1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25 
26 #if PTTYPE == 64
27 	#define pt_element_t u64
28 	#define guest_walker guest_walker64
29 	#define FNAME(name) paging##64_##name
30 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS 4
37 	#define CMPXCHG cmpxchg
38 	#else
39 	#define CMPXCHG cmpxchg64
40 	#define PT_MAX_FULL_LEVELS 2
41 	#endif
42 #elif PTTYPE == 32
43 	#define pt_element_t u32
44 	#define guest_walker guest_walker32
45 	#define FNAME(name) paging##32_##name
46 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
51 	#define PT_MAX_FULL_LEVELS 2
52 	#define CMPXCHG cmpxchg
53 #else
54 	#error Invalid PTTYPE value
55 #endif
56 
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59 
60 /*
61  * The guest_walker structure emulates the behavior of the hardware page
62  * table walker.
63  */
64 struct guest_walker {
65 	int level;
66 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
67 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
68 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
69 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 	unsigned pt_access;
71 	unsigned pte_access;
72 	gfn_t gfn;
73 	struct x86_exception fault;
74 };
75 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)76 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
77 {
78 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
79 }
80 
FNAME(cmpxchg_gpte)81 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
82 			 gfn_t table_gfn, unsigned index,
83 			 pt_element_t orig_pte, pt_element_t new_pte)
84 {
85 	pt_element_t ret;
86 	pt_element_t *table;
87 	struct page *page;
88 
89 	page = gfn_to_page(kvm, table_gfn);
90 
91 	table = kmap_atomic(page, KM_USER0);
92 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
93 	kunmap_atomic(table, KM_USER0);
94 
95 	kvm_release_page_dirty(page);
96 
97 	return (ret != orig_pte);
98 }
99 
FNAME(gpte_access)100 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
101 {
102 	unsigned access;
103 
104 	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
105 #if PTTYPE == 64
106 	if (vcpu->arch.mmu.nx)
107 		access &= ~(gpte >> PT64_NX_SHIFT);
108 #endif
109 	return access;
110 }
111 
112 /*
113  * Fetch a guest pte for a guest virtual address
114  */
FNAME(walk_addr_generic)115 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
116 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
117 				    gva_t addr, u32 access)
118 {
119 	pt_element_t pte;
120 	gfn_t table_gfn;
121 	unsigned index, pt_access, uninitialized_var(pte_access);
122 	gpa_t pte_gpa;
123 	bool eperm, present, rsvd_fault;
124 	int offset, write_fault, user_fault, fetch_fault;
125 
126 	write_fault = access & PFERR_WRITE_MASK;
127 	user_fault = access & PFERR_USER_MASK;
128 	fetch_fault = access & PFERR_FETCH_MASK;
129 
130 	trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
131 				     fetch_fault);
132 walk:
133 	present = true;
134 	eperm = rsvd_fault = false;
135 	walker->level = mmu->root_level;
136 	pte           = mmu->get_cr3(vcpu);
137 
138 #if PTTYPE == 64
139 	if (walker->level == PT32E_ROOT_LEVEL) {
140 		pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
141 		trace_kvm_mmu_paging_element(pte, walker->level);
142 		if (!is_present_gpte(pte)) {
143 			present = false;
144 			goto error;
145 		}
146 		--walker->level;
147 	}
148 #endif
149 	ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
150 	       (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
151 
152 	pt_access = ACC_ALL;
153 
154 	for (;;) {
155 		index = PT_INDEX(addr, walker->level);
156 
157 		table_gfn = gpte_to_gfn(pte);
158 		offset    = index * sizeof(pt_element_t);
159 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
160 		walker->table_gfn[walker->level - 1] = table_gfn;
161 		walker->pte_gpa[walker->level - 1] = pte_gpa;
162 
163 		if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte,
