1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43 
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
__page_cache_release(struct page * page)48 static void __page_cache_release(struct page *page)
49 {
50 	if (PageLRU(page)) {
51 		unsigned long flags;
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		VM_BUG_ON(!PageLRU(page));
56 		__ClearPageLRU(page);
57 		del_page_from_lru(zone, page);
58 		spin_unlock_irqrestore(&zone->lru_lock, flags);
59 	}
60 }
61 
__put_single_page(struct page * page)62 static void __put_single_page(struct page *page)
63 {
64 	__page_cache_release(page);
65 	free_hot_cold_page(page, 0);
66 }
67 
__put_compound_page(struct page * page)68 static void __put_compound_page(struct page *page)
69 {
70 	compound_page_dtor *dtor;
71 
72 	__page_cache_release(page);
73 	dtor = get_compound_page_dtor(page);
74 	(*dtor)(page);
75 }
76 
put_compound_page(struct page * page)77 static void put_compound_page(struct page *page)
78 {
79 	if (unlikely(PageTail(page))) {
80 		/* __split_huge_page_refcount can run under us */
81 		struct page *page_head = page->first_page;
82 		smp_rmb();
83 		/*
84 		 * If PageTail is still set after smp_rmb() we can be sure
85 		 * that the page->first_page we read wasn't a dangling pointer.
86 		 * See __split_huge_page_refcount() smp_wmb().
87 		 */
88 		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89 			unsigned long flags;
90 			/*
91 			 * Verify that our page_head wasn't converted
92 			 * to a a regular page before we got a
93 			 * reference on it.
94 			 */
95 			if (unlikely(!PageHead(page_head))) {
96 				/* PageHead is cleared after PageTail */
97 				smp_rmb();
98 				VM_BUG_ON(PageTail(page));
99 				goto out_put_head;
100 			}
101 			/*
102 			 * Only run compound_lock on a valid PageHead,
103 			 * after having it pinned with
104 			 * get_page_unless_zero() above.
105 			 */
106 			smp_mb();
107 			/* page_head wasn't a dangling pointer */
108 			flags = compound_lock_irqsave(page_head);
109 			if (unlikely(!PageTail(page))) {
110 				/* __split_huge_page_refcount run before us */
111 				compound_unlock_irqrestore(page_head, flags);
112 				VM_BUG_ON(PageHead(page_head));
113 			out_put_head:
114 				if (put_page_testzero(page_head))
115 					__put_single_page(page_head);
116 			out_put_single:
117 				if (put_page_testzero(page))
118 					__put_single_page(page);
119 				return;
120 			}
121 			VM_BUG_ON(page_head != page->first_page);
122 			/*
123 			 * We can release the refcount taken by
124 			 * get_page_unless_zero now that
125 			 * split_huge_page_refcount is blocked on the
126 			 * compound_lock.
127 			 */
128 			if (put_page_testzero(page_head))
129 				VM_BUG_ON(1);
130 			/* __split_huge_page_refcount will wait now */
131 			VM_BUG_ON(atomic_read(&page->_count) <= 0);
132 			atomic_dec(&page->_count);
133 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134 			compound_unlock_irqrestore(page_head, flags);
135 			if (put_page_testzero(page_head)) {
136 				if (PageHead(page_head))
137 					__put_compound_page(page_head);
138 				else
139 					__put_single_page(page_head);
140 			}
141 		} else {
142 			/* page_head is a dangling pointer */
143 			VM_BUG_ON(PageTail(page));
144 			goto out_put_single;
145 		}
146 	} else if (put_page_testzero(page)) {
147 		if (PageHead(page))
148 			__put_compound_page(page);
149 		else
150 			__put_single_page(page);
151 	}
152 }
153 
put_page(struct page * page)154 void put_page(struct page *page)
155 {
156 	if (unlikely(PageCompound(page)))
157 		put_compound_page(page);
158 	else if (put_page_testzero(page))
159 		__put_single_page(page);
160 }
161 EXPORT_SYMBOL(put_page);
162 
163 /**
164  * put_pages_list() - release a list of pages
165  * @pages: list of pages threaded on page->lru
166  *
167  * Release a list of pages which are strung together on page.lru.  Currently
168  * used by read_cache_pages() and related error recovery code.
