0;
2265 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2266 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2267 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2268 	rdp->cpu = cpu;
2269 	rdp->rsp = rsp;
2270 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2271 }
2272 
2273 /*
2274  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
2275  * offline event can be happening at a given time.  Note also that we
2276  * can accept some slop in the rsp->completed access due to the fact
2277  * that this CPU cannot possibly have any RCU callbacks in flight yet.
2278  */
2279 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp,int preemptible)2280 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2281 {
2282 	unsigned long flags;
2283 	unsigned long mask;
2284 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2285 	struct rcu_node *rnp = rcu_get_root(rsp);
2286 
2287 	/* Set up local state, ensuring consistent view of global state. */
2288 	raw_spin_lock_irqsave(&rnp->lock, flags);
2289 	rdp->beenonline = 1;	 /* We have now been online. */
2290 	rdp->preemptible = preemptible;
2291 	rdp->qlen_last_fqs_check = 0;
2292 	rdp->n_force_qs_snap = rsp->n_force_qs;
2293 	rdp->blimit = blimit;
2294 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2295 	atomic_set(&rdp->dynticks->dynticks,
2296 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2297 	rcu_prepare_for_idle_init(cpu);
2298 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2299 
2300 	/*
2301 	 * A new grace period might start here.  If so, we won't be part
2302 	 * of it, but that is OK, as we are currently in a quiescent state.
2303 	 */
2304 
2305 	/* Exclude any attempts to start a new GP on large systems. */
2306 	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2307 
2308 	/* Add CPU to rcu_node bitmasks. */
2309 	rnp = rdp->mynode;
2310 	mask = rdp->grpmask;
2311 	do {
2312 		/* Exclude any attempts to start a new GP on small systems. */
2313 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2314 		rnp->qsmaskinit |= mask;
2315 		mask = rnp->grpmask;
2316 		if (rnp == rdp->mynode) {
2317 			/*
2318 			 * If there is a grace period in progress, we will
2319 			 * set up to wait for it next time we run the
2320 			 * RCU core code.
2321 			 */
2322 			rdp->gpnum = rnp->completed;
2323 			rdp->completed = rnp->completed;
2324 			rdp->passed_quiesce = 0;
2325 			rdp->qs_pending = 0;
2326 			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2327 			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2328 		}
2329 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2330 		rnp = rnp->parent;
2331 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2332 
2333 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2334 }
2335 
rcu_prepare_cpu(int cpu)2336 static void __cpuinit rcu_prepare_cpu(int cpu)
2337 {
2338 	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2339 	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2340 	rcu_preempt_init_percpu_data(cpu);
2341 }
2342 
2343 /*
2344  * Handle CPU online/offline notification events.
2345  */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2346 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2347 				    unsigned long action, void *hcpu)
2348 {
2349 	long cpu = (long)hcpu;
2350 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2351 	struct rcu_node *rnp = rdp->mynode;
2352 
2353 	trace_rcu_utilization("Start CPU hotplug");
2354 	switch (action) {
2355 	case CPU_UP_PREPARE:
2356 	case CPU_UP_PREPARE_FROZEN:
2357 		rcu_prepare_cpu(cpu);
2358 		rcu_prepare_kthreads(cpu);
2359 		break;
2360 	case CPU_ONLINE:
2361 	case CPU_DOWN_FAILED:
2362 		rcu_node_kthread_setaffinity(rnp, -1);
2363 		rcu_cpu_kthread_setrt(cpu, 1);
2364 		break;
2365 	case CPU_DOWN_PREPARE:
2366 		rcu_node_kthread_setaffinity(rnp, cpu);
2367 		rcu_cpu_kthread_setrt(cpu, 0);
2368 		break;
2369 	case CPU_DYING:
2370 	case CPU_DYING_FROZEN:
2371 		/*
2372 		 * The whole machine is "stopped" except this CPU, so we can
2373 		 * touch any data without introducing corruption. We send the
2374 		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2375 		 */
2376 		rcu_cleanup_dying_cpu(&rcu_bh_state);
2377 		rcu_cleanup_dying_cpu(&rcu_sched_state);
2378 		rcu_preempt_cleanup_dying_cpu();
2379 		rcu_cleanup_after_idle(cpu);
2380 		break;
2381 	case CPU_DEAD:
2382 	case CPU_DEAD_FROZEN:
2383 	case CPU_UP_CANCELED:
2384 	case CPU_UP_CANCELED_FROZEN:
2385 		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2386 		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2387 		rcu_preempt_cleanup_dead_cpu(cpu);
2388 		break;
2389 	default:
2390 		break;
2391 	}
2392 	trace_rcu_utilization("End CPU hotplug");
2393 	return NOTIFY_OK;
2394 }
2395 
2396 /*
2397  * This function is invoked towards the end of the scheduler's initialization
2398  * process.  Before this is called, the idle task might contain
2399  * RCU read-side critical sections (during which time, this idle
2400  * task is booting the system).  After this function is called, the
2401  * idle tasks are prohibited from containing RCU read-side critical
2402  * sections.  This function also enables RCU lockdep checking.
