1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64
65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \
74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \
76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \
81 .name = #structname, \
82 }
83
84 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
86
87 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
89
90 static struct rcu_state *rcu_state;
91
92 /*
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
100 */
101 int rcu_scheduler_active __read_mostly;
102 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103
104 /*
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
111 *
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
114 * a time.
115 */
116 static int rcu_scheduler_fully_active __read_mostly;
117
118 #ifdef CONFIG_RCU_BOOST
119
120 /*
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
123 */
124 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128 DEFINE_PER_CPU(char, rcu_cpu_has_work);
129
130 #endif /* #ifdef CONFIG_RCU_BOOST */
131
132 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133 static void invoke_rcu_core(void);
134 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
135
136 /*
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
144 */
145 unsigned long rcutorture_testseq;
146 unsigned long rcutorture_vernum;
147
148 /*
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
152 */
rcu_gp_in_progress(struct rcu_state * rsp)153 static int rcu_gp_in_progress(struct rcu_state *rsp)
154 {
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156 }
157
158 /*
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
163 */
rcu_sched_qs(int cpu)164 void rcu_sched_qs(int cpu)
165 {
166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167
168 rdp->passed_quiesce_gpnum = rdp->gpnum;
169 barrier();
170 if (rdp->passed_quiesce == 0)
171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 rdp->passed_quiesce = 1;
173 }
174
rcu_bh_qs(int cpu)175 void rcu_bh_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178
179 rdp->passed_quiesce_gpnum = rdp->gpnum;
180 barrier();
181 if (rdp->passed_quiesce == 0)
182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183 rdp->passed_quiesce = 1;
184 }
185
186 /*
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption.
190 */
rcu_note_context_switch(int cpu)191 void rcu_note_context_switch(int cpu)
192 {
193 trace_rcu_utilization("Start context switch");
194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu);
196 trace_rcu_utilization("End context switch");
197 }
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199
200 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
201 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
202 .dynticks = ATOMIC_INIT(1),
203 };
204
205 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static long qhimark = 10000; /* If this many pending, ignore blimit. */
207 static long qlowmark = 100; /* Once only this many pending, use blimit. */
208
209 module_param(blimit, long, 0);
210 module_param(qhimark, long, 0);
211 module_param(qlowmark, long, 0);
212
213 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
215
216 module_param(rcu_cpu_stall_suppress, int, 0644);
217 module_param(rcu_cpu_stall_timeout, int, 0644);
218
219 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
220 static int rcu_pending(int cpu);
221
222 /*
223 * Return the number of RCU-sched batches processed thus far for debug & stats.
224 */
rcu_batches_completed_sched(void)225 long rcu_batches_completed_sched(void)
226 {
227 return rcu_sched_state.completed;
228 }
229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
230
231 /*
232 * Return the number of RCU BH batches processed thus far for debug & stats.
233 */
rcu_batches_completed_bh(void)234 long rcu_batches_completed_bh(void)
235 {
236 return rcu_bh_state.completed;
237 }
238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
239
240 /*
241 * Force a quiescent state for RCU BH.
242 */
rcu_bh_force_quiescent_state(void)243 void rcu_bh_force_quiescent_state(void)
244 {
245 force_quiescent_state(&rcu_bh_state, 0);
246 }
247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
248
249 /*
250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself.
255 */
rcutorture_record_test_transition(void)256 void rcutorture_record_test_transition(void)
257 {
258 rcutorture_testseq++;
259 rcutorture_vernum = 0;
260 }
261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
262
263 /*
264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture
266 * messages.
267 */
rcutorture_record_progress(unsigned long vernum)268 void rcutorture_record_progress(unsigned long vernum)
269 {
270 rcutorture_vernum++;
271 }
272 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
273
274 /*
275 * Force a quiescent state for RCU-sched.
276 */
rcu_sched_force_quiescent_state(void)277 void rcu_sched_force_quiescent_state(void)
278 {
279 force_quiescent_state(&rcu_sched_state, 0);
280 }
281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
282
283 /*
284 * Does the CPU have callbacks ready to be invoked?
285 */
286 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)287 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288 {
289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290 }
291
292 /*
293 * Does the current CPU require a yet-as-unscheduled grace period?
294 */
295 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)296 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297 {
298 return *rdp->nxttail[RCU_DONE_TAIL +
299 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
300 !rcu_gp_in_progress(rsp);
301 }
302
303 /*
304 * Return the root node of the specified rcu_state structure.
305 */
rcu_get_root(struct rcu_state * rsp)306 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
307 {
308 return &rsp->node[0];
309 }
310
311 /*
312 * If the specified CPU is offline, tell the caller that it is in
313 * a quiescent state. Otherwise, whack it with a reschedule IPI.
314 * Grace periods can end up waiting on an offline CPU when that
315 * CPU is in the process of coming online -- it will be added to the
316 * rcu_node bitmasks before it actually makes it online. The same thing
317 * can happen while a CPU is in the process of coming online. Because this
318 * race is quite rare, we check for it after detecting that the grace
319 * period has been delayed rather than checking each and every CPU
320 * each and every time we start a new grace period.
321 */
rcu_implicit_offline_qs(struct rcu_data * rdp)322 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
323 {
324 /*
325 * If the CPU is offline for more than a jiffy, it is in a quiescent
326 * state. We can trust its state not to change because interrupts
327 * are disabled. The reason for the jiffy's worth of slack is to
328 * handle CPUs initializing on the way up and finding their way
329 * to the idle loop on the way down.
330 */
331 if (cpu_is_offline(rdp->cpu) &&
332 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
333 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
334 rdp->offline_fqs++;
335 return 1;
336 }
337 return 0;
338 }
339
340 /*
341 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
342 *
343 * If the new value of the ->dynticks_nesting counter now is zero,
344 * we really have entered idle, and must do the appropriate accounting.
345 * The caller must have disabled interrupts.
346 */
rcu_idle_enter_common(struct rcu_dynticks * rdtp,long long oldval)347 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
348 {
349 trace_rcu_dyntick("Start", oldval, 0);
350 if (!is_idle_task(current)) {
351 struct task_struct *idle = idle_task(smp_processor_id());
352
353 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
354 ftrace_dump(DUMP_ALL);
355 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 current->pid, current->comm,
357 idle->pid, idle->comm); /* must be idle task! */
358 }
359 rcu_prepare_for_idle(smp_processor_id());
360 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 smp_mb__before_atomic_inc(); /* See above. */
362 atomic_inc(&rdtp->dynticks);
363 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
364 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
365
366 /*
367 * The idle task is not permitted to enter the idle loop while
368 * in an RCU read-side critical section.
369 */
370 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
371 "Illegal idle entry in RCU read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
373 "Illegal idle entry in RCU-bh read-side critical section.");
374 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
375 "Illegal idle entry in RCU-sched read-side critical section.");
376 }
377
378 /**
379 * rcu_idle_enter - inform RCU that current CPU is entering idle
380 *
381 * Enter idle mode, in other words, -leave- the mode in which RCU
382 * read-side critical sections can occur. (Though RCU read-side
383 * critical sections can occur in irq handlers in idle, a possibility
384 * handled by irq_enter() and irq_exit().)
385 *
386 * We crowbar the ->dynticks_nesting field to zero to allow for
387 * the possibility of usermode upcalls having messed up our count
388 * of interrupt nesting level during the prior busy period.
389 */
rcu_idle_enter(void)390 void rcu_idle_enter(void)
391 {
392 unsigned long flags;
393 long long oldval;
394 struct rcu_dynticks *rdtp;
395
396 local_irq_save(flags);
397 rdtp = &__get_cpu_var(rcu_dynticks);
398 oldval = rdtp->dynticks_nesting;
399 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
400 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
401 rdtp->dynticks_nesting = 0;
402 else
403 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
404 rcu_idle_enter_common(rdtp, oldval);
405 local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL_GPL(rcu_idle_enter);
408
409 /**
410 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
411 *
412 * Exit from an interrupt handler, which might possibly result in entering
413 * idle mode, in other words, leaving the mode in which read-side critical
414 * sections can occur.
415 *
416 * This code assumes that the idle loop never does anything that might
417 * result in unbalanced calls to irq_enter() and irq_exit(). If your
418 * architecture violates this assumption, RCU will give you what you
419 * deserve, good and hard. But very infrequently and irreproducibly.
420 *
421 * Use things like work queues to work around this limitation.
422 *
423 * You have been warned.
424 */
rcu_irq_exit(void)425 void rcu_irq_exit(void)
426 {
427 unsigned long flags;
428 long long oldval;
429 struct rcu_dynticks *rdtp;
430
431 local_irq_save(flags);
432 rdtp = &__get_cpu_var(rcu_dynticks);
433 oldval = rdtp->dynticks_nesting;
434 rdtp->dynticks_nesting--;
435 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
436 if (rdtp->dynticks_nesting)
437 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
438 else
439 rcu_idle_enter_common(rdtp, oldval);
440 local_irq_restore(flags);
441 }
442
443 /*
444 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
445 *
446 * If the new value of the ->dynticks_nesting counter was previously zero,
447 * we really have exited idle, and must do the appropriate accounting.
448 * The caller must have disabled interrupts.