169  */
put_pages_list(struct list_head * pages)170 void put_pages_list(struct list_head *pages)
171 {
172 	while (!list_empty(pages)) {
173 		struct page *victim;
174 
175 		victim = list_entry(pages->prev, struct page, lru);
176 		list_del(&victim->lru);
177 		page_cache_release(victim);
178 	}
179 }
180 EXPORT_SYMBOL(put_pages_list);
181 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,void * arg),void * arg)182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 				void (*move_fn)(struct page *page, void *arg),
184 				void *arg)
185 {
186 	int i;
187 	struct zone *zone = NULL;
188 	unsigned long flags = 0;
189 
190 	for (i = 0; i < pagevec_count(pvec); i++) {
191 		struct page *page = pvec->pages[i];
192 		struct zone *pagezone = page_zone(page);
193 
194 		if (pagezone != zone) {
195 			if (zone)
196 				spin_unlock_irqrestore(&zone->lru_lock, flags);
197 			zone = pagezone;
198 			spin_lock_irqsave(&zone->lru_lock, flags);
199 		}
200 
201 		(*move_fn)(page, arg);
202 	}
203 	if (zone)
204 		spin_unlock_irqrestore(&zone->lru_lock, flags);
205 	release_pages(pvec->pages, pvec->nr, pvec->cold);
206 	pagevec_reinit(pvec);
207 }
208 
pagevec_move_tail_fn(struct page * page,void * arg)209 static void pagevec_move_tail_fn(struct page *page, void *arg)
210 {
211 	int *pgmoved = arg;
212 	struct zone *zone = page_zone(page);
213 
214 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215 		enum lru_list lru = page_lru_base_type(page);
216 		list_move_tail(&page->lru, &zone->lru[lru].list);
217 		mem_cgroup_rotate_reclaimable_page(page);
218 		(*pgmoved)++;
219 	}
220 }
221 
222 /*
223  * pagevec_move_tail() must be called with IRQ disabled.
224  * Otherwise this may cause nasty races.
225  */
pagevec_move_tail(struct pagevec * pvec)226 static void pagevec_move_tail(struct pagevec *pvec)
227 {
228 	int pgmoved = 0;
229 
230 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231 	__count_vm_events(PGROTATED, pgmoved);
232 }
233 
234 /*
235  * Writeback is about to end against a page which has been marked for immediate
236  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
237  * inactive list.
238  */
rotate_reclaimable_page(struct page * page)239 void rotate_reclaimable_page(struct page *page)
240 {
241 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
242 	    !PageUnevictable(page) && PageLRU(page)) {
243 		struct pagevec *pvec;
244 		unsigned long flags;
245 
246 		page_cache_get(page);
247 		local_irq_save(flags);
248 		pvec = &__get_cpu_var(lru_rotate_pvecs);
249 		if (!pagevec_add(pvec, page))
250 			pagevec_move_tail(pvec);
251 		local_irq_restore(flags);
252 	}
253 }
254 
update_page_reclaim_stat(struct zone * zone,struct page * page,int file,int rotated)255 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256 				     int file, int rotated)
257 {
258 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259 	struct zone_reclaim_stat *memcg_reclaim_stat;
260 
261 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
262 
263 	reclaim_stat->recent_scanned[file]++;
264 	if (rotated)
265 		reclaim_stat->recent_rotated[file]++;
266 
267 	if (!memcg_reclaim_stat)
268 		return;
269 
270 	memcg_reclaim_stat->recent_scanned[file]++;
271 	if (rotated)
272 		memcg_reclaim_stat->recent_rotated[file]++;
273 }
274 
275 /*
276  * FIXME: speed this up?