164 					    offset, sizeof(pte),
165 					    PFERR_USER_MASK|PFERR_WRITE_MASK)) {
166 			present = false;
167 			break;
168 		}
169 
170 		trace_kvm_mmu_paging_element(pte, walker->level);
171 
172 		if (!is_present_gpte(pte)) {
173 			present = false;
174 			break;
175 		}
176 
177 		if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
178 			rsvd_fault = true;
179 			break;
180 		}
181 
182 		if (write_fault && !is_writable_pte(pte))
183 			if (user_fault || is_write_protection(vcpu))
184 				eperm = true;
185 
186 		if (user_fault && !(pte & PT_USER_MASK))
187 			eperm = true;
188 
189 #if PTTYPE == 64
190 		if (fetch_fault && (pte & PT64_NX_MASK))
191 			eperm = true;
192 #endif
193 
194 		if (!eperm && !rsvd_fault && !(pte & PT_ACCESSED_MASK)) {
195 			trace_kvm_mmu_set_accessed_bit(table_gfn, index,
196 						       sizeof(pte));
197 			if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
198 			    index, pte, pte|PT_ACCESSED_MASK))
199 				goto walk;
200 			mark_page_dirty(vcpu->kvm, table_gfn);
201 			pte |= PT_ACCESSED_MASK;
202 		}
203 
204 		pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
205 
206 		walker->ptes[walker->level - 1] = pte;
207 
208 		if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
209 		    ((walker->level == PT_DIRECTORY_LEVEL) &&
210 				is_large_pte(pte) &&
211 				(PTTYPE == 64 || is_pse(vcpu))) ||
212 		    ((walker->level == PT_PDPE_LEVEL) &&
213 				is_large_pte(pte) &&
214 				mmu->root_level == PT64_ROOT_LEVEL)) {
215 			int lvl = walker->level;
216 			gpa_t real_gpa;
217 			gfn_t gfn;
218 			u32 ac;
219 
220 			gfn = gpte_to_gfn_lvl(pte, lvl);
221 			gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
222 
223 			if (PTTYPE == 32 &&
224 			    walker->level == PT_DIRECTORY_LEVEL &&
225 			    is_cpuid_PSE36())
226 				gfn += pse36_gfn_delta(pte);
227 
228 			ac = write_fault | fetch_fault | user_fault;
229 
230 			real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
231 						      ac);
232 			if (real_gpa == UNMAPPED_GVA)
233 				return 0;
234 
235 			walker->gfn = real_gpa >> PAGE_SHIFT;
236 
237 			break;
238 		}
239 
240 		pt_access = pte_access;
241 		--walker->level;
242 	}
243 
244 	if (!present || eperm || rsvd_fault)
245 		goto error;
246 
247 	if (write_fault && !is_dirty_gpte(pte)) {
248 		bool ret;
249 
250 		trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
251 		ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
252 			    pte|PT_DIRTY_MASK);
253 		if (ret)
254 			goto walk;
255 		mark_page_dirty(vcpu->kvm, table_gfn);
256 		pte |= PT_DIRTY_MASK;
257 		walker->ptes[walker->level - 1] = pte;
258 	}
259 
260 	walker->pt_access = pt_access;
261 	walker->pte_access = pte_access;
262 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
263 		 __func__, (u64)pte, pte_access, pt_access);
264 	return 1;
265 
266 error:
267 	walker->fault.vector = PF_VECTOR;
268 	walker->fault.error_code_valid = true;
269 	walker->fault.error_code = 0;
270 	if (present)
271 		walker->fault.error_code |= PFERR_PRESENT_MASK;
272 
273 	walker->fault.error_code |= write_fault | user_fault;
274 
275 	if (fetch_fault && mmu->nx)
276 		walker->fault.error_code |= PFERR_FETCH_MASK;
277 	if (rsvd_fault)
278 		walker->fault.error_code |= PFERR_RSVD_MASK;
279 
280 	walker->fault.address = addr;
281 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
282 
283 	trace_kvm_mmu_walker_error(walker->fault.error_code);
284 	return 0;
285 }
286 
FNAME(walk_addr)287 static int FNAME(walk_addr)(struct guest_walker *walker,
288 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
289 {
290 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
291 					access);
292 }
293 
FNAME(walk_addr_nested)294 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
295 				   struct kvm_vcpu *vcpu, gva_t addr,
296 				   u32 access)
297 {
298 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
299 					addr, access);