449 */
rcu_idle_exit_common(struct rcu_dynticks * rdtp,long long oldval)450 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
451 {
452 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
453 atomic_inc(&rdtp->dynticks);
454 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
455 smp_mb__after_atomic_inc(); /* See above. */
456 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
457 rcu_cleanup_after_idle(smp_processor_id());
458 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
459 if (!is_idle_task(current)) {
460 struct task_struct *idle = idle_task(smp_processor_id());
461
462 trace_rcu_dyntick("Error on exit: not idle task",
463 oldval, rdtp->dynticks_nesting);
464 ftrace_dump(DUMP_ALL);
465 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
466 current->pid, current->comm,
467 idle->pid, idle->comm); /* must be idle task! */
468 }
469 }
470
471 /**
472 * rcu_idle_exit - inform RCU that current CPU is leaving idle
473 *
474 * Exit idle mode, in other words, -enter- the mode in which RCU
475 * read-side critical sections can occur.
476 *
477 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
478 * allow for the possibility of usermode upcalls messing up our count
479 * of interrupt nesting level during the busy period that is just
480 * now starting.
481 */
rcu_idle_exit(void)482 void rcu_idle_exit(void)
483 {
484 unsigned long flags;
485 struct rcu_dynticks *rdtp;
486 long long oldval;
487
488 local_irq_save(flags);
489 rdtp = &__get_cpu_var(rcu_dynticks);
490 oldval = rdtp->dynticks_nesting;
491 WARN_ON_ONCE(oldval < 0);
492 if (oldval & DYNTICK_TASK_NEST_MASK)
493 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
494 else
495 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
496 rcu_idle_exit_common(rdtp, oldval);
497 local_irq_restore(flags);
498 }
499 EXPORT_SYMBOL_GPL(rcu_idle_exit);
500
501 /**
502 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
503 *
504 * Enter an interrupt handler, which might possibly result in exiting
505 * idle mode, in other words, entering the mode in which read-side critical
506 * sections can occur.
507 *
508 * Note that the Linux kernel is fully capable of entering an interrupt
509 * handler that it never exits, for example when doing upcalls to
510 * user mode! This code assumes that the idle loop never does upcalls to
511 * user mode. If your architecture does do upcalls from the idle loop (or
512 * does anything else that results in unbalanced calls to the irq_enter()
513 * and irq_exit() functions), RCU will give you what you deserve, good
514 * and hard. But very infrequently and irreproducibly.
515 *
516 * Use things like work queues to work around this limitation.
517 *
518 * You have been warned.
519 */
rcu_irq_enter(void)520 void rcu_irq_enter(void)
521 {
522 unsigned long flags;
523 struct rcu_dynticks *rdtp;
524 long long oldval;
525
526 local_irq_save(flags);
527 rdtp = &__get_cpu_var(rcu_dynticks);
528 oldval = rdtp->dynticks_nesting;
529 rdtp->dynticks_nesting++;
530 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
531 if (oldval)
532 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
533 else
534 rcu_idle_exit_common(rdtp, oldval);
535 local_irq_restore(flags);
536 }
537
538 /**
539 * rcu_nmi_enter - inform RCU of entry to NMI context
540 *
541 * If the CPU was idle with dynamic ticks active, and there is no
542 * irq handler running, this updates rdtp->dynticks_nmi to let the
543 * RCU grace-period handling know that the CPU is active.
544 */
rcu_nmi_enter(void)545 void rcu_nmi_enter(void)
546 {
547 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
548
549 if (rdtp->dynticks_nmi_nesting == 0 &&
550 (atomic_read(&rdtp->dynticks) & 0x1))
551 return;
552 rdtp->dynticks_nmi_nesting++;
553 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
554 atomic_inc(&rdtp->dynticks);
555 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
556 smp_mb__after_atomic_inc(); /* See above. */
557 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
558 }
559
560 /**
561 * rcu_nmi_exit - inform RCU of exit from NMI context
562 *
563 * If the CPU was idle with dynamic ticks active, and there is no
564 * irq handler running, this updates rdtp->dynticks_nmi to let the
565 * RCU grace-period handling know that the CPU is no longer active.
566 */
rcu_nmi_exit(void)567 void rcu_nmi_exit(void)
568 {
569 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
570
571 if (rdtp->dynticks_nmi_nesting == 0 ||
572 --rdtp->dynticks_nmi_nesting != 0)
573 return;
574 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
575 smp_mb__before_atomic_inc(); /* See above. */
576 atomic_inc(&rdtp->dynticks);
577 smp_mb__after_atomic_inc(); /* Force delay to next write. */
578 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
579 }
580
581 #ifdef CONFIG_PROVE_RCU
582
583 /**
584 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
585 *
586 * If the current CPU is in its idle loop and is neither in an interrupt
587 * or NMI handler, return true.
588 */
rcu_is_cpu_idle(void)589 int rcu_is_cpu_idle(void)
590 {
591 int ret;
592
593 preempt_disable();
594 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
595 preempt_enable();
596 return ret;
597 }
598 EXPORT_SYMBOL(rcu_is_cpu_idle);
599
600 #ifdef CONFIG_HOTPLUG_CPU
601
602 /*
603 * Is the current CPU online? Disable preemption to avoid false positives
604 * that could otherwise happen due to the current CPU number being sampled,
605 * this task being preempted, its old CPU being taken offline, resuming
606 * on some other CPU, then determining that its old CPU is now offline.
607 * It is OK to use RCU on an offline processor during initial boot, hence
608 * the check for rcu_scheduler_fully_active. Note also that it is OK
609 * for a CPU coming online to use RCU for one jiffy prior to marking itself
610 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
611 * offline to continue to use RCU for one jiffy after marking itself
612 * offline in the cpu_online_mask. This leniency is necessary given the
613 * non-atomic nature of the online and offline processing, for example,
614 * the fact that a CPU enters the scheduler after completing the CPU_DYING
615 * notifiers.
616 *
617 * This is also why RCU internally marks CPUs online during the
618 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
619 *
620 * Disable checking if in an NMI handler because we cannot safely report
621 * errors from NMI handlers anyway.
622 */
rcu_lockdep_current_cpu_online(void)623 bool rcu_lockdep_current_cpu_online(void)
624 {
625 struct rcu_data *rdp;
626 struct rcu_node *rnp;
627 bool ret;
628
629 if (in_nmi())
630 return 1;
631 preempt_disable();
632 rdp = &__get_cpu_var(rcu_sched_data);
633 rnp = rdp->mynode;
634 ret = (rdp->grpmask & rnp->qsmaskinit) ||
635 !rcu_scheduler_fully_active;
636 preempt_enable();
637 return ret;
638 }
639 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
640
641 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
642
643 #endif /* #ifdef CONFIG_PROVE_RCU */
644
645 /**
646 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
647 *
648 * If the current CPU is idle or running at a first-level (not nested)
649 * interrupt from idle, return true. The caller must have at least
650 * disabled preemption.
651 */
rcu_is_cpu_rrupt_from_idle(void)652 int rcu_is_cpu_rrupt_from_idle(void)
653 {
654 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
655 }
656
657 /*
658 * Snapshot the specified CPU's dynticks counter so that we can later
659 * credit them with an implicit quiescent state. Return 1 if this CPU
660 * is in dynticks idle mode, which is an extended quiescent state.
661 */
dyntick_save_progress_counter(struct rcu_data * rdp)662 static int dyntick_save_progress_counter(struct rcu_data *rdp)
663 {
664 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
665 return (rdp->dynticks_snap & 0x1) == 0;
666 }
667
668 /*
669 * Return true if the specified CPU has passed through a quiescent
670 * state by virtue of being in or having passed through an dynticks
671 * idle state since the last call to dyntick_save_progress_counter()
672 * for this same CPU.
673 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)674 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
675 {
676 unsigned int curr;
677 unsigned int snap;
678
679 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
680 snap = (unsigned int)rdp->dynticks_snap;
681
682 /*
683 * If the CPU passed through or entered a dynticks idle phase with
684 * no active irq/NMI handlers, then we can safely pretend that the CPU
685 * already acknowledged the request to pass through a quiescent
686 * state. Either way, that CPU cannot possibly be in an RCU
687 * read-side critical section that started before the beginning
688 * of the current RCU grace period.
689 */
690 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
691 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
692 rdp->dynticks_fqs++;
693 return 1;
694 }
695
696 /* Go check for the CPU being offline. */
697 return rcu_implicit_offline_qs(rdp);
698 }
699
jiffies_till_stall_check(void)700 static int jiffies_till_stall_check(void)
701 {
702 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
703
704 /*
705 * Limit check must be consistent with the Kconfig limits
706 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
707 */
708 if (till_stall_check < 3) {
709 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
710 till_stall_check = 3;
711 } else if (till_stall_check > 300) {
712 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
713 till_stall_check = 300;
714 }
715 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
716 }
717
record_gp_stall_check_time(struct rcu_state * rsp)718 static void record_gp_stall_check_time(struct rcu_state *rsp)
719 {
720 rsp->gp_start = jiffies;
721 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
722 }
723
print_other_cpu_stall(struct rcu_state * rsp)724 static void print_other_cpu_stall(struct rcu_state *rsp)
725 {
726 int cpu;
727 long delta;
728 unsigned long flags;
729 int ndetected;
730 struct rcu_node *rnp = rcu_get_root(rsp);
731
732 /* Only let one CPU complain about others per time interval. */
733
734 raw_spin_lock_irqsave(&rnp->lock, flags);
735 delta = jiffies - rsp->jiffies_stall;
736 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
737 raw_spin_unlock_irqrestore(&rnp->lock, flags);
738 return;
739 }
740 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
741 raw_spin_unlock_irqrestore(&rnp->lock, flags);
742
743 /*
744 * OK, time to rat on our buddy...
745 * See Documentation/RCU/stallwarn.txt for info on how to debug
746 * RCU CPU stall warnings.
