1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include "rc-core-priv.h"
22 
23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24 #define IR_TAB_MIN_SIZE	256
25 #define IR_TAB_MAX_SIZE	8192
26 
27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28 #define IR_KEYPRESS_TIMEOUT 250
29 
30 /* Used to keep track of known keymaps */
31 static LIST_HEAD(rc_map_list);
32 static DEFINE_SPINLOCK(rc_map_lock);
33 
seek_rc_map(const char * name)34 static struct rc_map_list *seek_rc_map(const char *name)
35 {
36 	struct rc_map_list *map = NULL;
37 
38 	spin_lock(&rc_map_lock);
39 	list_for_each_entry(map, &rc_map_list, list) {
40 		if (!strcmp(name, map->map.name)) {
41 			spin_unlock(&rc_map_lock);
42 			return map;
43 		}
44 	}
45 	spin_unlock(&rc_map_lock);
46 
47 	return NULL;
48 }
49 
rc_map_get(const char * name)50 struct rc_map *rc_map_get(const char *name)
51 {
52 
53 	struct rc_map_list *map;
54 
55 	map = seek_rc_map(name);
56 #ifdef MODULE
57 	if (!map) {
58 		int rc = request_module(name);
59 		if (rc < 0) {
60 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61 			return NULL;
62 		}
63 		msleep(20);	/* Give some time for IR to register */
64 
65 		map = seek_rc_map(name);
66 	}
67 #endif
68 	if (!map) {
69 		printk(KERN_ERR "IR keymap %s not found\n", name);
70 		return NULL;
71 	}
72 
73 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74 
75 	return &map->map;
76 }
77 EXPORT_SYMBOL_GPL(rc_map_get);
78 
rc_map_register(struct rc_map_list * map)79 int rc_map_register(struct rc_map_list *map)
80 {
81 	spin_lock(&rc_map_lock);
82 	list_add_tail(&map->list, &rc_map_list);
83 	spin_unlock(&rc_map_lock);
84 	return 0;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_register);
87 
rc_map_unregister(struct rc_map_list * map)88 void rc_map_unregister(struct rc_map_list *map)
89 {
90 	spin_lock(&rc_map_lock);
91 	list_del(&map->list);
92 	spin_unlock(&rc_map_lock);
93 }
94 EXPORT_SYMBOL_GPL(rc_map_unregister);
95 
96 
97 static struct rc_map_table empty[] = {
98 	{ 0x2a, KEY_COFFEE },
99 };
100 
101 static struct rc_map_list empty_map = {
102 	.map = {
103 		.scan    = empty,
104 		.size    = ARRAY_SIZE(empty),
105 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
106 		.name    = RC_MAP_EMPTY,
107 	}
108 };
109 
110 /**
111  * ir_create_table() - initializes a scancode table
112  * @rc_map:	the rc_map to initialize
113  * @name:	name to assign to the table
114  * @rc_type:	ir type to assign to the new table
115  * @size:	initial size of the table
116  * @return:	zero on success or a negative error code
117  *
118  * This routine will initialize the rc_map and will allocate
119  * memory to hold at least the specified number of elements.
120  */
ir_create_table(struct rc_map * rc_map,const char * name,u64 rc_type,size_t size)121 static int ir_create_table(struct rc_map *rc_map,
122 			   const char *name, u64 rc_type, size_t size)
123 {
124 	rc_map->name = name;
125 	rc_map->rc_type = rc_type;
126 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129 	if (!rc_map->scan)
130 		return -ENOMEM;
131 
132 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133 		   rc_map->size, rc_map->alloc);
134 	return 0;
135 }
136 
137 /**
138  * ir_free_table() - frees memory allocated by a scancode table
139  * @rc_map:	the table whose mappings need to be freed
140  *
141  * This routine will free memory alloctaed for key mappings used by given
142  * scancode table.
143  */
ir_free_table(struct rc_map * rc_map)144 static void ir_free_table(struct rc_map *rc_map)
145 {
146 	rc_map->size = 0;
147 	kfree(rc_map->scan);
148 	rc_map->scan = NULL;
149 }
150 
151 /**
152  * ir_resize_table() - resizes a scancode table if necessary
153  * @rc_map:	the rc_map to resize
154  * @gfp_flags:	gfp flags to use when allocating memory
155  * @return:	zero on success or a negative error code
156  *
157  * This routine will shrink the rc_map if it has lots of
158  * unused entries and grow it if it is full.