277  */
activate_page(struct page * page)278 void activate_page(struct page *page)
279 {
280 	struct zone *zone = page_zone(page);
281 
282 	spin_lock_irq(&zone->lru_lock);
283 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
284 		int file = page_is_file_cache(page);
285 		int lru = page_lru_base_type(page);
286 		del_page_from_lru_list(zone, page, lru);
287 
288 		SetPageActive(page);
289 		lru += LRU_ACTIVE;
290 		add_page_to_lru_list(zone, page, lru);
291 		__count_vm_event(PGACTIVATE);
292 
293 		update_page_reclaim_stat(zone, page, file, 1);
294 	}
295 	spin_unlock_irq(&zone->lru_lock);
296 }
297 
298 /*
299  * Mark a page as having seen activity.
300  *
301  * inactive,unreferenced	->	inactive,referenced
302  * inactive,referenced		->	active,unreferenced
303  * active,unreferenced		->	active,referenced
304  */
mark_page_accessed(struct page * page)305 void mark_page_accessed(struct page *page)
306 {
307 	if (!PageActive(page) && !PageUnevictable(page) &&
308 			PageReferenced(page) && PageLRU(page)) {
309 		activate_page(page);
310 		ClearPageReferenced(page);
311 	} else if (!PageReferenced(page)) {
312 		SetPageReferenced(page);
313 	}
314 }
315 
316 EXPORT_SYMBOL(mark_page_accessed);
317 
__lru_cache_add(struct page * page,enum lru_list lru)318 void __lru_cache_add(struct page *page, enum lru_list lru)
319 {
320 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
321 
322 	page_cache_get(page);
323 	if (!pagevec_add(pvec, page))
324 		____pagevec_lru_add(pvec, lru);
325 	put_cpu_var(lru_add_pvecs);
326 }
327 EXPORT_SYMBOL(__lru_cache_add);
328 
329 /**
330  * lru_cache_add_lru - add a page to a page list
331  * @page: the page to be added to the LRU.
332  * @lru: the LRU list to which the page is added.
333  */
lru_cache_add_lru(struct page * page,enum lru_list lru)334 void lru_cache_add_lru(struct page *page, enum lru_list lru)
335 {
336 	if (PageActive(page)) {
337 		VM_BUG_ON(PageUnevictable(page));
338 		ClearPageActive(page);
339 	} else if (PageUnevictable(page)) {
340 		VM_BUG_ON(PageActive(page));
341 		ClearPageUnevictable(page);
342 	}
343 
344 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
345 	__lru_cache_add(page, lru);
346 }
347 
348 /**
349  * add_page_to_unevictable_list - add a page to the unevictable list
350  * @page:  the page to be added to the unevictable list
351  *
352  * Add page directly to its zone's unevictable list.  To avoid races with
353  * tasks that might be making the page evictable, through eg. munlock,
354  * munmap or exit, while it's not on the lru, we want to add the page
355  * while it's locked or otherwise "invisible" to other tasks.  This is
356  * difficult to do when using the pagevec cache, so bypass that.
357  */
add_page_to_unevictable_list(struct page * page)358 void add_page_to_unevictable_list(struct page *page)
359 {
360 	struct zone *zone = page_zone(page);
361 
362 	spin_lock_irq(&zone->lru_lock);
363 	SetPageUnevictable(page);
364 	SetPageLRU(page);
365 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
366 	spin_unlock_irq(&zone->lru_lock);
367 }
368 
369 /*
370  * If the page can not be invalidated, it is moved to the
371  * inactive list to speed up its reclaim.  It is moved to the
372  * head of the list, rather than the tail, to give the flusher
373  * threads some time to write it out, as this is much more
374  * effective than the single-page writeout from reclaim.
375  *
376  * If the page isn't page_mapped and dirty/writeback, the page
377  * could reclaim asap using PG_reclaim.