300 }
301 
FNAME(prefetch_invalid_gpte)302 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
303 				    struct kvm_mmu_page *sp, u64 *spte,
304 				    pt_element_t gpte)
305 {
306 	u64 nonpresent = shadow_trap_nonpresent_pte;
307 
308 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
309 		goto no_present;
310 
311 	if (!is_present_gpte(gpte)) {
312 		if (!sp->unsync)
313 			nonpresent = shadow_notrap_nonpresent_pte;
314 		goto no_present;
315 	}
316 
317 	if (!(gpte & PT_ACCESSED_MASK))
318 		goto no_present;
319 
320 	return false;
321 
322 no_present:
323 	drop_spte(vcpu->kvm, spte, nonpresent);
324 	return true;
325 }
326 
FNAME(update_pte)327 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
328 			      u64 *spte, const void *pte, unsigned long mmu_seq)
329 {
330 	pt_element_t gpte;
331 	unsigned pte_access;
332 	pfn_t pfn;
333 
334 	gpte = *(const pt_element_t *)pte;
335 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
336 		return;
337 
338 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
339 	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
340 	pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
341 	if (is_error_pfn(pfn)) {
342 		kvm_release_pfn_clean(pfn);
343 		return;
344 	}
345 	if (mmu_notifier_retry(vcpu, mmu_seq))
346 		return;
347 
348 	/*
349 	 * we call mmu_set_spte() with host_writable = true because that
350 	 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
351 	 */
352 	mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
353 		     is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
354 		     gpte_to_gfn(gpte), pfn, true, true);
355 }
356 
FNAME(gpte_changed)357 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
358 				struct guest_walker *gw, int level)
359 {
360 	pt_element_t curr_pte;
361 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
362 	u64 mask;
363 	int r, index;
364 
365 	if (level == PT_PAGE_TABLE_LEVEL) {
366 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
367 		base_gpa = pte_gpa & ~mask;
368 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
369 
370 		r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
371 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
372 		curr_pte = gw->prefetch_ptes[index];
373 	} else
374 		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
375 				  &curr_pte, sizeof(curr_pte));
376 
377 	return r || curr_pte != gw->ptes[level - 1];
378 }
379 
FNAME(pte_prefetch)380 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
381 				u64 *sptep)
382 {
383 	struct kvm_mmu_page *sp;
384 	pt_element_t *gptep = gw->prefetch_ptes;
385 	u64 *spte;
386 	int i;
387 
388 	sp = page_header(__pa(sptep));
389 
390 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
391 		return;
392 
393 	if (sp->role.direct)
394 		return __direct_pte_prefetch(vcpu, sp, sptep);
395 
396 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
397 	spte = sp->spt + i;
398 
399 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
400 		pt_element_t gpte;
401 		unsigned pte_access;
402 		gfn_t gfn;
403 		pfn_t pfn;
404 		bool dirty;
405 
406 		if (spte == sptep)
407 			continue;
408 
409 		if (*spte != shadow_trap_nonpresent_pte)
410 			continue;
411 
412 		gpte = gptep[i];
413 
414 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
415 			continue;
416 
417 		pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
418 		gfn = gpte_to_gfn(gpte);
419 		dirty = is_dirty_gpte(gpte);
420 		pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
421 				      (pte_access & ACC_WRITE_MASK) && dirty);
422 		if (is_error_pfn(pfn)) {
423 			kvm_release_pfn_clean(pfn);
424 			break;
425 		}
426 
427 		mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
428 			     dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
429 			     pfn, true, true);
430 	}
431 }
432 
433 /*
434  * Fetch a shadow pte for a specific level in the paging hierarchy.