159  */
ir_resize_table(struct rc_map * rc_map,gfp_t gfp_flags)160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161 {
162 	unsigned int oldalloc = rc_map->alloc;
163 	unsigned int newalloc = oldalloc;
164 	struct rc_map_table *oldscan = rc_map->scan;
165 	struct rc_map_table *newscan;
166 
167 	if (rc_map->size == rc_map->len) {
168 		/* All entries in use -> grow keytable */
169 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170 			return -ENOMEM;
171 
172 		newalloc *= 2;
173 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174 	}
175 
176 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 		/* Less than 1/3 of entries in use -> shrink keytable */
178 		newalloc /= 2;
179 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180 	}
181 
182 	if (newalloc == oldalloc)
183 		return 0;
184 
185 	newscan = kmalloc(newalloc, gfp_flags);
186 	if (!newscan) {
187 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188 		return -ENOMEM;
189 	}
190 
191 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 	rc_map->scan = newscan;
193 	rc_map->alloc = newalloc;
194 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 	kfree(oldscan);
196 	return 0;
197 }
198 
199 /**
200  * ir_update_mapping() - set a keycode in the scancode->keycode table
201  * @dev:	the struct rc_dev device descriptor
202  * @rc_map:	scancode table to be adjusted
203  * @index:	index of the mapping that needs to be updated
204  * @keycode:	the desired keycode
205  * @return:	previous keycode assigned to the mapping
206  *
207  * This routine is used to update scancode->keycode mapping at given
208  * position.
209  */
ir_update_mapping(struct rc_dev * dev,struct rc_map * rc_map,unsigned int index,unsigned int new_keycode)210 static unsigned int ir_update_mapping(struct rc_dev *dev,
211 				      struct rc_map *rc_map,
212 				      unsigned int index,
213 				      unsigned int new_keycode)
214 {
215 	int old_keycode = rc_map->scan[index].keycode;
216 	int i;
217 
218 	/* Did the user wish to remove the mapping? */
219 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 			   index, rc_map->scan[index].scancode);
222 		rc_map->len--;
223 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224 			(rc_map->len - index) * sizeof(struct rc_map_table));
225 	} else {
226 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227 			   index,
228 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 			   rc_map->scan[index].scancode, new_keycode);
230 		rc_map->scan[index].keycode = new_keycode;
231 		__set_bit(new_keycode, dev->input_dev->keybit);
232 	}
233 
234 	if (old_keycode != KEY_RESERVED) {
235 		/* A previous mapping was updated... */
236 		__clear_bit(old_keycode, dev->input_dev->keybit);
237 		/* ... but another scancode might use the same keycode */
238 		for (i = 0; i < rc_map->len; i++) {
239 			if (rc_map->scan[i].keycode == old_keycode) {
240 				__set_bit(old_keycode, dev->input_dev->keybit);
241 				break;
242 			}
243 		}
244 
245 		/* Possibly shrink the keytable, failure is not a problem */
246 		ir_resize_table(rc_map, GFP_ATOMIC);
247 	}
248 
249 	return old_keycode;
250 }
251 
252 /**
253  * ir_establish_scancode() - set a keycode in the scancode->keycode table
254  * @dev:	the struct rc_dev device descriptor
255  * @rc_map:	scancode table to be searched
256  * @scancode:	the desired scancode
257  * @resize:	controls whether we allowed to resize the table to
258  *		accommodate not yet present scancodes
259  * @return:	index of the mapping containing scancode in question
260  *		or -1U in case of failure.
261  *
262  * This routine is used to locate given scancode in rc_map.
263  * If scancode is not yet present the routine will allocate a new slot
264  * for it.
265  */
ir_establish_scancode(struct rc_dev * dev,struct rc_map * rc_map,unsigned int scancode,bool resize)266 static unsigned int ir_establish_scancode(struct rc_dev *dev,
267 					  struct rc_map *rc_map,
268 					  unsigned int scancode,
269 					  bool resize)
270 {
271 	unsigned int i;
272 
273 	/*
274 	 * Unfortunately, some hardware-based IR decoders don't provide
275 	 * all bits for the complete IR code. In general, they provide only
276 	 * the command part of the IR code. Yet, as it is possible to replace
277 	 * the provided IR with another one, it is needed to allow loading
278 	 * IR tables from other remotes. So, we support specifying a mask to
279 	 * indicate the valid bits of the scancodes.