747 */
748 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
749 rsp->name);
750 print_cpu_stall_info_begin();
751 rcu_for_each_leaf_node(rsp, rnp) {
752 raw_spin_lock_irqsave(&rnp->lock, flags);
753 ndetected += rcu_print_task_stall(rnp);
754 raw_spin_unlock_irqrestore(&rnp->lock, flags);
755 if (rnp->qsmask == 0)
756 continue;
757 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
758 if (rnp->qsmask & (1UL << cpu)) {
759 print_cpu_stall_info(rsp, rnp->grplo + cpu);
760 ndetected++;
761 }
762 }
763
764 /*
765 * Now rat on any tasks that got kicked up to the root rcu_node
766 * due to CPU offlining.
767 */
768 rnp = rcu_get_root(rsp);
769 raw_spin_lock_irqsave(&rnp->lock, flags);
770 ndetected = rcu_print_task_stall(rnp);
771 raw_spin_unlock_irqrestore(&rnp->lock, flags);
772
773 print_cpu_stall_info_end();
774 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
775 smp_processor_id(), (long)(jiffies - rsp->gp_start));
776 if (ndetected == 0)
777 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
778 else if (!trigger_all_cpu_backtrace())
779 dump_stack();
780
781 /* If so configured, complain about tasks blocking the grace period. */
782
783 rcu_print_detail_task_stall(rsp);
784
785 force_quiescent_state(rsp, 0); /* Kick them all. */
786 }
787
print_cpu_stall(struct rcu_state * rsp)788 static void print_cpu_stall(struct rcu_state *rsp)
789 {
790 unsigned long flags;
791 struct rcu_node *rnp = rcu_get_root(rsp);
792
793 /*
794 * OK, time to rat on ourselves...
795 * See Documentation/RCU/stallwarn.txt for info on how to debug
796 * RCU CPU stall warnings.
797 */
798 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
799 print_cpu_stall_info_begin();
800 print_cpu_stall_info(rsp, smp_processor_id());
801 print_cpu_stall_info_end();
802 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
803 if (!trigger_all_cpu_backtrace())
804 dump_stack();
805
806 raw_spin_lock_irqsave(&rnp->lock, flags);
807 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
808 rsp->jiffies_stall = jiffies +
809 3 * jiffies_till_stall_check() + 3;
810 raw_spin_unlock_irqrestore(&rnp->lock, flags);
811
812 set_need_resched(); /* kick ourselves to get things going. */
813 }
814
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)815 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
816 {
817 unsigned long j;
818 unsigned long js;
819 struct rcu_node *rnp;
820
821 if (rcu_cpu_stall_suppress)
822 return;
823 j = ACCESS_ONCE(jiffies);
824 js = ACCESS_ONCE(rsp->jiffies_stall);
825 rnp = rdp->mynode;
826 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
827
828 /* We haven't checked in, so go dump stack. */
829 print_cpu_stall(rsp);
830
831 } else if (rcu_gp_in_progress(rsp) &&
832 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
833
834 /* They had a few time units to dump stack, so complain. */
835 print_other_cpu_stall(rsp);
836 }
837 }
838
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)839 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
840 {
841 rcu_cpu_stall_suppress = 1;
842 return NOTIFY_DONE;
843 }
844
845 /**
846 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
847 *
848 * Set the stall-warning timeout way off into the future, thus preventing
849 * any RCU CPU stall-warning messages from appearing in the current set of
850 * RCU grace periods.
851 *
852 * The caller must disable hard irqs.
853 */
rcu_cpu_stall_reset(void)854 void rcu_cpu_stall_reset(void)
855 {
856 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
857 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
858 rcu_preempt_stall_reset();
859 }
860
861 static struct notifier_block rcu_panic_block = {
862 .notifier_call = rcu_panic,
863 };
864
check_cpu_stall_init(void)865 static void __init check_cpu_stall_init(void)
866 {
867 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
868 }
869
870 /*
871 * Update CPU-local rcu_data state to record the newly noticed grace period.
872 * This is used both when we started the grace period and when we notice
873 * that someone else started the grace period. The caller must hold the
874 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
875 * and must have irqs disabled.
876 */
__note_new_gpnum(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)877 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
878 {
879 if (rdp->gpnum != rnp->gpnum) {
880 /*
881 * If the current grace period is waiting for this CPU,
882 * set up to detect a quiescent state, otherwise don't
883 * go looking for one.
884 */
885 rdp->gpnum = rnp->gpnum;
886 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
887 if (rnp->qsmask & rdp->grpmask) {
888 rdp->qs_pending = 1;
889 rdp->passed_quiesce = 0;
890 } else
891 rdp->qs_pending = 0;
892 zero_cpu_stall_ticks(rdp);
893 }
894 }
895
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)896 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
897 {
898 unsigned long flags;
899 struct rcu_node *rnp;
900
901 local_irq_save(flags);
902 rnp = rdp->mynode;
903 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
904 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 local_irq_restore(flags);
906 return;
907 }
908 __note_new_gpnum(rsp, rnp, rdp);
909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 }
911
912 /*
913 * Did someone else start a new RCU grace period start since we last
914 * checked? Update local state appropriately if so. Must be called
915 * on the CPU corresponding to rdp.
916 */
917 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)918 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
919 {
920 unsigned long flags;
921 int ret = 0;
922
923 local_irq_save(flags);
924 if (rdp->gpnum != rsp->gpnum) {
925 note_new_gpnum(rsp, rdp);
926 ret = 1;
927 }
928 local_irq_restore(flags);
929 return ret;
930 }
931
932 /*
933 * Advance this CPU's callbacks, but only if the current grace period
934 * has ended. This may be called only from the CPU to whom the rdp
935 * belongs. In addition, the corresponding leaf rcu_node structure's
936 * ->lock must be held by the caller, with irqs disabled.
937 */
938 static void
__rcu_process_gp_end(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)939 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
940 {
941 /* Did another grace period end? */
942 if (rdp->completed != rnp->completed) {
943
944 /* Advance callbacks. No harm if list empty. */
945 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
946 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
947 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
948
949 /* Remember that we saw this grace-period completion. */
950 rdp->completed = rnp->completed;
951 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
952
953 /*
954 * If we were in an extended quiescent state, we may have
955 * missed some grace periods that others CPUs handled on
956 * our behalf. Catch up with this state to avoid noting
957 * spurious new grace periods. If another grace period
958 * has started, then rnp->gpnum will have advanced, so
959 * we will detect this later on.
960 */
961 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
962 rdp->gpnum = rdp->completed;
963
964 /*
965 * If RCU does not need a quiescent state from this CPU,
966 * then make sure that this CPU doesn't go looking for one.
967 */
968 if ((rnp->qsmask & rdp->grpmask) == 0)
969 rdp->qs_pending = 0;
970 }
971 }
972
973 /*
974 * Advance this CPU's callbacks, but only if the current grace period
975 * has ended. This may be called only from the CPU to whom the rdp
976 * belongs.
977 */
978 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)979 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
980 {
981 unsigned long flags;
982 struct rcu_node *rnp;
983
984 local_irq_save(flags);
985 rnp = rdp->mynode;
986 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
987 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
988 local_irq_restore(flags);
989 return;
990 }
991 __rcu_process_gp_end(rsp, rnp, rdp);
992 raw_spin_unlock_irqrestore(&rnp->lock, flags);
993 }
994
995 /*
996 * Do per-CPU grace-period initialization for running CPU. The caller
997 * must hold the lock of the leaf rcu_node structure corresponding to
998 * this CPU.
999 */
1000 static void
rcu_start_gp_per_cpu(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1001 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1002 {
1003 /* Prior grace period ended, so advance callbacks for current CPU. */
1004 __rcu_process_gp_end(rsp, rnp, rdp);
1005
1006 /*
1007 * Because this CPU just now started the new grace period, we know
1008 * that all of its callbacks will be covered by this upcoming grace
1009 * period, even the ones that were registered arbitrarily recently.
1010 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1011 *
1012 * Other CPUs cannot be sure exactly when the grace period started.
1013 * Therefore, their recently registered callbacks must pass through
1014 * an additional RCU_NEXT_READY stage, so that they will be handled
1015 * by the next RCU grace period.
1016 */
1017 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1018 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1019
1020 /* Set state so that this CPU will detect the next quiescent state. */
1021 __note_new_gpnum(rsp, rnp, rdp);
1022 }
1023
1024 /*
1025 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1026 * in preparation for detecting the next grace period. The caller must hold
1027 * the root node's ->lock, which is released before return. Hard irqs must
1028 * be disabled.
1029 *
1030 * Note that it is legal for a dying CPU (which is marked as offline) to
1031 * invoke this function. This can happen when the dying CPU reports its
1032 * quiescent state.
1033 */
1034 static void
rcu_start_gp(struct rcu_state * rsp,unsigned long flags)1035 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1036 __releases(rcu_get_root(rsp)->lock)
1037 {
1038 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1039 struct rcu_node *rnp = rcu_get_root(rsp);
1040
1041 if (!rcu_scheduler_fully_active ||
1042 !cpu_needs_another_gp(rsp, rdp)) {
1043 /*
1044 * Either the scheduler hasn't yet spawned the first
1045 * non-idle task or this CPU does not need another
1046 * grace period. Either way, don't start a new grace
1047 * period.
1048 */
1049 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1050 return;
1051 }
1052
1053 if (rsp->fqs_active) {
1054 /*
1055 * This CPU needs a grace period, but force_quiescent_state()
1056 * is running. Tell it to start one on this CPU's behalf.
