1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
4 *
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28
29 static LIST_HEAD(taprio_list);
30 static DEFINE_SPINLOCK(taprio_list_lock);
31
32 #define TAPRIO_ALL_GATES_OPEN -1
33
34 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
35 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
36 #define TAPRIO_FLAGS_INVALID U32_MAX
37
38 struct sched_entry {
39 struct list_head list;
40
41 /* The instant that this entry "closes" and the next one
42 * should open, the qdisc will make some effort so that no
43 * packet leaves after this time.
44 */
45 ktime_t close_time;
46 ktime_t next_txtime;
47 atomic_t budget;
48 int index;
49 u32 gate_mask;
50 u32 interval;
51 u8 command;
52 };
53
54 struct sched_gate_list {
55 struct rcu_head rcu;
56 struct list_head entries;
57 size_t num_entries;
58 ktime_t cycle_close_time;
59 s64 cycle_time;
60 s64 cycle_time_extension;
61 s64 base_time;
62 };
63
64 struct taprio_sched {
65 struct Qdisc **qdiscs;
66 struct Qdisc *root;
67 u32 flags;
68 enum tk_offsets tk_offset;
69 int clockid;
70 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
71 * speeds it's sub-nanoseconds per byte
72 */
73
74 /* Protects the update side of the RCU protected current_entry */
75 spinlock_t current_entry_lock;
76 struct sched_entry __rcu *current_entry;
77 struct sched_gate_list __rcu *oper_sched;
78 struct sched_gate_list __rcu *admin_sched;
79 struct hrtimer advance_timer;
80 struct list_head taprio_list;
81 struct sk_buff *(*dequeue)(struct Qdisc *sch);
82 struct sk_buff *(*peek)(struct Qdisc *sch);
83 u32 txtime_delay;
84 };
85
86 struct __tc_taprio_qopt_offload {
87 refcount_t users;
88 struct tc_taprio_qopt_offload offload;
89 };
90
sched_base_time(const struct sched_gate_list * sched)91 static ktime_t sched_base_time(const struct sched_gate_list *sched)
92 {
93 if (!sched)
94 return KTIME_MAX;
95
96 return ns_to_ktime(sched->base_time);
97 }
98
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)99 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
100 {
101 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
102 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
103
104 switch (tk_offset) {
105 case TK_OFFS_MAX:
106 return mono;
107 default:
108 return ktime_mono_to_any(mono, tk_offset);
109 }
110 }
111
taprio_get_time(const struct taprio_sched * q)112 static ktime_t taprio_get_time(const struct taprio_sched *q)
113 {
114 return taprio_mono_to_any(q, ktime_get());
115 }
116
taprio_free_sched_cb(struct rcu_head * head)117 static void taprio_free_sched_cb(struct rcu_head *head)
118 {
119 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
120 struct sched_entry *entry, *n;
121
122 list_for_each_entry_safe(entry, n, &sched->entries, list) {
123 list_del(&entry->list);
124 kfree(entry);
125 }
126
127 kfree(sched);
128 }
129
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)130 static void switch_schedules(struct taprio_sched *q,
131 struct sched_gate_list **admin,
132 struct sched_gate_list **oper)
133 {
134 rcu_assign_pointer(q->oper_sched, *admin);
135 rcu_assign_pointer(q->admin_sched, NULL);
136
137 if (*oper)
138 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
139
140 *oper = *admin;
141 *admin = NULL;
142 }
143
144 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)145 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
146 {
147 ktime_t time_since_sched_start;
148 s32 time_elapsed;
149
150 time_since_sched_start = ktime_sub(time, sched->base_time);
151 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
152
153 return time_elapsed;
154 }
155
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)156 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
157 struct sched_gate_list *admin,
158 struct sched_entry *entry,
159 ktime_t intv_start)
160 {
161 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
162 ktime_t intv_end, cycle_ext_end, cycle_end;
163
164 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
165 intv_end = ktime_add_ns(intv_start, entry->interval);
166 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
167
168 if (ktime_before(intv_end, cycle_end))
169 return intv_end;
170 else if (admin && admin != sched &&
171 ktime_after(admin->base_time, cycle_end) &&
172 ktime_before(admin->base_time, cycle_ext_end))
173 return admin->base_time;
174 else
175 return cycle_end;
176 }
177
length_to_duration(struct taprio_sched * q,int len)178 static int length_to_duration(struct taprio_sched *q, int len)
179 {
180 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
181 }
182
183 /* Returns the entry corresponding to next available interval. If
184 * validate_interval is set, it only validates whether the timestamp occurs
185 * when the gate corresponding to the skb's traffic class is open.
186 */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)187 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
188 struct Qdisc *sch,
189 struct sched_gate_list *sched,
190 struct sched_gate_list *admin,
191 ktime_t time,
192 ktime_t *interval_start,
193 ktime_t *interval_end,
194 bool validate_interval)
195 {
196 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
197 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
198 struct sched_entry *entry = NULL, *entry_found = NULL;
199 struct taprio_sched *q = qdisc_priv(sch);
200 struct net_device *dev = qdisc_dev(sch);
201 bool entry_available = false;
202 s32 cycle_elapsed;
203 int tc, n;
204
205 tc = netdev_get_prio_tc_map(dev, skb->priority);
206 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
207
208 *interval_start = 0;
209 *interval_end = 0;
210
211 if (!sched)
212 return NULL;
213
214 cycle = sched->cycle_time;
215 cycle_elapsed = get_cycle_time_elapsed(sched, time);
216 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
217 cycle_end = ktime_add_ns(curr_intv_end, cycle);
218
219 list_for_each_entry(entry, &sched->entries, list) {
220 curr_intv_start = curr_intv_end;
221 curr_intv_end = get_interval_end_time(sched, admin, entry,
222 curr_intv_start);
223
224 if (ktime_after(curr_intv_start, cycle_end))
225 break;
226
227 if (!(entry->gate_mask & BIT(tc)) ||
228 packet_transmit_time > entry->interval)
229 continue;
230
231 txtime = entry->next_txtime;
232
233 if (ktime_before(txtime, time) || validate_interval) {
234 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
235 if ((ktime_before(curr_intv_start, time) &&
236 ktime_before(transmit_end_time, curr_intv_end)) ||
237 (ktime_after(curr_intv_start, time) && !validate_interval)) {
238 entry_found = entry;
239 *interval_start = curr_intv_start;
240 *interval_end = curr_intv_end;
241 break;
242 } else if (!entry_available && !validate_interval) {
243 /* Here, we are just trying to find out the
244 * first available interval in the next cycle.