280 	 */
281 	if (dev->scanmask)
282 		scancode &= dev->scanmask;
283 
284 	/* First check if we already have a mapping for this ir command */
285 	for (i = 0; i < rc_map->len; i++) {
286 		if (rc_map->scan[i].scancode == scancode)
287 			return i;
288 
289 		/* Keytable is sorted from lowest to highest scancode */
290 		if (rc_map->scan[i].scancode >= scancode)
291 			break;
292 	}
293 
294 	/* No previous mapping found, we might need to grow the table */
295 	if (rc_map->size == rc_map->len) {
296 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 			return -1U;
298 	}
299 
300 	/* i is the proper index to insert our new keycode */
301 	if (i < rc_map->len)
302 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303 			(rc_map->len - i) * sizeof(struct rc_map_table));
304 	rc_map->scan[i].scancode = scancode;
305 	rc_map->scan[i].keycode = KEY_RESERVED;
306 	rc_map->len++;
307 
308 	return i;
309 }
310 
311 /**
312  * ir_setkeycode() - set a keycode in the scancode->keycode table
313  * @idev:	the struct input_dev device descriptor
314  * @scancode:	the desired scancode
315  * @keycode:	result
316  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
317  *
318  * This routine is used to handle evdev EVIOCSKEY ioctl.
319  */
ir_setkeycode(struct input_dev * idev,const struct input_keymap_entry * ke,unsigned int * old_keycode)320 static int ir_setkeycode(struct input_dev *idev,
321 			 const struct input_keymap_entry *ke,
322 			 unsigned int *old_keycode)
323 {
324 	struct rc_dev *rdev = input_get_drvdata(idev);
325 	struct rc_map *rc_map = &rdev->rc_map;
326 	unsigned int index;
327 	unsigned int scancode;
328 	int retval = 0;
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&rc_map->lock, flags);
332 
333 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334 		index = ke->index;
335 		if (index >= rc_map->len) {
336 			retval = -EINVAL;
337 			goto out;
338 		}
339 	} else {
340 		retval = input_scancode_to_scalar(ke, &scancode);
341 		if (retval)
342 			goto out;
343 
344 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
345 		if (index >= rc_map->len) {
346 			retval = -ENOMEM;
347 			goto out;
348 		}
349 	}
350 
351 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352 
353 out:
354 	spin_unlock_irqrestore(&rc_map->lock, flags);
355 	return retval;
356 }
357 
358 /**
359  * ir_setkeytable() - sets several entries in the scancode->keycode table
360  * @dev:	the struct rc_dev device descriptor
361  * @to:		the struct rc_map to copy entries to
362  * @from:	the struct rc_map to copy entries from
363  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
364  *
365  * This routine is used to handle table initialization.
366  */
ir_setkeytable(struct rc_dev * dev,const struct rc_map * from)367 static int ir_setkeytable(struct rc_dev *dev,
368 			  const struct rc_map *from)
369 {
370 	struct rc_map *rc_map = &dev->rc_map;
371 	unsigned int i, index;
372 	int rc;
373 
374 	rc = ir_create_table(rc_map, from->name,
375 			     from->rc_type, from->size);
376 	if (rc)
377 		return rc;
378 
379 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380 		   rc_map->size, rc_map->alloc);
381 
382 	for (i = 0; i < from->size; i++) {
383 		index = ir_establish_scancode(dev, rc_map,
384 					      from->scan[i].scancode, false);
385 		if (index >= rc_map->len) {
386 			rc = -ENOMEM;
387 			break;
388 		}
389 
390 		ir_update_mapping(dev, rc_map, index,
391 				  from->scan[i].keycode);
392 	}
393 
394 	if (rc)
395 		ir_free_table(rc_map);
396 
397 	return rc;
398 }
399 
400 /**
401  * ir_lookup_by_scancode() - locate mapping by scancode
402  * @rc_map:	the struct rc_map to search
403  * @scancode:	scancode to look for in the table
404  * @return:	index in the table, -1U if not found
405  *
406  * This routine performs binary search in RC keykeymap table for
407  * given scancode.
408  */
ir_lookup_by_scancode(const struct rc_map * rc_map,unsigned int scancode)409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 					  unsigned int scancode)
411 {
412 	int start = 0;
413 	int end = rc_map->len - 1;
414 	int mid;
415 
416 	while (start <= end) {
417 		mid = (start + end) / 2;
418 		if (rc_map->scan[mid].scancode < scancode)
419 			start = mid + 1;
420 		else if (rc_map->scan[mid].scancode > scancode)
421 			end = mid - 1;
422 		else
423 			return mid;
424 	}
425 
426 	return -1U;
427 }
428 
429 /**
430  * ir_getkeycode() - get a keycode from the scancode->keycode table
431  * @idev:	the struct input_dev device descriptor
432  * @scancode:	the desired scancode
433  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
434  * @return:	always returns zero.
435  *
436  * This routine is used to handle evdev EVIOCGKEY ioctl.