1057 */
1058 rsp->fqs_need_gp = 1;
1059 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1060 return;
1061 }
1062
1063 /* Advance to a new grace period and initialize state. */
1064 rsp->gpnum++;
1065 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1066 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1067 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1068 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1069 record_gp_stall_check_time(rsp);
1070 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1071
1072 /* Exclude any concurrent CPU-hotplug operations. */
1073 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1074
1075 /*
1076 * Set the quiescent-state-needed bits in all the rcu_node
1077 * structures for all currently online CPUs in breadth-first
1078 * order, starting from the root rcu_node structure. This
1079 * operation relies on the layout of the hierarchy within the
1080 * rsp->node[] array. Note that other CPUs will access only
1081 * the leaves of the hierarchy, which still indicate that no
1082 * grace period is in progress, at least until the corresponding
1083 * leaf node has been initialized. In addition, we have excluded
1084 * CPU-hotplug operations.
1085 *
1086 * Note that the grace period cannot complete until we finish
1087 * the initialization process, as there will be at least one
1088 * qsmask bit set in the root node until that time, namely the
1089 * one corresponding to this CPU, due to the fact that we have
1090 * irqs disabled.
1091 */
1092 rcu_for_each_node_breadth_first(rsp, rnp) {
1093 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1094 rcu_preempt_check_blocked_tasks(rnp);
1095 rnp->qsmask = rnp->qsmaskinit;
1096 rnp->gpnum = rsp->gpnum;
1097 rnp->completed = rsp->completed;
1098 if (rnp == rdp->mynode)
1099 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1100 rcu_preempt_boost_start_gp(rnp);
1101 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1102 rnp->level, rnp->grplo,
1103 rnp->grphi, rnp->qsmask);
1104 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1105 }
1106
1107 rnp = rcu_get_root(rsp);
1108 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1109 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1110 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1111 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1112 }
1113
1114 /*
1115 * Report a full set of quiescent states to the specified rcu_state
1116 * data structure. This involves cleaning up after the prior grace
1117 * period and letting rcu_start_gp() start up the next grace period
1118 * if one is needed. Note that the caller must hold rnp->lock, as
1119 * required by rcu_start_gp(), which will release it.
1120 */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1121 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1122 __releases(rcu_get_root(rsp)->lock)
1123 {
1124 unsigned long gp_duration;
1125 struct rcu_node *rnp = rcu_get_root(rsp);
1126 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1127
1128 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1129
1130 /*
1131 * Ensure that all grace-period and pre-grace-period activity
1132 * is seen before the assignment to rsp->completed.
1133 */
1134 smp_mb(); /* See above block comment. */
1135 gp_duration = jiffies - rsp->gp_start;
1136 if (gp_duration > rsp->gp_max)
1137 rsp->gp_max = gp_duration;
1138
1139 /*
1140 * We know the grace period is complete, but to everyone else
1141 * it appears to still be ongoing. But it is also the case
1142 * that to everyone else it looks like there is nothing that
1143 * they can do to advance the grace period. It is therefore
1144 * safe for us to drop the lock in order to mark the grace
1145 * period as completed in all of the rcu_node structures.
1146 *
1147 * But if this CPU needs another grace period, it will take
1148 * care of this while initializing the next grace period.
1149 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1150 * because the callbacks have not yet been advanced: Those
1151 * callbacks are waiting on the grace period that just now
1152 * completed.
1153 */
1154 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1155 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1156
1157 /*
1158 * Propagate new ->completed value to rcu_node structures
1159 * so that other CPUs don't have to wait until the start
1160 * of the next grace period to process their callbacks.
1161 */
1162 rcu_for_each_node_breadth_first(rsp, rnp) {
1163 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1164 rnp->completed = rsp->gpnum;
1165 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1166 }
1167 rnp = rcu_get_root(rsp);
1168 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1169 }
1170
1171 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1172 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1173 rsp->fqs_state = RCU_GP_IDLE;
1174 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1175 }
1176
1177 /*
1178 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1179 * Allows quiescent states for a group of CPUs to be reported at one go
1180 * to the specified rcu_node structure, though all the CPUs in the group
1181 * must be represented by the same rcu_node structure (which need not be
1182 * a leaf rcu_node structure, though it often will be). That structure's
1183 * lock must be held upon entry, and it is released before return.
1184 */
1185 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1186 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1187 struct rcu_node *rnp, unsigned long flags)
1188 __releases(rnp->lock)
1189 {
1190 struct rcu_node *rnp_c;
1191
1192 /* Walk up the rcu_node hierarchy. */
1193 for (;;) {
1194 if (!(rnp->qsmask & mask)) {
1195
1196 /* Our bit has already been cleared, so done. */
1197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1198 return;
1199 }
1200 rnp->qsmask &= ~mask;
1201 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1202 mask, rnp->qsmask, rnp->level,
1203 rnp->grplo, rnp->grphi,
1204 !!rnp->gp_tasks);
1205 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1206
1207 /* Other bits still set at this level, so done. */
1208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1209 return;
1210 }
1211 mask = rnp->grpmask;
1212 if (rnp->parent == NULL) {
1213
1214 /* No more levels. Exit loop holding root lock. */
1215
1216 break;
1217 }
1218 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1219 rnp_c = rnp;
1220 rnp = rnp->parent;
1221 raw_spin_lock_irqsave(&rnp->lock, flags);
1222 WARN_ON_ONCE(rnp_c->qsmask);
1223 }
1224
1225 /*
1226 * Get here if we are the last CPU to pass through a quiescent
1227 * state for this grace period. Invoke rcu_report_qs_rsp()
1228 * to clean up and start the next grace period if one is needed.
1229 */
1230 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1231 }
1232
1233 /*
1234 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1235 * structure. This must be either called from the specified CPU, or
1236 * called when the specified CPU is known to be offline (and when it is
1237 * also known that no other CPU is concurrently trying to help the offline
1238 * CPU). The lastcomp argument is used to make sure we are still in the
1239 * grace period of interest. We don't want to end the current grace period
1240 * based on quiescent states detected in an earlier grace period!
1241 */
1242 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp,long lastgp)1243 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1244 {
1245 unsigned long flags;
1246 unsigned long mask;
1247 struct rcu_node *rnp;
1248
1249 rnp = rdp->mynode;
1250 raw_spin_lock_irqsave(&rnp->lock, flags);
1251 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1252
1253 /*
1254 * The grace period in which this quiescent state was
1255 * recorded has ended, so don't report it upwards.
1256 * We will instead need a new quiescent state that lies
1257 * within the current grace period.
1258 */
1259 rdp->passed_quiesce = 0; /* need qs for new gp. */
1260 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1261 return;
1262 }
1263 mask = rdp->grpmask;
1264 if ((rnp->qsmask & mask) == 0) {
1265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1266 } else {
1267 rdp->qs_pending = 0;
1268
1269 /*
1270 * This GP can't end until cpu checks in, so all of our
1271 * callbacks can be processed during the next GP.
1272 */
1273 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1274
1275 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1276 }
1277 }
1278
1279 /*
1280 * Check to see if there is a new grace period of which this CPU
1281 * is not yet aware, and if so, set up local rcu_data state for it.
1282 * Otherwise, see if this CPU has just passed through its first
1283 * quiescent state for this grace period, and record that fact if so.
1284 */
1285 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)1286 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1287 {
1288 /* If there is now a new grace period, record and return. */
1289 if (check_for_new_grace_period(rsp, rdp))
1290 return;
1291
1292 /*
1293 * Does this CPU still need to do its part for current grace period?
1294 * If no, return and let the other CPUs do their part as well.
1295 */
1296 if (!rdp->qs_pending)
1297 return;
1298
1299 /*
1300 * Was there a quiescent state since the beginning of the grace
1301 * period? If no, then exit and wait for the next call.
1302 */
1303 if (!rdp->passed_quiesce)
1304 return;
1305
1306 /*
1307 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1308 * judge of that).
1309 */
1310 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1311 }
1312
1313 #ifdef CONFIG_HOTPLUG_CPU
1314
1315 /*
1316 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1317 * Also record a quiescent state for this CPU for the current grace period.
1318 * Synchronization and interrupt disabling are not required because
1319 * this function executes in stop_machine() context. Therefore, cleanup
1320 * operations that might block must be done later from the CPU_DEAD
1321 * notifier.
1322 *
1323 * Note that the outgoing CPU's bit has already been cleared in the
1324 * cpu_online_mask. This allows us to randomly pick a callback
1325 * destination from the bits set in that mask.
1326 */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1327 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1328 {
1329 int i;
1330 unsigned long mask;
1331 int receive_cpu = cpumask_any(cpu_online_mask);
1332 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1333 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1334 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1335
1336 /* First, adjust the counts. */
1337 if (rdp->nxtlist != NULL) {
1338 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1339 receive_rdp->qlen += rdp->qlen;
1340 rdp->qlen_lazy = 0;
1341 rdp->qlen = 0;
1342 }
1343
1344 /*
1345 * Next, move ready-to-invoke callbacks to be invoked on some
1346 * other CPU. These will not be required to pass through another
1347 * grace period: They are done, regardless of CPU.
1348 */
1349 if (rdp->nxtlist != NULL &&
1350 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1351 struct rcu_head *oldhead;
1352 struct rcu_head **oldtail;
1353 struct rcu_head **newtail;
1354
1355 oldhead = rdp->nxtlist;
1356 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1357 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1358 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1359 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1360 newtail = rdp->nxttail[RCU_DONE_TAIL];
1361 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1362 if (receive_rdp->nxttail[i] == oldtail)
1363 receive_rdp->nxttail[i] = newtail;
1364 if (rdp->nxttail[i] == newtail)
1365 rdp->nxttail[i] = &rdp->nxtlist;
1366 }
1367 }
1368
1369 /*
1370 * Finally, put the rest of the callbacks at the end of the list.
