1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109
110 #include "internal.h"
111
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118
119 /* Highest zone. An specific allocation for a zone below that is not
120 policied. */
121 enum zone_type policy_zone = 0;
122
123 /*
124 * run-time system-wide default policy => local allocation
125 */
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
128 .mode = MPOL_LOCAL,
129 };
130
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132
133 /**
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
136 *
137 * Lookup the next closest node by distance if @nid is not online.
138 *
139 * Return: this @node if it is online, otherwise the closest node by distance
140 */
numa_map_to_online_node(int node)141 int numa_map_to_online_node(int node)
142 {
143 int min_dist = INT_MAX, dist, n, min_node;
144
145 if (node == NUMA_NO_NODE || node_online(node))
146 return node;
147
148 min_node = node;
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
152 min_dist = dist;
153 min_node = n;
154 }
155 }
156
157 return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160
get_task_policy(struct task_struct * p)161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 struct mempolicy *pol = p->mempolicy;
164 int node;
165
166 if (pol)
167 return pol;
168
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
173 if (pol->mode)
174 return pol;
175 }
176
177 return &default_policy;
178 }
179
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184
mpol_store_user_nodemask(const struct mempolicy * pol)185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 return pol->flags & MPOL_MODE_FLAGS;
188 }
189
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
192 {
193 nodemask_t tmp;
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
196 }
197
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 if (nodes_empty(*nodes))
201 return -EINVAL;
202 pol->nodes = *nodes;
203 return 0;
204 }
205
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 if (nodes_empty(*nodes))
209 return -EINVAL;
210
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
213 return 0;
214 }
215
216 /*
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
220 *
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
223 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 int ret;
228
229 /*
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
232 * constructor.
233 */
234 if (!pol || pol->mode == MPOL_LOCAL)
235 return 0;
236
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 else
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
247
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
250 else
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 return ret;
255 }
256
257 /*
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
260 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
263 {
264 struct mempolicy *policy;
265
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
273 }
274 VM_BUG_ON(!nodes);
275
276 /*
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
280 */
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
286
287 mode = MPOL_LOCAL;
288 }
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 if (!policy)
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
300 policy->mode = mode;
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
303
304 return policy;
305 }
306
307 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)308 void __mpol_put(struct mempolicy *p)
309 {
310 if (!atomic_dec_and_test(&p->refcnt))
311 return;
312 kmem_cache_free(policy_cache, p);
313 }
314
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 else {
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 *nodes);
330 pol->w.cpuset_mems_allowed = *nodes;
331 }
332
333 if (nodes_empty(tmp))
334 tmp = *nodes;
335
336 pol->nodes = tmp;
337 }
338
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
341 {
342 pol->w.cpuset_mems_allowed = *nodes;
343 }
344
345 /*
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
347 *
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
351 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 if (!pol || pol->mode == MPOL_LOCAL)
355 return;
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 return;
359
360 mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362
363 /*
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
366 *
367 * Called with task's alloc_lock held.
368 */
369
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 mpol_rebind_policy(tsk->mempolicy, new);
373 }
374
375 /*
376 * Rebind each vma in mm to new nodemask.
377 *
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
379 */
380
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
385
386 mmap_write_lock(mm);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
390 }
391
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 [MPOL_DEFAULT] = {
394 .rebind = mpol_rebind_default,
395 },
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
399 },
400 [MPOL_PREFERRED] = {
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
403 },
404 [MPOL_BIND] = {
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
407 },
408 [MPOL_LOCAL] = {
409 .rebind = mpol_rebind_default,
410 },
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
414 },
415 };
416
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 unsigned long flags);
419
420 struct queue_pages {
421 struct list_head *pagelist;
422 unsigned long flags;
423 nodemask_t *nmask;
424 unsigned long start;
425 unsigned long end;
426 struct vm_area_struct *first;
427 };
428
429 /*
430 * Check if the page's nid is in qp->nmask.
431 *
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
434 */
queue_pages_required(struct page * page,struct queue_pages * qp)435 static inline bool queue_pages_required(struct page *page,
436 struct queue_pages *qp)
437 {
438 int nid = page_to_nid(page);
439 unsigned long flags = qp->flags;
440
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443
444 /*
445 * queue_pages_pmd() has three possible return values:
446 * 0 - pages are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449 * specified.
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing page was already on a node that does not follow the
452 * policy.
