1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118
119 #include <asm/cacheflush.h>
120 #include <asm/tlbflush.h>
121 #include <asm/page.h>
122
123 /*
124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133 #ifdef CONFIG_DEBUG_SLAB
134 #define DEBUG 1
135 #define STATS 1
136 #define FORCED_DEBUG 1
137 #else
138 #define DEBUG 0
139 #define STATS 0
140 #define FORCED_DEBUG 0
141 #endif
142
143 /* Shouldn't this be in a header file somewhere? */
144 #define BYTES_PER_WORD sizeof(void *)
145 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146
147 #ifndef ARCH_KMALLOC_FLAGS
148 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149 #endif
150
151 /* Legal flag mask for kmem_cache_create(). */
152 #if DEBUG
153 # define CREATE_MASK (SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155 SLAB_CACHE_DMA | \
156 SLAB_STORE_USER | \
157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
160 #else
161 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
162 SLAB_CACHE_DMA | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
166 #endif
167
168 /*
169 * kmem_bufctl_t:
170 *
171 * Bufctl's are used for linking objs within a slab
172 * linked offsets.
173 *
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 */
186
187 typedef unsigned int kmem_bufctl_t;
188 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
190 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
192
193 /*
194 * struct slab_rcu
195 *
196 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
197 * arrange for kmem_freepages to be called via RCU. This is useful if
198 * we need to approach a kernel structure obliquely, from its address
199 * obtained without the usual locking. We can lock the structure to
200 * stabilize it and check it's still at the given address, only if we
201 * can be sure that the memory has not been meanwhile reused for some
202 * other kind of object (which our subsystem's lock might corrupt).
203 *
204 * rcu_read_lock before reading the address, then rcu_read_unlock after
205 * taking the spinlock within the structure expected at that address.
206 */
207 struct slab_rcu {
208 struct rcu_head head;
209 struct kmem_cache *cachep;
210 void *addr;
211 };
212
213 /*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220 struct slab {
221 union {
222 struct {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
229 };
230 struct slab_rcu __slab_cover_slab_rcu;
231 };
232 };
233
234 /*
235 * struct array_cache
236 *
237 * Purpose:
238 * - LIFO ordering, to hand out cache-warm objects from _alloc
239 * - reduce the number of linked list operations
240 * - reduce spinlock operations
241 *
242 * The limit is stored in the per-cpu structure to reduce the data cache
243 * footprint.
244 *
245 */
246 struct array_cache {
247 unsigned int avail;
248 unsigned int limit;
249 unsigned int batchcount;
250 unsigned int touched;
251 spinlock_t lock;
252 void *entry[]; /*
253 * Must have this definition in here for the proper
254 * alignment of array_cache. Also simplifies accessing
255 * the entries.
256 */
257 };
258
259 /*
260 * bootstrap: The caches do not work without cpuarrays anymore, but the
261 * cpuarrays are allocated from the generic caches...
262 */
263 #define BOOT_CPUCACHE_ENTRIES 1
264 struct arraycache_init {
265 struct array_cache cache;
266 void *entries[BOOT_CPUCACHE_ENTRIES];
267 };
268
269 /*
270 * The slab lists for all objects.
271 */
272 struct kmem_list3 {
273 struct list_head slabs_partial; /* partial list first, better asm code */
274 struct list_head slabs_full;
275 struct list_head slabs_free;
276 unsigned long free_objects;
277 unsigned int free_limit;
278 unsigned int colour_next; /* Per-node cache coloring */
279 spinlock_t list_lock;
280 struct array_cache *shared; /* shared per node */
281 struct array_cache **alien; /* on other nodes */
282 unsigned long next_reap; /* updated without locking */
283 int free_touched; /* updated without locking */
284 };
285
286 /*
287 * Need this for bootstrapping a per node allocator.
288 */
289 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
290 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
291 #define CACHE_CACHE 0
292 #define SIZE_AC MAX_NUMNODES
293 #define SIZE_L3 (2 * MAX_NUMNODES)
294
295 static int drain_freelist(struct kmem_cache *cache,
296 struct kmem_list3 *l3, int tofree);
297 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
298 int node);
299 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
300 static void cache_reap(struct work_struct *unused);
301
302 /*
303 * This function must be completely optimized away if a constant is passed to
304 * it. Mostly the same as what is in linux/slab.h except it returns an index.
305 */
index_of(const size_t size)306 static __always_inline int index_of(const size_t size)
307 {
308 extern void __bad_size(void);
309
310 if (__builtin_constant_p(size)) {
311 int i = 0;
312
313 #define CACHE(x) \
314 if (size <=x) \
315 return i; \
316 else \
317 i++;
318 #include <linux/kmalloc_sizes.h>
319 #undef CACHE
320 __bad_size();
321 } else
322 __bad_size();
323 return 0;
324 }
325
326 static int slab_early_init = 1;
327
328 #define INDEX_AC index_of(sizeof(struct arraycache_init))
329 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
330
kmem_list3_init(struct kmem_list3 * parent)331 static void kmem_list3_init(struct kmem_list3 *parent)
332 {
333 INIT_LIST_HEAD(&parent->slabs_full);
334 INIT_LIST_HEAD(&parent->slabs_partial);
335 INIT_LIST_HEAD(&parent->slabs_free);
336 parent->shared = NULL;
337 parent->alien = NULL;
338 parent->colour_next = 0;
339 spin_lock_init(&parent->list_lock);
340 parent->free_objects = 0;
341 parent->free_touched = 0;
342 }
343
344 #define MAKE_LIST(cachep, listp, slab, nodeid) \
345 do { \
346 INIT_LIST_HEAD(listp); \
347 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
348 } while (0)
349
350 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
351 do { \
352 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
353 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
355 } while (0)
356
357 #define CFLGS_OFF_SLAB (0x80000000UL)
358 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
359
360 #define BATCHREFILL_LIMIT 16
361 /*
362 * Optimization question: fewer reaps means less probability for unnessary
363 * cpucache drain/refill cycles.
364 *
365 * OTOH the cpuarrays can contain lots of objects,
366 * which could lock up otherwise freeable slabs.
367 */
368 #define REAPTIMEOUT_CPUC (2*HZ)
369 #define REAPTIMEOUT_LIST3 (4*HZ)
370
371 #if STATS
372 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
373 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
374 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
375 #define STATS_INC_GROWN(x) ((x)->grown++)
376 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
377 #define STATS_SET_HIGH(x) \
378 do { \
379 if ((x)->num_active > (x)->high_mark) \
380 (x)->high_mark = (x)->num_active; \
381 } while (0)
382 #define STATS_INC_ERR(x) ((x)->errors++)
383 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
384 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
385 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
386 #define STATS_SET_FREEABLE(x, i) \
387 do { \
388 if ((x)->max_freeable < i) \
389 (x)->max_freeable = i; \
390 } while (0)
391 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
392 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
393 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
394 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
395 #else
396 #define STATS_INC_ACTIVE(x) do { } while (0)
397 #define STATS_DEC_ACTIVE(x) do { } while (0)
398 #define STATS_INC_ALLOCED(x) do { } while (0)
399 #define STATS_INC_GROWN(x) do { } while (0)
400 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
401 #define STATS_SET_HIGH(x) do { } while (0)
402 #define STATS_INC_ERR(x) do { } while (0)
403 #define STATS_INC_NODEALLOCS(x) do { } while (0)
404 #define STATS_INC_NODEFREES(x) do { } while (0)
405 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
406 #define STATS_SET_FREEABLE(x, i) do { } while (0)
407 #define STATS_INC_ALLOCHIT(x) do { } while (0)
408 #define STATS_INC_ALLOCMISS(x) do { } while (0)
409 #define STATS_INC_FREEHIT(x) do { } while (0)
410 #define STATS_INC_FREEMISS(x) do { } while (0)
411 #endif
412
413 #if DEBUG
414
415 /*
416 * memory layout of objects:
417 * 0 : objp
418 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
419 * the end of an object is aligned with the end of the real
420 * allocation. Catches writes behind the end of the allocation.
421 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
422 * redzone word.
423 * cachep->obj_offset: The real object.
424 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
425 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
426 * [BYTES_PER_WORD long]
427 */
obj_offset(struct kmem_cache * cachep)428 static int obj_offset(struct kmem_cache *cachep)
429 {
430 return cachep->obj_offset;
431 }
432
obj_size(struct kmem_cache * cachep)433 static int obj_size(struct kmem_cache *cachep)
434 {
435 return cachep->obj_size;
436 }
437
dbg_redzone1(struct kmem_cache * cachep,void * objp)438 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
439 {
440 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
441 return (unsigned long long*) (objp + obj_offset(cachep) -
442 sizeof(unsigned long long));
443 }
444
dbg_redzone2(struct kmem_cache * cachep,void * objp)445 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
446 {
447 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
448 if (cachep->flags & SLAB_STORE_USER)
449 return (unsigned long long *)(objp + cachep->buffer_size -
450 sizeof(unsigned long long) -
451 REDZONE_ALIGN);
452 return (unsigned long long *) (objp + cachep->buffer_size -
453 sizeof(unsigned long long));
454 }
455
dbg_userword(struct kmem_cache * cachep,void * objp)456 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
457 {
458 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
459 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
460 }
461
462 #else
463
464 #define obj_offset(x) 0
465 #define obj_size(cachep) (cachep->buffer_size)
466 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
467 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
469
470 #endif
471
472 #ifdef CONFIG_TRACING
slab_buffer_size(struct kmem_cache * cachep)473 size_t slab_buffer_size(struct kmem_cache *cachep)
474 {
475 return cachep->buffer_size;
476 }
477 EXPORT_SYMBOL(slab_buffer_size);
478 #endif
479
480 /*
481 * Do not go above this order unless 0 objects fit into the slab.
482 */
483 #define BREAK_GFP_ORDER_HI 1
484 #define BREAK_GFP_ORDER_LO 0
485 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
486
487 /*
488 * Functions for storing/retrieving the cachep and or slab from the page
489 * allocator. These are used to find the slab an obj belongs to. With kfree(),
490 * these are used to find the cache which an obj belongs to.
491 */
page_set_cache(struct page * page,struct kmem_cache * cache)492 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
493 {
494 page->lru.next = (struct list_head *)cache;
495 }
496
page_get_cache(struct page * page)497 static inline struct kmem_cache *page_get_cache(struct page *page)
498 {
499 page = compound_head(page);
500 BUG_ON(!PageSlab(page));
501 return (struct kmem_cache *)page->lru.next;
502 }
503
page_set_slab(struct page * page,struct slab * slab)504 static inline void page_set_slab(struct page *page, struct slab *slab)
505 {
506 page->lru.prev = (struct list_head *)slab;
507 }
508
page_get_slab(struct page * page)509 static inline struct slab *page_get_slab(struct page *page)
510 {
511 BUG_ON(!PageSlab(page));
512 return (struct slab *)page->lru.prev;
513 }
514
virt_to_cache(const void * obj)515 static inline struct kmem_cache *virt_to_cache(const void *obj)
516 {
517 struct page *page = virt_to_head_page(obj);
518 return page_get_cache(page);
519 }
520
virt_to_slab(const void * obj)521 static inline struct slab *virt_to_slab(const void *obj)
522 {
523 struct page *page = virt_to_head_page(obj);
524 return page_get_slab(page);
525 }
526
index_to_obj(struct kmem_cache * cache,struct slab * slab,unsigned int idx)527 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
528 unsigned int idx)
529 {
530 return slab->s_mem + cache->buffer_size * idx;
531 }
532
533 /*
534 * We want to avoid an expensive divide : (offset / cache->buffer_size)
535 * Using the fact that buffer_size is a constant for a particular cache,
536 * we can replace (offset / cache->buffer_size) by
537 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
538 */
obj_to_index(const struct kmem_cache * cache,const struct slab * slab,void * obj)539 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
540 const struct slab *slab, void *obj)
541 {
542 u32 offset = (obj - slab->s_mem);
543 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
544 }
545
546 /*
547 * These are the default caches for kmalloc. Custom caches can have other sizes.
548 */
549 struct cache_sizes malloc_sizes[] = {
550 #define CACHE(x) { .cs_size = (x) },
551 #include <linux/kmalloc_sizes.h>
552 CACHE(ULONG_MAX)
553 #undef CACHE
554 };
555 EXPORT_SYMBOL(malloc_sizes);
556
557 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
558 struct cache_names {
559 char *name;
560 char *name_dma;
561 };
562
563 static struct cache_names __initdata cache_names[] = {
564 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
565 #include <linux/kmalloc_sizes.h>
566 {NULL,}
567 #undef CACHE
568 };
569
570 static struct arraycache_init initarray_cache __initdata =
571 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
572 static struct arraycache_init initarray_generic =
573 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
574
575 /* internal cache of cache description objs */
576 static struct kmem_cache cache_cache = {
577 .batchcount = 1,
578 .limit = BOOT_CPUCACHE_ENTRIES,
579 .shared = 1,
580 .buffer_size = sizeof(struct kmem_cache),
581 .name = "kmem_cache",
582 };
583
584 #define BAD_ALIEN_MAGIC 0x01020304ul
585
586 /*
587 * chicken and egg problem: delay the per-cpu array allocation
588 * until the general caches are up.
589 */
590 static enum {
591 NONE,
592 PARTIAL_AC,
593 PARTIAL_L3,
594 EARLY,
595 FULL
596 } g_cpucache_up;
597
598 /*
599 * used by boot code to determine if it can use slab based allocator
600 */
slab_is_available(void)601 int slab_is_available(void)
602 {
603 return g_cpucache_up >= EARLY;
604 }
605
606 #ifdef CONFIG_LOCKDEP
607
608 /*
609 * Slab sometimes uses the kmalloc slabs to store the slab headers
610 * for other slabs "off slab".
611 * The locking for this is tricky in that it nests within the locks
612 * of all other slabs in a few places; to deal with this special
613 * locking we put on-slab caches into a separate lock-class.
614 *
615 * We set lock class for alien array caches which are up during init.
616 * The lock annotation will be lost if all cpus of a node goes down and
617 * then comes back up during hotplug
618 */
619 static struct lock_class_key on_slab_l3_key;
620 static struct lock_class_key on_slab_alc_key;
621
init_node_lock_keys(int q)622 static void init_node_lock_keys(int q)
623 {
624 struct cache_sizes *s = malloc_sizes;
625
626 if (g_cpucache_up != FULL)
627 return;
628
629 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
630 struct array_cache **alc;
631 struct kmem_list3 *l3;
632 int r;
633
634 l3 = s->cs_cachep->nodelists[q];
635 if (!l3 || OFF_SLAB(s->cs_cachep))
636 continue;
637 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
638 alc = l3->alien;
639 /*
640 * FIXME: This check for BAD_ALIEN_MAGIC
641 * should go away when common slab code is taught to
642 * work even without alien caches.
643 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
644 * for alloc_alien_cache,
645 */
646 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
647 continue;
648 for_each_node(r) {
649 if (alc[r])
650 lockdep_set_class(&alc[r]->lock,
651 &on_slab_alc_key);
652 }
653 }
654 }
655
init_lock_keys(void)656 static inline void init_lock_keys(void)
657 {
658 int node;
659
660 for_each_node(node)
661 init_node_lock_keys(node);
662 }
663 #else
init_node_lock_keys(int q)664 static void init_node_lock_keys(int q)
665 {
666 }
667
init_lock_keys(void)668 static inline void init_lock_keys(void)
669 {
670 }
671 #endif
672
673 /*
674 * Guard access to the cache-chain.
675 */
676 static DEFINE_MUTEX(cache_chain_mutex);
677 static struct list_head cache_chain;
678
679 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
680
cpu_cache_get(struct kmem_cache * cachep)681 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
682 {
683 return cachep->array[smp_processor_id()];
684 }
685
__find_general_cachep(size_t size,gfp_t gfpflags)686 static inline struct kmem_cache *__find_general_cachep(size_t size,
687 gfp_t gfpflags)
688 {
689 struct cache_sizes *csizep = malloc_sizes;
690
691 #if DEBUG
692 /* This happens if someone tries to call
693 * kmem_cache_create(), or __kmalloc(), before
694 * the generic caches are initialized.
