1 /* Copyright (c) 1998-2022 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published
6 by the Free Software Foundation; version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, see <https://www.gnu.org/licenses/>. */
16
17 #include <assert.h>
18 #include <atomic.h>
19 #include <errno.h>
20 #include <error.h>
21 #include <inttypes.h>
22 #include <limits.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <libintl.h>
26 #include <arpa/inet.h>
27 #include <sys/mman.h>
28 #include <sys/param.h>
29 #include <sys/stat.h>
30 #include <sys/uio.h>
31 #include <nss.h>
32
33 #include "nscd.h"
34 #include "dbg_log.h"
35
36
37 /* Wrapper functions with error checking for standard functions. */
38 extern void *xcalloc (size_t n, size_t s);
39
40
41 /* Number of times a value is reloaded without being used. UINT_MAX
42 means unlimited. */
43 unsigned int reload_count = DEFAULT_RELOAD_LIMIT;
44
45
46 static time_t (*const readdfcts[LASTREQ]) (struct database_dyn *,
47 struct hashentry *,
48 struct datahead *) =
49 {
50 [GETPWBYNAME] = readdpwbyname,
51 [GETPWBYUID] = readdpwbyuid,
52 [GETGRBYNAME] = readdgrbyname,
53 [GETGRBYGID] = readdgrbygid,
54 [GETHOSTBYNAME] = readdhstbyname,
55 [GETHOSTBYNAMEv6] = readdhstbynamev6,
56 [GETHOSTBYADDR] = readdhstbyaddr,
57 [GETHOSTBYADDRv6] = readdhstbyaddrv6,
58 [GETAI] = readdhstai,
59 [INITGROUPS] = readdinitgroups,
60 [GETSERVBYNAME] = readdservbyname,
61 [GETSERVBYPORT] = readdservbyport,
62 [GETNETGRENT] = readdgetnetgrent,
63 [INNETGR] = readdinnetgr
64 };
65
66
67 /* Search the cache for a matching entry and return it when found. If
68 this fails search the negative cache and return (void *) -1 if this
69 search was successful. Otherwise return NULL.
70
71 This function must be called with the read-lock held. */
72 struct datahead *
cache_search(request_type type,const void * key,size_t len,struct database_dyn * table,uid_t owner)73 cache_search (request_type type, const void *key, size_t len,
74 struct database_dyn *table, uid_t owner)
75 {
76 unsigned long int hash = __nss_hash (key, len) % table->head->module;
77
78 unsigned long int nsearched = 0;
79 struct datahead *result = NULL;
80
81 ref_t work = table->head->array[hash];
82 while (work != ENDREF)
83 {
84 ++nsearched;
85
86 struct hashentry *here = (struct hashentry *) (table->data + work);
87
88 if (type == here->type && len == here->len
89 && memcmp (key, table->data + here->key, len) == 0
90 && here->owner == owner)
91 {
92 /* We found the entry. Increment the appropriate counter. */
93 struct datahead *dh
94 = (struct datahead *) (table->data + here->packet);
95
96 /* See whether we must ignore the entry. */
97 if (dh->usable)
98 {
99 /* We do not synchronize the memory here. The statistics
100 data is not crucial, we synchronize only once in a while
101 in the cleanup threads. */
102 if (dh->notfound)
103 ++table->head->neghit;
104 else
105 {
106 ++table->head->poshit;
107
108 if (dh->nreloads != 0)
109 dh->nreloads = 0;
110 }
111
112 result = dh;
113 break;
114 }
115 }
116
117 work = here->next;
118 }
119
120 if (nsearched > table->head->maxnsearched)
121 table->head->maxnsearched = nsearched;
122
123 return result;
124 }
125
126 /* Add a new entry to the cache. The return value is zero if the function
127 call was successful.
