1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
15 
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-npi-defs.h>
20 #include <asm/octeon/cvmx-pci-defs.h>
21 #include <asm/octeon/pci-octeon.h>
22 
23 #include <dma-coherence.h>
24 
25 #define USE_OCTEON_INTERNAL_ARBITER
26 
27 /*
28  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29  * addresses. Use PCI endian swapping 1 so no address swapping is
30  * necessary. The Linux io routines will endian swap the data.
31  */
32 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
34 
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
37 
38 u64 octeon_bar1_pci_phys;
39 
40 /**
41  * This is the bit decoding used for the Octeon PCI controller addresses
42  */
43 union octeon_pci_address {
44 	uint64_t u64;
45 	struct {
46 		uint64_t upper:2;
47 		uint64_t reserved:13;
48 		uint64_t io:1;
49 		uint64_t did:5;
50 		uint64_t subdid:3;
51 		uint64_t reserved2:4;
52 		uint64_t endian_swap:2;
53 		uint64_t reserved3:10;
54 		uint64_t bus:8;
55 		uint64_t dev:5;
56 		uint64_t func:3;
57 		uint64_t reg:8;
58 	} s;
59 };
60 
61 int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
62 					 u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
64 
65 /**
66  * Map a PCI device to the appropriate interrupt line
67  *
68  * @dev:    The Linux PCI device structure for the device to map
69  * @slot:   The slot number for this device on __BUS 0__. Linux
70  *               enumerates through all the bridges and figures out the
71  *               slot on Bus 0 where this device eventually hooks to.
72  * @pin:    The PCI interrupt pin read from the device, then swizzled
73  *               as it goes through each bridge.
74  * Returns Interrupt number for the device
75  */
pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
78 	if (octeon_pcibios_map_irq)
79 		return octeon_pcibios_map_irq(dev, slot, pin);
80 	else
81 		panic("octeon_pcibios_map_irq not set.");
82 }
83 
84 
85 /*
86  * Called to perform platform specific PCI setup
87  */
pcibios_plat_dev_init(struct pci_dev * dev)88 int pcibios_plat_dev_init(struct pci_dev *dev)
89 {
90 	uint16_t config;
91 	uint32_t dconfig;
92 	int pos;
93 	/*
94 	 * Force the Cache line setting to 64 bytes. The standard
95 	 * Linux bus scan doesn't seem to set it. Octeon really has
96 	 * 128 byte lines, but Intel bridges get really upset if you
97 	 * try and set values above 64 bytes. Value is specified in
98 	 * 32bit words.
99 	 */
100 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101 	/* Set latency timers for all devices */
102 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
103 
104 	/* Enable reporting System errors and parity errors on all devices */
105 	/* Enable parity checking and error reporting */
106 	pci_read_config_word(dev, PCI_COMMAND, &config);
107 	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108 	pci_write_config_word(dev, PCI_COMMAND, config);
109 
110 	if (dev->subordinate) {
111 		/* Set latency timers on sub bridges */
112 		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
113 		/* More bridge error detection */
114 		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115 		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116 		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117 	}
118 
119 	/* Enable the PCIe normal error reporting */
120 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
121 	if (pos) {
122 		/* Update Device Control */
123 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
124 		/* Correctable Error Reporting */
125 		config |= PCI_EXP_DEVCTL_CERE;
126 		/* Non-Fatal Error Reporting */
127 		config |= PCI_EXP_DEVCTL_NFERE;
128 		/* Fatal Error Reporting */
129 		config |= PCI_EXP_DEVCTL_FERE;
130 		/* Unsupported Request */
131 		config |= PCI_EXP_DEVCTL_URRE;
132 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
133 	}
134 
135 	/* Find the Advanced Error Reporting capability */
136 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
137 	if (pos) {
138 		/* Clear Uncorrectable Error Status */
139 		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
140 				      &dconfig);
141 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
142 				       dconfig);
143 		/* Enable reporting of all uncorrectable errors */
144 		/* Uncorrectable Error Mask - turned on bits disable errors */
145 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
146 		/*
147 		 * Leave severity at HW default. This only controls if
148 		 * errors are reported as uncorrectable or
149 		 * correctable, not if the error is reported.