1371 * The ones that made it partway through get to start over: We
1372 * cannot assume that grace periods are synchronized across CPUs.
1373 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1374 * this does not seem compelling. Not yet, anyway.)
1375 */
1376 if (rdp->nxtlist != NULL) {
1377 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1378 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1379 rdp->nxttail[RCU_NEXT_TAIL];
1380 receive_rdp->n_cbs_adopted += rdp->qlen;
1381 rdp->n_cbs_orphaned += rdp->qlen;
1382
1383 rdp->nxtlist = NULL;
1384 for (i = 0; i < RCU_NEXT_SIZE; i++)
1385 rdp->nxttail[i] = &rdp->nxtlist;
1386 }
1387
1388 /*
1389 * Record a quiescent state for the dying CPU. This is safe
1390 * only because we have already cleared out the callbacks.
1391 * (Otherwise, the RCU core might try to schedule the invocation
1392 * of callbacks on this now-offline CPU, which would be bad.)
1393 */
1394 mask = rdp->grpmask; /* rnp->grplo is constant. */
1395 trace_rcu_grace_period(rsp->name,
1396 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1397 "cpuofl");
1398 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1399 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1400 }
1401
1402 /*
1403 * The CPU has been completely removed, and some other CPU is reporting
1404 * this fact from process context. Do the remainder of the cleanup.
1405 * There can only be one CPU hotplug operation at a time, so no other
1406 * CPU can be attempting to update rcu_cpu_kthread_task.
1407 */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1408 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1409 {
1410 unsigned long flags;
1411 unsigned long mask;
1412 int need_report = 0;
1413 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1414 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
1415
1416 /* Adjust any no-longer-needed kthreads. */
1417 rcu_stop_cpu_kthread(cpu);
1418 rcu_node_kthread_setaffinity(rnp, -1);
1419
1420 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1421
1422 /* Exclude any attempts to start a new grace period. */
1423 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1424
1425 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1426 mask = rdp->grpmask; /* rnp->grplo is constant. */
1427 do {
1428 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1429 rnp->qsmaskinit &= ~mask;
1430 if (rnp->qsmaskinit != 0) {
1431 if (rnp != rdp->mynode)
1432 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1433 break;
1434 }
1435 if (rnp == rdp->mynode)
1436 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1437 else
1438 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1439 mask = rnp->grpmask;
1440 rnp = rnp->parent;
1441 } while (rnp != NULL);
1442
1443 /*
1444 * We still hold the leaf rcu_node structure lock here, and
1445 * irqs are still disabled. The reason for this subterfuge is
1446 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1447 * held leads to deadlock.
1448 */
1449 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1450 rnp = rdp->mynode;
1451 if (need_report & RCU_OFL_TASKS_NORM_GP)
1452 rcu_report_unblock_qs_rnp(rnp, flags);
1453 else
1454 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1455 if (need_report & RCU_OFL_TASKS_EXP_GP)
1456 rcu_report_exp_rnp(rsp, rnp, true);
1457 }
1458
1459 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1460
rcu_cleanup_dying_cpu(struct rcu_state * rsp)1461 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1462 {
1463 }
1464
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)1465 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1466 {
1467 }
1468
1469 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1470
1471 /*
1472 * Invoke any RCU callbacks that have made it to the end of their grace
1473 * period. Thottle as specified by rdp->blimit.
1474 */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)1475 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1476 {
1477 unsigned long flags;
1478 struct rcu_head *next, *list, **tail;
1479 long bl, count, count_lazy;
1480
1481 /* If no callbacks are ready, just return.*/
1482 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1483 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1484 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1485 need_resched(), is_idle_task(current),
1486 rcu_is_callbacks_kthread());
1487 return;
1488 }
1489
1490 /*
1491 * Extract the list of ready callbacks, disabling to prevent
1492 * races with call_rcu() from interrupt handlers.
1493 */
1494 local_irq_save(flags);
1495 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1496 bl = rdp->blimit;
1497 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1498 list = rdp->nxtlist;
1499 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1500 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1501 tail = rdp->nxttail[RCU_DONE_TAIL];
1502 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1503 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1504 rdp->nxttail[count] = &rdp->nxtlist;
1505 local_irq_restore(flags);
1506
1507 /* Invoke callbacks. */
1508 count = count_lazy = 0;
1509 while (list) {
1510 next = list->next;
1511 prefetch(next);
1512 debug_rcu_head_unqueue(list);
1513 if (__rcu_reclaim(rsp->name, list))
1514 count_lazy++;
1515 list = next;
1516 /* Stop only if limit reached and CPU has something to do. */
1517 if (++count >= bl &&
1518 (need_resched() ||
1519 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1520 break;
1521 }
1522
1523 local_irq_save(flags);
1524 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1525 is_idle_task(current),
1526 rcu_is_callbacks_kthread());
1527
1528 /* Update count, and requeue any remaining callbacks. */
1529 rdp->qlen_lazy -= count_lazy;
1530 rdp->qlen -= count;
1531 rdp->n_cbs_invoked += count;
1532 if (list != NULL) {
1533 *tail = rdp->nxtlist;
1534 rdp->nxtlist = list;
1535 for (count = 0; count < RCU_NEXT_SIZE; count++)
1536 if (&rdp->nxtlist == rdp->nxttail[count])
1537 rdp->nxttail[count] = tail;
1538 else
1539 break;
1540 }
1541
1542 /* Reinstate batch limit if we have worked down the excess. */
1543 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1544 rdp->blimit = blimit;
1545
1546 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1547 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1548 rdp->qlen_last_fqs_check = 0;
1549 rdp->n_force_qs_snap = rsp->n_force_qs;
1550 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1551 rdp->qlen_last_fqs_check = rdp->qlen;
1552
1553 local_irq_restore(flags);
1554
1555 /* Re-invoke RCU core processing if there are callbacks remaining. */
1556 if (cpu_has_callbacks_ready_to_invoke(rdp))
1557 invoke_rcu_core();
1558 }
1559
1560 /*
1561 * Check to see if this CPU is in a non-context-switch quiescent state
1562 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1563 * Also schedule RCU core processing.
1564 *
1565 * This function must be called from hardirq context. It is normally
1566 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1567 * false, there is no point in invoking rcu_check_callbacks().
1568 */
rcu_check_callbacks(int cpu,int user)1569 void rcu_check_callbacks(int cpu, int user)
1570 {
1571 trace_rcu_utilization("Start scheduler-tick");
1572 increment_cpu_stall_ticks();
1573 if (user || rcu_is_cpu_rrupt_from_idle()) {
1574
1575 /*
1576 * Get here if this CPU took its interrupt from user
1577 * mode or from the idle loop, and if this is not a
1578 * nested interrupt. In this case, the CPU is in
1579 * a quiescent state, so note it.
1580 *
1581 * No memory barrier is required here because both
1582 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1583 * variables that other CPUs neither access nor modify,
1584 * at least not while the corresponding CPU is online.
1585 */
1586
1587 rcu_sched_qs(cpu);
1588 rcu_bh_qs(cpu);
1589
1590 } else if (!in_softirq()) {
1591
1592 /*
1593 * Get here if this CPU did not take its interrupt from
1594 * softirq, in other words, if it is not interrupting
1595 * a rcu_bh read-side critical section. This is an _bh
1596 * critical section, so note it.
1597 */
1598
1599 rcu_bh_qs(cpu);
1600 }
1601 rcu_preempt_check_callbacks(cpu);
1602 if (rcu_pending(cpu))
1603 invoke_rcu_core();
1604 trace_rcu_utilization("End scheduler-tick");
1605 }
1606
1607 /*
1608 * Scan the leaf rcu_node structures, processing dyntick state for any that
1609 * have not yet encountered a quiescent state, using the function specified.
1610 * Also initiate boosting for any threads blocked on the root rcu_node.
1611 *
1612 * The caller must have suppressed start of new grace periods.
1613 */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data *))1614 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1615 {
1616 unsigned long bit;
1617 int cpu;
1618 unsigned long flags;
1619 unsigned long mask;
1620 struct rcu_node *rnp;
1621
1622 rcu_for_each_leaf_node(rsp, rnp) {
1623 mask = 0;
1624 raw_spin_lock_irqsave(&rnp->lock, flags);
1625 if (!rcu_gp_in_progress(rsp)) {
1626 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1627 return;
1628 }
1629 if (rnp->qsmask == 0) {
1630 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1631 continue;
1632 }
1633 cpu = rnp->grplo;
1634 bit = 1;
1635 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1636 if ((rnp->qsmask & bit) != 0 &&
1637 f(per_cpu_ptr(rsp->rda, cpu)))
1638 mask |= bit;
1639 }
1640 if (mask != 0) {
1641
1642 /* rcu_report_qs_rnp() releases rnp->lock. */
1643 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1644 continue;
1645 }
1646 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1647 }
1648 rnp = rcu_get_root(rsp);
1649 if (rnp->qsmask == 0) {
1650 raw_spin_lock_irqsave(&rnp->lock, flags);
1651 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1652 }
1653 }
1654
1655 /*
1656 * Force quiescent states on reluctant CPUs, and also detect which
1657 * CPUs are in dyntick-idle mode.