437  */
ir_getkeycode(struct input_dev * idev,struct input_keymap_entry * ke)438 static int ir_getkeycode(struct input_dev *idev,
439 			 struct input_keymap_entry *ke)
440 {
441 	struct rc_dev *rdev = input_get_drvdata(idev);
442 	struct rc_map *rc_map = &rdev->rc_map;
443 	struct rc_map_table *entry;
444 	unsigned long flags;
445 	unsigned int index;
446 	unsigned int scancode;
447 	int retval;
448 
449 	spin_lock_irqsave(&rc_map->lock, flags);
450 
451 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452 		index = ke->index;
453 	} else {
454 		retval = input_scancode_to_scalar(ke, &scancode);
455 		if (retval)
456 			goto out;
457 
458 		index = ir_lookup_by_scancode(rc_map, scancode);
459 	}
460 
461 	if (index < rc_map->len) {
462 		entry = &rc_map->scan[index];
463 
464 		ke->index = index;
465 		ke->keycode = entry->keycode;
466 		ke->len = sizeof(entry->scancode);
467 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
468 
469 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
470 		/*
471 		 * We do not really know the valid range of scancodes
472 		 * so let's respond with KEY_RESERVED to anything we
473 		 * do not have mapping for [yet].
474 		 */
475 		ke->index = index;
476 		ke->keycode = KEY_RESERVED;
477 	} else {
478 		retval = -EINVAL;
479 		goto out;
480 	}
481 
482 	retval = 0;
483 
484 out:
485 	spin_unlock_irqrestore(&rc_map->lock, flags);
486 	return retval;
487 }
488 
489 /**
490  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491  * @dev:	the struct rc_dev descriptor of the device
492  * @scancode:	the scancode to look for
493  * @return:	the corresponding keycode, or KEY_RESERVED
494  *
495  * This routine is used by drivers which need to convert a scancode to a
496  * keycode. Normally it should not be used since drivers should have no
497  * interest in keycodes.
498  */
rc_g_keycode_from_table(struct rc_dev * dev,u32 scancode)499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500 {
501 	struct rc_map *rc_map = &dev->rc_map;
502 	unsigned int keycode;
503 	unsigned int index;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&rc_map->lock, flags);
507 
508 	index = ir_lookup_by_scancode(rc_map, scancode);
509 	keycode = index < rc_map->len ?
510 			rc_map->scan[index].keycode : KEY_RESERVED;
511 
512 	spin_unlock_irqrestore(&rc_map->lock, flags);
513 
514 	if (keycode != KEY_RESERVED)
515 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516 			   dev->input_name, scancode, keycode);
517 
518 	return keycode;
519 }
520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521 
522 /**
523  * ir_do_keyup() - internal function to signal the release of a keypress
524  * @dev:	the struct rc_dev descriptor of the device
525  *
526  * This function is used internally to release a keypress, it must be
527  * called with keylock held.
528  */
ir_do_keyup(struct rc_dev * dev)529 static void ir_do_keyup(struct rc_dev *dev)
530 {
531 	if (!dev->keypressed)
532 		return;
533 
534 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
535 	input_report_key(dev->input_dev, dev->last_keycode, 0);
536 	input_sync(dev->input_dev);
537 	dev->keypressed = false;
538 }
539 
540 /**
541  * rc_keyup() - signals the release of a keypress
542  * @dev:	the struct rc_dev descriptor of the device
543  *
544  * This routine is used to signal that a key has been released on the
545  * remote control.
546  */
rc_keyup(struct rc_dev * dev)547 void rc_keyup(struct rc_dev *dev)
548 {
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(&dev->keylock, flags);
552 	ir_do_keyup(dev);
553 	spin_unlock_irqrestore(&dev->keylock, flags);
554 }
555 EXPORT_SYMBOL_GPL(rc_keyup);
556 
557 /**
558  * ir_timer_keyup() - generates a keyup event after a timeout
559  * @cookie:	a pointer to the struct rc_dev for the device
560  *
561  * This routine will generate a keyup event some time after a keydown event
562  * is generated when no further activity has been detected.
563  */
ir_timer_keyup(unsigned long cookie)564 static void ir_timer_keyup(unsigned long cookie)
565 {
566 	struct rc_dev *dev = (struct rc_dev *)cookie;
567 	unsigned long flags;
568 
569 	/*
570 	 * ir->keyup_jiffies is used to prevent a race condition if a
571 	 * hardware interrupt occurs at this point and the keyup timer
572 	 * event is moved further into the future as a result.
573 	 *
574 	 * The timer will then be reactivated and this function called
575 	 * again in the future. We need to exit gracefully in that case
576 	 * to allow the input subsystem to do its auto-repeat magic or
577 	 * a keyup event might follow immediately after the keydown.