695 */
696 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
697 #endif
698 if (!size)
699 return ZERO_SIZE_PTR;
700
701 while (size > csizep->cs_size)
702 csizep++;
703
704 /*
705 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
706 * has cs_{dma,}cachep==NULL. Thus no special case
707 * for large kmalloc calls required.
708 */
709 #ifdef CONFIG_ZONE_DMA
710 if (unlikely(gfpflags & GFP_DMA))
711 return csizep->cs_dmacachep;
712 #endif
713 return csizep->cs_cachep;
714 }
715
kmem_find_general_cachep(size_t size,gfp_t gfpflags)716 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
717 {
718 return __find_general_cachep(size, gfpflags);
719 }
720
slab_mgmt_size(size_t nr_objs,size_t align)721 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
722 {
723 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
724 }
725
726 /*
727 * Calculate the number of objects and left-over bytes for a given buffer size.
728 */
cache_estimate(unsigned long gfporder,size_t buffer_size,size_t align,int flags,size_t * left_over,unsigned int * num)729 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
730 size_t align, int flags, size_t *left_over,
731 unsigned int *num)
732 {
733 int nr_objs;
734 size_t mgmt_size;
735 size_t slab_size = PAGE_SIZE << gfporder;
736
737 /*
738 * The slab management structure can be either off the slab or
739 * on it. For the latter case, the memory allocated for a
740 * slab is used for:
741 *
742 * - The struct slab
743 * - One kmem_bufctl_t for each object
744 * - Padding to respect alignment of @align
745 * - @buffer_size bytes for each object
746 *
747 * If the slab management structure is off the slab, then the
748 * alignment will already be calculated into the size. Because
749 * the slabs are all pages aligned, the objects will be at the
750 * correct alignment when allocated.
751 */
752 if (flags & CFLGS_OFF_SLAB) {
753 mgmt_size = 0;
754 nr_objs = slab_size / buffer_size;
755
756 if (nr_objs > SLAB_LIMIT)
757 nr_objs = SLAB_LIMIT;
758 } else {
759 /*
760 * Ignore padding for the initial guess. The padding
761 * is at most @align-1 bytes, and @buffer_size is at
762 * least @align. In the worst case, this result will
763 * be one greater than the number of objects that fit
764 * into the memory allocation when taking the padding
765 * into account.
766 */
767 nr_objs = (slab_size - sizeof(struct slab)) /
768 (buffer_size + sizeof(kmem_bufctl_t));
769
770 /*
771 * This calculated number will be either the right
772 * amount, or one greater than what we want.
773 */
774 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
775 > slab_size)
776 nr_objs--;
777
778 if (nr_objs > SLAB_LIMIT)
779 nr_objs = SLAB_LIMIT;
780
781 mgmt_size = slab_mgmt_size(nr_objs, align);
782 }
783 *num = nr_objs;
784 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
785 }
786
787 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
788
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)789 static void __slab_error(const char *function, struct kmem_cache *cachep,
790 char *msg)
791 {
792 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
793 function, cachep->name, msg);
794 dump_stack();
795 }
796
797 /*
798 * By default on NUMA we use alien caches to stage the freeing of
799 * objects allocated from other nodes. This causes massive memory
800 * inefficiencies when using fake NUMA setup to split memory into a
801 * large number of small nodes, so it can be disabled on the command
802 * line
803 */
804
805 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)806 static int __init noaliencache_setup(char *s)
807 {
808 use_alien_caches = 0;
809 return 1;
810 }
811 __setup("noaliencache", noaliencache_setup);
812
813 #ifdef CONFIG_NUMA
814 /*
815 * Special reaping functions for NUMA systems called from cache_reap().
816 * These take care of doing round robin flushing of alien caches (containing
817 * objects freed on different nodes from which they were allocated) and the
818 * flushing of remote pcps by calling drain_node_pages.
819 */
820 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
821
init_reap_node(int cpu)822 static void init_reap_node(int cpu)
823 {
824 int node;
825
826 node = next_node(cpu_to_mem(cpu), node_online_map);
827 if (node == MAX_NUMNODES)
828 node = first_node(node_online_map);
829
830 per_cpu(slab_reap_node, cpu) = node;
831 }
832
next_reap_node(void)833 static void next_reap_node(void)
834 {
835 int node = __this_cpu_read(slab_reap_node);
836
837 node = next_node(node, node_online_map);
838 if (unlikely(node >= MAX_NUMNODES))
839 node = first_node(node_online_map);
840 __this_cpu_write(slab_reap_node, node);
841 }
842
843 #else
844 #define init_reap_node(cpu) do { } while (0)
845 #define next_reap_node(void) do { } while (0)
846 #endif
847
848 /*
849 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
850 * via the workqueue/eventd.
851 * Add the CPU number into the expiration time to minimize the possibility of
852 * the CPUs getting into lockstep and contending for the global cache chain
853 * lock.
854 */
start_cpu_timer(int cpu)855 static void __cpuinit start_cpu_timer(int cpu)
856 {
857 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
858
859 /*
860 * When this gets called from do_initcalls via cpucache_init(),
861 * init_workqueues() has already run, so keventd will be setup
862 * at that time.
863 */
864 if (keventd_up() && reap_work->work.func == NULL) {
865 init_reap_node(cpu);
866 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
867 schedule_delayed_work_on(cpu, reap_work,
868 __round_jiffies_relative(HZ, cpu));
869 }
870 }
871
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)872 static struct array_cache *alloc_arraycache(int node, int entries,
873 int batchcount, gfp_t gfp)
874 {
875 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
876 struct array_cache *nc = NULL;
877
878 nc = kmalloc_node(memsize, gfp, node);
879 /*
880 * The array_cache structures contain pointers to free object.
881 * However, when such objects are allocated or transferred to another
882 * cache the pointers are not cleared and they could be counted as
883 * valid references during a kmemleak scan. Therefore, kmemleak must
884 * not scan such objects.
885 */
886 kmemleak_no_scan(nc);
887 if (nc) {
888 nc->avail = 0;
889 nc->limit = entries;
890 nc->batchcount = batchcount;
891 nc->touched = 0;
892 spin_lock_init(&nc->lock);
893 }
894 return nc;
895 }
896
897 /*
898 * Transfer objects in one arraycache to another.
899 * Locking must be handled by the caller.
900 *
901 * Return the number of entries transferred.
902 */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)903 static int transfer_objects(struct array_cache *to,
904 struct array_cache *from, unsigned int max)
905 {
906 /* Figure out how many entries to transfer */
907 int nr = min3(from->avail, max, to->limit - to->avail);
908
909 if (!nr)
910 return 0;
911
912 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
913 sizeof(void *) *nr);
914
915 from->avail -= nr;
916 to->avail += nr;
917 return nr;
918 }
919
920 #ifndef CONFIG_NUMA
921
922 #define drain_alien_cache(cachep, alien) do { } while (0)
923 #define reap_alien(cachep, l3) do { } while (0)
924
alloc_alien_cache(int node,int limit,gfp_t gfp)925 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
926 {
927 return (struct array_cache **)BAD_ALIEN_MAGIC;
928 }
929
free_alien_cache(struct array_cache ** ac_ptr)930 static inline void free_alien_cache(struct array_cache **ac_ptr)
931 {
932 }
933
cache_free_alien(struct kmem_cache * cachep,void * objp)934 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
935 {
936 return 0;
937 }
938
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)939 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
940 gfp_t flags)
941 {
942 return NULL;
943 }
944
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)945 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
946 gfp_t flags, int nodeid)
947 {
948 return NULL;
949 }
950
951 #else /* CONFIG_NUMA */
952
953 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
954 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
955
alloc_alien_cache(int node,int limit,gfp_t gfp)956 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
957 {
958 struct array_cache **ac_ptr;
959 int memsize = sizeof(void *) * nr_node_ids;
960 int i;
961
962 if (limit > 1)
963 limit = 12;
964 ac_ptr = kzalloc_node(memsize, gfp, node);
965 if (ac_ptr) {
966 for_each_node(i) {
967 if (i == node || !node_online(i))
968 continue;
969 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
970 if (!ac_ptr[i]) {
971 for (i--; i >= 0; i--)
972 kfree(ac_ptr[i]);
973 kfree(ac_ptr);
974 return NULL;
975 }
976 }
977 }
978 return ac_ptr;
979 }
980
free_alien_cache(struct array_cache ** ac_ptr)981 static void free_alien_cache(struct array_cache **ac_ptr)
982 {
983 int i;
984
985 if (!ac_ptr)
986 return;
987 for_each_node(i)
988 kfree(ac_ptr[i]);
989 kfree(ac_ptr);
990 }
991
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node)992 static void __drain_alien_cache(struct kmem_cache *cachep,
993 struct array_cache *ac, int node)
994 {
995 struct kmem_list3 *rl3 = cachep->nodelists[node];
996
997 if (ac->avail) {
998 spin_lock(&rl3->list_lock);
999 /*
1000 * Stuff objects into the remote nodes shared array first.
1001 * That way we could avoid the overhead of putting the objects
1002 * into the free lists and getting them back later.
1003 */
1004 if (rl3->shared)
1005 transfer_objects(rl3->shared, ac, ac->limit);
1006
1007 free_block(cachep, ac->entry, ac->avail, node);
1008 ac->avail = 0;
1009 spin_unlock(&rl3->list_lock);
1010 }
1011 }
1012
1013 /*
1014 * Called from cache_reap() to regularly drain alien caches round robin.
1015 */
reap_alien(struct kmem_cache * cachep,struct kmem_list3 * l3)1016 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1017 {
1018 int node = __this_cpu_read(slab_reap_node);
1019
1020 if (l3->alien) {
1021 struct array_cache *ac = l3->alien[node];
1022
1023 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1024 __drain_alien_cache(cachep, ac, node);
1025 spin_unlock_irq(&ac->lock);
1026 }
1027 }
1028 }
1029
drain_alien_cache(struct kmem_cache * cachep,struct array_cache ** alien)1030 static void drain_alien_cache(struct kmem_cache *cachep,
1031 struct array_cache **alien)
1032 {
1033 int i = 0;
1034 struct array_cache *ac;
1035 unsigned long flags;
1036
1037 for_each_online_node(i) {
1038 ac = alien[i];
1039 if (ac) {
1040 spin_lock_irqsave(&ac->lock, flags);
1041 __drain_alien_cache(cachep, ac, i);
1042 spin_unlock_irqrestore(&ac->lock, flags);
1043 }
1044 }
1045 }
1046
cache_free_alien(struct kmem_cache * cachep,void * objp)1047 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048 {
1049 struct slab *slabp = virt_to_slab(objp);
1050 int nodeid = slabp->nodeid;
1051 struct kmem_list3 *l3;
1052 struct array_cache *alien = NULL;
1053 int node;
1054
1055 node = numa_mem_id();
1056
1057 /*
1058 * Make sure we are not freeing a object from another node to the array
1059 * cache on this cpu.
1060 */
1061 if (likely(slabp->nodeid == node))
1062 return 0;
1063
1064 l3 = cachep->nodelists[node];
1065 STATS_INC_NODEFREES(cachep);
1066 if (l3->alien && l3->alien[nodeid]) {
1067 alien = l3->alien[nodeid];
1068 spin_lock(&alien->lock);
1069 if (unlikely(alien->avail == alien->limit)) {
1070 STATS_INC_ACOVERFLOW(cachep);
1071 __drain_alien_cache(cachep, alien, nodeid);
1072 }
1073 alien->entry[alien->avail++] = objp;
1074 spin_unlock(&alien->lock);
1075 } else {
1076 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1077 free_block(cachep, &objp, 1, nodeid);
1078 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1079 }
1080 return 1;
1081 }
1082 #endif
1083
1084 /*
1085 * Allocates and initializes nodelists for a node on each slab cache, used for
1086 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1087 * will be allocated off-node since memory is not yet online for the new node.
1088 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1089 * already in use.
1090 *
1091 * Must hold cache_chain_mutex.
1092 */
init_cache_nodelists_node(int node)1093 static int init_cache_nodelists_node(int node)
1094 {
1095 struct kmem_cache *cachep;
1096 struct kmem_list3 *l3;
1097 const int memsize = sizeof(struct kmem_list3);
1098
1099 list_for_each_entry(cachep, &cache_chain, next) {
1100 /*
1101 * Set up the size64 kmemlist for cpu before we can
1102 * begin anything. Make sure some other cpu on this
1103 * node has not already allocated this
1104 */
1105 if (!cachep->nodelists[node]) {
1106 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1107 if (!l3)
1108 return -ENOMEM;
1109 kmem_list3_init(l3);
1110 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1111 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1112
1113 /*
1114 * The l3s don't come and go as CPUs come and
1115 * go. cache_chain_mutex is sufficient
1116 * protection here.
1117 */
1118 cachep->nodelists[node] = l3;
1119 }
1120
1121 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1122 cachep->nodelists[node]->free_limit =
1123 (1 + nr_cpus_node(node)) *
1124 cachep->batchcount + cachep->num;
1125 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1126 }
1127 return 0;
1128 }
1129
cpuup_canceled(long cpu)1130 static void __cpuinit cpuup_canceled(long cpu)
1131 {
1132 struct kmem_cache *cachep;
1133 struct kmem_list3 *l3 = NULL;
1134 int node = cpu_to_mem(cpu);
1135 const struct cpumask *mask = cpumask_of_node(node);
1136
1137 list_for_each_entry(cachep, &cache_chain, next) {
1138 struct array_cache *nc;
1139 struct array_cache *shared;
1140 struct array_cache **alien;
1141
1142 /* cpu is dead; no one can alloc from it. */
1143 nc = cachep->array[cpu];
1144 cachep->array[cpu] = NULL;
1145 l3 = cachep->nodelists[node];
1146
1147 if (!l3)
1148 goto free_array_cache;
1149
1150 spin_lock_irq(&l3->list_lock);
1151
1152 /* Free limit for this kmem_list3 */
1153 l3->free_limit -= cachep->batchcount;
1154 if (nc)
1155 free_block(cachep, nc->entry, nc->avail, node);
1156
1157 if (!cpumask_empty(mask)) {
1158 spin_unlock_irq(&l3->list_lock);
1159 goto free_array_cache;
1160 }
1161
1162 shared = l3->shared;
1163 if (shared) {
1164 free_block(cachep, shared->entry,
1165 shared->avail, node);
1166 l3->shared = NULL;
1167 }
1168
1169 alien = l3->alien;
1170 l3->alien = NULL;
1171
1172 spin_unlock_irq(&l3->list_lock);
1173
1174 kfree(shared);
1175 if (alien) {
1176 drain_alien_cache(cachep, alien);
1177 free_alien_cache(alien);
1178 }
1179 free_array_cache:
1180 kfree(nc);
1181 }
1182 /*
1183 * In the previous loop, all the objects were freed to
1184 * the respective cache's slabs, now we can go ahead and
1185 * shrink each nodelist to its limit.
1186 */
1187 list_for_each_entry(cachep, &cache_chain, next) {
1188 l3 = cachep->nodelists[node];
1189 if (!l3)
1190 continue;
1191 drain_freelist(cachep, l3, l3->free_objects);
1192 }
1193 }
1194
cpuup_prepare(long cpu)1195 static int __cpuinit cpuup_prepare(long cpu)
1196 {
1197 struct kmem_cache *cachep;
1198 struct kmem_list3 *l3 = NULL;
1199 int node = cpu_to_mem(cpu);
1200 int err;
1201
1202 /*
1203 * We need to do this right in the beginning since
1204 * alloc_arraycache's are going to use this list.