245 */
246 entry_available = true;
247 entry_found = entry;
248 *interval_start = ktime_add_ns(curr_intv_start, cycle);
249 *interval_end = ktime_add_ns(curr_intv_end, cycle);
250 }
251 } else if (ktime_before(txtime, earliest_txtime) &&
252 !entry_available) {
253 earliest_txtime = txtime;
254 entry_found = entry;
255 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
256 *interval_start = ktime_add(curr_intv_start, n * cycle);
257 *interval_end = ktime_add(curr_intv_end, n * cycle);
258 }
259 }
260
261 return entry_found;
262 }
263
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)264 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
265 {
266 struct taprio_sched *q = qdisc_priv(sch);
267 struct sched_gate_list *sched, *admin;
268 ktime_t interval_start, interval_end;
269 struct sched_entry *entry;
270
271 rcu_read_lock();
272 sched = rcu_dereference(q->oper_sched);
273 admin = rcu_dereference(q->admin_sched);
274
275 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
276 &interval_start, &interval_end, true);
277 rcu_read_unlock();
278
279 return entry;
280 }
281
taprio_flags_valid(u32 flags)282 static bool taprio_flags_valid(u32 flags)
283 {
284 /* Make sure no other flag bits are set. */
285 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
286 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
287 return false;
288 /* txtime-assist and full offload are mutually exclusive */
289 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
290 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
291 return false;
292 return true;
293 }
294
295 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)296 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
297 {
298 unsigned int offset = skb_network_offset(skb);
299 const struct ipv6hdr *ipv6h;
300 const struct iphdr *iph;
301 struct ipv6hdr _ipv6h;
302
303 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
304 if (!ipv6h)
305 return 0;
306
307 if (ipv6h->version == 4) {
308 iph = (struct iphdr *)ipv6h;
309 offset += iph->ihl * 4;
310
311 /* special-case 6in4 tunnelling, as that is a common way to get
312 * v6 connectivity in the home
313 */
314 if (iph->protocol == IPPROTO_IPV6) {
315 ipv6h = skb_header_pointer(skb, offset,
316 sizeof(_ipv6h), &_ipv6h);
317
318 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
319 return 0;
320 } else if (iph->protocol != IPPROTO_TCP) {
321 return 0;
322 }
323 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
324 return 0;
325 }
326
327 return taprio_mono_to_any(q, skb->skb_mstamp_ns);
328 }
329
330 /* There are a few scenarios where we will have to modify the txtime from
331 * what is read from next_txtime in sched_entry. They are:
332 * 1. If txtime is in the past,
333 * a. The gate for the traffic class is currently open and packet can be
334 * transmitted before it closes, schedule the packet right away.
335 * b. If the gate corresponding to the traffic class is going to open later
336 * in the cycle, set the txtime of packet to the interval start.
337 * 2. If txtime is in the future, there are packets corresponding to the
338 * current traffic class waiting to be transmitted. So, the following
339 * possibilities exist:
340 * a. We can transmit the packet before the window containing the txtime
341 * closes.
342 * b. The window might close before the transmission can be completed
343 * successfully. So, schedule the packet in the next open window.
344 */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)345 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
346 {
347 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
348 struct taprio_sched *q = qdisc_priv(sch);
349 struct sched_gate_list *sched, *admin;
350 ktime_t minimum_time, now, txtime;
351 int len, packet_transmit_time;
352 struct sched_entry *entry;
353 bool sched_changed;
354
355 now = taprio_get_time(q);
356 minimum_time = ktime_add_ns(now, q->txtime_delay);
357
358 tcp_tstamp = get_tcp_tstamp(q, skb);
359 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
360
361 rcu_read_lock();
362 admin = rcu_dereference(q->admin_sched);
363 sched = rcu_dereference(q->oper_sched);
364 if (admin && ktime_after(minimum_time, admin->base_time))
365 switch_schedules(q, &admin, &sched);
366
367 /* Until the schedule starts, all the queues are open */
368 if (!sched || ktime_before(minimum_time, sched->base_time)) {
369 txtime = minimum_time;
370 goto done;
371 }
372
373 len = qdisc_pkt_len(skb);
374 packet_transmit_time = length_to_duration(q, len);
375
376 do {
377 sched_changed = false;
378
379 entry = find_entry_to_transmit(skb, sch, sched, admin,
380 minimum_time,
381 &interval_start, &interval_end,
382 false);
383 if (!entry) {
384 txtime = 0;
385 goto done;
386 }
387
388 txtime = entry->next_txtime;
389 txtime = max_t(ktime_t, txtime, minimum_time);
390 txtime = max_t(ktime_t, txtime, interval_start);
391
392 if (admin && admin != sched &&
393 ktime_after(txtime, admin->base_time)) {
394 sched = admin;
395 sched_changed = true;
396 continue;
397 }
398
399 transmit_end_time = ktime_add(txtime, packet_transmit_time);
400 minimum_time = transmit_end_time;
401
402 /* Update the txtime of current entry to the next time it's
403 * interval starts.
404 */
405 if (ktime_after(transmit_end_time, interval_end))
406 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
407 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
408
409 entry->next_txtime = transmit_end_time;
410
411 done:
412 rcu_read_unlock();
413 return txtime;
414 }
415
taprio_enqueue_one(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)416 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
417 struct Qdisc *child, struct sk_buff **to_free)
418 {
419 struct taprio_sched *q = qdisc_priv(sch);
420
421 /* sk_flags are only safe to use on full sockets. */
422 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
423 if (!is_valid_interval(skb, sch))
424 return qdisc_drop(skb, sch, to_free);
425 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
426 skb->tstamp = get_packet_txtime(skb, sch);
427 if (!skb->tstamp)
428 return qdisc_drop(skb, sch, to_free);
429 }
430
431 qdisc_qstats_backlog_inc(sch, skb);
432 sch->q.qlen++;
433
434 return qdisc_enqueue(skb, child, to_free);
435 }
436
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)437 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
438 struct sk_buff **to_free)
439 {
440 struct taprio_sched *q = qdisc_priv(sch);
441 struct Qdisc *child;
442 int queue;
443
444 if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
445 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
446 return qdisc_drop(skb, sch, to_free);
447 }
448
449 queue = skb_get_queue_mapping(skb);
450
451 child = q->qdiscs[queue];
452 if (unlikely(!child))
453 return qdisc_drop(skb, sch, to_free);
454
455 /* Large packets might not be transmitted when the transmission duration
456 * exceeds any configured interval. Therefore, segment the skb into
457 * smaller chunks. Skip it for the full offload case, as the driver
458 * and/or the hardware is expected to handle this.