578 	 */
579 	spin_lock_irqsave(&dev->keylock, flags);
580 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
581 		ir_do_keyup(dev);
582 	spin_unlock_irqrestore(&dev->keylock, flags);
583 }
584 
585 /**
586  * rc_repeat() - signals that a key is still pressed
587  * @dev:	the struct rc_dev descriptor of the device
588  *
589  * This routine is used by IR decoders when a repeat message which does
590  * not include the necessary bits to reproduce the scancode has been
591  * received.
592  */
rc_repeat(struct rc_dev * dev)593 void rc_repeat(struct rc_dev *dev)
594 {
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&dev->keylock, flags);
598 
599 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
600 
601 	if (!dev->keypressed)
602 		goto out;
603 
604 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
605 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
606 
607 out:
608 	spin_unlock_irqrestore(&dev->keylock, flags);
609 }
610 EXPORT_SYMBOL_GPL(rc_repeat);
611 
612 /**
613  * ir_do_keydown() - internal function to process a keypress
614  * @dev:	the struct rc_dev descriptor of the device
615  * @scancode:   the scancode of the keypress
616  * @keycode:    the keycode of the keypress
617  * @toggle:     the toggle value of the keypress
618  *
619  * This function is used internally to register a keypress, it must be
620  * called with keylock held.
621  */
ir_do_keydown(struct rc_dev * dev,int scancode,u32 keycode,u8 toggle)622 static void ir_do_keydown(struct rc_dev *dev, int scancode,
623 			  u32 keycode, u8 toggle)
624 {
625 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
626 
627 	/* Repeat event? */
628 	if (dev->keypressed &&
629 	    dev->last_scancode == scancode &&
630 	    dev->last_toggle == toggle)
631 		return;
632 
633 	/* Release old keypress */
634 	ir_do_keyup(dev);
635 
636 	dev->last_scancode = scancode;
637 	dev->last_toggle = toggle;
638 	dev->last_keycode = keycode;
639 
640 	if (keycode == KEY_RESERVED)
641 		return;
642 
643 	/* Register a keypress */
644 	dev->keypressed = true;
645 	IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n",
646 		   dev->input_name, keycode, scancode);
647 	input_report_key(dev->input_dev, dev->last_keycode, 1);
648 	input_sync(dev->input_dev);
649 }
650 
651 /**
652  * rc_keydown() - generates input event for a key press
653  * @dev:	the struct rc_dev descriptor of the device
654  * @scancode:   the scancode that we're seeking
655  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
656  *              support toggle values, this should be set to zero)
657  *
658  * This routine is used to signal that a key has been pressed on the
659  * remote control.
660  */
rc_keydown(struct rc_dev * dev,int scancode,u8 toggle)661 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
662 {
663 	unsigned long flags;
664 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
665 
666 	spin_lock_irqsave(&dev->keylock, flags);
667 	ir_do_keydown(dev, scancode, keycode, toggle);
668 
669 	if (dev->keypressed) {
670 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
671 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
672 	}
673 	spin_unlock_irqrestore(&dev->keylock, flags);
674 }
675 EXPORT_SYMBOL_GPL(rc_keydown);
676 
677 /**
678  * rc_keydown_notimeout() - generates input event for a key press without
679  *                          an automatic keyup event at a later time
680  * @dev:	the struct rc_dev descriptor of the device
681  * @scancode:   the scancode that we're seeking
682  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
683  *              support toggle values, this should be set to zero)
684  *
685  * This routine is used to signal that a key has been pressed on the
686  * remote control. The driver must manually call rc_keyup() at a later stage.