1658 */
force_quiescent_state(struct rcu_state * rsp,int relaxed)1659 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1660 {
1661 unsigned long flags;
1662 struct rcu_node *rnp = rcu_get_root(rsp);
1663
1664 trace_rcu_utilization("Start fqs");
1665 if (!rcu_gp_in_progress(rsp)) {
1666 trace_rcu_utilization("End fqs");
1667 return; /* No grace period in progress, nothing to force. */
1668 }
1669 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1670 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1671 trace_rcu_utilization("End fqs");
1672 return; /* Someone else is already on the job. */
1673 }
1674 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1675 goto unlock_fqs_ret; /* no emergency and done recently. */
1676 rsp->n_force_qs++;
1677 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1678 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1679 if(!rcu_gp_in_progress(rsp)) {
1680 rsp->n_force_qs_ngp++;
1681 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1682 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1683 }
1684 rsp->fqs_active = 1;
1685 switch (rsp->fqs_state) {
1686 case RCU_GP_IDLE:
1687 case RCU_GP_INIT:
1688
1689 break; /* grace period idle or initializing, ignore. */
1690
1691 case RCU_SAVE_DYNTICK:
1692 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1693 break; /* So gcc recognizes the dead code. */
1694
1695 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1696
1697 /* Record dyntick-idle state. */
1698 force_qs_rnp(rsp, dyntick_save_progress_counter);
1699 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1700 if (rcu_gp_in_progress(rsp))
1701 rsp->fqs_state = RCU_FORCE_QS;
1702 break;
1703
1704 case RCU_FORCE_QS:
1705
1706 /* Check dyntick-idle state, send IPI to laggarts. */
1707 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1708 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1709
1710 /* Leave state in case more forcing is required. */
1711
1712 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1713 break;
1714 }
1715 rsp->fqs_active = 0;
1716 if (rsp->fqs_need_gp) {
1717 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1718 rsp->fqs_need_gp = 0;
1719 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1720 trace_rcu_utilization("End fqs");
1721 return;
1722 }
1723 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1724 unlock_fqs_ret:
1725 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1726 trace_rcu_utilization("End fqs");
1727 }
1728
1729 /*
1730 * This does the RCU core processing work for the specified rcu_state
1731 * and rcu_data structures. This may be called only from the CPU to
1732 * whom the rdp belongs.
1733 */
1734 static void
__rcu_process_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1735 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1736 {
1737 unsigned long flags;
1738
1739 WARN_ON_ONCE(rdp->beenonline == 0);
1740
1741 /*
1742 * If an RCU GP has gone long enough, go check for dyntick
1743 * idle CPUs and, if needed, send resched IPIs.
1744 */
1745 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1746 force_quiescent_state(rsp, 1);
1747
1748 /*
1749 * Advance callbacks in response to end of earlier grace
1750 * period that some other CPU ended.
1751 */
1752 rcu_process_gp_end(rsp, rdp);
1753
1754 /* Update RCU state based on any recent quiescent states. */
1755 rcu_check_quiescent_state(rsp, rdp);
1756
1757 /* Does this CPU require a not-yet-started grace period? */
1758 if (cpu_needs_another_gp(rsp, rdp)) {
1759 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1760 rcu_start_gp(rsp, flags); /* releases above lock */
1761 }
1762
1763 /* If there are callbacks ready, invoke them. */
1764 if (cpu_has_callbacks_ready_to_invoke(rdp))
1765 invoke_rcu_callbacks(rsp, rdp);
1766 }
1767
1768 /*
1769 * Do RCU core processing for the current CPU.
1770 */
rcu_process_callbacks(struct softirq_action * unused)1771 static void rcu_process_callbacks(struct softirq_action *unused)
1772 {
1773 trace_rcu_utilization("Start RCU core");
1774 __rcu_process_callbacks(&rcu_sched_state,
1775 &__get_cpu_var(rcu_sched_data));
1776 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1777 rcu_preempt_process_callbacks();
1778 trace_rcu_utilization("End RCU core");
1779 }
1780
1781 /*
1782 * Schedule RCU callback invocation. If the specified type of RCU
1783 * does not support RCU priority boosting, just do a direct call,
1784 * otherwise wake up the per-CPU kernel kthread. Note that because we
1785 * are running on the current CPU with interrupts disabled, the
1786 * rcu_cpu_kthread_task cannot disappear out from under us.
1787 */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1788 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1789 {
1790 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1791 return;
1792 if (likely(!rsp->boost)) {
1793 rcu_do_batch(rsp, rdp);
1794 return;
1795 }
1796 invoke_rcu_callbacks_kthread();
1797 }
1798
invoke_rcu_core(void)1799 static void invoke_rcu_core(void)
1800 {
1801 raise_softirq(RCU_SOFTIRQ);
1802 }
1803
1804 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp,bool lazy)1805 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1806 struct rcu_state *rsp, bool lazy)
1807 {
1808 unsigned long flags;
1809 struct rcu_data *rdp;
1810
1811 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1812 debug_rcu_head_queue(head);
1813 head->func = func;
1814 head->next = NULL;
1815
1816 smp_mb(); /* Ensure RCU update seen before callback registry. */
1817
1818 /*
1819 * Opportunistically note grace-period endings and beginnings.
1820 * Note that we might see a beginning right after we see an
1821 * end, but never vice versa, since this CPU has to pass through
1822 * a quiescent state betweentimes.
1823 */
1824 local_irq_save(flags);
1825 rdp = this_cpu_ptr(rsp->rda);
1826
1827 /* Add the callback to our list. */
1828 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1829 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1830 rdp->qlen++;
1831 if (lazy)
1832 rdp->qlen_lazy++;
1833
1834 if (__is_kfree_rcu_offset((unsigned long)func))
1835 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1836 rdp->qlen_lazy, rdp->qlen);
1837 else
1838 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1839
1840 /* If interrupts were disabled, don't dive into RCU core. */
1841 if (irqs_disabled_flags(flags)) {
1842 local_irq_restore(flags);
1843 return;
1844 }
1845
1846 /*
1847 * Force the grace period if too many callbacks or too long waiting.
1848 * Enforce hysteresis, and don't invoke force_quiescent_state()
1849 * if some other CPU has recently done so. Also, don't bother
1850 * invoking force_quiescent_state() if the newly enqueued callback
1851 * is the only one waiting for a grace period to complete.
1852 */
1853 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1854
1855 /* Are we ignoring a completed grace period? */
1856 rcu_process_gp_end(rsp, rdp);
1857 check_for_new_grace_period(rsp, rdp);
1858
1859 /* Start a new grace period if one not already started. */
1860 if (!rcu_gp_in_progress(rsp)) {
1861 unsigned long nestflag;
1862 struct rcu_node *rnp_root = rcu_get_root(rsp);
1863
1864 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1865 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1866 } else {
1867 /* Give the grace period a kick. */
1868 rdp->blimit = LONG_MAX;
1869 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1870 *rdp->nxttail[RCU_DONE_TAIL] != head)
1871 force_quiescent_state(rsp, 0);
1872 rdp->n_force_qs_snap = rsp->n_force_qs;
1873 rdp->qlen_last_fqs_check = rdp->qlen;
1874 }
1875 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1876 force_quiescent_state(rsp, 1);
1877 local_irq_restore(flags);
1878 }
1879
1880 /*
1881 * Queue an RCU-sched callback for invocation after a grace period.
1882 */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1883 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1884 {
1885 __call_rcu(head, func, &rcu_sched_state, 0);
1886 }
1887 EXPORT_SYMBOL_GPL(call_rcu_sched);
1888
1889 /*
1890 * Queue an RCU callback for invocation after a quicker grace period.
1891 */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1892 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1893 {
1894 __call_rcu(head, func, &rcu_bh_state, 0);
1895 }
1896 EXPORT_SYMBOL_GPL(call_rcu_bh);
1897
1898 /**
1899 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1900 *
1901 * Control will return to the caller some time after a full rcu-sched
1902 * grace period has elapsed, in other words after all currently executing
1903 * rcu-sched read-side critical sections have completed. These read-side
1904 * critical sections are delimited by rcu_read_lock_sched() and
1905 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1906 * local_irq_disable(), and so on may be used in place of
1907 * rcu_read_lock_sched().
1908 *
1909 * This means that all preempt_disable code sequences, including NMI and
1910 * hardware-interrupt handlers, in progress on entry will have completed
1911 * before this primitive returns. However, this does not guarantee that
1912 * softirq handlers will have completed, since in some kernels, these
1913 * handlers can run in process context, and can block.
1914 *
1915 * This primitive provides the guarantees made by the (now removed)
1916 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1917 * guarantees that rcu_read_lock() sections will have completed.
1918 * In "classic RCU", these two guarantees happen to be one and
1919 * the same, but can differ in realtime RCU implementations.
1920 */
synchronize_sched(void)1921 void synchronize_sched(void)
1922 {
1923 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1924 !lock_is_held(&rcu_lock_map) &&
1925 !lock_is_held(&rcu_sched_lock_map),
1926 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1927 if (rcu_blocking_is_gp())
1928 return;
1929 wait_rcu_gp(call_rcu_sched);
1930 }
1931 EXPORT_SYMBOL_GPL(synchronize_sched);
1932
1933 /**
1934 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1935 *
1936 * Control will return to the caller some time after a full rcu_bh grace
1937 * period has elapsed, in other words after all currently executing rcu_bh
1938 * read-side critical sections have completed. RCU read-side critical
1939 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1940 * and may be nested.
1941 */
synchronize_rcu_bh(void)1942 void synchronize_rcu_bh(void)
1943 {
1944 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1945 !lock_is_held(&rcu_lock_map) &&
1946 !lock_is_held(&rcu_sched_lock_map),
1947 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1948 if (rcu_blocking_is_gp())
1949 return;
1950 wait_rcu_gp(call_rcu_bh);
1951 }
1952 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1953
1954 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1955 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1956
synchronize_sched_expedited_cpu_stop(void * data)1957 static int synchronize_sched_expedited_cpu_stop(void *data)
1958 {
1959 /*
1960 * There must be a full memory barrier on each affected CPU
1961 * between the time that try_stop_cpus() is called and the
1962 * time that it returns.