459 */
460 if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
461 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
462 netdev_features_t features = netif_skb_features(skb);
463 struct sk_buff *segs, *nskb;
464 int ret;
465
466 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
467 if (IS_ERR_OR_NULL(segs))
468 return qdisc_drop(skb, sch, to_free);
469
470 skb_list_walk_safe(segs, segs, nskb) {
471 skb_mark_not_on_list(segs);
472 qdisc_skb_cb(segs)->pkt_len = segs->len;
473 slen += segs->len;
474
475 ret = taprio_enqueue_one(segs, sch, child, to_free);
476 if (ret != NET_XMIT_SUCCESS) {
477 if (net_xmit_drop_count(ret))
478 qdisc_qstats_drop(sch);
479 } else {
480 numsegs++;
481 }
482 }
483
484 if (numsegs > 1)
485 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
486 consume_skb(skb);
487
488 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
489 }
490
491 return taprio_enqueue_one(skb, sch, child, to_free);
492 }
493
taprio_peek_soft(struct Qdisc * sch)494 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
495 {
496 struct taprio_sched *q = qdisc_priv(sch);
497 struct net_device *dev = qdisc_dev(sch);
498 struct sched_entry *entry;
499 struct sk_buff *skb;
500 u32 gate_mask;
501 int i;
502
503 rcu_read_lock();
504 entry = rcu_dereference(q->current_entry);
505 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
506 rcu_read_unlock();
507
508 if (!gate_mask)
509 return NULL;
510
511 for (i = 0; i < dev->num_tx_queues; i++) {
512 struct Qdisc *child = q->qdiscs[i];
513 int prio;
514 u8 tc;
515
516 if (unlikely(!child))
517 continue;
518
519 skb = child->ops->peek(child);
520 if (!skb)
521 continue;
522
523 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
524 return skb;
525
526 prio = skb->priority;
527 tc = netdev_get_prio_tc_map(dev, prio);
528
529 if (!(gate_mask & BIT(tc)))
530 continue;
531
532 return skb;
533 }
534
535 return NULL;
536 }
537
taprio_peek_offload(struct Qdisc * sch)538 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
539 {
540 WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
541
542 return NULL;
543 }
544
taprio_peek(struct Qdisc * sch)545 static struct sk_buff *taprio_peek(struct Qdisc *sch)
546 {
547 struct taprio_sched *q = qdisc_priv(sch);
548
549 return q->peek(sch);
550 }
551
taprio_set_budget(struct taprio_sched * q,struct sched_entry * entry)552 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
553 {
554 atomic_set(&entry->budget,
555 div64_u64((u64)entry->interval * PSEC_PER_NSEC,
556 atomic64_read(&q->picos_per_byte)));
557 }
558
taprio_dequeue_soft(struct Qdisc * sch)559 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
560 {
561 struct taprio_sched *q = qdisc_priv(sch);
562 struct net_device *dev = qdisc_dev(sch);
563 struct sk_buff *skb = NULL;
564 struct sched_entry *entry;
565 u32 gate_mask;
566 int i;
567
568 rcu_read_lock();
569 entry = rcu_dereference(q->current_entry);
570 /* if there's no entry, it means that the schedule didn't
571 * start yet, so force all gates to be open, this is in
572 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
573 * "AdminGateStates"
574 */
575 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
576
577 if (!gate_mask)
578 goto done;
579
580 for (i = 0; i < dev->num_tx_queues; i++) {
581 struct Qdisc *child = q->qdiscs[i];
582 ktime_t guard;
583 int prio;
584 int len;
585 u8 tc;
586
587 if (unlikely(!child))
588 continue;
589
590 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
591 skb = child->ops->dequeue(child);
592 if (!skb)
593 continue;
594 goto skb_found;
595 }
596
597 skb = child->ops->peek(child);
598 if (!skb)
599 continue;
600
601 prio = skb->priority;
602 tc = netdev_get_prio_tc_map(dev, prio);
603
604 if (!(gate_mask & BIT(tc))) {
605 skb = NULL;
606 continue;
607 }
608
609 len = qdisc_pkt_len(skb);
610 guard = ktime_add_ns(taprio_get_time(q),
611 length_to_duration(q, len));
612
613 /* In the case that there's no gate entry, there's no
614 * guard band ...
615 */
616 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
617 ktime_after(guard, entry->close_time)) {
618 skb = NULL;
619 continue;
620 }
621
622 /* ... and no budget. */
623 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
624 atomic_sub_return(len, &entry->budget) < 0) {
625 skb = NULL;
626 continue;
627 }
628
629 skb = child->ops->dequeue(child);
630 if (unlikely(!skb))
631 goto done;
632
633 skb_found:
634 qdisc_bstats_update(sch, skb);
635 qdisc_qstats_backlog_dec(sch, skb);
636 sch->q.qlen--;
637
638 goto done;
639 }
640
641 done:
642 rcu_read_unlock();
643
644 return skb;
645 }
646
taprio_dequeue_offload(struct Qdisc * sch)647 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
648 {
649 WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
650
651 return NULL;
652 }
653
taprio_dequeue(struct Qdisc * sch)654 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
655 {
656 struct taprio_sched *q = qdisc_priv(sch);
657
658 return q->dequeue(sch);
659 }
660
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)661 static bool should_restart_cycle(const struct sched_gate_list *oper,
662 const struct sched_entry *entry)
663 {
664 if (list_is_last(&entry->list, &oper->entries))
665 return true;
666
667 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
668 return true;
669
670 return false;
671 }
672
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t close_time)673 static bool should_change_schedules(const struct sched_gate_list *admin,
674 const struct sched_gate_list *oper,
675 ktime_t close_time)
676 {
677 ktime_t next_base_time, extension_time;
678
679 if (!admin)
680 return false;
681
682 next_base_time = sched_base_time(admin);
683
684 /* This is the simple case, the close_time would fall after
685 * the next schedule base_time.
686 */
687 if (ktime_compare(next_base_time, close_time) <= 0)
688 return true;
689
690 /* This is the cycle_time_extension case, if the close_time
691 * plus the amount that can be extended would fall after the
692 * next schedule base_time, we can extend the current schedule
693 * for that amount.
694 */
695 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
696
697 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
698 * how precisely the extension should be made. So after
699 * conformance testing, this logic may change.
700 */
701 if (ktime_compare(next_base_time, extension_time) <= 0)
702 return true;
703
704 return false;
705 }
706
advance_sched(struct hrtimer * timer)707 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
708 {
709 struct taprio_sched *q = container_of(timer, struct taprio_sched,
710 advance_timer);
711 struct sched_gate_list *oper, *admin;
712 struct sched_entry *entry, *next;
713 struct Qdisc *sch = q->root;
714 ktime_t close_time;
715
716 spin_lock(&q->current_entry_lock);
717 entry = rcu_dereference_protected(q->current_entry,
718 lockdep_is_held(&q->current_entry_lock));
719 oper = rcu_dereference_protected(q->oper_sched,
720 lockdep_is_held(&q->current_entry_lock));
721 admin = rcu_dereference_protected(q->admin_sched,
722 lockdep_is_held(&q->current_entry_lock));
723
724 if (!oper)
725 switch_schedules(q, &admin, &oper);
726
727 /* This can happen in two cases: 1. this is the very first run
728 * of this function (i.e. we weren't running any schedule
729 * previously); 2. The previous schedule just ended. The first
730 * entry of all schedules are pre-calculated during the
731 * schedule initialization.
732 */
733 if (unlikely(!entry || entry->close_time == oper->base_time)) {
734 next = list_first_entry(&oper->entries, struct sched_entry,
735 list);
736 close_time = next->close_time;
737 goto first_run;
738 }
739
740 if (should_restart_cycle(oper, entry)) {
741 next = list_first_entry(&oper->entries, struct sched_entry,
742 list);
743 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
744 oper->cycle_time);
745 } else {
746 next = list_next_entry(entry, list);
747 }
748
749 close_time = ktime_add_ns(entry->close_time, next->interval);
750 close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
751
752 if (should_change_schedules(admin, oper, close_time)) {
753 /* Set things so the next time this runs, the new
754 * schedule runs.