687  */
rc_keydown_notimeout(struct rc_dev * dev,int scancode,u8 toggle)688 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
689 {
690 	unsigned long flags;
691 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
692 
693 	spin_lock_irqsave(&dev->keylock, flags);
694 	ir_do_keydown(dev, scancode, keycode, toggle);
695 	spin_unlock_irqrestore(&dev->keylock, flags);
696 }
697 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
698 
ir_open(struct input_dev * idev)699 static int ir_open(struct input_dev *idev)
700 {
701 	struct rc_dev *rdev = input_get_drvdata(idev);
702 
703 	return rdev->open(rdev);
704 }
705 
ir_close(struct input_dev * idev)706 static void ir_close(struct input_dev *idev)
707 {
708 	struct rc_dev *rdev = input_get_drvdata(idev);
709 
710 	 if (rdev)
711 		rdev->close(rdev);
712 }
713 
714 /* class for /sys/class/rc */
ir_devnode(struct device * dev,mode_t * mode)715 static char *ir_devnode(struct device *dev, mode_t *mode)
716 {
717 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
718 }
719 
720 static struct class ir_input_class = {
721 	.name		= "rc",
722 	.devnode	= ir_devnode,
723 };
724 
725 static struct {
726 	u64	type;
727 	char	*name;
728 } proto_names[] = {
729 	{ RC_TYPE_UNKNOWN,	"unknown"	},
730 	{ RC_TYPE_RC5,		"rc-5"		},
731 	{ RC_TYPE_NEC,		"nec"		},
732 	{ RC_TYPE_RC6,		"rc-6"		},
733 	{ RC_TYPE_JVC,		"jvc"		},
734 	{ RC_TYPE_SONY,		"sony"		},
735 	{ RC_TYPE_RC5_SZ,	"rc-5-sz"	},
736 	{ RC_TYPE_LIRC,		"lirc"		},
737 	{ RC_TYPE_OTHER,	"other"		},
738 };
739 
740 #define PROTO_NONE	"none"
741 
742 /**
743  * show_protocols() - shows the current IR protocol(s)
744  * @device:	the device descriptor
745  * @mattr:	the device attribute struct (unused)
746  * @buf:	a pointer to the output buffer
747  *
748  * This routine is a callback routine for input read the IR protocol type(s).
749  * it is trigged by reading /sys/class/rc/rc?/protocols.
750  * It returns the protocol names of supported protocols.
751  * Enabled protocols are printed in brackets.
752  */
show_protocols(struct device * device,struct device_attribute * mattr,char * buf)753 static ssize_t show_protocols(struct device *device,
754 			      struct device_attribute *mattr, char *buf)
755 {
756 	struct rc_dev *dev = to_rc_dev(device);
757 	u64 allowed, enabled;
758 	char *tmp = buf;
759 	int i;
760 
761 	/* Device is being removed */
762 	if (!dev)
763 		return -EINVAL;
764 
765 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
766 		enabled = dev->rc_map.rc_type;
767 		allowed = dev->allowed_protos;
768 	} else {
769 		enabled = dev->raw->enabled_protocols;
770 		allowed = ir_raw_get_allowed_protocols();
771 	}
772 
773 	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
774 		   (long long)allowed,
775 		   (long long)enabled);
776 
777 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
778 		if (allowed & enabled & proto_names[i].type)
779 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
780 		else if (allowed & proto_names[i].type)
781 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
782 	}
783 
784 	if (tmp != buf)
785 		tmp--;
786 	*tmp = '\n';
787 	return tmp + 1 - buf;
788 }
789 
790 /**
791  * store_protocols() - changes the current IR protocol(s)
792  * @device:	the device descriptor
793  * @mattr:	the device attribute struct (unused)
794  * @buf:	a pointer to the input buffer
795  * @len:	length of the input buffer
796  *
797  * This routine is for changing the IR protocol type.
798  * It is trigged by writing to /sys/class/rc/rc?/protocols.
799  * Writing "+proto" will add a protocol to the list of enabled protocols.
800  * Writing "-proto" will remove a protocol from the list of enabled protocols.
801  * Writing "proto" will enable only "proto".
802  * Writing "none" will disable all protocols.
803  * Returns -EINVAL if an invalid protocol combination or unknown protocol name
804  * is used, otherwise @len.