435  */
FNAME(fetch)436 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
437 			 struct guest_walker *gw,
438 			 int user_fault, int write_fault, int hlevel,
439 			 int *ptwrite, pfn_t pfn, bool map_writable,
440 			 bool prefault)
441 {
442 	unsigned access = gw->pt_access;
443 	struct kvm_mmu_page *sp = NULL;
444 	bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
445 	int top_level;
446 	unsigned direct_access;
447 	struct kvm_shadow_walk_iterator it;
448 
449 	if (!is_present_gpte(gw->ptes[gw->level - 1]))
450 		return NULL;
451 
452 	direct_access = gw->pt_access & gw->pte_access;
453 	if (!dirty)
454 		direct_access &= ~ACC_WRITE_MASK;
455 
456 	top_level = vcpu->arch.mmu.root_level;
457 	if (top_level == PT32E_ROOT_LEVEL)
458 		top_level = PT32_ROOT_LEVEL;
459 	/*
460 	 * Verify that the top-level gpte is still there.  Since the page
461 	 * is a root page, it is either write protected (and cannot be
462 	 * changed from now on) or it is invalid (in which case, we don't
463 	 * really care if it changes underneath us after this point).
464 	 */
465 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
466 		goto out_gpte_changed;
467 
468 	for (shadow_walk_init(&it, vcpu, addr);
469 	     shadow_walk_okay(&it) && it.level > gw->level;
470 	     shadow_walk_next(&it)) {
471 		gfn_t table_gfn;
472 
473 		drop_large_spte(vcpu, it.sptep);
474 
475 		sp = NULL;
476 		if (!is_shadow_present_pte(*it.sptep)) {
477 			table_gfn = gw->table_gfn[it.level - 2];
478 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
479 					      false, access, it.sptep);
480 		}
481 
482 		/*
483 		 * Verify that the gpte in the page we've just write
484 		 * protected is still there.
485 		 */
486 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
487 			goto out_gpte_changed;
488 
489 		if (sp)
490 			link_shadow_page(it.sptep, sp);
491 	}
492 
493 	for (;
494 	     shadow_walk_okay(&it) && it.level > hlevel;
495 	     shadow_walk_next(&it)) {
496 		gfn_t direct_gfn;
497 
498 		validate_direct_spte(vcpu, it.sptep, direct_access);
499 
500 		drop_large_spte(vcpu, it.sptep);
501 
502 		if (is_shadow_present_pte(*it.sptep))
503 			continue;
504 
505 		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
506 
507 		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
508 				      true, direct_access, it.sptep);
509 		link_shadow_page(it.sptep, sp);
510 	}
511 
512 	mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
513 		     user_fault, write_fault, dirty, ptwrite, it.level,
514 		     gw->gfn, pfn, prefault, map_writable);
515 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
516 
517 	return it.sptep;
518 
519 out_gpte_changed:
520 	if (sp)
521 		kvm_mmu_put_page(sp, it.sptep);
522 	kvm_release_pfn_clean(pfn);
523 	return NULL;
524 }
525 
526 /*
527  * Page fault handler.  There are several causes for a page fault:
528  *   - there is no shadow pte for the guest pte
529  *   - write access through a shadow pte marked read only so that we can set
530  *     the dirty bit
531  *   - write access to a shadow pte marked read only so we can update the page
532  *     dirty bitmap, when userspace requests it
533  *   - mmio access; in this case we will never install a present shadow pte
534  *   - normal guest page fault due to the guest pte marked not present, not
535  *     writable, or not executable
536  *
537  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
538  *           a negative value on error.
539  */
FNAME(page_fault)540 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
541 			     bool prefault)
542 {
543 	int write_fault = error_code & PFERR_WRITE_MASK;
544 	int user_fault = error_code & PFERR_USER_MASK;
545 	struct guest_walker walker;
546 	u64 *sptep;
547 	int write_pt = 0;
548 	int r;
549 	pfn_t pfn;
550 	int level = PT_PAGE_TABLE_LEVEL;
551 	int force_pt_level;
552 	unsigned long mmu_seq;
553 	bool map_writable;
554 
555 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
556 
557 	r = mmu_topup_memory_caches(vcpu);
558 	if (r)
559 		return r;
560 
561 	/*
562 	 * Look up the guest pte for the faulting address.