755 */
756 close_time = sched_base_time(admin);
757 switch_schedules(q, &admin, &oper);
758 }
759
760 next->close_time = close_time;
761 taprio_set_budget(q, next);
762
763 first_run:
764 rcu_assign_pointer(q->current_entry, next);
765 spin_unlock(&q->current_entry_lock);
766
767 hrtimer_set_expires(&q->advance_timer, close_time);
768
769 rcu_read_lock();
770 __netif_schedule(sch);
771 rcu_read_unlock();
772
773 return HRTIMER_RESTART;
774 }
775
776 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
777 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
778 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
779 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
780 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
781 };
782
783 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
784 [TCA_TAPRIO_ATTR_PRIOMAP] = {
785 .len = sizeof(struct tc_mqprio_qopt)
786 },
787 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
788 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
789 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
790 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
791 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
792 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
793 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
794 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
795 };
796
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)797 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
798 struct sched_entry *entry,
799 struct netlink_ext_ack *extack)
800 {
801 int min_duration = length_to_duration(q, ETH_ZLEN);
802 u32 interval = 0;
803
804 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
805 entry->command = nla_get_u8(
806 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
807
808 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
809 entry->gate_mask = nla_get_u32(
810 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
811
812 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
813 interval = nla_get_u32(
814 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
815
816 /* The interval should allow at least the minimum ethernet
817 * frame to go out.
818 */
819 if (interval < min_duration) {
820 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
821 return -EINVAL;
822 }
823
824 entry->interval = interval;
825
826 return 0;
827 }
828
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)829 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
830 struct sched_entry *entry, int index,
831 struct netlink_ext_ack *extack)
832 {
833 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
834 int err;
835
836 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
837 entry_policy, NULL);
838 if (err < 0) {
839 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
840 return -EINVAL;
841 }
842
843 entry->index = index;
844
845 return fill_sched_entry(q, tb, entry, extack);
846 }
847
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)848 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
849 struct sched_gate_list *sched,
850 struct netlink_ext_ack *extack)
851 {
852 struct nlattr *n;
853 int err, rem;
854 int i = 0;
855
856 if (!list)
857 return -EINVAL;
858
859 nla_for_each_nested(n, list, rem) {
860 struct sched_entry *entry;
861
862 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
863 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
864 continue;
865 }
866
867 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
868 if (!entry) {
869 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
870 return -ENOMEM;
871 }
872
873 err = parse_sched_entry(q, n, entry, i, extack);
874 if (err < 0) {
875 kfree(entry);
876 return err;
877 }
878
879 list_add_tail(&entry->list, &sched->entries);
880 i++;
881 }
882
883 sched->num_entries = i;
884
885 return i;
886 }
887
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)888 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
889 struct sched_gate_list *new,
890 struct netlink_ext_ack *extack)
891 {
892 int err = 0;
893
894 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
895 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
896 return -ENOTSUPP;
897 }
898
899 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
900 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
901
902 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
903 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
904
905 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
906 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
907
908 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
909 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
910 new, extack);
911 if (err < 0)
912 return err;
913
914 if (!new->cycle_time) {
915 struct sched_entry *entry;
916 ktime_t cycle = 0;
917
918 list_for_each_entry(entry, &new->entries, list)
919 cycle = ktime_add_ns(cycle, entry->interval);
920
921 if (!cycle) {
922 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
923 return -EINVAL;
924 }
925
926 new->cycle_time = cycle;
927 }
928
929 return 0;
930 }
931
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)932 static int taprio_parse_mqprio_opt(struct net_device *dev,
933 struct tc_mqprio_qopt *qopt,
934 struct netlink_ext_ack *extack,
935 u32 taprio_flags)
936 {
937 int i, j;
938
939 if (!qopt && !dev->num_tc) {
940 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
941 return -EINVAL;
942 }
943
944 /* If num_tc is already set, it means that the user already
945 * configured the mqprio part
946 */
947 if (dev->num_tc)
948 return 0;
949
950 /* Verify num_tc is not out of max range */
951 if (qopt->num_tc > TC_MAX_QUEUE) {
952 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
953 return -EINVAL;
954 }
955
956 /* taprio imposes that traffic classes map 1:n to tx queues */
957 if (qopt->num_tc > dev->num_tx_queues) {
958 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
959 return -EINVAL;
960 }
961
962 /* Verify priority mapping uses valid tcs */
963 for (i = 0; i <= TC_BITMASK; i++) {
964 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
965 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
966 return -EINVAL;
967 }
968 }
969
970 for (i = 0; i < qopt->num_tc; i++) {
971 unsigned int last = qopt->offset[i] + qopt->count[i];
972
973 /* Verify the queue count is in tx range being equal to the
974 * real_num_tx_queues indicates the last queue is in use.
975 */
976 if (qopt->offset[i] >= dev->num_tx_queues ||
977 !qopt->count[i] ||
978 last > dev->real_num_tx_queues) {
979 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
980 return -EINVAL;
981 }
982
983 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
984 continue;
985
986 /* Verify that the offset and counts do not overlap */
987 for (j = i + 1; j < qopt->num_tc; j++) {
988 if (last > qopt->offset[j]) {
989 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
990 return -EINVAL;
991 }
992 }
993 }
994
995 return 0;
996 }
997
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)998 static int taprio_get_start_time(struct Qdisc *sch,
999 struct sched_gate_list *sched,
1000 ktime_t *start)
1001 {
1002 struct taprio_sched *q = qdisc_priv(sch);
1003 ktime_t now, base, cycle;
1004 s64 n;
1005
1006 base = sched_base_time(sched);
1007 now = taprio_get_time(q);
1008
1009 if (ktime_after(base, now)) {
1010 *start = base;
1011 return 0;
1012 }
1013
1014 cycle = sched->cycle_time;
1015
1016 /* The qdisc is expected to have at least one sched_entry. Moreover,
1017 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1018 * something went really wrong. In that case, we should warn about this
1019 * inconsistent state and return error.
1020 */
1021 if (WARN_ON(!cycle))
1022 return -EFAULT;
1023
1024 /* Schedule the start time for the beginning of the next
1025 * cycle.
1026 */
1027 n = div64_s64(ktime_sub_ns(now, base), cycle);
1028 *start = ktime_add_ns(base, (n + 1) * cycle);
1029 return 0;
1030 }
1031
setup_first_close_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1032 static void setup_first_close_time(struct taprio_sched *q,
1033 struct sched_gate_list *sched, ktime_t base)
1034 {
1035 struct sched_entry *first;
1036 ktime_t cycle;
1037
1038 first = list_first_entry(&sched->entries,
1039 struct sched_entry, list);
1040
1041 cycle = sched->cycle_time;
1042
1043 /* FIXME: find a better place to do this */
1044 sched->cycle_close_time = ktime_add_ns(base, cycle);
1045
1046 first->close_time = ktime_add_ns(base, first->interval);
1047 taprio_set_budget(q, first);
1048 rcu_assign_pointer(q->current_entry, NULL);
1049 }
1050
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1051 static void taprio_start_sched(struct Qdisc *sch,
1052 ktime_t start, struct sched_gate_list *new)
1053 {
1054 struct taprio_sched *q = qdisc_priv(sch);
1055 ktime_t expires;
1056
1057 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1058 return;
1059
1060 expires = hrtimer_get_expires(&q->advance_timer);
1061 if (expires == 0)
1062 expires = KTIME_MAX;
1063
1064 /* If the new schedule starts before the next expiration, we
1065 * reprogram it to the earliest one, so we change the admin
1066 * schedule to the operational one at the right time.