378  *
379  * 1. active, mapped page -> none
380  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
381  * 3. inactive, mapped page -> none
382  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
383  * 5. inactive, clean -> inactive, tail
384  * 6. Others -> none
385  *
386  * In 4, why it moves inactive's head, the VM expects the page would
387  * be write it out by flusher threads as this is much more effective
388  * than the single-page writeout from reclaim.
389  */
lru_deactivate_fn(struct page * page,void * arg)390 static void lru_deactivate_fn(struct page *page, void *arg)
391 {
392 	int lru, file;
393 	bool active;
394 	struct zone *zone = page_zone(page);
395 
396 	if (!PageLRU(page))
397 		return;
398 
399 	if (PageUnevictable(page))
400 		return;
401 
402 	/* Some processes are using the page */
403 	if (page_mapped(page))
404 		return;
405 
406 	active = PageActive(page);
407 
408 	file = page_is_file_cache(page);
409 	lru = page_lru_base_type(page);
410 	del_page_from_lru_list(zone, page, lru + active);
411 	ClearPageActive(page);
412 	ClearPageReferenced(page);
413 	add_page_to_lru_list(zone, page, lru);
414 
415 	if (PageWriteback(page) || PageDirty(page)) {
416 		/*
417 		 * PG_reclaim could be raced with end_page_writeback
418 		 * It can make readahead confusing.  But race window
419 		 * is _really_ small and  it's non-critical problem.
420 		 */
421 		SetPageReclaim(page);
422 	} else {
423 		/*
424 		 * The page's writeback ends up during pagevec
425 		 * We moves tha page into tail of inactive.
426 		 */
427 		list_move_tail(&page->lru, &zone->lru[lru].list);
428 		mem_cgroup_rotate_reclaimable_page(page);
429 		__count_vm_event(PGROTATED);
430 	}
431 
432 	if (active)
433 		__count_vm_event(PGDEACTIVATE);
434 	update_page_reclaim_stat(zone, page, file, 0);
435 }
436 
437 /*
438  * Drain pages out of the cpu's pagevecs.
439  * Either "cpu" is the current CPU, and preemption has already been
440  * disabled; or "cpu" is being hot-unplugged, and is already dead.
441  */
drain_cpu_pagevecs(int cpu)442 static void drain_cpu_pagevecs(int cpu)
443 {
444 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
445 	struct pagevec *pvec;
446 	int lru;
447 
448 	for_each_lru(lru) {
449 		pvec = &pvecs[lru - LRU_BASE];
450 		if (pagevec_count(pvec))
451 			____pagevec_lru_add(pvec, lru);
452 	}
453 
454 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
455 	if (pagevec_count(pvec)) {
456 		unsigned long flags;
457 
458 		/* No harm done if a racing interrupt already did this */
459 		local_irq_save(flags);
460 		pagevec_move_tail(pvec);
461 		local_irq_restore(flags);
462 	}
463 
464 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
465 	if (pagevec_count(pvec))
466 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
467 }
468 
469 /**
470  * deactivate_page - forcefully deactivate a page
471  * @page: page to deactivate
472  *
473  * This function hints the VM that @page is a good reclaim candidate,
474  * for example if its invalidation fails due to the page being dirty
475  * or under writeback.
476  */
deactivate_page(struct page * page)477 void deactivate_page(struct page *page)
478 {
479 	if (likely(get_page_unless_zero(page))) {
480 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
481 
482 		if (!pagevec_add(pvec, page))
483 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
484 		put_cpu_var(lru_deactivate_pvecs);
485 	}
486 }
487 
lru_add_drain(void)488 void lru_add_drain(void)
489 {
490 	drain_cpu_pagevecs(get_cpu());
491 	put_cpu();
492 }
493 
lru_add_drain_per_cpu(struct work_struct * dummy)494 static void lru_add_drain_per_cpu(struct work_struct *dummy)
495 {
496 	lru_add_drain();
497 }
498 
499 /*
500  * Returns 0 for success
501  */
lru_add_drain_all(void)502 int lru_add_drain_all(void)
503 {
504 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
505 }
506 
507 /*
508  * Batched page_cache_release().  Decrement the reference count on all the
509  * passed pages.  If it fell to zero then remove the page from the LRU and
510  * free it.