563 	 */
564 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
565 
566 	/*
567 	 * The page is not mapped by the guest.  Let the guest handle it.
568 	 */
569 	if (!r) {
570 		pgprintk("%s: guest page fault\n", __func__);
571 		if (!prefault) {
572 			inject_page_fault(vcpu, &walker.fault);
573 			/* reset fork detector */
574 			vcpu->arch.last_pt_write_count = 0;
575 		}
576 		return 0;
577 	}
578 
579 	if (walker.level >= PT_DIRECTORY_LEVEL)
580 		force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
581 	else
582 		force_pt_level = 1;
583 	if (!force_pt_level) {
584 		level = min(walker.level, mapping_level(vcpu, walker.gfn));
585 		walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
586 	}
587 
588 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
589 	smp_rmb();
590 
591 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
592 			 &map_writable))
593 		return 0;
594 
595 	/* mmio */
596 	if (is_error_pfn(pfn))
597 		return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
598 
599 	spin_lock(&vcpu->kvm->mmu_lock);
600 	if (mmu_notifier_retry(vcpu, mmu_seq))
601 		goto out_unlock;
602 
603 	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
604 	kvm_mmu_free_some_pages(vcpu);
605 	if (!force_pt_level)
606 		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
607 	sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
608 			     level, &write_pt, pfn, map_writable, prefault);
609 	(void)sptep;
610 	pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
611 		 sptep, *sptep, write_pt);
612 
613 	if (!write_pt)
614 		vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
615 
616 	++vcpu->stat.pf_fixed;
617 	trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
618 	spin_unlock(&vcpu->kvm->mmu_lock);
619 
620 	return write_pt;
621 
622 out_unlock:
623 	spin_unlock(&vcpu->kvm->mmu_lock);
624 	kvm_release_pfn_clean(pfn);
625 	return 0;
626 }
627 
FNAME(invlpg)628 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
629 {
630 	struct kvm_shadow_walk_iterator iterator;
631 	struct kvm_mmu_page *sp;
632 	gpa_t pte_gpa = -1;
633 	int level;
634 	u64 *sptep;
635 	int need_flush = 0;
636 
637 	spin_lock(&vcpu->kvm->mmu_lock);
638 
639 	for_each_shadow_entry(vcpu, gva, iterator) {
640 		level = iterator.level;
641 		sptep = iterator.sptep;
642 
643 		sp = page_header(__pa(sptep));
644 		if (is_last_spte(*sptep, level)) {
645 			int offset, shift;
646 
647 			if (!sp->unsync)
648 				break;
649 
650 			shift = PAGE_SHIFT -
651 				  (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
652 			offset = sp->role.quadrant << shift;
653 
654 			pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
655 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
656 
657 			if (is_shadow_present_pte(*sptep)) {
658 				if (is_large_pte(*sptep))
659 					--vcpu->kvm->stat.lpages;
660 				drop_spte(vcpu->kvm, sptep,
661 					  shadow_trap_nonpresent_pte);
662 				need_flush = 1;
663 			} else
664 				__set_spte(sptep, shadow_trap_nonpresent_pte);
665 			break;
666 		}
667 
668 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
669 			break;
670 	}
671 
672 	if (need_flush)
673 		kvm_flush_remote_tlbs(vcpu->kvm);
674 
675 	atomic_inc(&vcpu->kvm->arch.invlpg_counter);
676 
677 	spin_unlock(&vcpu->kvm->mmu_lock);
678 
679 	if (pte_gpa == -1)
680 		return;
681 
682 	if (mmu_topup_memory_caches(vcpu))
683 		return;
684 	kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
685 }
686 
FNAME(gva_to_gpa)687 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
688 			       struct x86_exception *exception)
689 {
690 	struct guest_walker walker;
691 	gpa_t gpa = UNMAPPED_GVA;
692 	int r;
693 
694 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
695 
696 	if (r) {
697 		gpa = gfn_to_gpa(walker.gfn);
698 		gpa |= vaddr & ~PAGE_MASK;
699 	} else if (exception)
700 		*exception = walker.fault;
701 
702 	return gpa;
703 }
704 