1205 * kmalloc_node allows us to add the slab to the right
1206 * kmem_list3 and not this cpu's kmem_list3
1207 */
1208 err = init_cache_nodelists_node(node);
1209 if (err < 0)
1210 goto bad;
1211
1212 /*
1213 * Now we can go ahead with allocating the shared arrays and
1214 * array caches
1215 */
1216 list_for_each_entry(cachep, &cache_chain, next) {
1217 struct array_cache *nc;
1218 struct array_cache *shared = NULL;
1219 struct array_cache **alien = NULL;
1220
1221 nc = alloc_arraycache(node, cachep->limit,
1222 cachep->batchcount, GFP_KERNEL);
1223 if (!nc)
1224 goto bad;
1225 if (cachep->shared) {
1226 shared = alloc_arraycache(node,
1227 cachep->shared * cachep->batchcount,
1228 0xbaadf00d, GFP_KERNEL);
1229 if (!shared) {
1230 kfree(nc);
1231 goto bad;
1232 }
1233 }
1234 if (use_alien_caches) {
1235 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1236 if (!alien) {
1237 kfree(shared);
1238 kfree(nc);
1239 goto bad;
1240 }
1241 }
1242 cachep->array[cpu] = nc;
1243 l3 = cachep->nodelists[node];
1244 BUG_ON(!l3);
1245
1246 spin_lock_irq(&l3->list_lock);
1247 if (!l3->shared) {
1248 /*
1249 * We are serialised from CPU_DEAD or
1250 * CPU_UP_CANCELLED by the cpucontrol lock
1251 */
1252 l3->shared = shared;
1253 shared = NULL;
1254 }
1255 #ifdef CONFIG_NUMA
1256 if (!l3->alien) {
1257 l3->alien = alien;
1258 alien = NULL;
1259 }
1260 #endif
1261 spin_unlock_irq(&l3->list_lock);
1262 kfree(shared);
1263 free_alien_cache(alien);
1264 }
1265 init_node_lock_keys(node);
1266
1267 return 0;
1268 bad:
1269 cpuup_canceled(cpu);
1270 return -ENOMEM;
1271 }
1272
cpuup_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)1273 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1274 unsigned long action, void *hcpu)
1275 {
1276 long cpu = (long)hcpu;
1277 int err = 0;
1278
1279 switch (action) {
1280 case CPU_UP_PREPARE:
1281 case CPU_UP_PREPARE_FROZEN:
1282 mutex_lock(&cache_chain_mutex);
1283 err = cpuup_prepare(cpu);
1284 mutex_unlock(&cache_chain_mutex);
1285 break;
1286 case CPU_ONLINE:
1287 case CPU_ONLINE_FROZEN:
1288 start_cpu_timer(cpu);
1289 break;
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 case CPU_DOWN_PREPARE:
1292 case CPU_DOWN_PREPARE_FROZEN:
1293 /*
1294 * Shutdown cache reaper. Note that the cache_chain_mutex is
1295 * held so that if cache_reap() is invoked it cannot do
1296 * anything expensive but will only modify reap_work
1297 * and reschedule the timer.
1298 */
1299 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1300 /* Now the cache_reaper is guaranteed to be not running. */
1301 per_cpu(slab_reap_work, cpu).work.func = NULL;
1302 break;
1303 case CPU_DOWN_FAILED:
1304 case CPU_DOWN_FAILED_FROZEN:
1305 start_cpu_timer(cpu);
1306 break;
1307 case CPU_DEAD:
1308 case CPU_DEAD_FROZEN:
1309 /*
1310 * Even if all the cpus of a node are down, we don't free the
1311 * kmem_list3 of any cache. This to avoid a race between
1312 * cpu_down, and a kmalloc allocation from another cpu for
1313 * memory from the node of the cpu going down. The list3
1314 * structure is usually allocated from kmem_cache_create() and
1315 * gets destroyed at kmem_cache_destroy().
1316 */
1317 /* fall through */
1318 #endif
1319 case CPU_UP_CANCELED:
1320 case CPU_UP_CANCELED_FROZEN:
1321 mutex_lock(&cache_chain_mutex);
1322 cpuup_canceled(cpu);
1323 mutex_unlock(&cache_chain_mutex);
1324 break;
1325 }
1326 return notifier_from_errno(err);
1327 }
1328
1329 static struct notifier_block __cpuinitdata cpucache_notifier = {
1330 &cpuup_callback, NULL, 0
1331 };
1332
1333 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1334 /*
1335 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1336 * Returns -EBUSY if all objects cannot be drained so that the node is not
1337 * removed.
1338 *
1339 * Must hold cache_chain_mutex.
1340 */
drain_cache_nodelists_node(int node)1341 static int __meminit drain_cache_nodelists_node(int node)
1342 {
1343 struct kmem_cache *cachep;
1344 int ret = 0;
1345
1346 list_for_each_entry(cachep, &cache_chain, next) {
1347 struct kmem_list3 *l3;
1348
1349 l3 = cachep->nodelists[node];
1350 if (!l3)
1351 continue;
1352
1353 drain_freelist(cachep, l3, l3->free_objects);
1354
1355 if (!list_empty(&l3->slabs_full) ||
1356 !list_empty(&l3->slabs_partial)) {
1357 ret = -EBUSY;
1358 break;
1359 }
1360 }
1361 return ret;
1362 }
1363
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1364 static int __meminit slab_memory_callback(struct notifier_block *self,
1365 unsigned long action, void *arg)
1366 {
1367 struct memory_notify *mnb = arg;
1368 int ret = 0;
1369 int nid;
1370
1371 nid = mnb->status_change_nid;
1372 if (nid < 0)
1373 goto out;
1374
1375 switch (action) {
1376 case MEM_GOING_ONLINE:
1377 mutex_lock(&cache_chain_mutex);
1378 ret = init_cache_nodelists_node(nid);
1379 mutex_unlock(&cache_chain_mutex);
1380 break;
1381 case MEM_GOING_OFFLINE:
1382 mutex_lock(&cache_chain_mutex);
1383 ret = drain_cache_nodelists_node(nid);
1384 mutex_unlock(&cache_chain_mutex);
1385 break;
1386 case MEM_ONLINE:
1387 case MEM_OFFLINE:
1388 case MEM_CANCEL_ONLINE:
1389 case MEM_CANCEL_OFFLINE:
1390 break;
1391 }
1392 out:
1393 return notifier_from_errno(ret);
1394 }
1395 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396
1397 /*
1398 * swap the static kmem_list3 with kmalloced memory
1399 */
init_list(struct kmem_cache * cachep,struct kmem_list3 * list,int nodeid)1400 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1401 int nodeid)
1402 {
1403 struct kmem_list3 *ptr;
1404
1405 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1406 BUG_ON(!ptr);
1407
1408 memcpy(ptr, list, sizeof(struct kmem_list3));
1409 /*
1410 * Do not assume that spinlocks can be initialized via memcpy:
1411 */
1412 spin_lock_init(&ptr->list_lock);
1413
1414 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1415 cachep->nodelists[nodeid] = ptr;
1416 }
1417
1418 /*
1419 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1420 * size of kmem_list3.
1421 */
set_up_list3s(struct kmem_cache * cachep,int index)1422 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1423 {
1424 int node;
1425
1426 for_each_online_node(node) {
1427 cachep->nodelists[node] = &initkmem_list3[index + node];
1428 cachep->nodelists[node]->next_reap = jiffies +
1429 REAPTIMEOUT_LIST3 +
1430 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1431 }
1432 }
1433
1434 /*
1435 * Initialisation. Called after the page allocator have been initialised and
1436 * before smp_init().
1437 */
kmem_cache_init(void)1438 void __init kmem_cache_init(void)
1439 {
1440 size_t left_over;
1441 struct cache_sizes *sizes;
1442 struct cache_names *names;
1443 int i;
1444 int order;
1445 int node;
1446
1447 if (num_possible_nodes() == 1)
1448 use_alien_caches = 0;
1449
1450 for (i = 0; i < NUM_INIT_LISTS; i++) {
1451 kmem_list3_init(&initkmem_list3[i]);
1452 if (i < MAX_NUMNODES)
1453 cache_cache.nodelists[i] = NULL;
1454 }
1455 set_up_list3s(&cache_cache, CACHE_CACHE);
1456
1457 /*
1458 * Fragmentation resistance on low memory - only use bigger
1459 * page orders on machines with more than 32MB of memory.
1460 */
1461 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1462 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1463
1464 /* Bootstrap is tricky, because several objects are allocated
1465 * from caches that do not exist yet:
1466 * 1) initialize the cache_cache cache: it contains the struct
1467 * kmem_cache structures of all caches, except cache_cache itself:
1468 * cache_cache is statically allocated.
1469 * Initially an __init data area is used for the head array and the
1470 * kmem_list3 structures, it's replaced with a kmalloc allocated
1471 * array at the end of the bootstrap.
1472 * 2) Create the first kmalloc cache.
1473 * The struct kmem_cache for the new cache is allocated normally.
1474 * An __init data area is used for the head array.
1475 * 3) Create the remaining kmalloc caches, with minimally sized
1476 * head arrays.
1477 * 4) Replace the __init data head arrays for cache_cache and the first
1478 * kmalloc cache with kmalloc allocated arrays.
1479 * 5) Replace the __init data for kmem_list3 for cache_cache and
1480 * the other cache's with kmalloc allocated memory.
1481 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1482 */
1483
1484 node = numa_mem_id();
1485
1486 /* 1) create the cache_cache */
1487 INIT_LIST_HEAD(&cache_chain);
1488 list_add(&cache_cache.next, &cache_chain);
1489 cache_cache.colour_off = cache_line_size();
1490 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1491 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1492
1493 /*
1494 * struct kmem_cache size depends on nr_node_ids, which
1495 * can be less than MAX_NUMNODES.
1496 */
1497 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1498 nr_node_ids * sizeof(struct kmem_list3 *);
1499 #if DEBUG
1500 cache_cache.obj_size = cache_cache.buffer_size;
1501 #endif
1502 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1503 cache_line_size());
1504 cache_cache.reciprocal_buffer_size =
1505 reciprocal_value(cache_cache.buffer_size);
1506
1507 for (order = 0; order < MAX_ORDER; order++) {
1508 cache_estimate(order, cache_cache.buffer_size,
1509 cache_line_size(), 0, &left_over, &cache_cache.num);
1510 if (cache_cache.num)
1511 break;
1512 }
1513 BUG_ON(!cache_cache.num);
1514 cache_cache.gfporder = order;
1515 cache_cache.colour = left_over / cache_cache.colour_off;
1516 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1517 sizeof(struct slab), cache_line_size());
1518
1519 /* 2+3) create the kmalloc caches */
1520 sizes = malloc_sizes;
1521 names = cache_names;
1522
1523 /*
1524 * Initialize the caches that provide memory for the array cache and the
1525 * kmem_list3 structures first. Without this, further allocations will
1526 * bug.
1527 */
1528
1529 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1530 sizes[INDEX_AC].cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533 NULL);
1534
1535 if (INDEX_AC != INDEX_L3) {
1536 sizes[INDEX_L3].cs_cachep =
1537 kmem_cache_create(names[INDEX_L3].name,
1538 sizes[INDEX_L3].cs_size,
1539 ARCH_KMALLOC_MINALIGN,
1540 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1541 NULL);
1542 }
1543
1544 slab_early_init = 0;
1545
1546 while (sizes->cs_size != ULONG_MAX) {
1547 /*
1548 * For performance, all the general caches are L1 aligned.
1549 * This should be particularly beneficial on SMP boxes, as it
1550 * eliminates "false sharing".
1551 * Note for systems short on memory removing the alignment will
1552 * allow tighter packing of the smaller caches.
1553 */
1554 if (!sizes->cs_cachep) {
1555 sizes->cs_cachep = kmem_cache_create(names->name,
1556 sizes->cs_size,
1557 ARCH_KMALLOC_MINALIGN,
1558 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1559 NULL);
1560 }
1561 #ifdef CONFIG_ZONE_DMA
1562 sizes->cs_dmacachep = kmem_cache_create(
1563 names->name_dma,
1564 sizes->cs_size,
1565 ARCH_KMALLOC_MINALIGN,
1566 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1567 SLAB_PANIC,
1568 NULL);
1569 #endif
1570 sizes++;
1571 names++;
1572 }
1573 /* 4) Replace the bootstrap head arrays */
1574 {
1575 struct array_cache *ptr;
1576
1577 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1578
1579 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1580 memcpy(ptr, cpu_cache_get(&cache_cache),
1581 sizeof(struct arraycache_init));
1582 /*
1583 * Do not assume that spinlocks can be initialized via memcpy:
1584 */
1585 spin_lock_init(&ptr->lock);
1586
1587 cache_cache.array[smp_processor_id()] = ptr;
1588
1589 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1590
1591 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1592 != &initarray_generic.cache);
1593 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1594 sizeof(struct arraycache_init));
1595 /*
1596 * Do not assume that spinlocks can be initialized via memcpy:
1597 */
1598 spin_lock_init(&ptr->lock);
1599
1600 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1601 ptr;
1602 }
1603 /* 5) Replace the bootstrap kmem_list3's */
1604 {
1605 int nid;
1606
1607 for_each_online_node(nid) {
1608 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1609
1610 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1611 &initkmem_list3[SIZE_AC + nid], nid);
1612
1613 if (INDEX_AC != INDEX_L3) {
1614 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1615 &initkmem_list3[SIZE_L3 + nid], nid);
1616 }
1617 }
1618 }
1619
1620 g_cpucache_up = EARLY;
1621 }
1622
kmem_cache_init_late(void)1623 void __init kmem_cache_init_late(void)
1624 {
1625 struct kmem_cache *cachep;
1626
1627 /* 6) resize the head arrays to their final sizes */
1628 mutex_lock(&cache_chain_mutex);
1629 list_for_each_entry(cachep, &cache_chain, next)
1630 if (enable_cpucache(cachep, GFP_NOWAIT))
1631 BUG();
1632 mutex_unlock(&cache_chain_mutex);
1633
1634 /* Done! */
1635 g_cpucache_up = FULL;
1636
1637 /* Annotate slab for lockdep -- annotate the malloc caches */
1638 init_lock_keys();
1639
1640 /*
1641 * Register a cpu startup notifier callback that initializes
1642 * cpu_cache_get for all new cpus
1643 */
1644 register_cpu_notifier(&cpucache_notifier);
1645
1646 #ifdef CONFIG_NUMA
1647 /*
1648 * Register a memory hotplug callback that initializes and frees
1649 * nodelists.
1650 */
1651 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1652 #endif
1653
1654 /*
1655 * The reap timers are started later, with a module init call: That part
1656 * of the kernel is not yet operational.
1657 */
1658 }
1659
cpucache_init(void)1660 static int __init cpucache_init(void)
1661 {
1662 int cpu;
1663
1664 /*
1665 * Register the timers that return unneeded pages to the page allocator
1666 */
1667 for_each_online_cpu(cpu)
1668 start_cpu_timer(cpu);
1669 return 0;
1670 }
1671 __initcall(cpucache_init);
1672
1673 /*
1674 * Interface to system's page allocator. No need to hold the cache-lock.
1675 *
1676 * If we requested dmaable memory, we will get it. Even if we
1677 * did not request dmaable memory, we might get it, but that
1678 * would be relatively rare and ignorable.
1679 */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1680 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1681 {
1682 struct page *page;
1683 int nr_pages;
1684 int i;
1685
1686 #ifndef CONFIG_MMU
1687 /*
1688 * Nommu uses slab's for process anonymous memory allocations, and thus
1689 * requires __GFP_COMP to properly refcount higher order allocations
1690 */
1691 flags |= __GFP_COMP;
1692 #endif
1693
1694 flags |= cachep->gfpflags;
1695 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1696 flags |= __GFP_RECLAIMABLE;
1697
1698 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1699 if (!page)
1700 return NULL;
1701
1702 nr_pages = (1 << cachep->gfporder);
1703 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1704 add_zone_page_state(page_zone(page),
1705 NR_SLAB_RECLAIMABLE, nr_pages);
1706 else
1707 add_zone_page_state(page_zone(page),
1708 NR_SLAB_UNRECLAIMABLE, nr_pages);
1709 for (i = 0; i < nr_pages; i++)
1710 __SetPageSlab(page + i);
1711
1712 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1713 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1714
1715 if (cachep->ctor)
1716 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1717 else
1718 kmemcheck_mark_unallocated_pages(page, nr_pages);
1719 }
1720
1721 return page_address(page);
1722 }
1723
1724 /*
1725 * Interface to system's page release.