1067 */
1068 start = min_t(ktime_t, start, expires);
1069
1070 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1071 }
1072
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q)1073 static void taprio_set_picos_per_byte(struct net_device *dev,
1074 struct taprio_sched *q)
1075 {
1076 struct ethtool_link_ksettings ecmd;
1077 int speed = SPEED_10;
1078 int picos_per_byte;
1079 int err;
1080
1081 err = __ethtool_get_link_ksettings(dev, &ecmd);
1082 if (err < 0)
1083 goto skip;
1084
1085 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1086 speed = ecmd.base.speed;
1087
1088 skip:
1089 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1090
1091 atomic64_set(&q->picos_per_byte, picos_per_byte);
1092 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1093 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1094 ecmd.base.speed);
1095 }
1096
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1097 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1098 void *ptr)
1099 {
1100 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1101 struct net_device *qdev;
1102 struct taprio_sched *q;
1103 bool found = false;
1104
1105 ASSERT_RTNL();
1106
1107 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1108 return NOTIFY_DONE;
1109
1110 spin_lock(&taprio_list_lock);
1111 list_for_each_entry(q, &taprio_list, taprio_list) {
1112 qdev = qdisc_dev(q->root);
1113 if (qdev == dev) {
1114 found = true;
1115 break;
1116 }
1117 }
1118 spin_unlock(&taprio_list_lock);
1119
1120 if (found)
1121 taprio_set_picos_per_byte(dev, q);
1122
1123 return NOTIFY_DONE;
1124 }
1125
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1126 static void setup_txtime(struct taprio_sched *q,
1127 struct sched_gate_list *sched, ktime_t base)
1128 {
1129 struct sched_entry *entry;
1130 u32 interval = 0;
1131
1132 list_for_each_entry(entry, &sched->entries, list) {
1133 entry->next_txtime = ktime_add_ns(base, interval);
1134 interval += entry->interval;
1135 }
1136 }
1137
taprio_offload_alloc(int num_entries)1138 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1139 {
1140 struct __tc_taprio_qopt_offload *__offload;
1141
1142 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1143 GFP_KERNEL);
1144 if (!__offload)
1145 return NULL;
1146
1147 refcount_set(&__offload->users, 1);
1148
1149 return &__offload->offload;
1150 }
1151
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1152 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1153 *offload)
1154 {
1155 struct __tc_taprio_qopt_offload *__offload;
1156
1157 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1158 offload);
1159
1160 refcount_inc(&__offload->users);
1161
1162 return offload;
1163 }
1164 EXPORT_SYMBOL_GPL(taprio_offload_get);
1165
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1166 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1167 {
1168 struct __tc_taprio_qopt_offload *__offload;
1169
1170 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1171 offload);
1172
1173 if (!refcount_dec_and_test(&__offload->users))
1174 return;
1175
1176 kfree(__offload);
1177 }
1178 EXPORT_SYMBOL_GPL(taprio_offload_free);
1179
1180 /* The function will only serve to keep the pointers to the "oper" and "admin"
1181 * schedules valid in relation to their base times, so when calling dump() the
1182 * users looks at the right schedules.
1183 * When using full offload, the admin configuration is promoted to oper at the
1184 * base_time in the PHC time domain. But because the system time is not
1185 * necessarily in sync with that, we can't just trigger a hrtimer to call
1186 * switch_schedules at the right hardware time.
1187 * At the moment we call this by hand right away from taprio, but in the future
1188 * it will be useful to create a mechanism for drivers to notify taprio of the
1189 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1190 * This is left as TODO.
1191 */
taprio_offload_config_changed(struct taprio_sched * q)1192 static void taprio_offload_config_changed(struct taprio_sched *q)
1193 {
1194 struct sched_gate_list *oper, *admin;
1195
1196 spin_lock(&q->current_entry_lock);
1197
1198 oper = rcu_dereference_protected(q->oper_sched,
1199 lockdep_is_held(&q->current_entry_lock));
1200 admin = rcu_dereference_protected(q->admin_sched,
1201 lockdep_is_held(&q->current_entry_lock));
1202
1203 switch_schedules(q, &admin, &oper);
1204
1205 spin_unlock(&q->current_entry_lock);
1206 }
1207
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1208 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1209 {
1210 u32 i, queue_mask = 0;
1211
1212 for (i = 0; i < dev->num_tc; i++) {
1213 u32 offset, count;
1214
1215 if (!(tc_mask & BIT(i)))
1216 continue;
1217
1218 offset = dev->tc_to_txq[i].offset;
1219 count = dev->tc_to_txq[i].count;
1220
1221 queue_mask |= GENMASK(offset + count - 1, offset);
1222 }
1223
1224 return queue_mask;
1225 }
1226
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload)1227 static void taprio_sched_to_offload(struct net_device *dev,
1228 struct sched_gate_list *sched,
1229 struct tc_taprio_qopt_offload *offload)
1230 {
1231 struct sched_entry *entry;
1232 int i = 0;
1233
1234 offload->base_time = sched->base_time;
1235 offload->cycle_time = sched->cycle_time;
1236 offload->cycle_time_extension = sched->cycle_time_extension;
1237
1238 list_for_each_entry(entry, &sched->entries, list) {
1239 struct tc_taprio_sched_entry *e = &offload->entries[i];
1240
1241 e->command = entry->command;
1242 e->interval = entry->interval;
1243 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1244
1245 i++;
1246 }
1247
1248 offload->num_entries = i;
1249 }
1250
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1251 static int taprio_enable_offload(struct net_device *dev,
1252 struct taprio_sched *q,
1253 struct sched_gate_list *sched,
1254 struct netlink_ext_ack *extack)
1255 {
1256 const struct net_device_ops *ops = dev->netdev_ops;
1257 struct tc_taprio_qopt_offload *offload;
1258 int err = 0;
1259
1260 if (!ops->ndo_setup_tc) {
1261 NL_SET_ERR_MSG(extack,
1262 "Device does not support taprio offload");
1263 return -EOPNOTSUPP;
1264 }
1265
1266 offload = taprio_offload_alloc(sched->num_entries);
1267 if (!offload) {
1268 NL_SET_ERR_MSG(extack,
1269 "Not enough memory for enabling offload mode");
1270 return -ENOMEM;
1271 }
1272 offload->enable = 1;
1273 taprio_sched_to_offload(dev, sched, offload);
1274
1275 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1276 if (err < 0) {
1277 NL_SET_ERR_MSG(extack,
1278 "Device failed to setup taprio offload");
1279 goto done;
1280 }
1281
1282 done:
1283 taprio_offload_free(offload);
1284
1285 return err;
1286 }
1287
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1288 static int taprio_disable_offload(struct net_device *dev,
1289 struct taprio_sched *q,
1290 struct netlink_ext_ack *extack)
1291 {
1292 const struct net_device_ops *ops = dev->netdev_ops;
1293 struct tc_taprio_qopt_offload *offload;
1294 int err;
1295
1296 if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1297 return 0;
1298
1299 if (!ops->ndo_setup_tc)
1300 return -EOPNOTSUPP;
1301
1302 offload = taprio_offload_alloc(0);
1303 if (!offload) {
1304 NL_SET_ERR_MSG(extack,
1305 "Not enough memory to disable offload mode");
1306 return -ENOMEM;
1307 }
1308 offload->enable = 0;
1309
1310 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1311 if (err < 0) {
1312 NL_SET_ERR_MSG(extack,
1313 "Device failed to disable offload");
1314 goto out;
1315 }
1316
1317 out:
1318 taprio_offload_free(offload);
1319
1320 return err;
1321 }
1322
1323 /* If full offload is enabled, the only possible clockid is the net device's
1324 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1325 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1326 * in sync with the specified clockid via a user space daemon such as phc2sys.