511  *
512  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
513  * for the remainder of the operation.
514  *
515  * The locking in this function is against shrink_inactive_list(): we recheck
516  * the page count inside the lock to see whether shrink_inactive_list()
517  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
518  * will free it.
519  */
release_pages(struct page ** pages,int nr,int cold)520 void release_pages(struct page **pages, int nr, int cold)
521 {
522 	int i;
523 	struct pagevec pages_to_free;
524 	struct zone *zone = NULL;
525 	unsigned long uninitialized_var(flags);
526 
527 	pagevec_init(&pages_to_free, cold);
528 	for (i = 0; i < nr; i++) {
529 		struct page *page = pages[i];
530 
531 		if (unlikely(PageCompound(page))) {
532 			if (zone) {
533 				spin_unlock_irqrestore(&zone->lru_lock, flags);
534 				zone = NULL;
535 			}
536 			put_compound_page(page);
537 			continue;
538 		}
539 
540 		if (!put_page_testzero(page))
541 			continue;
542 
543 		if (PageLRU(page)) {
544 			struct zone *pagezone = page_zone(page);
545 
546 			if (pagezone != zone) {
547 				if (zone)
548 					spin_unlock_irqrestore(&zone->lru_lock,
549 									flags);
550 				zone = pagezone;
551 				spin_lock_irqsave(&zone->lru_lock, flags);
552 			}
553 			VM_BUG_ON(!PageLRU(page));
554 			__ClearPageLRU(page);
555 			del_page_from_lru(zone, page);
556 		}
557 
558 		if (!pagevec_add(&pages_to_free, page)) {
559 			if (zone) {
560 				spin_unlock_irqrestore(&zone->lru_lock, flags);
561 				zone = NULL;
562 			}
563 			__pagevec_free(&pages_to_free);
564 			pagevec_reinit(&pages_to_free);
565   		}
566 	}
567 	if (zone)
568 		spin_unlock_irqrestore(&zone->lru_lock, flags);
569 
570 	pagevec_free(&pages_to_free);
571 }
572 EXPORT_SYMBOL(release_pages);
573 
574 /*
575  * The pages which we're about to release may be in the deferred lru-addition
576  * queues.  That would prevent them from really being freed right now.  That's
577  * OK from a correctness point of view but is inefficient - those pages may be
578  * cache-warm and we want to give them back to the page allocator ASAP.
579  *
580  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
581  * and __pagevec_lru_add_active() call release_pages() directly to avoid
582  * mutual recursion.