1726 */
kmem_freepages(struct kmem_cache * cachep,void * addr)1727 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1728 {
1729 unsigned long i = (1 << cachep->gfporder);
1730 struct page *page = virt_to_page(addr);
1731 const unsigned long nr_freed = i;
1732
1733 kmemcheck_free_shadow(page, cachep->gfporder);
1734
1735 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736 sub_zone_page_state(page_zone(page),
1737 NR_SLAB_RECLAIMABLE, nr_freed);
1738 else
1739 sub_zone_page_state(page_zone(page),
1740 NR_SLAB_UNRECLAIMABLE, nr_freed);
1741 while (i--) {
1742 BUG_ON(!PageSlab(page));
1743 __ClearPageSlab(page);
1744 page++;
1745 }
1746 if (current->reclaim_state)
1747 current->reclaim_state->reclaimed_slab += nr_freed;
1748 free_pages((unsigned long)addr, cachep->gfporder);
1749 }
1750
kmem_rcu_free(struct rcu_head * head)1751 static void kmem_rcu_free(struct rcu_head *head)
1752 {
1753 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1754 struct kmem_cache *cachep = slab_rcu->cachep;
1755
1756 kmem_freepages(cachep, slab_rcu->addr);
1757 if (OFF_SLAB(cachep))
1758 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759 }
1760
1761 #if DEBUG
1762
1763 #ifdef CONFIG_DEBUG_PAGEALLOC
store_stackinfo(struct kmem_cache * cachep,unsigned long * addr,unsigned long caller)1764 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1765 unsigned long caller)
1766 {
1767 int size = obj_size(cachep);
1768
1769 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1770
1771 if (size < 5 * sizeof(unsigned long))
1772 return;
1773
1774 *addr++ = 0x12345678;
1775 *addr++ = caller;
1776 *addr++ = smp_processor_id();
1777 size -= 3 * sizeof(unsigned long);
1778 {
1779 unsigned long *sptr = &caller;
1780 unsigned long svalue;
1781
1782 while (!kstack_end(sptr)) {
1783 svalue = *sptr++;
1784 if (kernel_text_address(svalue)) {
1785 *addr++ = svalue;
1786 size -= sizeof(unsigned long);
1787 if (size <= sizeof(unsigned long))
1788 break;
1789 }
1790 }
1791
1792 }
1793 *addr++ = 0x87654321;
1794 }
1795 #endif
1796
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1797 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1798 {
1799 int size = obj_size(cachep);
1800 addr = &((char *)addr)[obj_offset(cachep)];
1801
1802 memset(addr, val, size);
1803 *(unsigned char *)(addr + size - 1) = POISON_END;
1804 }
1805
dump_line(char * data,int offset,int limit)1806 static void dump_line(char *data, int offset, int limit)
1807 {
1808 int i;
1809 unsigned char error = 0;
1810 int bad_count = 0;
1811
1812 printk(KERN_ERR "%03x:", offset);
1813 for (i = 0; i < limit; i++) {
1814 if (data[offset + i] != POISON_FREE) {
1815 error = data[offset + i];
1816 bad_count++;
1817 }
1818 printk(" %02x", (unsigned char)data[offset + i]);
1819 }
1820 printk("\n");
1821
1822 if (bad_count == 1) {
1823 error ^= POISON_FREE;
1824 if (!(error & (error - 1))) {
1825 printk(KERN_ERR "Single bit error detected. Probably "
1826 "bad RAM.\n");
1827 #ifdef CONFIG_X86
1828 printk(KERN_ERR "Run memtest86+ or a similar memory "
1829 "test tool.\n");
1830 #else
1831 printk(KERN_ERR "Run a memory test tool.\n");
1832 #endif
1833 }
1834 }
1835 }
1836 #endif
1837
1838 #if DEBUG
1839
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1840 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1841 {
1842 int i, size;
1843 char *realobj;
1844
1845 if (cachep->flags & SLAB_RED_ZONE) {
1846 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1847 *dbg_redzone1(cachep, objp),
1848 *dbg_redzone2(cachep, objp));
1849 }
1850
1851 if (cachep->flags & SLAB_STORE_USER) {
1852 printk(KERN_ERR "Last user: [<%p>]",
1853 *dbg_userword(cachep, objp));
1854 print_symbol("(%s)",
1855 (unsigned long)*dbg_userword(cachep, objp));
1856 printk("\n");
1857 }
1858 realobj = (char *)objp + obj_offset(cachep);
1859 size = obj_size(cachep);
1860 for (i = 0; i < size && lines; i += 16, lines--) {
1861 int limit;
1862 limit = 16;
1863 if (i + limit > size)
1864 limit = size - i;
1865 dump_line(realobj, i, limit);
1866 }
1867 }
1868
check_poison_obj(struct kmem_cache * cachep,void * objp)1869 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1870 {
1871 char *realobj;
1872 int size, i;
1873 int lines = 0;
1874
1875 realobj = (char *)objp + obj_offset(cachep);
1876 size = obj_size(cachep);
1877
1878 for (i = 0; i < size; i++) {
1879 char exp = POISON_FREE;
1880 if (i == size - 1)
1881 exp = POISON_END;
1882 if (realobj[i] != exp) {
1883 int limit;
1884 /* Mismatch ! */
1885 /* Print header */
1886 if (lines == 0) {
1887 printk(KERN_ERR
1888 "Slab corruption: %s start=%p, len=%d\n",
1889 cachep->name, realobj, size);
1890 print_objinfo(cachep, objp, 0);
1891 }
1892 /* Hexdump the affected line */
1893 i = (i / 16) * 16;
1894 limit = 16;
1895 if (i + limit > size)
1896 limit = size - i;
1897 dump_line(realobj, i, limit);
1898 i += 16;
1899 lines++;
1900 /* Limit to 5 lines */
1901 if (lines > 5)
1902 break;
1903 }
1904 }
1905 if (lines != 0) {
1906 /* Print some data about the neighboring objects, if they
1907 * exist:
1908 */
1909 struct slab *slabp = virt_to_slab(objp);
1910 unsigned int objnr;
1911
1912 objnr = obj_to_index(cachep, slabp, objp);
1913 if (objnr) {
1914 objp = index_to_obj(cachep, slabp, objnr - 1);
1915 realobj = (char *)objp + obj_offset(cachep);
1916 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1917 realobj, size);
1918 print_objinfo(cachep, objp, 2);
1919 }
1920 if (objnr + 1 < cachep->num) {
1921 objp = index_to_obj(cachep, slabp, objnr + 1);
1922 realobj = (char *)objp + obj_offset(cachep);
1923 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1924 realobj, size);
1925 print_objinfo(cachep, objp, 2);
1926 }
1927 }
1928 }
1929 #endif
1930
1931 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct slab * slabp)1932 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1933 {
1934 int i;
1935 for (i = 0; i < cachep->num; i++) {
1936 void *objp = index_to_obj(cachep, slabp, i);
1937
1938 if (cachep->flags & SLAB_POISON) {
1939 #ifdef CONFIG_DEBUG_PAGEALLOC
1940 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1941 OFF_SLAB(cachep))
1942 kernel_map_pages(virt_to_page(objp),
1943 cachep->buffer_size / PAGE_SIZE, 1);
1944 else
1945 check_poison_obj(cachep, objp);
1946 #else
1947 check_poison_obj(cachep, objp);
1948 #endif
1949 }
1950 if (cachep->flags & SLAB_RED_ZONE) {
1951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1952 slab_error(cachep, "start of a freed object "
1953 "was overwritten");
1954 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1955 slab_error(cachep, "end of a freed object "
1956 "was overwritten");
1957 }
1958 }
1959 }
1960 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct slab * slabp)1961 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1962 {
1963 }
1964 #endif
1965
1966 /**
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1970 *
1971 * Destroy all the objs in a slab, and release the mem back to the system.
1972 * Before calling the slab must have been unlinked from the cache. The
1973 * cache-lock is not held/needed.
1974 */
slab_destroy(struct kmem_cache * cachep,struct slab * slabp)1975 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1976 {
1977 void *addr = slabp->s_mem - slabp->colouroff;
1978
1979 slab_destroy_debugcheck(cachep, slabp);
1980 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1981 struct slab_rcu *slab_rcu;
1982
1983 slab_rcu = (struct slab_rcu *)slabp;
1984 slab_rcu->cachep = cachep;
1985 slab_rcu->addr = addr;
1986 call_rcu(&slab_rcu->head, kmem_rcu_free);
1987 } else {
1988 kmem_freepages(cachep, addr);
1989 if (OFF_SLAB(cachep))
1990 kmem_cache_free(cachep->slabp_cache, slabp);
1991 }
1992 }
1993
__kmem_cache_destroy(struct kmem_cache * cachep)1994 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995 {
1996 int i;
1997 struct kmem_list3 *l3;
1998
1999 for_each_online_cpu(i)
2000 kfree(cachep->array[i]);
2001
2002 /* NUMA: free the list3 structures */
2003 for_each_online_node(i) {
2004 l3 = cachep->nodelists[i];
2005 if (l3) {
2006 kfree(l3->shared);
2007 free_alien_cache(l3->alien);
2008 kfree(l3);
2009 }
2010 }
2011 kmem_cache_free(&cache_cache, cachep);
2012 }
2013
2014
2015 /**
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2021 *
2022 * Also calculates the number of objects per slab.
2023 *
2024 * This could be made much more intelligent. For now, try to avoid using
2025 * high order pages for slabs. When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2027 */
calculate_slab_order(struct kmem_cache * cachep,size_t size,size_t align,unsigned long flags)2028 static size_t calculate_slab_order(struct kmem_cache *cachep,
2029 size_t size, size_t align, unsigned long flags)
2030 {
2031 unsigned long offslab_limit;
2032 size_t left_over = 0;
2033 int gfporder;
2034
2035 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2036 unsigned int num;
2037 size_t remainder;
2038
2039 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2040 if (!num)
2041 continue;
2042
2043 if (flags & CFLGS_OFF_SLAB) {
2044 /*
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2048 */
2049 offslab_limit = size - sizeof(struct slab);
2050 offslab_limit /= sizeof(kmem_bufctl_t);
2051
2052 if (num > offslab_limit)
2053 break;
2054 }
2055
2056 /* Found something acceptable - save it away */
2057 cachep->num = num;
2058 cachep->gfporder = gfporder;
2059 left_over = remainder;
2060
2061 /*
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2065 */
2066 if (flags & SLAB_RECLAIM_ACCOUNT)
2067 break;
2068
2069 /*
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2072 */
2073 if (gfporder >= slab_break_gfp_order)
2074 break;
2075
2076 /*
2077 * Acceptable internal fragmentation?
2078 */
2079 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080 break;
2081 }
2082 return left_over;
2083 }
2084
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)2085 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086 {
2087 if (g_cpucache_up == FULL)
2088 return enable_cpucache(cachep, gfp);
2089
2090 if (g_cpucache_up == NONE) {
2091 /*
2092 * Note: the first kmem_cache_create must create the cache
2093 * that's used by kmalloc(24), otherwise the creation of
2094 * further caches will BUG().
2095 */
2096 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097
2098 /*
2099 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100 * the first cache, then we need to set up all its list3s,
2101 * otherwise the creation of further caches will BUG().
2102 */
2103 set_up_list3s(cachep, SIZE_AC);
2104 if (INDEX_AC == INDEX_L3)
2105 g_cpucache_up = PARTIAL_L3;
2106 else
2107 g_cpucache_up = PARTIAL_AC;
2108 } else {
2109 cachep->array[smp_processor_id()] =
2110 kmalloc(sizeof(struct arraycache_init), gfp);
2111
2112 if (g_cpucache_up == PARTIAL_AC) {
2113 set_up_list3s(cachep, SIZE_L3);
2114 g_cpucache_up = PARTIAL_L3;
2115 } else {
2116 int node;
2117 for_each_online_node(node) {
2118 cachep->nodelists[node] =
2119 kmalloc_node(sizeof(struct kmem_list3),
2120 gfp, node);
2121 BUG_ON(!cachep->nodelists[node]);
2122 kmem_list3_init(cachep->nodelists[node]);
2123 }
2124 }
2125 }
2126 cachep->nodelists[numa_mem_id()]->next_reap =
2127 jiffies + REAPTIMEOUT_LIST3 +
2128 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129
2130 cpu_cache_get(cachep)->avail = 0;
2131 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132 cpu_cache_get(cachep)->batchcount = 1;
2133 cpu_cache_get(cachep)->touched = 0;
2134 cachep->batchcount = 1;
2135 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136 return 0;
2137 }
2138
2139 /**
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
2146 *
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
2149 * The @ctor is run when new pages are allocated by the cache.
2150 *
2151 * @name must be valid until the cache is destroyed. This implies that
2152 * the module calling this has to destroy the cache before getting unloaded.
2153 *
2154 * The flags are
2155 *
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2158 *
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2161 *
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2164 * as davem.
2165 */
2166 struct kmem_cache *
kmem_cache_create(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))2167 kmem_cache_create (const char *name, size_t size, size_t align,
2168 unsigned long flags, void (*ctor)(void *))
2169 {
2170 size_t left_over, slab_size, ralign;
2171 struct kmem_cache *cachep = NULL, *pc;
2172 gfp_t gfp;
2173
2174 /*
2175 * Sanity checks... these are all serious usage bugs.
2176 */
2177 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178 size > KMALLOC_MAX_SIZE) {
2179 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2180 name);
2181 BUG();
2182 }
2183
2184 /*
2185 * We use cache_chain_mutex to ensure a consistent view of
2186 * cpu_online_mask as well. Please see cpuup_callback
2187 */
2188 if (slab_is_available()) {
2189 get_online_cpus();
2190 mutex_lock(&cache_chain_mutex);
2191 }
2192
2193 list_for_each_entry(pc, &cache_chain, next) {
2194 char tmp;
2195 int res;
2196
2197 /*
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2201 */
2202 res = probe_kernel_address(pc->name, tmp);
2203 if (res) {
2204 printk(KERN_ERR
2205 "SLAB: cache with size %d has lost its name\n",
2206 pc->buffer_size);
2207 continue;
2208 }
2209
2210 if (!strcmp(pc->name, name)) {
2211 printk(KERN_ERR
2212 "kmem_cache_create: duplicate cache %s\n", name);
2213 dump_stack();
2214 goto oops;
2215 }
2216 }
2217
2218 #if DEBUG
2219 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2220 #if FORCED_DEBUG
2221 /*
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2226 */
2227 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228 2 * sizeof(unsigned long long)))
2229 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2230 if (!(flags & SLAB_DESTROY_BY_RCU))
2231 flags |= SLAB_POISON;
2232 #endif
2233 if (flags & SLAB_DESTROY_BY_RCU)
2234 BUG_ON(flags & SLAB_POISON);
2235 #endif
2236 /*
2237 * Always checks flags, a caller might be expecting debug support which
2238 * isn't available.
2239 */
2240 BUG_ON(flags & ~CREATE_MASK);
2241
2242 /*
2243 * Check that size is in terms of words. This is needed to avoid
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2246 */
2247 if (size & (BYTES_PER_WORD - 1)) {
2248 size += (BYTES_PER_WORD - 1);
2249 size &= ~(BYTES_PER_WORD - 1);
2250 }
2251
2252 /* calculate the final buffer alignment: */
2253
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags & SLAB_HWCACHE_ALIGN) {
2256 /*
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2259 * one cacheline.