453 */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
456 __releases(ptl)
457 {
458 int ret = 0;
459 struct page *page;
460 struct queue_pages *qp = walk->private;
461 unsigned long flags;
462
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
464 ret = -EIO;
465 goto unlock;
466 }
467 page = pmd_page(*pmd);
468 if (is_huge_zero_page(page)) {
469 walk->action = ACTION_CONTINUE;
470 goto unlock;
471 }
472 if (!queue_pages_required(page, qp))
473 goto unlock;
474
475 flags = qp->flags;
476 /* go to thp migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_page_add(page, qp->pagelist, flags)) {
480 ret = 1;
481 goto unlock;
482 }
483 } else
484 ret = -EIO;
485 unlock:
486 spin_unlock(ptl);
487 return ret;
488 }
489
490 /*
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
493 *
494 * queue_pages_pte_range() has three possible return values:
495 * 0 - pages are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498 * specified.
499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500 * on a node that does not follow the policy.
501 */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
504 {
505 struct vm_area_struct *vma = walk->vma;
506 struct page *page;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
511 spinlock_t *ptl;
512
513 ptl = pmd_trans_huge_lock(pmd, vma);
514 if (ptl)
515 return queue_pages_pmd(pmd, ptl, addr, end, walk);
516
517 if (pmd_trans_unstable(pmd))
518 return 0;
519
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
523 continue;
524 page = vm_normal_page(vma, addr, *pte);
525 if (!page || is_zone_device_page(page))
526 continue;
527 /*
528 * vm_normal_page() filters out zero pages, but there might
529 * still be PageReserved pages to skip, perhaps in a VDSO.
530 */
531 if (PageReserved(page))
532 continue;
533 if (!queue_pages_required(page, qp))
534 continue;
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
539 break;
540 }
541
542 /*
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
546 */
547 if (migrate_page_add(page, qp->pagelist, flags))
548 has_unmovable = true;
549 } else
550 break;
551 }
552 pte_unmap_unlock(mapped_pte, ptl);
553 cond_resched();
554
555 if (has_unmovable)
556 return 1;
557
558 return addr != end ? -EIO : 0;
559 }
560
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
564 {
565 int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 struct page *page;
570 spinlock_t *ptl;
571 pte_t entry;
572
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
576 goto unlock;
577 page = pte_page(entry);
578 if (!queue_pages_required(page, qp))
579 goto unlock;
580
581 if (flags == MPOL_MF_STRICT) {
582 /*
583 * STRICT alone means only detecting misplaced page and no
584 * need to further check other vma.
585 */
586 ret = -EIO;
587 goto unlock;
588 }
589
590 if (!vma_migratable(walk->vma)) {
591 /*
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced page but allow migrating pages which
595 * have been queued.
596 */
597 ret = 1;
598 goto unlock;
599 }
600
601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 if (flags & (MPOL_MF_MOVE_ALL) ||
603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 if (isolate_hugetlb(page, qp->pagelist) &&
605 (flags & MPOL_MF_STRICT))
606 /*
607 * Failed to isolate page but allow migrating pages
608 * which have been queued.
609 */
610 ret = 1;
611 }
612 unlock:
613 spin_unlock(ptl);
614 #else
615 BUG();
616 #endif
617 return ret;
618 }
619
620 #ifdef CONFIG_NUMA_BALANCING
621 /*
622 * This is used to mark a range of virtual addresses to be inaccessible.
623 * These are later cleared by a NUMA hinting fault. Depending on these
624 * faults, pages may be migrated for better NUMA placement.
625 *
626 * This is assuming that NUMA faults are handled using PROT_NONE. If
627 * an architecture makes a different choice, it will need further
628 * changes to the core.