805  */
store_protocols(struct device * device,struct device_attribute * mattr,const char * data,size_t len)806 static ssize_t store_protocols(struct device *device,
807 			       struct device_attribute *mattr,
808 			       const char *data,
809 			       size_t len)
810 {
811 	struct rc_dev *dev = to_rc_dev(device);
812 	bool enable, disable;
813 	const char *tmp;
814 	u64 type;
815 	u64 mask;
816 	int rc, i, count = 0;
817 	unsigned long flags;
818 
819 	/* Device is being removed */
820 	if (!dev)
821 		return -EINVAL;
822 
823 	if (dev->driver_type == RC_DRIVER_SCANCODE)
824 		type = dev->rc_map.rc_type;
825 	else if (dev->raw)
826 		type = dev->raw->enabled_protocols;
827 	else {
828 		IR_dprintk(1, "Protocol switching not supported\n");
829 		return -EINVAL;
830 	}
831 
832 	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
833 		if (!*tmp)
834 			break;
835 
836 		if (*tmp == '+') {
837 			enable = true;
838 			disable = false;
839 			tmp++;
840 		} else if (*tmp == '-') {
841 			enable = false;
842 			disable = true;
843 			tmp++;
844 		} else {
845 			enable = false;
846 			disable = false;
847 		}
848 
849 		if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
850 			tmp += sizeof(PROTO_NONE);
851 			mask = 0;
852 			count++;
853 		} else {
854 			for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
855 				if (!strcasecmp(tmp, proto_names[i].name)) {
856 					tmp += strlen(proto_names[i].name);
857 					mask = proto_names[i].type;
858 					break;
859 				}
860 			}
861 			if (i == ARRAY_SIZE(proto_names)) {
862 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
863 				return -EINVAL;
864 			}
865 			count++;
866 		}
867 
868 		if (enable)
869 			type |= mask;
870 		else if (disable)
871 			type &= ~mask;
872 		else
873 			type = mask;
874 	}
875 
876 	if (!count) {
877 		IR_dprintk(1, "Protocol not specified\n");
878 		return -EINVAL;
879 	}
880 
881 	if (dev->change_protocol) {
882 		rc = dev->change_protocol(dev, type);
883 		if (rc < 0) {
884 			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
885 				   (long long)type);
886 			return -EINVAL;
887 		}
888 	}
889 
890 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
891 		spin_lock_irqsave(&dev->rc_map.lock, flags);
892 		dev->rc_map.rc_type = type;
893 		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
894 	} else {
895 		dev->raw->enabled_protocols = type;
896 	}
897 
898 	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
899 		   (long long)type);
900 
901 	return len;
902 }
903 
rc_dev_release(struct device * device)904 static void rc_dev_release(struct device *device)
905 {
906 	struct rc_dev *dev = to_rc_dev(device);
907 
908 	kfree(dev);
909 	module_put(THIS_MODULE);
910 }
911 
912 #define ADD_HOTPLUG_VAR(fmt, val...)					\
913 	do {								\
914 		int err = add_uevent_var(env, fmt, val);		\
915 		if (err)						\
916 			return err;					\
917 	} while (0)
918 
rc_dev_uevent(struct device * device,struct kobj_uevent_env * env)919 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
920 {
921 	struct rc_dev *dev = to_rc_dev(device);
922 
923 	if (dev->rc_map.name)
924 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
925 	if (dev->driver_name)
926 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
927 
928 	return 0;
929 }
930 
931 /*
932  * Static device attribute struct with the sysfs attributes for IR's
933  */
934 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
935 		   show_protocols, store_protocols);
936 
937 static struct attribute *rc_dev_attrs[] = {
938 	&dev_attr_protocols.attr,
939 	NULL,
940 };
941 
942 static struct attribute_group rc_dev_attr_grp = {
943 	.attrs	= rc_dev_attrs,
944 };
945 
946 static const struct attribute_group *rc_dev_attr_groups[] = {
947 	&rc_dev_attr_grp,
948 	NULL
949 };
950 
951 static struct device_type rc_dev_type = {
952 	.groups		= rc_dev_attr_groups,
953 	.release	= rc_dev_release,
954 	.uevent		= rc_dev_uevent,
955 };
956 
rc_allocate_device(void)957 struct rc_dev *rc_allocate_device(void)
958 {
959 	struct rc_dev *dev;
960 
961 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
962 	if (!dev)
963 		return NULL;
964 
965 	dev->input_dev = input_allocate_device();
966 	if (!dev->input_dev) {
967 		kfree(dev);
968 		return NULL;
969 	}
970 
971 	dev->input_dev->getkeycode = ir_getkeycode;
972 	dev->input_dev->setkeycode = ir_setkeycode;
973 	input_set_drvdata(dev->input_dev, dev);
974 
975 	spin_lock_init(&dev->rc_map.lock);
976 	spin_lock_init(&dev->keylock);
977 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
978 
979 	dev->dev.type = &rc_dev_type;
980 	dev->dev.class = &ir_input_class;
981 	device_initialize(&dev->dev);
982 
983 	__module_get(THIS_MODULE);