2260 */
2261 ralign = cache_line_size();
2262 while (size <= ralign / 2)
2263 ralign /= 2;
2264 } else {
2265 ralign = BYTES_PER_WORD;
2266 }
2267
2268 /*
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
2272 */
2273 if (flags & SLAB_STORE_USER)
2274 ralign = BYTES_PER_WORD;
2275
2276 if (flags & SLAB_RED_ZONE) {
2277 ralign = REDZONE_ALIGN;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size += REDZONE_ALIGN - 1;
2281 size &= ~(REDZONE_ALIGN - 1);
2282 }
2283
2284 /* 2) arch mandated alignment */
2285 if (ralign < ARCH_SLAB_MINALIGN) {
2286 ralign = ARCH_SLAB_MINALIGN;
2287 }
2288 /* 3) caller mandated alignment */
2289 if (ralign < align) {
2290 ralign = align;
2291 }
2292 /* disable debug if necessary */
2293 if (ralign > __alignof__(unsigned long long))
2294 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2295 /*
2296 * 4) Store it.
2297 */
2298 align = ralign;
2299
2300 if (slab_is_available())
2301 gfp = GFP_KERNEL;
2302 else
2303 gfp = GFP_NOWAIT;
2304
2305 /* Get cache's description obj. */
2306 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2307 if (!cachep)
2308 goto oops;
2309
2310 #if DEBUG
2311 cachep->obj_size = size;
2312
2313 /*
2314 * Both debugging options require word-alignment which is calculated
2315 * into align above.
2316 */
2317 if (flags & SLAB_RED_ZONE) {
2318 /* add space for red zone words */
2319 cachep->obj_offset += sizeof(unsigned long long);
2320 size += 2 * sizeof(unsigned long long);
2321 }
2322 if (flags & SLAB_STORE_USER) {
2323 /* user store requires one word storage behind the end of
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
2326 */
2327 if (flags & SLAB_RED_ZONE)
2328 size += REDZONE_ALIGN;
2329 else
2330 size += BYTES_PER_WORD;
2331 }
2332 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2334 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2335 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2336 size = PAGE_SIZE;
2337 }
2338 #endif
2339 #endif
2340
2341 /*
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346 */
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348 !(flags & SLAB_NOLEAKTRACE))
2349 /*
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2352 */
2353 flags |= CFLGS_OFF_SLAB;
2354
2355 size = ALIGN(size, align);
2356
2357 left_over = calculate_slab_order(cachep, size, align, flags);
2358
2359 if (!cachep->num) {
2360 printk(KERN_ERR
2361 "kmem_cache_create: couldn't create cache %s.\n", name);
2362 kmem_cache_free(&cache_cache, cachep);
2363 cachep = NULL;
2364 goto oops;
2365 }
2366 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367 + sizeof(struct slab), align);
2368
2369 /*
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2372 */
2373 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374 flags &= ~CFLGS_OFF_SLAB;
2375 left_over -= slab_size;
2376 }
2377
2378 if (flags & CFLGS_OFF_SLAB) {
2379 /* really off slab. No need for manual alignment */
2380 slab_size =
2381 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2382
2383 #ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2387 */
2388 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390 #endif
2391 }
2392
2393 cachep->colour_off = cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep->colour_off < align)
2396 cachep->colour_off = align;
2397 cachep->colour = left_over / cachep->colour_off;
2398 cachep->slab_size = slab_size;
2399 cachep->flags = flags;
2400 cachep->gfpflags = 0;
2401 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2402 cachep->gfpflags |= GFP_DMA;
2403 cachep->buffer_size = size;
2404 cachep->reciprocal_buffer_size = reciprocal_value(size);
2405
2406 if (flags & CFLGS_OFF_SLAB) {
2407 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2408 /*
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2414 */
2415 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2416 }
2417 cachep->ctor = ctor;
2418 cachep->name = name;
2419
2420 if (setup_cpu_cache(cachep, gfp)) {
2421 __kmem_cache_destroy(cachep);
2422 cachep = NULL;
2423 goto oops;
2424 }
2425
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep->next, &cache_chain);
2428 oops:
2429 if (!cachep && (flags & SLAB_PANIC))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
2431 name);
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex);
2434 put_online_cpus();
2435 }
2436 return cachep;
2437 }
2438 EXPORT_SYMBOL(kmem_cache_create);
2439
2440 #if DEBUG
check_irq_off(void)2441 static void check_irq_off(void)
2442 {
2443 BUG_ON(!irqs_disabled());
2444 }
2445
check_irq_on(void)2446 static void check_irq_on(void)
2447 {
2448 BUG_ON(irqs_disabled());
2449 }
2450
check_spinlock_acquired(struct kmem_cache * cachep)2451 static void check_spinlock_acquired(struct kmem_cache *cachep)
2452 {
2453 #ifdef CONFIG_SMP
2454 check_irq_off();
2455 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2456 #endif
2457 }
2458
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2459 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2460 {
2461 #ifdef CONFIG_SMP
2462 check_irq_off();
2463 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464 #endif
2465 }
2466
2467 #else
2468 #define check_irq_off() do { } while(0)
2469 #define check_irq_on() do { } while(0)
2470 #define check_spinlock_acquired(x) do { } while(0)
2471 #define check_spinlock_acquired_node(x, y) do { } while(0)
2472 #endif
2473
2474 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475 struct array_cache *ac,
2476 int force, int node);
2477
do_drain(void * arg)2478 static void do_drain(void *arg)
2479 {
2480 struct kmem_cache *cachep = arg;
2481 struct array_cache *ac;
2482 int node = numa_mem_id();
2483
2484 check_irq_off();
2485 ac = cpu_cache_get(cachep);
2486 spin_lock(&cachep->nodelists[node]->list_lock);
2487 free_block(cachep, ac->entry, ac->avail, node);
2488 spin_unlock(&cachep->nodelists[node]->list_lock);
2489 ac->avail = 0;
2490 }
2491
drain_cpu_caches(struct kmem_cache * cachep)2492 static void drain_cpu_caches(struct kmem_cache *cachep)
2493 {
2494 struct kmem_list3 *l3;
2495 int node;
2496
2497 on_each_cpu(do_drain, cachep, 1);
2498 check_irq_on();
2499 for_each_online_node(node) {
2500 l3 = cachep->nodelists[node];
2501 if (l3 && l3->alien)
2502 drain_alien_cache(cachep, l3->alien);
2503 }
2504
2505 for_each_online_node(node) {
2506 l3 = cachep->nodelists[node];
2507 if (l3)
2508 drain_array(cachep, l3, l3->shared, 1, node);
2509 }
2510 }
2511
2512 /*
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2515 *
2516 * Returns the actual number of slabs released.
2517 */
drain_freelist(struct kmem_cache * cache,struct kmem_list3 * l3,int tofree)2518 static int drain_freelist(struct kmem_cache *cache,
2519 struct kmem_list3 *l3, int tofree)
2520 {
2521 struct list_head *p;
2522 int nr_freed;
2523 struct slab *slabp;
2524
2525 nr_freed = 0;
2526 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2527
2528 spin_lock_irq(&l3->list_lock);
2529 p = l3->slabs_free.prev;
2530 if (p == &l3->slabs_free) {
2531 spin_unlock_irq(&l3->list_lock);
2532 goto out;
2533 }
2534
2535 slabp = list_entry(p, struct slab, list);
2536 #if DEBUG
2537 BUG_ON(slabp->inuse);
2538 #endif
2539 list_del(&slabp->list);
2540 /*
2541 * Safe to drop the lock. The slab is no longer linked
2542 * to the cache.
2543 */
2544 l3->free_objects -= cache->num;
2545 spin_unlock_irq(&l3->list_lock);
2546 slab_destroy(cache, slabp);
2547 nr_freed++;
2548 }
2549 out:
2550 return nr_freed;
2551 }
2552
2553 /* Called with cache_chain_mutex held to protect against cpu hotplug */
__cache_shrink(struct kmem_cache * cachep)2554 static int __cache_shrink(struct kmem_cache *cachep)
2555 {
2556 int ret = 0, i = 0;
2557 struct kmem_list3 *l3;
2558
2559 drain_cpu_caches(cachep);
2560
2561 check_irq_on();
2562 for_each_online_node(i) {
2563 l3 = cachep->nodelists[i];
2564 if (!l3)
2565 continue;
2566
2567 drain_freelist(cachep, l3, l3->free_objects);
2568
2569 ret += !list_empty(&l3->slabs_full) ||
2570 !list_empty(&l3->slabs_partial);
2571 }
2572 return (ret ? 1 : 0);
2573 }
2574
2575 /**
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2578 *
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2581 */
kmem_cache_shrink(struct kmem_cache * cachep)2582 int kmem_cache_shrink(struct kmem_cache *cachep)
2583 {
2584 int ret;
2585 BUG_ON(!cachep || in_interrupt());
2586
2587 get_online_cpus();
2588 mutex_lock(&cache_chain_mutex);
2589 ret = __cache_shrink(cachep);
2590 mutex_unlock(&cache_chain_mutex);
2591 put_online_cpus();
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(kmem_cache_shrink);
2595
2596 /**
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2599 *
2600 * Remove a &struct kmem_cache object from the slab cache.
2601 *
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2606 *
2607 * The cache must be empty before calling this function.
2608 *
2609 * The caller must guarantee that no one will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2611 */
kmem_cache_destroy(struct kmem_cache * cachep)2612 void kmem_cache_destroy(struct kmem_cache *cachep)
2613 {
2614 BUG_ON(!cachep || in_interrupt());
2615
2616 /* Find the cache in the chain of caches. */
2617 get_online_cpus();
2618 mutex_lock(&cache_chain_mutex);
2619 /*
2620 * the chain is never empty, cache_cache is never destroyed
2621 */
2622 list_del(&cachep->next);
2623 if (__cache_shrink(cachep)) {
2624 slab_error(cachep, "Can't free all objects");
2625 list_add(&cachep->next, &cache_chain);
2626 mutex_unlock(&cache_chain_mutex);
2627 put_online_cpus();
2628 return;
2629 }
2630
2631 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632 rcu_barrier();
2633
2634 __kmem_cache_destroy(cachep);
2635 mutex_unlock(&cache_chain_mutex);
2636 put_online_cpus();
2637 }
2638 EXPORT_SYMBOL(kmem_cache_destroy);
2639
2640 /*
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2650 */
alloc_slabmgmt(struct kmem_cache * cachep,void * objp,int colour_off,gfp_t local_flags,int nodeid)2651 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652 int colour_off, gfp_t local_flags,
2653 int nodeid)
2654 {
2655 struct slab *slabp;
2656
2657 if (OFF_SLAB(cachep)) {
2658 /* Slab management obj is off-slab. */
2659 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660 local_flags, nodeid);
2661 /*
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2666 */
2667 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668 local_flags);
2669 if (!slabp)
2670 return NULL;
2671 } else {
2672 slabp = objp + colour_off;
2673 colour_off += cachep->slab_size;
2674 }
2675 slabp->inuse = 0;
2676 slabp->colouroff = colour_off;
2677 slabp->s_mem = objp + colour_off;
2678 slabp->nodeid = nodeid;
2679 slabp->free = 0;
2680 return slabp;
2681 }
2682
slab_bufctl(struct slab * slabp)2683 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2684 {
2685 return (kmem_bufctl_t *) (slabp + 1);
2686 }
2687
cache_init_objs(struct kmem_cache * cachep,struct slab * slabp)2688 static void cache_init_objs(struct kmem_cache *cachep,
2689 struct slab *slabp)
2690 {
2691 int i;
2692
2693 for (i = 0; i < cachep->num; i++) {
2694 void *objp = index_to_obj(cachep, slabp, i);
2695 #if DEBUG
2696 /* need to poison the objs? */
2697 if (cachep->flags & SLAB_POISON)
2698 poison_obj(cachep, objp, POISON_FREE);
2699 if (cachep->flags & SLAB_STORE_USER)
2700 *dbg_userword(cachep, objp) = NULL;
2701
2702 if (cachep->flags & SLAB_RED_ZONE) {
2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2705 }
2706 /*
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
2710 */
2711 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712 cachep->ctor(objp + obj_offset(cachep));
2713
2714 if (cachep->flags & SLAB_RED_ZONE) {
2715 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716 slab_error(cachep, "constructor overwrote the"
2717 " end of an object");
2718 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
2720 " start of an object");
2721 }
2722 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2724 kernel_map_pages(virt_to_page(objp),
2725 cachep->buffer_size / PAGE_SIZE, 0);
2726 #else
2727 if (cachep->ctor)
2728 cachep->ctor(objp);
2729 #endif
2730 slab_bufctl(slabp)[i] = i + 1;
2731 }
2732 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2733 }
2734
kmem_flagcheck(struct kmem_cache * cachep,gfp_t flags)2735 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2736 {
2737 if (CONFIG_ZONE_DMA_FLAG) {
2738 if (flags & GFP_DMA)
2739 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740 else
2741 BUG_ON(cachep->gfpflags & GFP_DMA);
2742 }
2743 }
2744
slab_get_obj(struct kmem_cache * cachep,struct slab * slabp,int nodeid)2745 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746 int nodeid)
2747 {
2748 void *objp = index_to_obj(cachep, slabp, slabp->free);
2749 kmem_bufctl_t next;
2750
2751 slabp->inuse++;
2752 next = slab_bufctl(slabp)[slabp->free];
2753 #if DEBUG
2754 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755 WARN_ON(slabp->nodeid != nodeid);
2756 #endif
2757 slabp->free = next;
2758
2759 return objp;
2760 }
2761
slab_put_obj(struct kmem_cache * cachep,struct slab * slabp,void * objp,int nodeid)2762 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763 void *objp, int nodeid)
2764 {
2765 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2766
2767 #if DEBUG
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp->nodeid != nodeid);
2770
2771 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772 printk(KERN_ERR "slab: double free detected in cache "
2773 "'%s', objp %p\n", cachep->name, objp);
2774 BUG();
2775 }
2776 #endif
2777 slab_bufctl(slabp)[objnr] = slabp->free;
2778 slabp->free = objnr;
2779 slabp->inuse--;
2780 }
2781
2782 /*
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, and slab debugging.
2786 */
slab_map_pages(struct kmem_cache * cache,struct slab * slab,void * addr)2787 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788 void *addr)
2789 {
2790 int nr_pages;
2791 struct page *page;
2792
2793 page = virt_to_page(addr);
2794
2795 nr_pages = 1;
2796 if (likely(!PageCompound(page)))
2797 nr_pages <<= cache->gfporder;
2798
2799 do {
2800 page_set_cache(page, cache);
2801 page_set_slab(page, slab);
2802 page++;
2803 } while (--nr_pages);
2804 }
2805
2806 /*
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2809 */
cache_grow(struct kmem_cache * cachep,gfp_t flags,int nodeid,void * objp)2810 static int cache_grow(struct kmem_cache *cachep,
2811 gfp_t flags, int nodeid, void *objp)
2812 {
2813 struct slab *slabp;
2814 size_t offset;
2815 gfp_t local_flags;
2816 struct kmem_list3 *l3;
2817
2818 /*
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
2821 */
2822 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2824
2825 /* Take the l3 list lock to change the colour_next on this node */
2826 check_irq_off();
2827 l3 = cachep->nodelists[nodeid];
2828 spin_lock(&l3->list_lock);
2829
2830 /* Get colour for the slab, and cal the next value. */
2831 offset = l3->colour_next;
2832 l3->colour_next++;
2833 if (l3->colour_next >= cachep->colour)
2834 l3->colour_next = 0;
2835 spin_unlock(&l3->list_lock);
2836
2837 offset *= cachep->colour_off;
2838
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_enable();
2841
2842 /*
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2847 */
2848 kmem_flagcheck(cachep, flags);
2849
2850 /*
2851 * Get mem for the objs. Attempt to allocate a physical page from
2852 * 'nodeid'.