150 		 */
151 		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
152 		/* Clear Correctable Error Status */
153 		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
154 		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
155 		/* Enable reporting of all correctable errors */
156 		/* Correctable Error Mask - turned on bits disable errors */
157 		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
158 		/* Advanced Error Capabilities */
159 		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
160 		/* ECRC Generation Enable */
161 		if (config & PCI_ERR_CAP_ECRC_GENC)
162 			config |= PCI_ERR_CAP_ECRC_GENE;
163 		/* ECRC Check Enable */
164 		if (config & PCI_ERR_CAP_ECRC_CHKC)
165 			config |= PCI_ERR_CAP_ECRC_CHKE;
166 		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
167 		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
168 		/* Report all errors to the root complex */
169 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
170 				       PCI_ERR_ROOT_CMD_COR_EN |
171 				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
172 				       PCI_ERR_ROOT_CMD_FATAL_EN);
173 		/* Clear the Root status register */
174 		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
175 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
176 	}
177 
178 	dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
179 
180 	return 0;
181 }
182 
183 /**
184  * Return the mapping of PCI device number to IRQ line. Each
185  * character in the return string represents the interrupt
186  * line for the device at that position. Device 1 maps to the
187  * first character, etc. The characters A-D are used for PCI
188  * interrupts.
189  *
190  * Returns PCI interrupt mapping
191  */
octeon_get_pci_interrupts(void)192 const char *octeon_get_pci_interrupts(void)
193 {
194 	/*
195 	 * Returning an empty string causes the interrupts to be
196 	 * routed based on the PCI specification. From the PCI spec:
197 	 *
198 	 * INTA# of Device Number 0 is connected to IRQW on the system
199 	 * board.  (Device Number has no significance regarding being
200 	 * located on the system board or in a connector.) INTA# of
201 	 * Device Number 1 is connected to IRQX on the system
202 	 * board. INTA# of Device Number 2 is connected to IRQY on the
203 	 * system board. INTA# of Device Number 3 is connected to IRQZ
204 	 * on the system board. The table below describes how each
205 	 * agent's INTx# lines are connected to the system board
206 	 * interrupt lines. The following equation can be used to
207 	 * determine to which INTx# signal on the system board a given
208 	 * device's INTx# line(s) is connected.
209 	 *
210 	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
211 	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
212 	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
213 	 * INTD# = 3)
214 	 */
215 	switch (octeon_bootinfo->board_type) {
216 	case CVMX_BOARD_TYPE_NAO38:
217 		/* This is really the NAC38 */
218 		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
219 	case CVMX_BOARD_TYPE_EBH3100:
220 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
221 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
222 		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
223 	case CVMX_BOARD_TYPE_BBGW_REF:
224 		return "AABCD";
225 	case CVMX_BOARD_TYPE_THUNDER:
226 	case CVMX_BOARD_TYPE_EBH3000:
227 	default:
228 		return "";
229 	}
230 }
231 
232 /**
233  * Map a PCI device to the appropriate interrupt line
234  *
235  * @dev:    The Linux PCI device structure for the device to map
236  * @slot:   The slot number for this device on __BUS 0__. Linux
237  *               enumerates through all the bridges and figures out the
238  *               slot on Bus 0 where this device eventually hooks to.
239  * @pin:    The PCI interrupt pin read from the device, then swizzled
240  *               as it goes through each bridge.
241  * Returns Interrupt number for the device
242  */
octeon_pci_pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)243 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
244 				      u8 slot, u8 pin)
245 {
246 	int irq_num;
247 	const char *interrupts;
248 	int dev_num;
249 
250 	/* Get the board specific interrupt mapping */
251 	interrupts = octeon_get_pci_interrupts();
252 
253 	dev_num = dev->devfn >> 3;
254 	if (dev_num < strlen(interrupts))
255 		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
256 			OCTEON_IRQ_PCI_INT0;
257 	else
258 		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
259 	return irq_num;
260 }
261 
262 
263 /*
264  * Read a value from configuration space
265  */
octeon_read_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 * val)266 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
267 			      int reg, int size, u32 *val)
268 {
269 	union octeon_pci_address pci_addr;
270 
271 	pci_addr.u64 = 0;
272 	pci_addr.s.upper = 2;
273 	pci_addr.s.io = 1;
274 	pci_addr.s.did = 3;
275 	pci_addr.s.subdid = 1;
276 	pci_addr.s.endian_swap = 1;
277 	pci_addr.s.bus = bus->number;
278 	pci_addr.s.dev = devfn >> 3;
279 	pci_addr.s.func = devfn & 0x7;
280 	pci_addr.s.reg = reg;
281 
282 #if PCI_CONFIG_SPACE_DELAY
283 	udelay(PCI_CONFIG_SPACE_DELAY);
284 #endif
285 	switch (size) {
286 	case 4:
287 		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
288 		return PCIBIOS_SUCCESSFUL;
289 	case 2:
290 		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
291 		return PCIBIOS_SUCCESSFUL;
292 	case 1:
293 		*val = cvmx_read64_uint8(pci_addr.u64);
294 		return PCIBIOS_SUCCESSFUL;
295 	}
296 	return PCIBIOS_FUNC_NOT_SUPPORTED;
297 }
298 
299 
300 /*
301  * Write a value to PCI configuration space
302  */
octeon_write_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 val)303 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
304 			       int reg, int size, u32 val)
305 {
306 	union octeon_pci_address pci_addr;
307 
308 	pci_addr.u64 = 0;
309 	pci_addr.s.upper = 2;
310 	pci_addr.s.io = 1;
311 	pci_addr.s.did = 3;
312 	pci_addr.s.subdid = 1;
313 	pci_addr.s.endian_swap = 1;
314 	pci_addr.s.bus = bus->number;
315 	pci_addr.s.dev = devfn >> 3;
316 	pci_addr.s.func = devfn & 0x7;
317 	pci_addr.s.reg = reg;
318 
319 #if PCI_CONFIG_SPACE_DELAY
320 	udelay(PCI_CONFIG_SPACE_DELAY);
321 #endif
322 	switch (size) {
323 	case 4:
324 		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
325 		return PCIBIOS_SUCCESSFUL;
326 	case 2:
327 		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
328 		return PCIBIOS_SUCCESSFUL;
329 	case 1:
330 		cvmx_write64_uint8(pci_addr.u64, val);
331 		return PCIBIOS_SUCCESSFUL;
332 	}
333 	return PCIBIOS_FUNC_NOT_SUPPORTED;
334 }
335 
336 
337 static struct pci_ops octeon_pci_ops = {
338 	octeon_read_config,
339 	octeon_write_config,
340 };
341 
342 static struct resource octeon_pci_mem_resource = {
343 	.start = 0,
344 	.end = 0,
345 	.name = "Octeon PCI MEM",
346 	.flags = IORESOURCE_MEM,
347 };
348 
349 /*
350  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
351  * bridge
352  */
353 static struct resource octeon_pci_io_resource = {
354 	.start = 0x4000,
355 	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
356 	.name = "Octeon PCI IO",
357 	.flags = IORESOURCE_IO,
358 };
359 
360 static struct pci_controller octeon_pci_controller = {
361 	.pci_ops = &octeon_pci_ops,
362 	.mem_resource = &octeon_pci_mem_resource,
363 	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
364 	.io_resource = &octeon_pci_io_resource,
365 	.io_offset = 0,
366 	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
367 };
368 
369 
370 /*
371  * Low level initialize the Octeon PCI controller
372  */
octeon_pci_initialize(void)373 static void octeon_pci_initialize(void)
374 {
375 	union cvmx_pci_cfg01 cfg01;
376 	union cvmx_npi_ctl_status ctl_status;
377 	union cvmx_pci_ctl_status_2 ctl_status_2;
378 	union cvmx_pci_cfg19 cfg19;
379 	union cvmx_pci_cfg16 cfg16;
380 	union cvmx_pci_cfg22 cfg22;
381 	union cvmx_pci_cfg56 cfg56;
382 
383 	/* Reset the PCI Bus */
384 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
385 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
386 
387 	udelay(2000);		/* Hold PCI reset for 2 ms */
388 
389 	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
390 	ctl_status.s.max_word = 1;
391 	ctl_status.s.timer = 1;
392 	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
393 
394 	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
395 	   (64b) */
396 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
397 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
398 
399 	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
400 
401 	ctl_status_2.u32 = 0;
402 	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
403 					   before any PCI reads. */
404 	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
405 	ctl_status_2.s.bar2_enb = 1;
406 	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
407 	ctl_status_2.s.bar2_esx = 1;
408 	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
409 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
410 		/* BAR1 hole */
411 		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
412 		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
413 		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
414 		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
415 		ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
416 		ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
417 	}
418 
419 	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
420 	udelay(2000);		/* Wait 2 ms before doing PCI reads */
421 
422 	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
423 	pr_notice("PCI Status: %s %s-bit\n",
424 		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
425 		  ctl_status_2.s.ap_64ad ? "64" : "32");
426 
427 	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
428 		union cvmx_pci_cnt_reg cnt_reg_start;
429 		union cvmx_pci_cnt_reg cnt_reg_end;
430 		unsigned long cycles, pci_clock;
431 
432 		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
433 		cycles = read_c0_cvmcount();
434 		udelay(1000);
435 		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
436 		cycles = read_c0_cvmcount() - cycles;
437 		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
438 			    (cycles / (mips_hpt_frequency / 1000000));
439 		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
440 	}
441 
442 	/*
443 	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
444 	 * in PCI-X mode to allow four outstanding splits. Otherwise,
445 	 * should not change from its reset value. Don't write PCI_CFG19
446 	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
447 	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
448 	 * MRBCM -> must be one.