FNAME(gva_to_gpa_nested)705 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
706 				      u32 access,
707 				      struct x86_exception *exception)
708 {
709 	struct guest_walker walker;
710 	gpa_t gpa = UNMAPPED_GVA;
711 	int r;
712 
713 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
714 
715 	if (r) {
716 		gpa = gfn_to_gpa(walker.gfn);
717 		gpa |= vaddr & ~PAGE_MASK;
718 	} else if (exception)
719 		*exception = walker.fault;
720 
721 	return gpa;
722 }
723 
FNAME(prefetch_page)724 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
725 				 struct kvm_mmu_page *sp)
726 {
727 	int i, j, offset, r;
728 	pt_element_t pt[256 / sizeof(pt_element_t)];
729 	gpa_t pte_gpa;
730 
731 	if (sp->role.direct
732 	    || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
733 		nonpaging_prefetch_page(vcpu, sp);
734 		return;
735 	}
736 
737 	pte_gpa = gfn_to_gpa(sp->gfn);
738 	if (PTTYPE == 32) {
739 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
740 		pte_gpa += offset * sizeof(pt_element_t);
741 	}
742 
743 	for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
744 		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
745 		pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
746 		for (j = 0; j < ARRAY_SIZE(pt); ++j)
747 			if (r || is_present_gpte(pt[j]))
748 				sp->spt[i+j] = shadow_trap_nonpresent_pte;
749 			else
750 				sp->spt[i+j] = shadow_notrap_nonpresent_pte;
751 	}
752 }
753 
754 /*
755  * Using the cached information from sp->gfns is safe because:
756  * - The spte has a reference to the struct page, so the pfn for a given gfn
757  *   can't change unless all sptes pointing to it are nuked first.
758  *
759  * Note:
760  *   We should flush all tlbs if spte is dropped even though guest is
761  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
762  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
763  *   used by guest then tlbs are not flushed, so guest is allowed to access the
764  *   freed pages.
765  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
766  */
FNAME(sync_page)767 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
768 {
769 	int i, offset, nr_present;
770 	bool host_writable;
771 	gpa_t first_pte_gpa;
772 
773 	offset = nr_present = 0;
774 
775 	/* direct kvm_mmu_page can not be unsync. */
776 	BUG_ON(sp->role.direct);
777 
778 	if (PTTYPE == 32)
779 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
780 
781 	first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
782 
783 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
784 		unsigned pte_access;
785 		pt_element_t gpte;
786 		gpa_t pte_gpa;
787 		gfn_t gfn;
788 
789 		if (!is_shadow_present_pte(sp->spt[i]))
790 			continue;
791 
792 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
793 
794 		if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
795 					  sizeof(pt_element_t)))
796 			return -EINVAL;
797 
798 		gfn = gpte_to_gfn(gpte);
799 
800 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
801 			vcpu->kvm->tlbs_dirty++;
802 			continue;
803 		}
804 
805 		if (gfn != sp->gfns[i]) {
806 			drop_spte(vcpu->kvm, &sp->spt[i],
807 				      shadow_trap_nonpresent_pte);
808 			vcpu->kvm->tlbs_dirty++;
809 			continue;
810 		}
811 
812 		nr_present++;
813 		pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
814 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
815 
816 		set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
817 			 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
818 			 spte_to_pfn(sp->spt[i]), true, false,
819 			 host_writable);
820 	}
821 
822 	return !nr_present;
823 }
824 
825 #undef pt_element_t
826 #undef guest_walker
827 #undef FNAME
828 #undef PT_BASE_ADDR_MASK
829 #undef PT_INDEX
830 #undef PT_LVL_ADDR_MASK
831 #undef PT_LVL_OFFSET_MASK
832 #undef PT_LEVEL_BITS
833 #undef PT_MAX_FULL_LEVELS
834 #undef gpte_to_gfn
835 #undef gpte_to_gfn_lvl
836 #undef CMPXCHG
837