2853 */
2854 if (!objp)
2855 objp = kmem_getpages(cachep, local_flags, nodeid);
2856 if (!objp)
2857 goto failed;
2858
2859 /* Get slab management. */
2860 slabp = alloc_slabmgmt(cachep, objp, offset,
2861 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2862 if (!slabp)
2863 goto opps1;
2864
2865 slab_map_pages(cachep, slabp, objp);
2866
2867 cache_init_objs(cachep, slabp);
2868
2869 if (local_flags & __GFP_WAIT)
2870 local_irq_disable();
2871 check_irq_off();
2872 spin_lock(&l3->list_lock);
2873
2874 /* Make slab active. */
2875 list_add_tail(&slabp->list, &(l3->slabs_free));
2876 STATS_INC_GROWN(cachep);
2877 l3->free_objects += cachep->num;
2878 spin_unlock(&l3->list_lock);
2879 return 1;
2880 opps1:
2881 kmem_freepages(cachep, objp);
2882 failed:
2883 if (local_flags & __GFP_WAIT)
2884 local_irq_disable();
2885 return 0;
2886 }
2887
2888 #if DEBUG
2889
2890 /*
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2894 */
kfree_debugcheck(const void * objp)2895 static void kfree_debugcheck(const void *objp)
2896 {
2897 if (!virt_addr_valid(objp)) {
2898 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2899 (unsigned long)objp);
2900 BUG();
2901 }
2902 }
2903
verify_redzone_free(struct kmem_cache * cache,void * obj)2904 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2905 {
2906 unsigned long long redzone1, redzone2;
2907
2908 redzone1 = *dbg_redzone1(cache, obj);
2909 redzone2 = *dbg_redzone2(cache, obj);
2910
2911 /*
2912 * Redzone is ok.
2913 */
2914 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915 return;
2916
2917 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918 slab_error(cache, "double free detected");
2919 else
2920 slab_error(cache, "memory outside object was overwritten");
2921
2922 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 obj, redzone1, redzone2);
2924 }
2925
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,void * caller)2926 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2927 void *caller)
2928 {
2929 struct page *page;
2930 unsigned int objnr;
2931 struct slab *slabp;
2932
2933 BUG_ON(virt_to_cache(objp) != cachep);
2934
2935 objp -= obj_offset(cachep);
2936 kfree_debugcheck(objp);
2937 page = virt_to_head_page(objp);
2938
2939 slabp = page_get_slab(page);
2940
2941 if (cachep->flags & SLAB_RED_ZONE) {
2942 verify_redzone_free(cachep, objp);
2943 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2945 }
2946 if (cachep->flags & SLAB_STORE_USER)
2947 *dbg_userword(cachep, objp) = caller;
2948
2949 objnr = obj_to_index(cachep, slabp, objp);
2950
2951 BUG_ON(objnr >= cachep->num);
2952 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2953
2954 #ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956 #endif
2957 if (cachep->flags & SLAB_POISON) {
2958 #ifdef CONFIG_DEBUG_PAGEALLOC
2959 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2960 store_stackinfo(cachep, objp, (unsigned long)caller);
2961 kernel_map_pages(virt_to_page(objp),
2962 cachep->buffer_size / PAGE_SIZE, 0);
2963 } else {
2964 poison_obj(cachep, objp, POISON_FREE);
2965 }
2966 #else
2967 poison_obj(cachep, objp, POISON_FREE);
2968 #endif
2969 }
2970 return objp;
2971 }
2972
check_slabp(struct kmem_cache * cachep,struct slab * slabp)2973 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2974 {
2975 kmem_bufctl_t i;
2976 int entries = 0;
2977
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980 entries++;
2981 if (entries > cachep->num || i >= cachep->num)
2982 goto bad;
2983 }
2984 if (entries != cachep->num - slabp->inuse) {
2985 bad:
2986 printk(KERN_ERR "slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep->name, cachep->num, slabp, slabp->inuse);
2989 for (i = 0;
2990 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2991 i++) {
2992 if (i % 16 == 0)
2993 printk("\n%03x:", i);
2994 printk(" %02x", ((unsigned char *)slabp)[i]);
2995 }
2996 printk("\n");
2997 BUG();
2998 }
2999 }
3000 #else
3001 #define kfree_debugcheck(x) do { } while(0)
3002 #define cache_free_debugcheck(x,objp,z) (objp)
3003 #define check_slabp(x,y) do { } while(0)
3004 #endif
3005
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags)3006 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3007 {
3008 int batchcount;
3009 struct kmem_list3 *l3;
3010 struct array_cache *ac;
3011 int node;
3012
3013 retry:
3014 check_irq_off();
3015 node = numa_mem_id();
3016 ac = cpu_cache_get(cachep);
3017 batchcount = ac->batchcount;
3018 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3019 /*
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3022 * refill bouncing.
3023 */
3024 batchcount = BATCHREFILL_LIMIT;
3025 }
3026 l3 = cachep->nodelists[node];
3027
3028 BUG_ON(ac->avail > 0 || !l3);
3029 spin_lock(&l3->list_lock);
3030
3031 /* See if we can refill from the shared array */
3032 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033 l3->shared->touched = 1;
3034 goto alloc_done;
3035 }
3036
3037 while (batchcount > 0) {
3038 struct list_head *entry;
3039 struct slab *slabp;
3040 /* Get slab alloc is to come from. */
3041 entry = l3->slabs_partial.next;
3042 if (entry == &l3->slabs_partial) {
3043 l3->free_touched = 1;
3044 entry = l3->slabs_free.next;
3045 if (entry == &l3->slabs_free)
3046 goto must_grow;
3047 }
3048
3049 slabp = list_entry(entry, struct slab, list);
3050 check_slabp(cachep, slabp);
3051 check_spinlock_acquired(cachep);
3052
3053 /*
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3056 * allocation.
3057 */
3058 BUG_ON(slabp->inuse >= cachep->num);
3059
3060 while (slabp->inuse < cachep->num && batchcount--) {
3061 STATS_INC_ALLOCED(cachep);
3062 STATS_INC_ACTIVE(cachep);
3063 STATS_SET_HIGH(cachep);
3064
3065 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3066 node);
3067 }
3068 check_slabp(cachep, slabp);
3069
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp->list);
3072 if (slabp->free == BUFCTL_END)
3073 list_add(&slabp->list, &l3->slabs_full);
3074 else
3075 list_add(&slabp->list, &l3->slabs_partial);
3076 }
3077
3078 must_grow:
3079 l3->free_objects -= ac->avail;
3080 alloc_done:
3081 spin_unlock(&l3->list_lock);
3082
3083 if (unlikely(!ac->avail)) {
3084 int x;
3085 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3086
3087 /* cache_grow can reenable interrupts, then ac could change. */
3088 ac = cpu_cache_get(cachep);
3089 if (!x && ac->avail == 0) /* no objects in sight? abort */
3090 return NULL;
3091
3092 if (!ac->avail) /* objects refilled by interrupt? */
3093 goto retry;
3094 }
3095 ac->touched = 1;
3096 return ac->entry[--ac->avail];
3097 }
3098
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)3099 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100 gfp_t flags)
3101 {
3102 might_sleep_if(flags & __GFP_WAIT);
3103 #if DEBUG
3104 kmem_flagcheck(cachep, flags);
3105 #endif
3106 }
3107
3108 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,void * caller)3109 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110 gfp_t flags, void *objp, void *caller)
3111 {
3112 if (!objp)
3113 return objp;
3114 if (cachep->flags & SLAB_POISON) {
3115 #ifdef CONFIG_DEBUG_PAGEALLOC
3116 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3117 kernel_map_pages(virt_to_page(objp),
3118 cachep->buffer_size / PAGE_SIZE, 1);
3119 else
3120 check_poison_obj(cachep, objp);
3121 #else
3122 check_poison_obj(cachep, objp);
3123 #endif
3124 poison_obj(cachep, objp, POISON_INUSE);
3125 }
3126 if (cachep->flags & SLAB_STORE_USER)
3127 *dbg_userword(cachep, objp) = caller;
3128
3129 if (cachep->flags & SLAB_RED_ZONE) {
3130 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132 slab_error(cachep, "double free, or memory outside"
3133 " object was overwritten");
3134 printk(KERN_ERR
3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136 objp, *dbg_redzone1(cachep, objp),
3137 *dbg_redzone2(cachep, objp));
3138 }
3139 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3141 }
3142 #ifdef CONFIG_DEBUG_SLAB_LEAK
3143 {
3144 struct slab *slabp;
3145 unsigned objnr;
3146
3147 slabp = page_get_slab(virt_to_head_page(objp));
3148 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3150 }
3151 #endif
3152 objp += obj_offset(cachep);
3153 if (cachep->ctor && cachep->flags & SLAB_POISON)
3154 cachep->ctor(objp);
3155 #if ARCH_SLAB_MINALIGN
3156 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp, ARCH_SLAB_MINALIGN);
3159 }
3160 #endif
3161 return objp;
3162 }
3163 #else
3164 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165 #endif
3166
slab_should_failslab(struct kmem_cache * cachep,gfp_t flags)3167 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168 {
3169 if (cachep == &cache_cache)
3170 return false;
3171
3172 return should_failslab(obj_size(cachep), flags, cachep->flags);
3173 }
3174
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)3175 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3176 {
3177 void *objp;
3178 struct array_cache *ac;
3179
3180 check_irq_off();
3181
3182 ac = cpu_cache_get(cachep);
3183 if (likely(ac->avail)) {
3184 STATS_INC_ALLOCHIT(cachep);
3185 ac->touched = 1;
3186 objp = ac->entry[--ac->avail];
3187 } else {
3188 STATS_INC_ALLOCMISS(cachep);
3189 objp = cache_alloc_refill(cachep, flags);
3190 /*
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3193 */
3194 ac = cpu_cache_get(cachep);
3195 }
3196 /*
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3200 */
3201 if (objp)
3202 kmemleak_erase(&ac->entry[ac->avail]);
3203 return objp;
3204 }
3205
3206 #ifdef CONFIG_NUMA
3207 /*
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 *
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3212 */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)3213 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3214 {
3215 int nid_alloc, nid_here;
3216
3217 if (in_interrupt() || (flags & __GFP_THISNODE))
3218 return NULL;
3219 nid_alloc = nid_here = numa_mem_id();
3220 get_mems_allowed();
3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222 nid_alloc = cpuset_slab_spread_node();
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
3225 put_mems_allowed();
3226 if (nid_alloc != nid_here)
3227 return ____cache_alloc_node(cachep, flags, nid_alloc);
3228 return NULL;
3229 }
3230
3231 /*
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3238 */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3239 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3240 {
3241 struct zonelist *zonelist;
3242 gfp_t local_flags;
3243 struct zoneref *z;
3244 struct zone *zone;
3245 enum zone_type high_zoneidx = gfp_zone(flags);
3246 void *obj = NULL;
3247 int nid;
3248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
3252 get_mems_allowed();
3253 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3254 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255
3256 retry:
3257 /*
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3260 */
3261 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262 nid = zone_to_nid(zone);
3263
3264 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265 cache->nodelists[nid] &&
3266 cache->nodelists[nid]->free_objects) {
3267 obj = ____cache_alloc_node(cache,
3268 flags | GFP_THISNODE, nid);
3269 if (obj)
3270 break;
3271 }
3272 }
3273
3274 if (!obj) {
3275 /*
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3280 */
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_enable();
3283 kmem_flagcheck(cache, flags);
3284 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3285 if (local_flags & __GFP_WAIT)
3286 local_irq_disable();
3287 if (obj) {
3288 /*
3289 * Insert into the appropriate per node queues
3290 */
3291 nid = page_to_nid(virt_to_page(obj));
3292 if (cache_grow(cache, flags, nid, obj)) {
3293 obj = ____cache_alloc_node(cache,
3294 flags | GFP_THISNODE, nid);
3295 if (!obj)
3296 /*
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3300 */
3301 goto retry;
3302 } else {
3303 /* cache_grow already freed obj */
3304 obj = NULL;
3305 }
3306 }
3307 }
3308 put_mems_allowed();
3309 return obj;
3310 }
3311
3312 /*
3313 * A interface to enable slab creation on nodeid
3314 */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3315 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3316 int nodeid)
3317 {
3318 struct list_head *entry;
3319 struct slab *slabp;
3320 struct kmem_list3 *l3;
3321 void *obj;
3322 int x;
3323
3324 l3 = cachep->nodelists[nodeid];
3325 BUG_ON(!l3);
3326
3327 retry:
3328 check_irq_off();
3329 spin_lock(&l3->list_lock);
3330 entry = l3->slabs_partial.next;
3331 if (entry == &l3->slabs_partial) {
3332 l3->free_touched = 1;
3333 entry = l3->slabs_free.next;
3334 if (entry == &l3->slabs_free)
3335 goto must_grow;
3336 }
3337
3338 slabp = list_entry(entry, struct slab, list);
3339 check_spinlock_acquired_node(cachep, nodeid);
3340 check_slabp(cachep, slabp);
3341
3342 STATS_INC_NODEALLOCS(cachep);
3343 STATS_INC_ACTIVE(cachep);
3344 STATS_SET_HIGH(cachep);
3345
3346 BUG_ON(slabp->inuse == cachep->num);
3347
3348 obj = slab_get_obj(cachep, slabp, nodeid);
3349 check_slabp(cachep, slabp);
3350 l3->free_objects--;
3351 /* move slabp to correct slabp list: */
3352 list_del(&slabp->list);
3353
3354 if (slabp->free == BUFCTL_END)
3355 list_add(&slabp->list, &l3->slabs_full);
3356 else
3357 list_add(&slabp->list, &l3->slabs_partial);
3358
3359 spin_unlock(&l3->list_lock);
3360 goto done;
3361
3362 must_grow:
3363 spin_unlock(&l3->list_lock);
3364 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365 if (x)
3366 goto retry;
3367
3368 return fallback_alloc(cachep, flags);
3369
3370 done:
3371 return obj;
3372 }
3373
3374 /**
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3380 *
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3383 *
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3385 */
3386 static __always_inline void *
__cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,void * caller)3387 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3388 void *caller)
3389 {
3390 unsigned long save_flags;
3391 void *ptr;
3392 int slab_node = numa_mem_id();
3393
3394 flags &= gfp_allowed_mask;
3395
3396 lockdep_trace_alloc(flags);
3397
3398 if (slab_should_failslab(cachep, flags))
3399 return NULL;
3400
3401 cache_alloc_debugcheck_before(cachep, flags);
3402 local_irq_save(save_flags);
3403
3404 if (nodeid == -1)
3405 nodeid = slab_node;
3406
3407 if (unlikely(!cachep->nodelists[nodeid])) {
3408 /* Node not bootstrapped yet */
3409 ptr = fallback_alloc(cachep, flags);
3410 goto out;
3411 }
3412
3413 if (nodeid == slab_node) {
3414 /*
3415 * Use the locally cached objects if possible.
3416 * However ____cache_alloc does not allow fallback
3417 * to other nodes. It may fail while we still have
3418 * objects on other nodes available.
3419 */
3420 ptr = ____cache_alloc(cachep, flags);
3421 if (ptr)
3422 goto out;
3423 }
3424 /* ___cache_alloc_node can fall back to other nodes */
3425 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3426 out:
3427 local_irq_restore(save_flags);
3428 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3429 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3430 flags);
3431
3432 if (likely(ptr))
3433 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3434
3435 if (unlikely((flags & __GFP_ZERO) && ptr))
3436 memset(ptr, 0, obj_size(cachep));
3437
3438 return ptr;
3439 }
3440
3441 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3442 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3443 {
3444 void *objp;
3445
3446 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3447 objp = alternate_node_alloc(cache, flags);
3448 if (objp)
3449 goto out;
3450 }
3451 objp = ____cache_alloc(cache, flags);
3452
3453 /*
3454 * We may just have run out of memory on the local node.