1327 * For both software taprio and txtime-assist, the clockid is used for the
1328 * hrtimer that advances the schedule and hence mandatory.
1329 */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1330 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1331 struct netlink_ext_ack *extack)
1332 {
1333 struct taprio_sched *q = qdisc_priv(sch);
1334 struct net_device *dev = qdisc_dev(sch);
1335 int err = -EINVAL;
1336
1337 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1338 const struct ethtool_ops *ops = dev->ethtool_ops;
1339 struct ethtool_ts_info info = {
1340 .cmd = ETHTOOL_GET_TS_INFO,
1341 .phc_index = -1,
1342 };
1343
1344 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1345 NL_SET_ERR_MSG(extack,
1346 "The 'clockid' cannot be specified for full offload");
1347 goto out;
1348 }
1349
1350 if (ops && ops->get_ts_info)
1351 err = ops->get_ts_info(dev, &info);
1352
1353 if (err || info.phc_index < 0) {
1354 NL_SET_ERR_MSG(extack,
1355 "Device does not have a PTP clock");
1356 err = -ENOTSUPP;
1357 goto out;
1358 }
1359 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1360 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1361 enum tk_offsets tk_offset;
1362
1363 /* We only support static clockids and we don't allow
1364 * for it to be modified after the first init.
1365 */
1366 if (clockid < 0 ||
1367 (q->clockid != -1 && q->clockid != clockid)) {
1368 NL_SET_ERR_MSG(extack,
1369 "Changing the 'clockid' of a running schedule is not supported");
1370 err = -ENOTSUPP;
1371 goto out;
1372 }
1373
1374 switch (clockid) {
1375 case CLOCK_REALTIME:
1376 tk_offset = TK_OFFS_REAL;
1377 break;
1378 case CLOCK_MONOTONIC:
1379 tk_offset = TK_OFFS_MAX;
1380 break;
1381 case CLOCK_BOOTTIME:
1382 tk_offset = TK_OFFS_BOOT;
1383 break;
1384 case CLOCK_TAI:
1385 tk_offset = TK_OFFS_TAI;
1386 break;
1387 default:
1388 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1389 err = -EINVAL;
1390 goto out;
1391 }
1392 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1393 WRITE_ONCE(q->tk_offset, tk_offset);
1394
1395 q->clockid = clockid;
1396 } else {
1397 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1398 goto out;
1399 }
1400
1401 /* Everything went ok, return success. */
1402 err = 0;
1403
1404 out:
1405 return err;
1406 }
1407
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1408 static int taprio_mqprio_cmp(const struct net_device *dev,
1409 const struct tc_mqprio_qopt *mqprio)
1410 {
1411 int i;
1412
1413 if (!mqprio || mqprio->num_tc != dev->num_tc)
1414 return -1;
1415
1416 for (i = 0; i < mqprio->num_tc; i++)
1417 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1418 dev->tc_to_txq[i].offset != mqprio->offset[i])
1419 return -1;
1420
1421 for (i = 0; i <= TC_BITMASK; i++)
1422 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1423 return -1;
1424
1425 return 0;
1426 }
1427
1428 /* The semantics of the 'flags' argument in relation to 'change()'
1429 * requests, are interpreted following two rules (which are applied in
1430 * this order): (1) an omitted 'flags' argument is interpreted as
1431 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1432 * changed.
1433 */
taprio_new_flags(const struct nlattr * attr,u32 old,struct netlink_ext_ack * extack)1434 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1435 struct netlink_ext_ack *extack)
1436 {
1437 u32 new = 0;
1438
1439 if (attr)
1440 new = nla_get_u32(attr);
1441
1442 if (old != TAPRIO_FLAGS_INVALID && old != new) {
1443 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1444 return -EOPNOTSUPP;
1445 }
1446
1447 if (!taprio_flags_valid(new)) {
1448 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1449 return -EINVAL;
1450 }
1451
1452 return new;
1453 }
1454
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1455 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1456 struct netlink_ext_ack *extack)
1457 {
1458 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1459 struct sched_gate_list *oper, *admin, *new_admin;
1460 struct taprio_sched *q = qdisc_priv(sch);
1461 struct net_device *dev = qdisc_dev(sch);
1462 struct tc_mqprio_qopt *mqprio = NULL;
1463 unsigned long flags;
1464 ktime_t start;
1465 int i, err;
1466
1467 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1468 taprio_policy, extack);
1469 if (err < 0)
1470 return err;
1471
1472 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1473 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1474
1475 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1476 q->flags, extack);
1477 if (err < 0)
1478 return err;
1479
1480 q->flags = err;
1481
1482 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1483 if (err < 0)
1484 return err;
1485
1486 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1487 if (!new_admin) {
1488 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1489 return -ENOMEM;
1490 }
1491 INIT_LIST_HEAD(&new_admin->entries);
1492
1493 rcu_read_lock();
1494 oper = rcu_dereference(q->oper_sched);
1495 admin = rcu_dereference(q->admin_sched);
1496 rcu_read_unlock();
1497
1498 /* no changes - no new mqprio settings */
1499 if (!taprio_mqprio_cmp(dev, mqprio))
1500 mqprio = NULL;
1501
1502 if (mqprio && (oper || admin)) {
1503 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1504 err = -ENOTSUPP;
1505 goto free_sched;
1506 }
1507
1508 err = parse_taprio_schedule(q, tb, new_admin, extack);
1509 if (err < 0)
1510 goto free_sched;
1511
1512 if (new_admin->num_entries == 0) {
1513 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1514 err = -EINVAL;
1515 goto free_sched;
1516 }
1517
1518 err = taprio_parse_clockid(sch, tb, extack);
1519 if (err < 0)
1520 goto free_sched;
1521
1522 taprio_set_picos_per_byte(dev, q);
1523
1524 if (mqprio) {
1525 err = netdev_set_num_tc(dev, mqprio->num_tc);
1526 if (err)
1527 goto free_sched;
1528 for (i = 0; i < mqprio->num_tc; i++)
1529 netdev_set_tc_queue(dev, i,
1530 mqprio->count[i],
1531 mqprio->offset[i]);
1532
1533 /* Always use supplied priority mappings */
1534 for (i = 0; i <= TC_BITMASK; i++)
1535 netdev_set_prio_tc_map(dev, i,
1536 mqprio->prio_tc_map[i]);
1537 }
1538
1539 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1540 err = taprio_enable_offload(dev, q, new_admin, extack);
1541 else
1542 err = taprio_disable_offload(dev, q, extack);
1543 if (err)
1544 goto free_sched;
1545
1546 /* Protects against enqueue()/dequeue() */
1547 spin_lock_bh(qdisc_lock(sch));
1548
1549 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1550 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1551 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1552 err = -EINVAL;
1553 goto unlock;
1554 }
1555
1556 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1557 }
1558
1559 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1560 !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1561 !hrtimer_active(&q->advance_timer)) {
1562 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1563 q->advance_timer.function = advance_sched;
1564 }
1565
1566 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1567 q->dequeue = taprio_dequeue_offload;
1568 q->peek = taprio_peek_offload;
1569 } else {
1570 /* Be sure to always keep the function pointers
1571 * in a consistent state.