449 	 */
450 	if (ctl_status_2.s.ap_pcix) {
451 		cfg19.u32 = 0;
452 		/*
453 		 * Target Delayed/Split request outstanding maximum
454 		 * count. [1..31] and 0=32.  NOTE: If the user
455 		 * programs these bits beyond the Designed Maximum
456 		 * outstanding count, then the designed maximum table
457 		 * depth will be used instead.  No additional
458 		 * Deferred/Split transactions will be accepted if
459 		 * this outstanding maximum count is
460 		 * reached. Furthermore, no additional deferred/split
461 		 * transactions will be accepted if the I/O delay/ I/O
462 		 * Split Request outstanding maximum is reached.
463 		 */
464 		cfg19.s.tdomc = 4;
465 		/*
466 		 * Master Deferred Read Request Outstanding Max Count
467 		 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
468 		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
469 		 * 5 2 110 6 3 111 7 3 For example, if these bits are
470 		 * programmed to 100, the core can support 2 DAC
471 		 * cycles, 4 SAC cycles or a combination of 1 DAC and
472 		 * 2 SAC cycles. NOTE: For the PCI-X maximum
473 		 * outstanding split transactions, refer to
474 		 * CRE0[22:20].
475 		 */
476 		cfg19.s.mdrrmc = 2;
477 		/*
478 		 * Master Request (Memory Read) Byte Count/Byte Enable
479 		 * select. 0 = Byte Enables valid. In PCI mode, a
480 		 * burst transaction cannot be performed using Memory
481 		 * Read command=4?h6. 1 = DWORD Byte Count valid
482 		 * (default). In PCI Mode, the memory read byte
483 		 * enables are automatically generated by the
484 		 * core. Note: N3 Master Request transaction sizes are
485 		 * always determined through the
486 		 * am_attr[<35:32>|<7:0>] field.
487 		 */
488 		cfg19.s.mrbcm = 1;
489 		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
490 	}
491 
492 
493 	cfg01.u32 = 0;
494 	cfg01.s.msae = 1;	/* Memory Space Access Enable */
495 	cfg01.s.me = 1;		/* Master Enable */
496 	cfg01.s.pee = 1;	/* PERR# Enable */
497 	cfg01.s.see = 1;	/* System Error Enable */
498 	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
499 
500 	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
501 
502 #ifdef USE_OCTEON_INTERNAL_ARBITER
503 	/*
504 	 * When OCTEON is a PCI host, most systems will use OCTEON's
505 	 * internal arbiter, so must enable it before any PCI/PCI-X
506 	 * traffic can occur.
507 	 */
508 	{
509 		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
510 
511 		pci_int_arb_cfg.u64 = 0;
512 		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
513 		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
514 	}
515 #endif	/* USE_OCTEON_INTERNAL_ARBITER */
516 
517 	/*
518 	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
519 	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
520 	 * 1..7.
521 	 */
522 	cfg16.u32 = 0;
523 	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
524 	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
525 
526 	/*
527 	 * Should be written to 0x4ff00. MTTV -> must be zero.
528 	 * FLUSH -> must be 1. MRV -> should be 0xFF.
529 	 */
530 	cfg22.u32 = 0;
531 	/* Master Retry Value [1..255] and 0=infinite */
532 	cfg22.s.mrv = 0xff;
533 	/*
534 	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
535 	 * N3K operation.
536 	 */
537 	cfg22.s.flush = 1;
538 	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
539 
540 	/*
541 	 * MOST Indicates the maximum number of outstanding splits (in -1
542 	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
543 	 * affected by the MOST selection.  Should generally be written
544 	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
545 	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
546 	 */
547 	cfg56.u32 = 0;
548 	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
549 	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
550 	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
551 	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
552 	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
553 				   [0=512B,1=1024B,2=2048B,3=4096B] */
554 	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
555 				   .. 7=32] */
556 
557 	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
558 
559 	/*
560 	 * Affects PCI performance when OCTEON services reads to its
561 	 * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
562 	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
563 	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
564 	 * these values need to be changed so they won't possibly prefetch off
565 	 * of the end of memory if PCI is DMAing a buffer at the end of
566 	 * memory. Note that these values differ from their reset values.