3455 * ____cache_alloc_node() knows how to locate memory on other nodes
3456 */
3457 if (!objp)
3458 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3459
3460 out:
3461 return objp;
3462 }
3463 #else
3464
3465 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3466 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3467 {
3468 return ____cache_alloc(cachep, flags);
3469 }
3470
3471 #endif /* CONFIG_NUMA */
3472
3473 static __always_inline void *
__cache_alloc(struct kmem_cache * cachep,gfp_t flags,void * caller)3474 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3475 {
3476 unsigned long save_flags;
3477 void *objp;
3478
3479 flags &= gfp_allowed_mask;
3480
3481 lockdep_trace_alloc(flags);
3482
3483 if (slab_should_failslab(cachep, flags))
3484 return NULL;
3485
3486 cache_alloc_debugcheck_before(cachep, flags);
3487 local_irq_save(save_flags);
3488 objp = __do_cache_alloc(cachep, flags);
3489 local_irq_restore(save_flags);
3490 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3491 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3492 flags);
3493 prefetchw(objp);
3494
3495 if (likely(objp))
3496 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3497
3498 if (unlikely((flags & __GFP_ZERO) && objp))
3499 memset(objp, 0, obj_size(cachep));
3500
3501 return objp;
3502 }
3503
3504 /*
3505 * Caller needs to acquire correct kmem_list's list_lock
3506 */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node)3507 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3508 int node)
3509 {
3510 int i;
3511 struct kmem_list3 *l3;
3512
3513 for (i = 0; i < nr_objects; i++) {
3514 void *objp = objpp[i];
3515 struct slab *slabp;
3516
3517 slabp = virt_to_slab(objp);
3518 l3 = cachep->nodelists[node];
3519 list_del(&slabp->list);
3520 check_spinlock_acquired_node(cachep, node);
3521 check_slabp(cachep, slabp);
3522 slab_put_obj(cachep, slabp, objp, node);
3523 STATS_DEC_ACTIVE(cachep);
3524 l3->free_objects++;
3525 check_slabp(cachep, slabp);
3526
3527 /* fixup slab chains */
3528 if (slabp->inuse == 0) {
3529 if (l3->free_objects > l3->free_limit) {
3530 l3->free_objects -= cachep->num;
3531 /* No need to drop any previously held
3532 * lock here, even if we have a off-slab slab
3533 * descriptor it is guaranteed to come from
3534 * a different cache, refer to comments before
3535 * alloc_slabmgmt.
3536 */
3537 slab_destroy(cachep, slabp);
3538 } else {
3539 list_add(&slabp->list, &l3->slabs_free);
3540 }
3541 } else {
3542 /* Unconditionally move a slab to the end of the
3543 * partial list on free - maximum time for the
3544 * other objects to be freed, too.
3545 */
3546 list_add_tail(&slabp->list, &l3->slabs_partial);
3547 }
3548 }
3549 }
3550
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3551 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3552 {
3553 int batchcount;
3554 struct kmem_list3 *l3;
3555 int node = numa_mem_id();
3556
3557 batchcount = ac->batchcount;
3558 #if DEBUG
3559 BUG_ON(!batchcount || batchcount > ac->avail);
3560 #endif
3561 check_irq_off();
3562 l3 = cachep->nodelists[node];
3563 spin_lock(&l3->list_lock);
3564 if (l3->shared) {
3565 struct array_cache *shared_array = l3->shared;
3566 int max = shared_array->limit - shared_array->avail;
3567 if (max) {
3568 if (batchcount > max)
3569 batchcount = max;
3570 memcpy(&(shared_array->entry[shared_array->avail]),
3571 ac->entry, sizeof(void *) * batchcount);
3572 shared_array->avail += batchcount;
3573 goto free_done;
3574 }
3575 }
3576
3577 free_block(cachep, ac->entry, batchcount, node);
3578 free_done:
3579 #if STATS
3580 {
3581 int i = 0;
3582 struct list_head *p;
3583
3584 p = l3->slabs_free.next;
3585 while (p != &(l3->slabs_free)) {
3586 struct slab *slabp;
3587
3588 slabp = list_entry(p, struct slab, list);
3589 BUG_ON(slabp->inuse);
3590
3591 i++;
3592 p = p->next;
3593 }
3594 STATS_SET_FREEABLE(cachep, i);
3595 }
3596 #endif
3597 spin_unlock(&l3->list_lock);
3598 ac->avail -= batchcount;
3599 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3600 }
3601
3602 /*
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released. Called with disabled ints.
3605 */
__cache_free(struct kmem_cache * cachep,void * objp)3606 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3607 {
3608 struct array_cache *ac = cpu_cache_get(cachep);
3609
3610 check_irq_off();
3611 kmemleak_free_recursive(objp, cachep->flags);
3612 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3613
3614 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3615
3616 /*
3617 * Skip calling cache_free_alien() when the platform is not numa.
3618 * This will avoid cache misses that happen while accessing slabp (which
3619 * is per page memory reference) to get nodeid. Instead use a global
3620 * variable to skip the call, which is mostly likely to be present in
3621 * the cache.
3622 */
3623 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3624 return;
3625
3626 if (likely(ac->avail < ac->limit)) {
3627 STATS_INC_FREEHIT(cachep);
3628 ac->entry[ac->avail++] = objp;
3629 return;
3630 } else {
3631 STATS_INC_FREEMISS(cachep);
3632 cache_flusharray(cachep, ac);
3633 ac->entry[ac->avail++] = objp;
3634 }
3635 }
3636
3637 /**
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 *
3642 * Allocate an object from this cache. The flags are only relevant
3643 * if the cache has no available objects.
3644 */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3645 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3646 {
3647 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3648
3649 trace_kmem_cache_alloc(_RET_IP_, ret,
3650 obj_size(cachep), cachep->buffer_size, flags);
3651
3652 return ret;
3653 }
3654 EXPORT_SYMBOL(kmem_cache_alloc);
3655
3656 #ifdef CONFIG_TRACING
3657 void *
kmem_cache_alloc_trace(size_t size,struct kmem_cache * cachep,gfp_t flags)3658 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3659 {
3660 void *ret;
3661
3662 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3663
3664 trace_kmalloc(_RET_IP_, ret,
3665 size, slab_buffer_size(cachep), flags);
3666 return ret;
3667 }
3668 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3669 #endif
3670
3671 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3672 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3673 {
3674 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3675 __builtin_return_address(0));
3676
3677 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3678 obj_size(cachep), cachep->buffer_size,
3679 flags, nodeid);
3680
3681 return ret;
3682 }
3683 EXPORT_SYMBOL(kmem_cache_alloc_node);
3684
3685 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(size_t size,struct kmem_cache * cachep,gfp_t flags,int nodeid)3686 void *kmem_cache_alloc_node_trace(size_t size,
3687 struct kmem_cache *cachep,
3688 gfp_t flags,
3689 int nodeid)
3690 {
3691 void *ret;
3692
3693 ret = __cache_alloc_node(cachep, flags, nodeid,
3694 __builtin_return_address(0));
3695 trace_kmalloc_node(_RET_IP_, ret,
3696 size, slab_buffer_size(cachep),
3697 flags, nodeid);
3698 return ret;
3699 }
3700 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3701 #endif
3702
3703 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,void * caller)3704 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3705 {
3706 struct kmem_cache *cachep;
3707
3708 cachep = kmem_find_general_cachep(size, flags);
3709 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3710 return cachep;
3711 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3712 }
3713
3714 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
__kmalloc_node(size_t size,gfp_t flags,int node)3715 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3716 {
3717 return __do_kmalloc_node(size, flags, node,
3718 __builtin_return_address(0));
3719 }
3720 EXPORT_SYMBOL(__kmalloc_node);
3721
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3722 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3723 int node, unsigned long caller)
3724 {
3725 return __do_kmalloc_node(size, flags, node, (void *)caller);
3726 }
3727 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3728 #else
__kmalloc_node(size_t size,gfp_t flags,int node)3729 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3730 {
3731 return __do_kmalloc_node(size, flags, node, NULL);
3732 }
3733 EXPORT_SYMBOL(__kmalloc_node);
3734 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3735 #endif /* CONFIG_NUMA */
3736
3737 /**
3738 * __do_kmalloc - allocate memory
3739 * @size: how many bytes of memory are required.
3740 * @flags: the type of memory to allocate (see kmalloc).
3741 * @caller: function caller for debug tracking of the caller
3742 */
__do_kmalloc(size_t size,gfp_t flags,void * caller)3743 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3744 void *caller)
3745 {
3746 struct kmem_cache *cachep;
3747 void *ret;
3748
3749 /* If you want to save a few bytes .text space: replace
3750 * __ with kmem_.
3751 * Then kmalloc uses the uninlined functions instead of the inline
3752 * functions.
3753 */
3754 cachep = __find_general_cachep(size, flags);
3755 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3756 return cachep;
3757 ret = __cache_alloc(cachep, flags, caller);
3758
3759 trace_kmalloc((unsigned long) caller, ret,
3760 size, cachep->buffer_size, flags);
3761
3762 return ret;
3763 }
3764
3765
3766 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
__kmalloc(size_t size,gfp_t flags)3767 void *__kmalloc(size_t size, gfp_t flags)
3768 {
3769 return __do_kmalloc(size, flags, __builtin_return_address(0));
3770 }
3771 EXPORT_SYMBOL(__kmalloc);
3772
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3773 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3774 {
3775 return __do_kmalloc(size, flags, (void *)caller);
3776 }
3777 EXPORT_SYMBOL(__kmalloc_track_caller);
3778
3779 #else
__kmalloc(size_t size,gfp_t flags)3780 void *__kmalloc(size_t size, gfp_t flags)
3781 {
3782 return __do_kmalloc(size, flags, NULL);
3783 }
3784 EXPORT_SYMBOL(__kmalloc);
3785 #endif
3786
3787 /**
3788 * kmem_cache_free - Deallocate an object
3789 * @cachep: The cache the allocation was from.
3790 * @objp: The previously allocated object.
3791 *
3792 * Free an object which was previously allocated from this
3793 * cache.
3794 */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3795 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3796 {
3797 unsigned long flags;
3798
3799 local_irq_save(flags);
3800 debug_check_no_locks_freed(objp, obj_size(cachep));
3801 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3802 debug_check_no_obj_freed(objp, obj_size(cachep));
3803 __cache_free(cachep, objp);
3804 local_irq_restore(flags);
3805
3806 trace_kmem_cache_free(_RET_IP_, objp);
3807 }
3808 EXPORT_SYMBOL(kmem_cache_free);
3809
3810 /**
3811 * kfree - free previously allocated memory
3812 * @objp: pointer returned by kmalloc.
3813 *
3814 * If @objp is NULL, no operation is performed.
3815 *
3816 * Don't free memory not originally allocated by kmalloc()
3817 * or you will run into trouble.
3818 */
kfree(const void * objp)3819 void kfree(const void *objp)
3820 {
3821 struct kmem_cache *c;
3822 unsigned long flags;
3823
3824 trace_kfree(_RET_IP_, objp);
3825
3826 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3827 return;
3828 local_irq_save(flags);
3829 kfree_debugcheck(objp);
3830 c = virt_to_cache(objp);
3831 debug_check_no_locks_freed(objp, obj_size(c));
3832 debug_check_no_obj_freed(objp, obj_size(c));
3833 __cache_free(c, (void *)objp);
3834 local_irq_restore(flags);
3835 }
3836 EXPORT_SYMBOL(kfree);
3837
kmem_cache_size(struct kmem_cache * cachep)3838 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3839 {
3840 return obj_size(cachep);
3841 }
3842 EXPORT_SYMBOL(kmem_cache_size);
3843
3844 /*
3845 * This initializes kmem_list3 or resizes various caches for all nodes.
3846 */
alloc_kmemlist(struct kmem_cache * cachep,gfp_t gfp)3847 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3848 {
3849 int node;
3850 struct kmem_list3 *l3;
3851 struct array_cache *new_shared;
3852 struct array_cache **new_alien = NULL;
3853
3854 for_each_online_node(node) {
3855
3856 if (use_alien_caches) {
3857 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3858 if (!new_alien)
3859 goto fail;
3860 }
3861
3862 new_shared = NULL;
3863 if (cachep->shared) {
3864 new_shared = alloc_arraycache(node,
3865 cachep->shared*cachep->batchcount,
3866 0xbaadf00d, gfp);
3867 if (!new_shared) {
3868 free_alien_cache(new_alien);
3869 goto fail;
3870 }
3871 }
3872
3873 l3 = cachep->nodelists[node];
3874 if (l3) {
3875 struct array_cache *shared = l3->shared;
3876
3877 spin_lock_irq(&l3->list_lock);
3878
3879 if (shared)
3880 free_block(cachep, shared->entry,
3881 shared->avail, node);
3882
3883 l3->shared = new_shared;
3884 if (!l3->alien) {
3885 l3->alien = new_alien;
3886 new_alien = NULL;
3887 }
3888 l3->free_limit = (1 + nr_cpus_node(node)) *
3889 cachep->batchcount + cachep->num;
3890 spin_unlock_irq(&l3->list_lock);
3891 kfree(shared);
3892 free_alien_cache(new_alien);
3893 continue;
3894 }
3895 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3896 if (!l3) {
3897 free_alien_cache(new_alien);
3898 kfree(new_shared);
3899 goto fail;
3900 }
3901
3902 kmem_list3_init(l3);
3903 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3904 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3905 l3->shared = new_shared;
3906 l3->alien = new_alien;
3907 l3->free_limit = (1 + nr_cpus_node(node)) *
3908 cachep->batchcount + cachep->num;
3909 cachep->nodelists[node] = l3;
3910 }
3911 return 0;
3912
3913 fail:
3914 if (!cachep->next.next) {
3915 /* Cache is not active yet. Roll back what we did */
3916 node--;
3917 while (node >= 0) {
3918 if (cachep->nodelists[node]) {
3919 l3 = cachep->nodelists[node];
3920
3921 kfree(l3->shared);
3922 free_alien_cache(l3->alien);
3923 kfree(l3);
3924 cachep->nodelists[node] = NULL;
3925 }
3926 node--;
3927 }
3928 }
3929 return -ENOMEM;
3930 }
3931
3932 struct ccupdate_struct {
3933 struct kmem_cache *cachep;
3934 struct array_cache *new[NR_CPUS];
3935 };
3936
do_ccupdate_local(void * info)3937 static void do_ccupdate_local(void *info)
3938 {
3939 struct ccupdate_struct *new = info;
3940 struct array_cache *old;
3941
3942 check_irq_off();
3943 old = cpu_cache_get(new->cachep);
3944
3945 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old;
3947 }
3948
3949 /* Always called with the cache_chain_mutex held */
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3950 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951 int batchcount, int shared, gfp_t gfp)
3952 {
3953 struct ccupdate_struct *new;
3954 int i;
3955
3956 new = kzalloc(sizeof(*new), gfp);
3957 if (!new)
3958 return -ENOMEM;
3959
3960 for_each_online_cpu(i) {
3961 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3962 batchcount, gfp);
3963 if (!new->new[i]) {
3964 for (i--; i >= 0; i--)
3965 kfree(new->new[i]);
3966 kfree(new);
3967 return -ENOMEM;
3968 }
3969 }
3970 new->cachep = cachep;
3971
3972 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3973
3974 check_irq_on();
3975 cachep->batchcount = batchcount;
3976 cachep->limit = limit;
3977 cachep->shared = shared;
3978
3979 for_each_online_cpu(i) {
3980 struct array_cache *ccold = new->new[i];
3981 if (!ccold)
3982 continue;
3983 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3984 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3985 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
3986 kfree(ccold);
3987 }
3988 kfree(new);
3989 return alloc_kmemlist(cachep, gfp);
3990 }
3991
3992 /* Called with cache_chain_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3993 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3994 {
3995 int err;
3996 int limit, shared;
3997
3998 /*
3999 * The head array serves three purposes:
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
4002 * - reduce the number of linked list operations on the slab and
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4005 * Bonwick.