128
129 This function must be called with the read-lock held.
130
131 We modify the table but we nevertheless only acquire a read-lock.
132 This is ok since we use operations which would be safe even without
133 locking, given that the `prune_cache' function never runs. Using
134 the readlock reduces the chance of conflicts. */
135 int
cache_add(int type,const void * key,size_t len,struct datahead * packet,bool first,struct database_dyn * table,uid_t owner,bool prune_wakeup)136 cache_add (int type, const void *key, size_t len, struct datahead *packet,
137 bool first, struct database_dyn *table,
138 uid_t owner, bool prune_wakeup)
139 {
140 if (__glibc_unlikely (debug_level >= 2))
141 {
142 const char *str;
143 char buf[INET6_ADDRSTRLEN + 1];
144 if (type == GETHOSTBYADDR || type == GETHOSTBYADDRv6)
145 str = inet_ntop (type == GETHOSTBYADDR ? AF_INET : AF_INET6,
146 key, buf, sizeof (buf));
147 else
148 str = key;
149
150 dbg_log (_("add new entry \"%s\" of type %s for %s to cache%s"),
151 str, serv2str[type], dbnames[table - dbs],
152 first ? _(" (first)") : "");
153 }
154
155 unsigned long int hash = __nss_hash (key, len) % table->head->module;
156 struct hashentry *newp;
157
158 newp = mempool_alloc (table, sizeof (struct hashentry), 0);
159 /* If we cannot allocate memory, just do not do anything. */
160 if (newp == NULL)
161 {
162 /* If necessary mark the entry as unusable so that lookups will
163 not use it. */
164 if (first)
165 packet->usable = false;
166
167 return -1;
168 }
169
170 newp->type = type;
171 newp->first = first;
172 newp->len = len;
173 newp->key = (char *) key - table->data;
174 assert (newp->key + newp->len <= table->head->first_free);
175 newp->owner = owner;
176 newp->packet = (char *) packet - table->data;
177 assert ((newp->packet & BLOCK_ALIGN_M1) == 0);
178
179 /* Put the new entry in the first position. */
180 /* TODO Review concurrency. Use atomic_exchange_release. */
181 newp->next = atomic_load_relaxed (&table->head->array[hash]);
182 while (!atomic_compare_exchange_weak_release (&table->head->array[hash],
183 (ref_t *) &newp->next,
184 (ref_t) ((char *) newp
185 - table->data)));
186
187 /* Update the statistics. */
188 if (packet->notfound)
189 ++table->head->negmiss;
190 else if (first)
191 ++table->head->posmiss;
192
193 /* We depend on this value being correct and at least as high as the
194 real number of entries. */
195 atomic_increment (&table->head->nentries);
196
197 /* It does not matter that we are not loading the just increment
198 value, this is just for statistics. */
199 unsigned long int nentries = table->head->nentries;
200 if (nentries > table->head->maxnentries)
201 table->head->maxnentries = nentries;
202
203 if (table->persistent)
204 // XXX async OK?
205 msync ((void *) table->head,
206 (char *) &table->head->array[hash] - (char *) table->head
207 + sizeof (ref_t), MS_ASYNC);
208
209 /* We do not have to worry about the pruning thread if we are
210 re-adding the data since this is done by the pruning thread. We
211 also do not have to do anything in case this is not the first
212 time the data is entered since different data heads all have the
213 same timeout. */
214 if (first && prune_wakeup)
215 {
216 /* Perhaps the prune thread for the table is not running in a long
217 time. Wake it if necessary. */
218 pthread_mutex_lock (&table->prune_lock);
219 time_t next_wakeup = table->wakeup_time;
220 bool do_wakeup = false;
221 if (next_wakeup > packet->timeout + CACHE_PRUNE_INTERVAL)
222 {
223 table->wakeup_time = packet->timeout;
224 do_wakeup = true;
225 }
226 pthread_mutex_unlock (&table->prune_lock);
227 if (do_wakeup)
228 pthread_cond_signal (&table->prune_cond);
229 }
230
231 return 0;
232 }
233
234 /* Walk through the table and remove all entries which lifetime ended.
235
236 We have a problem here. To actually remove the entries we must get
237 the write-lock. But since we want to keep the time we have the
238 lock as short as possible we cannot simply acquire the lock when we
239 start looking for timedout entries.
240
241 Therefore we do it in two stages: first we look for entries which
242 must be invalidated and remember them. Then we get the lock and
243 actually remove them. This is complicated by the way we have to
244 free the data structures since some hash table entries share the same
245 data. */
246 time_t
prune_cache(struct database_dyn * table,time_t now,int fd)247 prune_cache (struct database_dyn *table, time_t now, int fd)
248 {
249 size_t cnt = table->head->module;
250
251 /* If this table is not actually used don't do anything. */
252 if (cnt == 0)
253 {
254 if (fd != -1)
255 {
256 /* Reply to the INVALIDATE initiator. */
257 int32_t resp = 0;
258 writeall (fd, &resp, sizeof (resp));
259 }
260
261 /* No need to do this again anytime soon. */
262 return 24 * 60 * 60;
263 }
264
265 /* If we check for the modification of the underlying file we invalidate
266 the entries also in this case. */
267 if (table->check_file && now != LONG_MAX)
268 {
269 struct traced_file *runp = table->traced_files;
270
271 while (runp != NULL)
272 {
273 #ifdef HAVE_INOTIFY
274 if (runp->inotify_descr[TRACED_FILE] == -1)
275 #endif
276 {
277 struct stat64 st;
278
279 if (stat64 (runp->fname, &st) < 0)
280 {
281 /* Print a diagnostic that the traced file was missing.