1572 */
1573 q->dequeue = taprio_dequeue_soft;
1574 q->peek = taprio_peek_soft;
1575 }
1576
1577 err = taprio_get_start_time(sch, new_admin, &start);
1578 if (err < 0) {
1579 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1580 goto unlock;
1581 }
1582
1583 setup_txtime(q, new_admin, start);
1584
1585 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1586 if (!oper) {
1587 rcu_assign_pointer(q->oper_sched, new_admin);
1588 err = 0;
1589 new_admin = NULL;
1590 goto unlock;
1591 }
1592
1593 rcu_assign_pointer(q->admin_sched, new_admin);
1594 if (admin)
1595 call_rcu(&admin->rcu, taprio_free_sched_cb);
1596 } else {
1597 setup_first_close_time(q, new_admin, start);
1598
1599 /* Protects against advance_sched() */
1600 spin_lock_irqsave(&q->current_entry_lock, flags);
1601
1602 taprio_start_sched(sch, start, new_admin);
1603
1604 rcu_assign_pointer(q->admin_sched, new_admin);
1605 if (admin)
1606 call_rcu(&admin->rcu, taprio_free_sched_cb);
1607
1608 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1609
1610 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1611 taprio_offload_config_changed(q);
1612 }
1613
1614 new_admin = NULL;
1615 err = 0;
1616
1617 unlock:
1618 spin_unlock_bh(qdisc_lock(sch));
1619
1620 free_sched:
1621 if (new_admin)
1622 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1623
1624 return err;
1625 }
1626
taprio_reset(struct Qdisc * sch)1627 static void taprio_reset(struct Qdisc *sch)
1628 {
1629 struct taprio_sched *q = qdisc_priv(sch);
1630 struct net_device *dev = qdisc_dev(sch);
1631 int i;
1632
1633 hrtimer_cancel(&q->advance_timer);
1634 if (q->qdiscs) {
1635 for (i = 0; i < dev->num_tx_queues; i++)
1636 if (q->qdiscs[i])
1637 qdisc_reset(q->qdiscs[i]);
1638 }
1639 sch->qstats.backlog = 0;
1640 sch->q.qlen = 0;
1641 }
1642
taprio_destroy(struct Qdisc * sch)1643 static void taprio_destroy(struct Qdisc *sch)
1644 {
1645 struct taprio_sched *q = qdisc_priv(sch);
1646 struct net_device *dev = qdisc_dev(sch);
1647 unsigned int i;
1648
1649 spin_lock(&taprio_list_lock);
1650 list_del(&q->taprio_list);
1651 spin_unlock(&taprio_list_lock);
1652
1653 /* Note that taprio_reset() might not be called if an error
1654 * happens in qdisc_create(), after taprio_init() has been called.
1655 */
1656 hrtimer_cancel(&q->advance_timer);
1657
1658 taprio_disable_offload(dev, q, NULL);
1659
1660 if (q->qdiscs) {
1661 for (i = 0; i < dev->num_tx_queues; i++)
1662 qdisc_put(q->qdiscs[i]);
1663
1664 kfree(q->qdiscs);
1665 }
1666 q->qdiscs = NULL;
1667
1668 netdev_reset_tc(dev);
1669
1670 if (q->oper_sched)
1671 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1672
1673 if (q->admin_sched)
1674 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1675 }
1676
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1677 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1678 struct netlink_ext_ack *extack)
1679 {
1680 struct taprio_sched *q = qdisc_priv(sch);
1681 struct net_device *dev = qdisc_dev(sch);
1682 int i;
1683
1684 spin_lock_init(&q->current_entry_lock);
1685
1686 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1687 q->advance_timer.function = advance_sched;
1688
1689 q->dequeue = taprio_dequeue_soft;
1690 q->peek = taprio_peek_soft;
1691
1692 q->root = sch;
1693
1694 /* We only support static clockids. Use an invalid value as default
1695 * and get the valid one on taprio_change().
1696 */
1697 q->clockid = -1;
1698 q->flags = TAPRIO_FLAGS_INVALID;
1699
1700 spin_lock(&taprio_list_lock);
1701 list_add(&q->taprio_list, &taprio_list);
1702 spin_unlock(&taprio_list_lock);
1703
1704 if (sch->parent != TC_H_ROOT)
1705 return -EOPNOTSUPP;
1706
1707 if (!netif_is_multiqueue(dev))
1708 return -EOPNOTSUPP;
1709
1710 /* pre-allocate qdisc, attachment can't fail */
1711 q->qdiscs = kcalloc(dev->num_tx_queues,
1712 sizeof(q->qdiscs[0]),
1713 GFP_KERNEL);
1714
1715 if (!q->qdiscs)
1716 return -ENOMEM;
1717
1718 if (!opt)
1719 return -EINVAL;
1720
1721 for (i = 0; i < dev->num_tx_queues; i++) {
1722 struct netdev_queue *dev_queue;
1723 struct Qdisc *qdisc;
1724
1725 dev_queue = netdev_get_tx_queue(dev, i);
1726 qdisc = qdisc_create_dflt(dev_queue,
1727 &pfifo_qdisc_ops,
1728 TC_H_MAKE(TC_H_MAJ(sch->handle),
1729 TC_H_MIN(i + 1)),
1730 extack);
1731 if (!qdisc)
1732 return -ENOMEM;
1733
1734 if (i < dev->real_num_tx_queues)
1735 qdisc_hash_add(qdisc, false);
1736
1737 q->qdiscs[i] = qdisc;
1738 }
1739
1740 return taprio_change(sch, opt, extack);
1741 }
1742
taprio_attach(struct Qdisc * sch)1743 static void taprio_attach(struct Qdisc *sch)
1744 {
1745 struct taprio_sched *q = qdisc_priv(sch);
1746 struct net_device *dev = qdisc_dev(sch);
1747 unsigned int ntx;
1748
1749 /* Attach underlying qdisc */
1750 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1751 struct Qdisc *qdisc = q->qdiscs[ntx];
1752 struct Qdisc *old;
1753
1754 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1755 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1756 old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1757 } else {
1758 old = dev_graft_qdisc(qdisc->dev_queue, sch);
1759 qdisc_refcount_inc(sch);
1760 }
1761 if (old)
1762 qdisc_put(old);
1763 }
1764
1765 /* access to the child qdiscs is not needed in offload mode */
1766 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1767 kfree(q->qdiscs);
1768 q->qdiscs = NULL;
1769 }
1770 }
1771
taprio_queue_get(struct Qdisc * sch,unsigned long cl)1772 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1773 unsigned long cl)
1774 {
1775 struct net_device *dev = qdisc_dev(sch);
1776 unsigned long ntx = cl - 1;
1777
1778 if (ntx >= dev->num_tx_queues)
1779 return NULL;
1780
1781 return netdev_get_tx_queue(dev, ntx);
1782 }
1783
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)1784 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1785 struct Qdisc *new, struct Qdisc **old,
1786 struct netlink_ext_ack *extack)
1787 {
1788 struct taprio_sched *q = qdisc_priv(sch);
1789 struct net_device *dev = qdisc_dev(sch);
1790 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1791
1792 if (!dev_queue)
1793 return -EINVAL;
1794
1795 if (dev->flags & IFF_UP)
1796 dev_deactivate(dev);
1797
1798 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1799 *old = dev_graft_qdisc(dev_queue, new);
1800 } else {
1801 *old = q->qdiscs[cl - 1];
1802 q->qdiscs[cl - 1] = new;
1803 }
1804
1805 if (new)
1806 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1807
1808 if (dev->flags & IFF_UP)
1809 dev_activate(dev);
1810
1811 return 0;
1812 }
1813
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)1814 static int dump_entry(struct sk_buff *msg,
1815 const struct sched_entry *entry)
1816 {
1817 struct nlattr *item;
1818
1819 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1820 if (!item)
1821 return -ENOSPC;
1822