4006 */
4007 if (cachep->buffer_size > 131072)
4008 limit = 1;
4009 else if (cachep->buffer_size > PAGE_SIZE)
4010 limit = 8;
4011 else if (cachep->buffer_size > 1024)
4012 limit = 24;
4013 else if (cachep->buffer_size > 256)
4014 limit = 54;
4015 else
4016 limit = 120;
4017
4018 /*
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4026 */
4027 shared = 0;
4028 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4029 shared = 8;
4030
4031 #if DEBUG
4032 /*
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
4035 */
4036 if (limit > 32)
4037 limit = 32;
4038 #endif
4039 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4040 if (err)
4041 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4042 cachep->name, -err);
4043 return err;
4044 }
4045
4046 /*
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4050 */
drain_array(struct kmem_cache * cachep,struct kmem_list3 * l3,struct array_cache * ac,int force,int node)4051 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052 struct array_cache *ac, int force, int node)
4053 {
4054 int tofree;
4055
4056 if (!ac || !ac->avail)
4057 return;
4058 if (ac->touched && !force) {
4059 ac->touched = 0;
4060 } else {
4061 spin_lock_irq(&l3->list_lock);
4062 if (ac->avail) {
4063 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064 if (tofree > ac->avail)
4065 tofree = (ac->avail + 1) / 2;
4066 free_block(cachep, ac->entry, tofree, node);
4067 ac->avail -= tofree;
4068 memmove(ac->entry, &(ac->entry[tofree]),
4069 sizeof(void *) * ac->avail);
4070 }
4071 spin_unlock_irq(&l3->list_lock);
4072 }
4073 }
4074
4075 /**
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4078 *
4079 * Called from workqueue/eventd every few seconds.
4080 * Purpose:
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4083 *
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4086 */
cache_reap(struct work_struct * w)4087 static void cache_reap(struct work_struct *w)
4088 {
4089 struct kmem_cache *searchp;
4090 struct kmem_list3 *l3;
4091 int node = numa_mem_id();
4092 struct delayed_work *work = to_delayed_work(w);
4093
4094 if (!mutex_trylock(&cache_chain_mutex))
4095 /* Give up. Setup the next iteration. */
4096 goto out;
4097
4098 list_for_each_entry(searchp, &cache_chain, next) {
4099 check_irq_on();
4100
4101 /*
4102 * We only take the l3 lock if absolutely necessary and we
4103 * have established with reasonable certainty that
4104 * we can do some work if the lock was obtained.
4105 */
4106 l3 = searchp->nodelists[node];
4107
4108 reap_alien(searchp, l3);
4109
4110 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4111
4112 /*
4113 * These are racy checks but it does not matter
4114 * if we skip one check or scan twice.
4115 */
4116 if (time_after(l3->next_reap, jiffies))
4117 goto next;
4118
4119 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4120
4121 drain_array(searchp, l3, l3->shared, 0, node);
4122
4123 if (l3->free_touched)
4124 l3->free_touched = 0;
4125 else {
4126 int freed;
4127
4128 freed = drain_freelist(searchp, l3, (l3->free_limit +
4129 5 * searchp->num - 1) / (5 * searchp->num));
4130 STATS_ADD_REAPED(searchp, freed);
4131 }
4132 next:
4133 cond_resched();
4134 }
4135 check_irq_on();
4136 mutex_unlock(&cache_chain_mutex);
4137 next_reap_node();
4138 out:
4139 /* Set up the next iteration */
4140 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4141 }
4142
4143 #ifdef CONFIG_SLABINFO
4144
print_slabinfo_header(struct seq_file * m)4145 static void print_slabinfo_header(struct seq_file *m)
4146 {
4147 /*
4148 * Output format version, so at least we can change it
4149 * without _too_ many complaints.
4150 */
4151 #if STATS
4152 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4153 #else
4154 seq_puts(m, "slabinfo - version: 2.1\n");
4155 #endif
4156 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4157 "<objperslab> <pagesperslab>");
4158 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4159 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4160 #if STATS
4161 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4162 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4163 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4164 #endif
4165 seq_putc(m, '\n');
4166 }
4167
s_start(struct seq_file * m,loff_t * pos)4168 static void *s_start(struct seq_file *m, loff_t *pos)
4169 {
4170 loff_t n = *pos;
4171
4172 mutex_lock(&cache_chain_mutex);
4173 if (!n)
4174 print_slabinfo_header(m);
4175
4176 return seq_list_start(&cache_chain, *pos);
4177 }
4178
s_next(struct seq_file * m,void * p,loff_t * pos)4179 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4180 {
4181 return seq_list_next(p, &cache_chain, pos);
4182 }
4183
s_stop(struct seq_file * m,void * p)4184 static void s_stop(struct seq_file *m, void *p)
4185 {
4186 mutex_unlock(&cache_chain_mutex);
4187 }
4188
s_show(struct seq_file * m,void * p)4189 static int s_show(struct seq_file *m, void *p)
4190 {
4191 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4192 struct slab *slabp;
4193 unsigned long active_objs;
4194 unsigned long num_objs;
4195 unsigned long active_slabs = 0;
4196 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4197 const char *name;
4198 char *error = NULL;
4199 int node;
4200 struct kmem_list3 *l3;
4201
4202 active_objs = 0;
4203 num_slabs = 0;
4204 for_each_online_node(node) {
4205 l3 = cachep->nodelists[node];
4206 if (!l3)
4207 continue;
4208
4209 check_irq_on();
4210 spin_lock_irq(&l3->list_lock);
4211
4212 list_for_each_entry(slabp, &l3->slabs_full, list) {
4213 if (slabp->inuse != cachep->num && !error)
4214 error = "slabs_full accounting error";
4215 active_objs += cachep->num;
4216 active_slabs++;
4217 }
4218 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4219 if (slabp->inuse == cachep->num && !error)
4220 error = "slabs_partial inuse accounting error";
4221 if (!slabp->inuse && !error)
4222 error = "slabs_partial/inuse accounting error";
4223 active_objs += slabp->inuse;
4224 active_slabs++;
4225 }
4226 list_for_each_entry(slabp, &l3->slabs_free, list) {
4227 if (slabp->inuse && !error)
4228 error = "slabs_free/inuse accounting error";
4229 num_slabs++;
4230 }
4231 free_objects += l3->free_objects;
4232 if (l3->shared)
4233 shared_avail += l3->shared->avail;
4234
4235 spin_unlock_irq(&l3->list_lock);
4236 }
4237 num_slabs += active_slabs;
4238 num_objs = num_slabs * cachep->num;
4239 if (num_objs - active_objs != free_objects && !error)
4240 error = "free_objects accounting error";
4241
4242 name = cachep->name;
4243 if (error)
4244 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4245
4246 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4247 name, active_objs, num_objs, cachep->buffer_size,
4248 cachep->num, (1 << cachep->gfporder));
4249 seq_printf(m, " : tunables %4u %4u %4u",
4250 cachep->limit, cachep->batchcount, cachep->shared);
4251 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4252 active_slabs, num_slabs, shared_avail);
4253 #if STATS
4254 { /* list3 stats */
4255 unsigned long high = cachep->high_mark;
4256 unsigned long allocs = cachep->num_allocations;
4257 unsigned long grown = cachep->grown;
4258 unsigned long reaped = cachep->reaped;
4259 unsigned long errors = cachep->errors;
4260 unsigned long max_freeable = cachep->max_freeable;
4261 unsigned long node_allocs = cachep->node_allocs;
4262 unsigned long node_frees = cachep->node_frees;
4263 unsigned long overflows = cachep->node_overflow;
4264
4265 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4266 "%4lu %4lu %4lu %4lu %4lu",
4267 allocs, high, grown,
4268 reaped, errors, max_freeable, node_allocs,
4269 node_frees, overflows);
4270 }
4271 /* cpu stats */
4272 {
4273 unsigned long allochit = atomic_read(&cachep->allochit);
4274 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4275 unsigned long freehit = atomic_read(&cachep->freehit);
4276 unsigned long freemiss = atomic_read(&cachep->freemiss);
4277
4278 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4279 allochit, allocmiss, freehit, freemiss);
4280 }
4281 #endif
4282 seq_putc(m, '\n');
4283 return 0;
4284 }
4285
4286 /*
4287 * slabinfo_op - iterator that generates /proc/slabinfo
4288 *
4289 * Output layout:
4290 * cache-name
4291 * num-active-objs
4292 * total-objs
4293 * object size
4294 * num-active-slabs
4295 * total-slabs
4296 * num-pages-per-slab
4297 * + further values on SMP and with statistics enabled
4298 */
4299
4300 static const struct seq_operations slabinfo_op = {
4301 .start = s_start,
4302 .next = s_next,
4303 .stop = s_stop,
4304 .show = s_show,
4305 };
4306
4307 #define MAX_SLABINFO_WRITE 128
4308 /**
4309 * slabinfo_write - Tuning for the slab allocator
4310 * @file: unused
4311 * @buffer: user buffer
4312 * @count: data length
4313 * @ppos: unused
4314 */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4315 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4316 size_t count, loff_t *ppos)
4317 {
4318 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4319 int limit, batchcount, shared, res;
4320 struct kmem_cache *cachep;
4321
4322 if (count > MAX_SLABINFO_WRITE)
4323 return -EINVAL;
4324 if (copy_from_user(&kbuf, buffer, count))
4325 return -EFAULT;
4326 kbuf[MAX_SLABINFO_WRITE] = '\0';
4327
4328 tmp = strchr(kbuf, ' ');
4329 if (!tmp)
4330 return -EINVAL;
4331 *tmp = '\0';
4332 tmp++;
4333 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4334 return -EINVAL;
4335
4336 /* Find the cache in the chain of caches. */
4337 mutex_lock(&cache_chain_mutex);
4338 res = -EINVAL;
4339 list_for_each_entry(cachep, &cache_chain, next) {
4340 if (!strcmp(cachep->name, kbuf)) {
4341 if (limit < 1 || batchcount < 1 ||
4342 batchcount > limit || shared < 0) {
4343 res = 0;
4344 } else {
4345 res = do_tune_cpucache(cachep, limit,
4346 batchcount, shared,
4347 GFP_KERNEL);
4348 }
4349 break;
4350 }
4351 }
4352 mutex_unlock(&cache_chain_mutex);
4353 if (res >= 0)
4354 res = count;
4355 return res;
4356 }
4357
slabinfo_open(struct inode * inode,struct file * file)4358 static int slabinfo_open(struct inode *inode, struct file *file)
4359 {
4360 return seq_open(file, &slabinfo_op);
4361 }
4362
4363 static const struct file_operations proc_slabinfo_operations = {
4364 .open = slabinfo_open,
4365 .read = seq_read,
4366 .write = slabinfo_write,
4367 .llseek = seq_lseek,
4368 .release = seq_release,
4369 };
4370
4371 #ifdef CONFIG_DEBUG_SLAB_LEAK
4372
leaks_start(struct seq_file * m,loff_t * pos)4373 static void *leaks_start(struct seq_file *m, loff_t *pos)
4374 {
4375 mutex_lock(&cache_chain_mutex);
4376 return seq_list_start(&cache_chain, *pos);
4377 }
4378
add_caller(unsigned long * n,unsigned long v)4379 static inline int add_caller(unsigned long *n, unsigned long v)
4380 {
4381 unsigned long *p;
4382 int l;
4383 if (!v)
4384 return 1;
4385 l = n[1];
4386 p = n + 2;
4387 while (l) {
4388 int i = l/2;
4389 unsigned long *q = p + 2 * i;
4390 if (*q == v) {
4391 q[1]++;
4392 return 1;
4393 }
4394 if (*q > v) {
4395 l = i;
4396 } else {
4397 p = q + 2;
4398 l -= i + 1;
4399 }
4400 }
4401 if (++n[1] == n[0])
4402 return 0;
4403 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4404 p[0] = v;
4405 p[1] = 1;
4406 return 1;
4407 }
4408
handle_slab(unsigned long * n,struct kmem_cache * c,struct slab * s)4409 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4410 {
4411 void *p;
4412 int i;
4413 if (n[0] == n[1])
4414 return;
4415 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4416 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4417 continue;
4418 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4419 return;
4420 }
4421 }
4422
show_symbol(struct seq_file * m,unsigned long address)4423 static void show_symbol(struct seq_file *m, unsigned long address)
4424 {
4425 #ifdef CONFIG_KALLSYMS
4426 unsigned long offset, size;
4427 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4428
4429 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4430 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4431 if (modname[0])
4432 seq_printf(m, " [%s]", modname);
4433 return;
4434 }
4435 #endif
4436 seq_printf(m, "%p", (void *)address);
4437 }
4438
leaks_show(struct seq_file * m,void * p)4439 static int leaks_show(struct seq_file *m, void *p)
4440 {
4441 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4442 struct slab *slabp;
4443 struct kmem_list3 *l3;
4444 const char *name;
4445 unsigned long *n = m->private;
4446 int node;
4447 int i;
4448
4449 if (!(cachep->flags & SLAB_STORE_USER))
4450 return 0;
4451 if (!(cachep->flags & SLAB_RED_ZONE))
4452 return 0;
4453
4454 /* OK, we can do it */
4455
4456 n[1] = 0;
4457
4458 for_each_online_node(node) {
4459 l3 = cachep->nodelists[node];
4460 if (!l3)
4461 continue;
4462
4463 check_irq_on();
4464 spin_lock_irq(&l3->list_lock);
4465
4466 list_for_each_entry(slabp, &l3->slabs_full, list)
4467 handle_slab(n, cachep, slabp);
4468 list_for_each_entry(slabp, &l3->slabs_partial, list)
4469 handle_slab(n, cachep, slabp);
4470 spin_unlock_irq(&l3->list_lock);
4471 }
4472 name = cachep->name;
4473 if (n[0] == n[1]) {
4474 /* Increase the buffer size */
4475 mutex_unlock(&cache_chain_mutex);
4476 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4477 if (!m->private) {
4478 /* Too bad, we are really out */
4479 m->private = n;
4480 mutex_lock(&cache_chain_mutex);
4481 return -ENOMEM;
4482 }
4483 *(unsigned long *)m->private = n[0] * 2;
4484 kfree(n);
4485 mutex_lock(&cache_chain_mutex);
4486 /* Now make sure this entry will be retried */
4487 m->count = m->size;
4488 return 0;
4489 }
4490 for (i = 0; i < n[1]; i++) {
4491 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4492 show_symbol(m, n[2*i+2]);
4493 seq_putc(m, '\n');
4494 }
4495
4496 return 0;
4497 }
4498
4499 static const struct seq_operations slabstats_op = {
4500 .start = leaks_start,
4501 .next = s_next,
4502 .stop = s_stop,
4503 .show = leaks_show,
4504 };
4505
slabstats_open(struct inode * inode,struct file * file)4506 static int slabstats_open(struct inode *inode, struct file *file)
4507 {
4508 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4509 int ret = -ENOMEM;
4510 if (n) {
4511 ret = seq_open(file, &slabstats_op);
4512 if (!ret) {
4513 struct seq_file *m = file->private_data;
4514 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4515 m->private = n;
4516 n = NULL;
4517 }
4518 kfree(n);
4519 }
4520 return ret;
4521 }
4522
4523 static const struct file_operations proc_slabstats_operations = {
4524 .open = slabstats_open,
4525 .read = seq_read,
4526 .llseek = seq_lseek,
4527 .release = seq_release_private,
4528 };
4529 #endif
4530
slab_proc_init(void)4531 static int __init slab_proc_init(void)
4532 {
4533 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4534 #ifdef CONFIG_DEBUG_SLAB_LEAK
4535 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4536 #endif
4537 return 0;
4538 }
4539 module_init(slab_proc_init);
4540 #endif
4541
4542 /**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
ksize(const void * objp)4554 size_t ksize(const void *objp)
4555 {
4556 BUG_ON(!objp);
4557 if (unlikely(objp == ZERO_SIZE_PTR))
4558 return 0;
4559
4560 return obj_size(virt_to_cache(objp));
4561 }
4562 EXPORT_SYMBOL(ksize);
4563