282 We must not disable tracing since the file might return
283 shortly and we want to reload it at the next pruning.
284 Disabling tracing here would go against the configuration
285 as specified by the user via check-files. */
286 char buf[128];
287 dbg_log (_("checking for monitored file `%s': %s"),
288 runp->fname, strerror_r (errno, buf, sizeof (buf)));
289 }
290 else
291 {
292 /* This must be `!=` to catch cases where users turn the
293 clocks back and we still want to detect any time difference
294 in mtime. */
295 if (st.st_mtime != runp->mtime)
296 {
297 dbg_log (_("monitored file `%s` changed (mtime)"),
298 runp->fname);
299 /* The file changed. Invalidate all entries. */
300 now = LONG_MAX;
301 runp->mtime = st.st_mtime;
302 #ifdef HAVE_INOTIFY
303 /* Attempt to install a watch on the file. */
304 install_watches (runp);
305 #endif
306 }
307 }
308 }
309
310 runp = runp->next;
311 }
312 }
313
314 /* We run through the table and find values which are not valid anymore.
315
316 Note that for the initial step, finding the entries to be removed,
317 we don't need to get any lock. It is at all timed assured that the
318 linked lists are set up correctly and that no second thread prunes
319 the cache. */
320 bool *mark;
321 size_t memory_needed = cnt * sizeof (bool);
322 bool mark_use_alloca;
323 if (__glibc_likely (memory_needed <= MAX_STACK_USE))
324 {
325 mark = alloca (cnt * sizeof (bool));
326 memset (mark, '\0', memory_needed);
327 mark_use_alloca = true;
328 }
329 else
330 {
331 mark = xcalloc (1, memory_needed);
332 mark_use_alloca = false;
333 }
334 size_t first = cnt + 1;
335 size_t last = 0;
336 char *const data = table->data;
337 bool any = false;
338
339 if (__glibc_unlikely (debug_level > 2))
340 dbg_log (_("pruning %s cache; time %ld"),
341 dbnames[table - dbs], (long int) now);
342
343 #define NO_TIMEOUT LONG_MAX
344 time_t next_timeout = NO_TIMEOUT;
345 do
346 {
347 ref_t run = table->head->array[--cnt];
348
349 while (run != ENDREF)
350 {
351 struct hashentry *runp = (struct hashentry *) (data + run);
352 struct datahead *dh = (struct datahead *) (data + runp->packet);
353
354 /* Some debug support. */
355 if (__glibc_unlikely (debug_level > 2))
356 {
357 char buf[INET6_ADDRSTRLEN];
358 const char *str;
359
360 if (runp->type == GETHOSTBYADDR || runp->type == GETHOSTBYADDRv6)
361 {
362 inet_ntop (runp->type == GETHOSTBYADDR ? AF_INET : AF_INET6,
363 data + runp->key, buf, sizeof (buf));
364 str = buf;
365 }
366 else
367 str = data + runp->key;
368
369 dbg_log (_("considering %s entry \"%s\", timeout %" PRIu64),
370 serv2str[runp->type], str, dh->timeout);
371 }
372
373 /* Check whether the entry timed out. */
374 if (dh->timeout < now)
375 {
376 /* This hash bucket could contain entries which need to
377 be looked at. */
378 mark[cnt] = true;
379
380 first = MIN (first, cnt);
381 last = MAX (last, cnt);
382
383 /* We only have to look at the data of the first entries
384 since the count information is kept in the data part
385 which is shared. */
386 if (runp->first)
387 {
388
389 /* At this point there are two choices: we reload the
390 value or we discard it. Do not change NRELOADS if
391 we never not reload the record. */
392 if ((reload_count != UINT_MAX
393 && __builtin_expect (dh->nreloads >= reload_count, 0))
394 /* We always remove negative entries. */
395 || dh->notfound
396 /* Discard everything if the user explicitly
397 requests it. */
398 || now == LONG_MAX)
399 {
400 /* Remove the value. */
401 dh->usable = false;
402
403 /* We definitely have some garbage entries now. */