629 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
632 {
633 struct mmu_gather tlb;
634 int nr_updated;
635
636 tlb_gather_mmu(&tlb, vma->vm_mm);
637
638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
639 MM_CP_PROT_NUMA);
640 if (nr_updated)
641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642
643 tlb_finish_mmu(&tlb);
644
645 return nr_updated;
646 }
647 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 unsigned long addr, unsigned long end)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 struct mm_walk *walk)
657 {
658 struct vm_area_struct *next, *vma = walk->vma;
659 struct queue_pages *qp = walk->private;
660 unsigned long endvma = vma->vm_end;
661 unsigned long flags = qp->flags;
662
663 /* range check first */
664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665
666 if (!qp->first) {
667 qp->first = vma;
668 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 (qp->start < vma->vm_start))
670 /* hole at head side of range */
671 return -EFAULT;
672 }
673 next = find_vma(vma->vm_mm, vma->vm_end);
674 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 ((vma->vm_end < qp->end) &&
676 (!next || vma->vm_end < next->vm_start)))
677 /* hole at middle or tail of range */
678 return -EFAULT;
679
680 /*
681 * Need check MPOL_MF_STRICT to return -EIO if possible
682 * regardless of vma_migratable
683 */
684 if (!vma_migratable(vma) &&
685 !(flags & MPOL_MF_STRICT))
686 return 1;
687
688 if (endvma > end)
689 endvma = end;
690
691 if (flags & MPOL_MF_LAZY) {
692 /* Similar to task_numa_work, skip inaccessible VMAs */
693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 !(vma->vm_flags & VM_MIXEDMAP))
695 change_prot_numa(vma, start, endvma);
696 return 1;
697 }
698
699 /* queue pages from current vma */
700 if (flags & MPOL_MF_VALID)
701 return 0;
702 return 1;
703 }
704
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 .hugetlb_entry = queue_pages_hugetlb,
707 .pmd_entry = queue_pages_pte_range,
708 .test_walk = queue_pages_test_walk,
709 };
710
711 /*
712 * Walk through page tables and collect pages to be migrated.
713 *
714 * If pages found in a given range are on a set of nodes (determined by
715 * @nodes and @flags,) it's isolated and queued to the pagelist which is
716 * passed via @private.
717 *
718 * queue_pages_range() has three possible return values:
719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
720 * specified.
721 * 0 - queue pages successfully or no misplaced page.
722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723 * memory range specified by nodemask and maxnode points outside
724 * your accessible address space (-EFAULT)
725 */
726 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 nodemask_t *nodes, unsigned long flags,
729 struct list_head *pagelist)
730 {
731 int err;
732 struct queue_pages qp = {
733 .pagelist = pagelist,
734 .flags = flags,
735 .nmask = nodes,
736 .start = start,
737 .end = end,
738 .first = NULL,
739 };
740
741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
742
743 if (!qp.first)
744 /* whole range in hole */
745 err = -EFAULT;
746
747 return err;
748 }
749
750 /*
751 * Apply policy to a single VMA
752 * This must be called with the mmap_lock held for writing.
753 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)754 static int vma_replace_policy(struct vm_area_struct *vma,
755 struct mempolicy *pol)
756 {
757 int err;
758 struct mempolicy *old;
759 struct mempolicy *new;
760
761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 vma->vm_ops, vma->vm_file,
764 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
765
766 new = mpol_dup(pol);
767 if (IS_ERR(new))
768 return PTR_ERR(new);
769
770 if (vma->vm_ops && vma->vm_ops->set_policy) {
771 err = vma->vm_ops->set_policy(vma, new);
772 if (err)
773 goto err_out;
774 }
775
776 old = vma->vm_policy;
777 vma->vm_policy = new; /* protected by mmap_lock */
778 mpol_put(old);
779
780 return 0;
781 err_out:
782 mpol_put(new);
783 return err;
784 }
785
786 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 unsigned long end, struct mempolicy *new_pol)
789 {
790 MA_STATE(mas, &mm->mm_mt, start, start);
791 struct vm_area_struct *prev;
792 struct vm_area_struct *vma;
793 int err = 0;
794 pgoff_t pgoff;
795
796 prev = mas_prev(&mas, 0);
797 if (unlikely(!prev))
798 mas_set(&mas, start);
799
800 vma = mas_find(&mas, end - 1);
801 if (WARN_ON(!vma))
802 return 0;
803
804 if (start > vma->vm_start)