567 	 */
568 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
569 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
570 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
571 }
572 
573 
574 /*
575  * Initialize the Octeon PCI controller
576  */
octeon_pci_setup(void)577 static int __init octeon_pci_setup(void)
578 {
579 	union cvmx_npi_mem_access_subidx mem_access;
580 	int index;
581 
582 	/* Only these chips have PCI */
583 	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
584 		return 0;
585 
586 	/* Point pcibios_map_irq() to the PCI version of it */
587 	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
588 
589 	/* Only use the big bars on chips that support it */
590 	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
591 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
592 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
593 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
594 	else
595 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
596 
597 	/* PCI I/O and PCI MEM values */
598 	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
599 	ioport_resource.start = 0;
600 	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
601 	if (!octeon_is_pci_host()) {
602 		pr_notice("Not in host mode, PCI Controller not initialized\n");
603 		return 0;
604 	}
605 
606 	pr_notice("%s Octeon big bar support\n",
607 		  (octeon_dma_bar_type ==
608 		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
609 
610 	octeon_pci_initialize();
611 
612 	mem_access.u64 = 0;
613 	mem_access.s.esr = 1;	/* Endian-Swap on read. */
614 	mem_access.s.esw = 1;	/* Endian-Swap on write. */
615 	mem_access.s.nsr = 0;	/* No-Snoop on read. */
616 	mem_access.s.nsw = 0;	/* No-Snoop on write. */
617 	mem_access.s.ror = 0;	/* Relax Read on read. */
618 	mem_access.s.row = 0;	/* Relax Order on write. */
619 	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
620 	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
621 
622 	/*
623 	 * Remap the Octeon BAR 2 above all 32 bit devices
624 	 * (0x8000000000ul).  This is done here so it is remapped
625 	 * before the readl()'s below. We don't want BAR2 overlapping
626 	 * with BAR0/BAR1 during these reads.
627 	 */
628 	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
629 			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
630 	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
631 			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
632 
633 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
634 		/* Remap the Octeon BAR 0 to 0-2GB */
635 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
636 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
637 
638 		/*
639 		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
640 		 * BAR 1 hole).
641 		 */
642 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
643 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
644 
645 		/* BAR1 movable mappings set for identity mapping */
646 		octeon_bar1_pci_phys = 0x80000000ull;
647 		for (index = 0; index < 32; index++) {
648 			union cvmx_pci_bar1_indexx bar1_index;
649 
650 			bar1_index.u32 = 0;
651 			/* Address bits[35:22] sent to L2C */
652 			bar1_index.s.addr_idx =
653 				(octeon_bar1_pci_phys >> 22) + index;
654 			/* Don't put PCI accesses in L2. */
655 			bar1_index.s.ca = 1;
656 			/* Endian Swap Mode */
657 			bar1_index.s.end_swp = 1;
658 			/* Set '1' when the selected address range is valid. */
659 			bar1_index.s.addr_v = 1;
660 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
661 					   bar1_index.u32);
662 		}
663 
664 		/* Devices go after BAR1 */
665 		octeon_pci_mem_resource.start =
666 			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
667 			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
668 		octeon_pci_mem_resource.end =
669 			octeon_pci_mem_resource.start + (1ul << 30);
670 	} else {
671 		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
672 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
673 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
674 
675 		/* Remap the Octeon BAR 1 to map 0-128MB */
676 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
677 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
678 
679 		/* BAR1 movable regions contiguous to cover the swiotlb */
680 		octeon_bar1_pci_phys =
681 			virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
682 
683 		for (index = 0; index < 32; index++) {
684 			union cvmx_pci_bar1_indexx bar1_index;
685 
686 			bar1_index.u32 = 0;
687 			/* Address bits[35:22] sent to L2C */
688 			bar1_index.s.addr_idx =
689 				(octeon_bar1_pci_phys >> 22) + index;
690 			/* Don't put PCI accesses in L2. */
691 			bar1_index.s.ca = 1;
692 			/* Endian Swap Mode */
693 			bar1_index.s.end_swp = 1;
694 			/* Set '1' when the selected address range is valid. */
695 			bar1_index.s.addr_v = 1;
696 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
697 					   bar1_index.u32);
698 		}
699 
700 		/* Devices go after BAR0 */
701 		octeon_pci_mem_resource.start =
702 			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
703 			(4ul << 10);
704 		octeon_pci_mem_resource.end =
705 			octeon_pci_mem_resource.start + (1ul << 30);
706 	}
707 
708 	register_pci_controller(&octeon_pci_controller);
709 
710 	/*
711 	 * Clear any errors that might be pending from before the bus
712 	 * was setup properly.
713 	 */
714 	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
715 
716 	octeon_pci_dma_init();
717 
718 	return 0;
719 }
720 
721 arch_initcall(octeon_pci_setup);
722