583  */
__pagevec_release(struct pagevec * pvec)584 void __pagevec_release(struct pagevec *pvec)
585 {
586 	lru_add_drain();
587 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
588 	pagevec_reinit(pvec);
589 }
590 
591 EXPORT_SYMBOL(__pagevec_release);
592 
593 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct zone * zone,struct page * page,struct page * page_tail)594 void lru_add_page_tail(struct zone* zone,
595 		       struct page *page, struct page *page_tail)
596 {
597 	int active;
598 	enum lru_list lru;
599 	const int file = 0;
600 	struct list_head *head;
601 
602 	VM_BUG_ON(!PageHead(page));
603 	VM_BUG_ON(PageCompound(page_tail));
604 	VM_BUG_ON(PageLRU(page_tail));
605 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
606 
607 	SetPageLRU(page_tail);
608 
609 	if (page_evictable(page_tail, NULL)) {
610 		if (PageActive(page)) {
611 			SetPageActive(page_tail);
612 			active = 1;
613 			lru = LRU_ACTIVE_ANON;
614 		} else {
615 			active = 0;
616 			lru = LRU_INACTIVE_ANON;
617 		}
618 		update_page_reclaim_stat(zone, page_tail, file, active);
619 		if (likely(PageLRU(page)))
620 			head = page->lru.prev;
621 		else
622 			head = &zone->lru[lru].list;
623 		__add_page_to_lru_list(zone, page_tail, lru, head);
624 	} else {
625 		SetPageUnevictable(page_tail);
626 		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
627 	}
628 }
629 
____pagevec_lru_add_fn(struct page * page,void * arg)630 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
631 {
632 	enum lru_list lru = (enum lru_list)arg;
633 	struct zone *zone = page_zone(page);
634 	int file = is_file_lru(lru);
635 	int active = is_active_lru(lru);
636 
637 	VM_BUG_ON(PageActive(page));
638 	VM_BUG_ON(PageUnevictable(page));
639 	VM_BUG_ON(PageLRU(page));
640 
641 	SetPageLRU(page);
642 	if (active)
643 		SetPageActive(page);
644 	update_page_reclaim_stat(zone, page, file, active);
645 	add_page_to_lru_list(zone, page, lru);
646 }
647 
648 /*
649  * Add the passed pages to the LRU, then drop the caller's refcount
650  * on them.  Reinitialises the caller's pagevec.
651  */
____pagevec_lru_add(struct pagevec * pvec,enum lru_list lru)652 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
653 {
654 	VM_BUG_ON(is_unevictable_lru(lru));
655 
656 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
657 }
658 
659 EXPORT_SYMBOL(____pagevec_lru_add);
660 
661 /*
662  * Try to drop buffers from the pages in a pagevec
663  */
pagevec_strip(struct pagevec * pvec)664 void pagevec_strip(struct pagevec *pvec)
665 {
666 	int i;
667 
668 	for (i = 0; i < pagevec_count(pvec); i++) {
669 		struct page *page = pvec->pages[i];
670 
671 		if (page_has_private(page) && trylock_page(page)) {
672 			if (page_has_private(page))
673 				try_to_release_page(page, 0);
674 			unlock_page(page);
675 		}
676 	}
677 }
678 
679 /**
680  * pagevec_lookup - gang pagecache lookup
681  * @pvec:	Where the resulting pages are placed
682  * @mapping:	The address_space to search
683  * @start:	The starting page index
684  * @nr_pages:	The maximum number of pages
685  *
686  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
687  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
688  * reference against the pages in @pvec.
689  *
690  * The search returns a group of mapping-contiguous pages with ascending
691  * indexes.  There may be holes in the indices due to not-present pages.
692  *
693  * pagevec_lookup() returns the number of pages which were found.
694  */
pagevec_lookup(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages)695 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
696 		pgoff_t start, unsigned nr_pages)
697 {
698 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
699 	return pagevec_count(pvec);
700 }
701 
702 EXPORT_SYMBOL(pagevec_lookup);
703 
pagevec_lookup_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,int tag,unsigned nr_pages)704 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
705 		pgoff_t *index, int tag, unsigned nr_pages)
706 {
707 	pvec->nr = find_get_pages_tag(mapping, index, tag,
708 					nr_pages, pvec->pages);
709 	return pagevec_count(pvec);
710 }
711 
712 EXPORT_SYMBOL(pagevec_lookup_tag);
713 
714 /*
715  * Perform any setup for the swap system
716  */
swap_setup(void)717 void __init swap_setup(void)
718 {
719 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
720 
721 #ifdef CONFIG_SWAP
722 	bdi_init(swapper_space.backing_dev_info);
723 #endif
724 
725 	/* Use a smaller cluster for small-memory machines */
726 	if (megs < 16)
727 		page_cluster = 2;
728 	else
729 		page_cluster = 3;
730 	/*
731 	 * Right now other parts of the system means that we
732 	 * _really_ don't want to cluster much more
733 	 */
734 }
735