1963 *
1964 * In the current initial implementation of cpu_stop, the
1965 * above condition is already met when the control reaches
1966 * this point and the following smp_mb() is not strictly
1967 * necessary. Do smp_mb() anyway for documentation and
1968 * robustness against future implementation changes.
1969 */
1970 smp_mb(); /* See above comment block. */
1971 return 0;
1972 }
1973
1974 /**
1975 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1976 *
1977 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1978 * approach to force the grace period to end quickly. This consumes
1979 * significant time on all CPUs and is unfriendly to real-time workloads,
1980 * so is thus not recommended for any sort of common-case code. In fact,
1981 * if you are using synchronize_sched_expedited() in a loop, please
1982 * restructure your code to batch your updates, and then use a single
1983 * synchronize_sched() instead.
1984 *
1985 * Note that it is illegal to call this function while holding any lock
1986 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1987 * to call this function from a CPU-hotplug notifier. Failing to observe
1988 * these restriction will result in deadlock.
1989 *
1990 * This implementation can be thought of as an application of ticket
1991 * locking to RCU, with sync_sched_expedited_started and
1992 * sync_sched_expedited_done taking on the roles of the halves
1993 * of the ticket-lock word. Each task atomically increments
1994 * sync_sched_expedited_started upon entry, snapshotting the old value,
1995 * then attempts to stop all the CPUs. If this succeeds, then each
1996 * CPU will have executed a context switch, resulting in an RCU-sched
1997 * grace period. We are then done, so we use atomic_cmpxchg() to
1998 * update sync_sched_expedited_done to match our snapshot -- but
1999 * only if someone else has not already advanced past our snapshot.
2000 *
2001 * On the other hand, if try_stop_cpus() fails, we check the value
2002 * of sync_sched_expedited_done. If it has advanced past our
2003 * initial snapshot, then someone else must have forced a grace period
2004 * some time after we took our snapshot. In this case, our work is
2005 * done for us, and we can simply return. Otherwise, we try again,
2006 * but keep our initial snapshot for purposes of checking for someone
2007 * doing our work for us.
2008 *
2009 * If we fail too many times in a row, we fall back to synchronize_sched().
2010 */
synchronize_sched_expedited(void)2011 void synchronize_sched_expedited(void)
2012 {
2013 int firstsnap, s, snap, trycount = 0;
2014
2015 /* Note that atomic_inc_return() implies full memory barrier. */
2016 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2017 get_online_cpus();
2018 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2019
2020 /*
2021 * Each pass through the following loop attempts to force a
2022 * context switch on each CPU.
2023 */
2024 while (try_stop_cpus(cpu_online_mask,
2025 synchronize_sched_expedited_cpu_stop,
2026 NULL) == -EAGAIN) {
2027 put_online_cpus();
2028
2029 /* No joy, try again later. Or just synchronize_sched(). */
2030 if (trycount++ < 10)
2031 udelay(trycount * num_online_cpus());
2032 else {
2033 synchronize_sched();
2034 return;
2035 }
2036
2037 /* Check to see if someone else did our work for us. */
2038 s = atomic_read(&sync_sched_expedited_done);
2039 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2040 smp_mb(); /* ensure test happens before caller kfree */
2041 return;
2042 }
2043
2044 /*
2045 * Refetching sync_sched_expedited_started allows later
2046 * callers to piggyback on our grace period. We subtract
2047 * 1 to get the same token that the last incrementer got.
2048 * We retry after they started, so our grace period works
2049 * for them, and they started after our first try, so their
2050 * grace period works for us.
2051 */
2052 get_online_cpus();
2053 snap = atomic_read(&sync_sched_expedited_started);
2054 smp_mb(); /* ensure read is before try_stop_cpus(). */
2055 }
2056
2057 /*
2058 * Everyone up to our most recent fetch is covered by our grace
2059 * period. Update the counter, but only if our work is still
2060 * relevant -- which it won't be if someone who started later
2061 * than we did beat us to the punch.
2062 */
2063 do {
2064 s = atomic_read(&sync_sched_expedited_done);
2065 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2066 smp_mb(); /* ensure test happens before caller kfree */
2067 break;
2068 }
2069 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2070
2071 put_online_cpus();
2072 }
2073 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2074
2075 /*
2076 * Check to see if there is any immediate RCU-related work to be done
2077 * by the current CPU, for the specified type of RCU, returning 1 if so.
2078 * The checks are in order of increasing expense: checks that can be
2079 * carried out against CPU-local state are performed first. However,
2080 * we must check for CPU stalls first, else we might not get a chance.
2081 */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)2082 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2083 {
2084 struct rcu_node *rnp = rdp->mynode;
2085
2086 rdp->n_rcu_pending++;
2087
2088 /* Check for CPU stalls, if enabled. */
2089 check_cpu_stall(rsp, rdp);
2090
2091 /* Is the RCU core waiting for a quiescent state from this CPU? */
2092 if (rcu_scheduler_fully_active &&
2093 rdp->qs_pending && !rdp->passed_quiesce) {
2094
2095 /*
2096 * If force_quiescent_state() coming soon and this CPU
2097 * needs a quiescent state, and this is either RCU-sched
2098 * or RCU-bh, force a local reschedule.
2099 */
2100 rdp->n_rp_qs_pending++;
2101 if (!rdp->preemptible &&
2102 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2103 jiffies))
2104 set_need_resched();
2105 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2106 rdp->n_rp_report_qs++;
2107 return 1;
2108 }
2109
2110 /* Does this CPU have callbacks ready to invoke? */
2111 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2112 rdp->n_rp_cb_ready++;
2113 return 1;
2114 }
2115
2116 /* Has RCU gone idle with this CPU needing another grace period? */
2117 if (cpu_needs_another_gp(rsp, rdp)) {
2118 rdp->n_rp_cpu_needs_gp++;
2119 return 1;
2120 }
2121
2122 /* Has another RCU grace period completed? */
2123 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2124 rdp->n_rp_gp_completed++;
2125 return 1;
2126 }
2127
2128 /* Has a new RCU grace period started? */
2129 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2130 rdp->n_rp_gp_started++;
2131 return 1;
2132 }
2133
2134 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2135 if (rcu_gp_in_progress(rsp) &&
2136 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2137 rdp->n_rp_need_fqs++;
2138 return 1;
2139 }
2140
2141 /* nothing to do */
2142 rdp->n_rp_need_nothing++;
2143 return 0;
2144 }
2145
2146 /*
2147 * Check to see if there is any immediate RCU-related work to be done
2148 * by the current CPU, returning 1 if so. This function is part of the
2149 * RCU implementation; it is -not- an exported member of the RCU API.
2150 */
rcu_pending(int cpu)2151 static int rcu_pending(int cpu)
2152 {
2153 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2154 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2155 rcu_preempt_pending(cpu);
2156 }
2157
2158 /*
2159 * Check to see if any future RCU-related work will need to be done
2160 * by the current CPU, even if none need be done immediately, returning
2161 * 1 if so.
2162 */
rcu_cpu_has_callbacks(int cpu)2163 static int rcu_cpu_has_callbacks(int cpu)
2164 {
2165 /* RCU callbacks either ready or pending? */
2166 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2167 per_cpu(rcu_bh_data, cpu).nxtlist ||
2168 rcu_preempt_cpu_has_callbacks(cpu);
2169 }
2170
2171 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2172 static atomic_t rcu_barrier_cpu_count;
2173 static DEFINE_MUTEX(rcu_barrier_mutex);
2174 static struct completion rcu_barrier_completion;
2175
rcu_barrier_callback(struct rcu_head * notused)2176 static void rcu_barrier_callback(struct rcu_head *notused)
2177 {
2178 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2179 complete(&rcu_barrier_completion);
2180 }
2181
2182 /*
2183 * Called with preemption disabled, and from cross-cpu IRQ context.
2184 */
rcu_barrier_func(void * type)2185 static void rcu_barrier_func(void *type)
2186 {
2187 int cpu = smp_processor_id();
2188 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2189 void (*call_rcu_func)(struct rcu_head *head,
2190 void (*func)(struct rcu_head *head));
2191
2192 atomic_inc(&rcu_barrier_cpu_count);
2193 call_rcu_func = type;
2194 call_rcu_func(head, rcu_barrier_callback);
2195 }
2196
2197 /*
2198 * Orchestrate the specified type of RCU barrier, waiting for all
2199 * RCU callbacks of the specified type to complete.
2200 */
_rcu_barrier(struct rcu_state * rsp,void (* call_rcu_func)(struct rcu_head * head,void (* func)(struct rcu_head * head)))2201 static void _rcu_barrier(struct rcu_state *rsp,
2202 void (*call_rcu_func)(struct rcu_head *head,
2203 void (*func)(struct rcu_head *head)))
2204 {
2205 BUG_ON(in_interrupt());
2206 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2207 mutex_lock(&rcu_barrier_mutex);
2208 init_completion(&rcu_barrier_completion);
2209 /*
2210 * Initialize rcu_barrier_cpu_count to 1, then invoke
2211 * rcu_barrier_func() on each CPU, so that each CPU also has
2212 * incremented rcu_barrier_cpu_count. Only then is it safe to
2213 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2214 * might complete its grace period before all of the other CPUs
2215 * did their increment, causing this function to return too
2216 * early. Note that on_each_cpu() disables irqs, which prevents
2217 * any CPUs from coming online or going offline until each online
2218 * CPU has queued its RCU-barrier callback.