1823 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1824 goto nla_put_failure;
1825
1826 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1827 goto nla_put_failure;
1828
1829 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1830 entry->gate_mask))
1831 goto nla_put_failure;
1832
1833 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1834 entry->interval))
1835 goto nla_put_failure;
1836
1837 return nla_nest_end(msg, item);
1838
1839 nla_put_failure:
1840 nla_nest_cancel(msg, item);
1841 return -1;
1842 }
1843
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)1844 static int dump_schedule(struct sk_buff *msg,
1845 const struct sched_gate_list *root)
1846 {
1847 struct nlattr *entry_list;
1848 struct sched_entry *entry;
1849
1850 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1851 root->base_time, TCA_TAPRIO_PAD))
1852 return -1;
1853
1854 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1855 root->cycle_time, TCA_TAPRIO_PAD))
1856 return -1;
1857
1858 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1859 root->cycle_time_extension, TCA_TAPRIO_PAD))
1860 return -1;
1861
1862 entry_list = nla_nest_start_noflag(msg,
1863 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1864 if (!entry_list)
1865 goto error_nest;
1866
1867 list_for_each_entry(entry, &root->entries, list) {
1868 if (dump_entry(msg, entry) < 0)
1869 goto error_nest;
1870 }
1871
1872 nla_nest_end(msg, entry_list);
1873 return 0;
1874
1875 error_nest:
1876 nla_nest_cancel(msg, entry_list);
1877 return -1;
1878 }
1879
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)1880 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1881 {
1882 struct taprio_sched *q = qdisc_priv(sch);
1883 struct net_device *dev = qdisc_dev(sch);
1884 struct sched_gate_list *oper, *admin;
1885 struct tc_mqprio_qopt opt = { 0 };
1886 struct nlattr *nest, *sched_nest;
1887 unsigned int i;
1888
1889 rcu_read_lock();
1890 oper = rcu_dereference(q->oper_sched);
1891 admin = rcu_dereference(q->admin_sched);
1892
1893 opt.num_tc = netdev_get_num_tc(dev);
1894 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1895
1896 for (i = 0; i < netdev_get_num_tc(dev); i++) {
1897 opt.count[i] = dev->tc_to_txq[i].count;
1898 opt.offset[i] = dev->tc_to_txq[i].offset;
1899 }
1900
1901 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1902 if (!nest)
1903 goto start_error;
1904
1905 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1906 goto options_error;
1907
1908 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1909 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1910 goto options_error;
1911
1912 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1913 goto options_error;
1914
1915 if (q->txtime_delay &&
1916 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1917 goto options_error;
1918
1919 if (oper && dump_schedule(skb, oper))
1920 goto options_error;
1921
1922 if (!admin)
1923 goto done;
1924
1925 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1926 if (!sched_nest)
1927 goto options_error;
1928
1929 if (dump_schedule(skb, admin))
1930 goto admin_error;
1931
1932 nla_nest_end(skb, sched_nest);
1933
1934 done:
1935 rcu_read_unlock();
1936
1937 return nla_nest_end(skb, nest);
1938
1939 admin_error:
1940 nla_nest_cancel(skb, sched_nest);
1941
1942 options_error:
1943 nla_nest_cancel(skb, nest);
1944
1945 start_error:
1946 rcu_read_unlock();
1947 return -ENOSPC;
1948 }
1949
taprio_leaf(struct Qdisc * sch,unsigned long cl)1950 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1951 {
1952 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1953
1954 if (!dev_queue)
1955 return NULL;
1956
1957 return dev_queue->qdisc_sleeping;
1958 }
1959
taprio_find(struct Qdisc * sch,u32 classid)1960 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1961 {
1962 unsigned int ntx = TC_H_MIN(classid);
1963
1964 if (!taprio_queue_get(sch, ntx))
1965 return 0;
1966 return ntx;
1967 }
1968
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)1969 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1970 struct sk_buff *skb, struct tcmsg *tcm)
1971 {
1972 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1973
1974 tcm->tcm_parent = TC_H_ROOT;
1975 tcm->tcm_handle |= TC_H_MIN(cl);
1976 tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1977
1978 return 0;
1979 }
1980
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)1981 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1982 struct gnet_dump *d)
1983 __releases(d->lock)
1984 __acquires(d->lock)
1985 {
1986 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1987
1988 sch = dev_queue->qdisc_sleeping;
1989 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
1990 qdisc_qstats_copy(d, sch) < 0)
1991 return -1;
1992 return 0;
1993 }
1994
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)1995 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1996 {
1997 struct net_device *dev = qdisc_dev(sch);
1998 unsigned long ntx;
1999
2000 if (arg->stop)
2001 return;
2002
2003 arg->count = arg->skip;
2004 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2005 if (arg->fn(sch, ntx + 1, arg) < 0) {
2006 arg->stop = 1;
2007 break;
2008 }
2009 arg->count++;
2010 }
2011 }
2012
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)2013 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2014 struct tcmsg *tcm)
2015 {
2016 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2017 }
2018
2019 static const struct Qdisc_class_ops taprio_class_ops = {
2020 .graft = taprio_graft,
2021 .leaf = taprio_leaf,
2022 .find = taprio_find,
2023 .walk = taprio_walk,
2024 .dump = taprio_dump_class,
2025 .dump_stats = taprio_dump_class_stats,
2026 .select_queue = taprio_select_queue,
2027 };
2028
2029 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2030 .cl_ops = &taprio_class_ops,
2031 .id = "taprio",
2032 .priv_size = sizeof(struct taprio_sched),
2033 .init = taprio_init,
2034 .change = taprio_change,
2035 .destroy = taprio_destroy,
2036 .reset = taprio_reset,
2037 .attach = taprio_attach,
2038 .peek = taprio_peek,
2039 .dequeue = taprio_dequeue,
2040 .enqueue = taprio_enqueue,
2041 .dump = taprio_dump,
2042 .owner = THIS_MODULE,
2043 };
2044
2045 static struct notifier_block taprio_device_notifier = {
2046 .notifier_call = taprio_dev_notifier,
2047 };
2048
taprio_module_init(void)2049 static int __init taprio_module_init(void)
2050 {
2051 int err = register_netdevice_notifier(&taprio_device_notifier);
2052
2053 if (err)
2054 return err;
2055
2056 return register_qdisc(&taprio_qdisc_ops);
2057 }
2058
taprio_module_exit(void)2059 static void __exit taprio_module_exit(void)
2060 {
2061 unregister_qdisc(&taprio_qdisc_ops);
2062 unregister_netdevice_notifier(&taprio_device_notifier);
2063 }
2064
2065 module_init(taprio_module_init);
2066 module_exit(taprio_module_exit);
2067 MODULE_LICENSE("GPL");
2068