984 	return dev;
985 }
986 EXPORT_SYMBOL_GPL(rc_allocate_device);
987 
rc_free_device(struct rc_dev * dev)988 void rc_free_device(struct rc_dev *dev)
989 {
990 	if (dev) {
991 		input_free_device(dev->input_dev);
992 		put_device(&dev->dev);
993 	}
994 }
995 EXPORT_SYMBOL_GPL(rc_free_device);
996 
rc_register_device(struct rc_dev * dev)997 int rc_register_device(struct rc_dev *dev)
998 {
999 	static atomic_t devno = ATOMIC_INIT(0);
1000 	struct rc_map *rc_map;
1001 	const char *path;
1002 	int rc;
1003 
1004 	if (!dev || !dev->map_name)
1005 		return -EINVAL;
1006 
1007 	rc_map = rc_map_get(dev->map_name);
1008 	if (!rc_map)
1009 		rc_map = rc_map_get(RC_MAP_EMPTY);
1010 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1011 		return -EINVAL;
1012 
1013 	set_bit(EV_KEY, dev->input_dev->evbit);
1014 	set_bit(EV_REP, dev->input_dev->evbit);
1015 	set_bit(EV_MSC, dev->input_dev->evbit);
1016 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1017 	if (dev->open)
1018 		dev->input_dev->open = ir_open;
1019 	if (dev->close)
1020 		dev->input_dev->close = ir_close;
1021 
1022 	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1023 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1024 	dev_set_drvdata(&dev->dev, dev);
1025 	rc = device_add(&dev->dev);
1026 	if (rc)
1027 		return rc;
1028 
1029 	rc = ir_setkeytable(dev, rc_map);
1030 	if (rc)
1031 		goto out_dev;
1032 
1033 	dev->input_dev->dev.parent = &dev->dev;
1034 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1035 	dev->input_dev->phys = dev->input_phys;
1036 	dev->input_dev->name = dev->input_name;
1037 	rc = input_register_device(dev->input_dev);
1038 	if (rc)
1039 		goto out_table;
1040 
1041 	/*
1042 	 * Default delay of 250ms is too short for some protocols, especially
1043 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1044 	 * to avoid wrong repetition of the keycodes. Note that this must be
1045 	 * set after the call to input_register_device().
1046 	 */
1047 	dev->input_dev->rep[REP_DELAY] = 500;
1048 
1049 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1050 	printk(KERN_INFO "%s: %s as %s\n",
1051 		dev_name(&dev->dev),
1052 		dev->input_name ? dev->input_name : "Unspecified device",
1053 		path ? path : "N/A");
1054 	kfree(path);
1055 
1056 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1057 		rc = ir_raw_event_register(dev);
1058 		if (rc < 0)
1059 			goto out_input;
1060 	}
1061 
1062 	if (dev->change_protocol) {
1063 		rc = dev->change_protocol(dev, rc_map->rc_type);
1064 		if (rc < 0)
1065 			goto out_raw;
1066 	}
1067 
1068 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1069 		   dev->devno,
1070 		   dev->driver_name ? dev->driver_name : "unknown",
1071 		   rc_map->name ? rc_map->name : "unknown",
1072 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1073 
1074 	return 0;
1075 
1076 out_raw:
1077 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1078 		ir_raw_event_unregister(dev);
1079 out_input:
1080 	input_unregister_device(dev->input_dev);
1081 	dev->input_dev = NULL;
1082 out_table:
1083 	ir_free_table(&dev->rc_map);
1084 out_dev:
1085 	device_del(&dev->dev);
1086 	return rc;
1087 }
1088 EXPORT_SYMBOL_GPL(rc_register_device);
1089 
rc_unregister_device(struct rc_dev * dev)1090 void rc_unregister_device(struct rc_dev *dev)
1091 {
1092 	if (!dev)
1093 		return;
1094 
1095 	del_timer_sync(&dev->timer_keyup);
1096 
1097 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1098 		ir_raw_event_unregister(dev);
1099 
1100 	input_unregister_device(dev->input_dev);
1101 	dev->input_dev = NULL;
1102 
1103 	ir_free_table(&dev->rc_map);
1104 	IR_dprintk(1, "Freed keycode table\n");
1105 
1106 	device_unregister(&dev->dev);
1107 }
1108 EXPORT_SYMBOL_GPL(rc_unregister_device);
1109 
1110 /*
1111  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1112  */
1113 
rc_core_init(void)1114 static int __init rc_core_init(void)
1115 {
1116 	int rc = class_register(&ir_input_class);
1117 	if (rc) {
1118 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1119 		return rc;
1120 	}
1121 
1122 	/* Initialize/load the decoders/keymap code that will be used */
1123 	ir_raw_init();
1124 	rc_map_register(&empty_map);
1125 
1126 	return 0;
1127 }
1128 
rc_core_exit(void)1129 static void __exit rc_core_exit(void)
1130 {
1131 	class_unregister(&ir_input_class);
1132 	rc_map_unregister(&empty_map);
1133 }
1134 
1135 module_init(rc_core_init);
1136 module_exit(rc_core_exit);
1137 
1138 int rc_core_debug;    /* ir_debug level (0,1,2) */
1139 EXPORT_SYMBOL_GPL(rc_core_debug);
1140 module_param_named(debug, rc_core_debug, int, 0644);
1141 
1142 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1143 MODULE_LICENSE("GPL");
1144