2219 */
2220 atomic_set(&rcu_barrier_cpu_count, 1);
2221 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2222 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2223 complete(&rcu_barrier_completion);
2224 wait_for_completion(&rcu_barrier_completion);
2225 mutex_unlock(&rcu_barrier_mutex);
2226 }
2227
2228 /**
2229 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2230 */
rcu_barrier_bh(void)2231 void rcu_barrier_bh(void)
2232 {
2233 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2234 }
2235 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2236
2237 /**
2238 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2239 */
rcu_barrier_sched(void)2240 void rcu_barrier_sched(void)
2241 {
2242 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2243 }
2244 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2245
2246 /*
2247 * Do boot-time initialization of a CPU's per-CPU RCU data.
2248 */
2249 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)2250 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2251 {
2252 unsigned long flags;
2253 int i;
2254 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2255 struct rcu_node *rnp = rcu_get_root(rsp);
2256
2257 /* Set up local state, ensuring consistent view of global state. */
2258 raw_spin_lock_irqsave(&rnp->lock, flags);
2259 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2260 rdp->nxtlist = NULL;
2261 for (i = 0; i < RCU_NEXT_SIZE; i++)
2262 rdp->nxttail[i] = &rdp->nxtlist;
2263 rdp->qlen_lazy = 0;
2264 rdp->qlen = 0;
2265 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2266 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2267 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2268 rdp->cpu = cpu;
2269 rdp->rsp = rsp;
2270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2271 }
2272
2273 /*
2274 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2275 * offline event can be happening at a given time. Note also that we
2276 * can accept some slop in the rsp->completed access due to the fact
2277 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2278 */
2279 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp,int preemptible)2280 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2281 {
2282 unsigned long flags;
2283 unsigned long mask;
2284 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2285 struct rcu_node *rnp = rcu_get_root(rsp);
2286
2287 /* Set up local state, ensuring consistent view of global state. */
2288 raw_spin_lock_irqsave(&rnp->lock, flags);
2289 rdp->beenonline = 1; /* We have now been online. */
2290 rdp->preemptible = preemptible;
2291 rdp->qlen_last_fqs_check = 0;
2292 rdp->n_force_qs_snap = rsp->n_force_qs;
2293 rdp->blimit = blimit;
2294 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2295 atomic_set(&rdp->dynticks->dynticks,
2296 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2297 rcu_prepare_for_idle_init(cpu);
2298 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2299
2300 /*
2301 * A new grace period might start here. If so, we won't be part
2302 * of it, but that is OK, as we are currently in a quiescent state.
2303 */
2304
2305 /* Exclude any attempts to start a new GP on large systems. */
2306 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2307
2308 /* Add CPU to rcu_node bitmasks. */
2309 rnp = rdp->mynode;
2310 mask = rdp->grpmask;
2311 do {
2312 /* Exclude any attempts to start a new GP on small systems. */
2313 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2314 rnp->qsmaskinit |= mask;
2315 mask = rnp->grpmask;
2316 if (rnp == rdp->mynode) {
2317 /*
2318 * If there is a grace period in progress, we will
2319 * set up to wait for it next time we run the
2320 * RCU core code.
2321 */
2322 rdp->gpnum = rnp->completed;
2323 rdp->completed = rnp->completed;
2324 rdp->passed_quiesce = 0;
2325 rdp->qs_pending = 0;
2326 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2327 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2328 }
2329 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2330 rnp = rnp->parent;
2331 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2332
2333 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2334 }
2335
rcu_prepare_cpu(int cpu)2336 static void __cpuinit rcu_prepare_cpu(int cpu)
2337 {
2338 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2339 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2340 rcu_preempt_init_percpu_data(cpu);
2341 }
2342
2343 /*
2344 * Handle CPU online/offline notification events.
2345 */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2346 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2347 unsigned long action, void *hcpu)
2348 {
2349 long cpu = (long)hcpu;
2350 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2351 struct rcu_node *rnp = rdp->mynode;
2352
2353 trace_rcu_utilization("Start CPU hotplug");
2354 switch (action) {
2355 case CPU_UP_PREPARE:
2356 case CPU_UP_PREPARE_FROZEN:
2357 rcu_prepare_cpu(cpu);
2358 rcu_prepare_kthreads(cpu);
2359 break;
2360 case CPU_ONLINE:
2361 case CPU_DOWN_FAILED:
2362 rcu_node_kthread_setaffinity(rnp, -1);
2363 rcu_cpu_kthread_setrt(cpu, 1);
2364 break;
2365 case CPU_DOWN_PREPARE:
2366 rcu_node_kthread_setaffinity(rnp, cpu);
2367 rcu_cpu_kthread_setrt(cpu, 0);
2368 break;
2369 case CPU_DYING:
2370 case CPU_DYING_FROZEN:
2371 /*
2372 * The whole machine is "stopped" except this CPU, so we can
2373 * touch any data without introducing corruption. We send the
2374 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2375 */
2376 rcu_cleanup_dying_cpu(&rcu_bh_state);
2377 rcu_cleanup_dying_cpu(&rcu_sched_state);
2378 rcu_preempt_cleanup_dying_cpu();
2379 rcu_cleanup_after_idle(cpu);
2380 break;
2381 case CPU_DEAD:
2382 case CPU_DEAD_FROZEN:
2383 case CPU_UP_CANCELED:
2384 case CPU_UP_CANCELED_FROZEN:
2385 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2386 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2387 rcu_preempt_cleanup_dead_cpu(cpu);
2388 break;
2389 default:
2390 break;
2391 }
2392 trace_rcu_utilization("End CPU hotplug");
2393 return NOTIFY_OK;
2394 }
2395
2396 /*
2397 * This function is invoked towards the end of the scheduler's initialization
2398 * process. Before this is called, the idle task might contain
2399 * RCU read-side critical sections (during which time, this idle
2400 * task is booting the system). After this function is called, the
2401 * idle tasks are prohibited from containing RCU read-side critical
2402 * sections. This function also enables RCU lockdep checking.
2403 */
rcu_scheduler_starting(void)2404 void rcu_scheduler_starting(void)
2405 {
2406 WARN_ON(num_online_cpus() != 1);
2407 WARN_ON(nr_context_switches() > 0);
2408 rcu_scheduler_active = 1;
2409 }
2410
2411 /*
2412 * Compute the per-level fanout, either using the exact fanout specified
2413 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2414 */
2415 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)2416 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2417 {
2418 int i;
2419
2420 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2421 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2422 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2423 }
2424 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)2425 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2426 {
2427 int ccur;
2428 int cprv;
2429 int i;
2430
2431 cprv = NR_CPUS;
2432 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2433 ccur = rsp->levelcnt[i];
2434 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2435 cprv = ccur;
2436 }
2437 }
2438 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2439
2440 /*
2441 * Helper function for rcu_init() that initializes one rcu_state structure.
2442 */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)2443 static void __init rcu_init_one(struct rcu_state *rsp,
2444 struct rcu_data __percpu *rda)
2445 {
2446 static char *buf[] = { "rcu_node_level_0",
2447 "rcu_node_level_1",
2448 "rcu_node_level_2",
2449 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2450 int cpustride = 1;
2451 int i;
2452 int j;
2453 struct rcu_node *rnp;
2454
2455 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2456
2457 /* Initialize the level-tracking arrays. */
2458
2459 for (i = 1; i < NUM_RCU_LVLS; i++)
2460 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2461 rcu_init_levelspread(rsp);
2462
2463 /* Initialize the elements themselves, starting from the leaves. */
2464
2465 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2466 cpustride *= rsp->levelspread[i];
2467 rnp = rsp->level[i];
2468 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2469 raw_spin_lock_init(&rnp->lock);
2470 lockdep_set_class_and_name(&rnp->lock,
2471 &rcu_node_class[i], buf[i]);
2472 rnp->gpnum = 0;
2473 rnp->qsmask = 0;
2474 rnp->qsmaskinit = 0;
2475 rnp->grplo = j * cpustride;
2476 rnp->grphi = (j + 1) * cpustride - 1;
2477 if (rnp->grphi >= NR_CPUS)
2478 rnp->grphi = NR_CPUS - 1;
2479 if (i == 0) {
2480 rnp->grpnum = 0;
2481 rnp->grpmask = 0;
2482 rnp->parent = NULL;
2483 } else {
2484 rnp->grpnum = j % rsp->levelspread[i - 1];
2485 rnp->grpmask = 1UL << rnp->grpnum;
2486 rnp->parent = rsp->level[i - 1] +
2487 j / rsp->levelspread[i - 1];
2488 }
2489 rnp->level = i;
2490 INIT_LIST_HEAD(&rnp->blkd_tasks);
2491 }
2492 }
2493
2494 rsp->rda = rda;
2495 rnp = rsp->level[NUM_RCU_LVLS - 1];
2496 for_each_possible_cpu(i) {
2497 while (i > rnp->grphi)
2498 rnp++;
2499 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2500 rcu_boot_init_percpu_data(i, rsp);
2501 }
2502 }
2503
rcu_init(void)2504 void __init rcu_init(void)
2505 {
2506 int cpu;
2507
2508 rcu_bootup_announce();
2509 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2510 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2511 __rcu_init_preempt();
2512 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2513
2514 /*
2515 * We don't need protection against CPU-hotplug here because
2516 * this is called early in boot, before either interrupts
2517 * or the scheduler are operational.
2518 */
2519 cpu_notifier(rcu_cpu_notify, 0);
2520 for_each_online_cpu(cpu)
2521 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2522 check_cpu_stall_init();
2523 }
2524
2525 #include "rcutree_plugin.h"
2526