404 any = true;
405 }
406 else
407 {
408 /* Reload the value. We do this only for the
409 initially used key, not the additionally
410 added derived value. */
411 assert (runp->type < LASTREQ
412 && readdfcts[runp->type] != NULL);
413
414 time_t timeout = readdfcts[runp->type] (table, runp, dh);
415 next_timeout = MIN (next_timeout, timeout);
416
417 /* If the entry has been replaced, we might need
418 cleanup. */
419 any |= !dh->usable;
420 }
421 }
422 }
423 else
424 {
425 assert (dh->usable);
426 next_timeout = MIN (next_timeout, dh->timeout);
427 }
428
429 run = runp->next;
430 }
431 }
432 while (cnt > 0);
433
434 if (__glibc_unlikely (fd != -1))
435 {
436 /* Reply to the INVALIDATE initiator that the cache has been
437 invalidated. */
438 int32_t resp = 0;
439 writeall (fd, &resp, sizeof (resp));
440 }
441
442 if (first <= last)
443 {
444 struct hashentry *head = NULL;
445
446 /* Now we have to get the write lock since we are about to modify
447 the table. */
448 if (__glibc_unlikely (pthread_rwlock_trywrlock (&table->lock) != 0))
449 {
450 ++table->head->wrlockdelayed;
451 pthread_rwlock_wrlock (&table->lock);
452 }
453
454 /* Now we start modifying the data. Make sure all readers of the
455 data are aware of this and temporarily don't use the data. */
456 atomic_fetch_add_relaxed (&table->head->gc_cycle, 1);
457 assert ((table->head->gc_cycle & 1) == 1);
458
459 while (first <= last)
460 {
461 if (mark[first])
462 {
463 ref_t *old = &table->head->array[first];
464 ref_t run = table->head->array[first];
465
466 assert (run != ENDREF);
467 do
468 {
469 struct hashentry *runp = (struct hashentry *) (data + run);
470 struct datahead *dh
471 = (struct datahead *) (data + runp->packet);
472
473 if (! dh->usable)
474 {
475 /* We need the list only for debugging but it is
476 more costly to avoid creating the list than
477 doing it. */
478 runp->dellist = head;
479 head = runp;
480
481 /* No need for an atomic operation, we have the
482 write lock. */
483 --table->head->nentries;
484
485 run = *old = runp->next;
486 }
487 else
488 {
489 old = &runp->next;
490 run = runp->next;
491 }
492 }
493 while (run != ENDREF);
494 }
495
496 ++first;
497 }
498
499 /* Now we are done modifying the data. */
500 atomic_fetch_add_relaxed (&table->head->gc_cycle, 1);
501 assert ((table->head->gc_cycle & 1) == 0);
502
503 /* It's all done. */
504 pthread_rwlock_unlock (&table->lock);
505
506 /* Make sure the data is saved to disk. */
507 if (table->persistent)
508 msync (table->head,
509 data + table->head->first_free - (char *) table->head,
510 MS_ASYNC);
511
512 /* One extra pass if we do debugging. */
513 if (__glibc_unlikely (debug_level > 0))
514 {
515 struct hashentry *runp = head;
516
517 while (runp != NULL)
518 {
519 char buf[INET6_ADDRSTRLEN];
520 const char *str;
521
522 if (runp->type == GETHOSTBYADDR || runp->type == GETHOSTBYADDRv6)
523 {
524 inet_ntop (runp->type == GETHOSTBYADDR ? AF_INET : AF_INET6,
525 data + runp->key, buf, sizeof (buf));
526 str = buf;
527 }
528 else
529 str = data + runp->key;
530
531 dbg_log ("remove %s entry \"%s\"", serv2str[runp->type], str);
532
533 runp = runp->dellist;
534 }
535 }
536 }
537
538 if (__glibc_unlikely (! mark_use_alloca))
539 free (mark);
540
541 /* Run garbage collection if any entry has been removed or replaced. */
542 if (any)
543 gc (table);
544
545 /* If there is no entry in the database and we therefore have no new
546 timeout value, tell the caller to wake up in 24 hours. */
547 return next_timeout == NO_TIMEOUT ? 24 * 60 * 60 : next_timeout - now;
548 }
549