2403  */
rcu_scheduler_starting(void)2404 void rcu_scheduler_starting(void)
2405 {
2406 	WARN_ON(num_online_cpus() != 1);
2407 	WARN_ON(nr_context_switches() > 0);
2408 	rcu_scheduler_active = 1;
2409 }
2410 
2411 /*
2412  * Compute the per-level fanout, either using the exact fanout specified
2413  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2414  */
2415 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)2416 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2417 {
2418 	int i;
2419 
2420 	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2421 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2422 	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2423 }
2424 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)2425 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2426 {
2427 	int ccur;
2428 	int cprv;
2429 	int i;
2430 
2431 	cprv = NR_CPUS;
2432 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2433 		ccur = rsp->levelcnt[i];
2434 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2435 		cprv = ccur;
2436 	}
2437 }
2438 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2439 
2440 /*
2441  * Helper function for rcu_init() that initializes one rcu_state structure.
2442  */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)2443 static void __init rcu_init_one(struct rcu_state *rsp,
2444 		struct rcu_data __percpu *rda)
2445 {
2446 	static char *buf[] = { "rcu_node_level_0",
2447 			       "rcu_node_level_1",
2448 			       "rcu_node_level_2",
2449 			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2450 	int cpustride = 1;
2451 	int i;
2452 	int j;
2453 	struct rcu_node *rnp;
2454 
2455 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
2456 
2457 	/* Initialize the level-tracking arrays. */
2458 
2459 	for (i = 1; i < NUM_RCU_LVLS; i++)
2460 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2461 	rcu_init_levelspread(rsp);
2462 
2463 	/* Initialize the elements themselves, starting from the leaves. */
2464 
2465 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2466 		cpustride *= rsp->levelspread[i];
2467 		rnp = rsp->level[i];
2468 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2469 			raw_spin_lock_init(&rnp->lock);
2470 			lockdep_set_class_and_name(&rnp->lock,
2471 						   &rcu_node_class[i], buf[i]);
2472 			rnp->gpnum = 0;
2473 			rnp->qsmask = 0;
2474 			rnp->qsmaskinit = 0;
2475 			rnp->grplo = j * cpustride;
2476 			rnp->grphi = (j + 1) * cpustride - 1;
2477 			if (rnp->grphi >= NR_CPUS)
2478 				rnp->grphi = NR_CPUS - 1;
2479 			if (i == 0) {
2480 				rnp->grpnum = 0;
2481 				rnp->grpmask = 0;
2482 				rnp->parent = NULL;
2483 			} else {
2484 				rnp->grpnum = j % rsp->levelspread[i - 1];
2485 				rnp->grpmask = 1UL << rnp->grpnum;
2486 				rnp->parent = rsp->level[i - 1] +
2487 					      j / rsp->levelspread[i - 1];
2488 			}
2489 			rnp->level = i;
2490 			INIT_LIST_HEAD(&rnp->blkd_tasks);
2491 		}
2492 	}
2493 
2494 	rsp->rda = rda;
2495 	rnp = rsp->level[NUM_RCU_LVLS - 1];
2496 	for_each_possible_cpu(i) {
2497 		while (i > rnp->grphi)
2498 			rnp++;
2499 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2500 		rcu_boot_init_percpu_data(i, rsp);
2501 	}
2502 }
2503 
rcu_init(void)2504 void __init rcu_init(void)
2505 {
2506 	int cpu;
2507 
2508 	rcu_bootup_announce();
2509 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2510 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2511 	__rcu_init_preempt();
2512 	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2513 
2514 	/*
2515 	 * We don't need protection against CPU-hotplug here because
2516 	 * this is called early in boot, before either interrupts
2517 	 * or the scheduler are operational.
2518 	 */
2519 	cpu_notifier(rcu_cpu_notify, 0);
2520 	for_each_online_cpu(cpu)
2521 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2522 	check_cpu_stall_init();
2523 }
2524 
2525 #include "rcutree_plugin.h"
2526