805 prev = vma;
806
807 for (; vma; vma = mas_next(&mas, end - 1)) {
808 unsigned long vmstart = max(start, vma->vm_start);
809 unsigned long vmend = min(end, vma->vm_end);
810
811 if (mpol_equal(vma_policy(vma), new_pol))
812 goto next;
813
814 pgoff = vma->vm_pgoff +
815 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
816 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
817 vma->anon_vma, vma->vm_file, pgoff,
818 new_pol, vma->vm_userfaultfd_ctx,
819 anon_vma_name(vma));
820 if (prev) {
821 /* vma_merge() invalidated the mas */
822 mas_pause(&mas);
823 vma = prev;
824 goto replace;
825 }
826 if (vma->vm_start != vmstart) {
827 err = split_vma(vma->vm_mm, vma, vmstart, 1);
828 if (err)
829 goto out;
830 /* split_vma() invalidated the mas */
831 mas_pause(&mas);
832 }
833 if (vma->vm_end != vmend) {
834 err = split_vma(vma->vm_mm, vma, vmend, 0);
835 if (err)
836 goto out;
837 /* split_vma() invalidated the mas */
838 mas_pause(&mas);
839 }
840 replace:
841 err = vma_replace_policy(vma, new_pol);
842 if (err)
843 goto out;
844 next:
845 prev = vma;
846 }
847
848 out:
849 return err;
850 }
851
852 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)853 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
854 nodemask_t *nodes)
855 {
856 struct mempolicy *new, *old;
857 NODEMASK_SCRATCH(scratch);
858 int ret;
859
860 if (!scratch)
861 return -ENOMEM;
862
863 new = mpol_new(mode, flags, nodes);
864 if (IS_ERR(new)) {
865 ret = PTR_ERR(new);
866 goto out;
867 }
868
869 task_lock(current);
870 ret = mpol_set_nodemask(new, nodes, scratch);
871 if (ret) {
872 task_unlock(current);
873 mpol_put(new);
874 goto out;
875 }
876
877 old = current->mempolicy;
878 current->mempolicy = new;
879 if (new && new->mode == MPOL_INTERLEAVE)
880 current->il_prev = MAX_NUMNODES-1;
881 task_unlock(current);
882 mpol_put(old);
883 ret = 0;
884 out:
885 NODEMASK_SCRATCH_FREE(scratch);
886 return ret;
887 }
888
889 /*
890 * Return nodemask for policy for get_mempolicy() query
891 *
892 * Called with task's alloc_lock held
893 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)894 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
895 {
896 nodes_clear(*nodes);
897 if (p == &default_policy)
898 return;
899
900 switch (p->mode) {
901 case MPOL_BIND:
902 case MPOL_INTERLEAVE:
903 case MPOL_PREFERRED:
904 case MPOL_PREFERRED_MANY:
905 *nodes = p->nodes;
906 break;
907 case MPOL_LOCAL:
908 /* return empty node mask for local allocation */
909 break;
910 default:
911 BUG();
912 }
913 }
914
lookup_node(struct mm_struct * mm,unsigned long addr)915 static int lookup_node(struct mm_struct *mm, unsigned long addr)
916 {
917 struct page *p = NULL;
918 int ret;
919
920 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
921 if (ret > 0) {
922 ret = page_to_nid(p);
923 put_page(p);
924 }
925 return ret;
926 }
927
928 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)929 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
930 unsigned long addr, unsigned long flags)
931 {
932 int err;
933 struct mm_struct *mm = current->mm;
934 struct vm_area_struct *vma = NULL;
935 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
936
937 if (flags &
938 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
939 return -EINVAL;
940
941 if (flags & MPOL_F_MEMS_ALLOWED) {
942 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
943 return -EINVAL;
944 *policy = 0; /* just so it's initialized */
945 task_lock(current);
946 *nmask = cpuset_current_mems_allowed;
947 task_unlock(current);
948 return 0;
949 }
950
951 if (flags & MPOL_F_ADDR) {
952 /*
953 * Do NOT fall back to task policy if the
954 * vma/shared policy at addr is NULL. We
955 * want to return MPOL_DEFAULT in this case.
956 */
957 mmap_read_lock(mm);
958 vma = vma_lookup(mm, addr);
959 if (!vma) {
960 mmap_read_unlock(mm);
961 return -EFAULT;
962 }
963 if (vma->vm_ops && vma->vm_ops->get_policy)
964 pol = vma->vm_ops->get_policy(vma, addr);
965 else
966 pol = vma->vm_policy;
967 } else if (addr)
968 return -EINVAL;
969
970 if (!pol)
971 pol = &default_policy; /* indicates default behavior */
972
973 if (flags & MPOL_F_NODE) {
974 if (flags & MPOL_F_ADDR) {
975 /*
976 * Take a refcount on the mpol, because we are about to
977 * drop the mmap_lock, after which only "pol" remains
978 * valid, "vma" is stale.
979 */
980 pol_refcount = pol;
981 vma = NULL;
982 mpol_get(pol);
983 mmap_read_unlock(mm);
984 err = lookup_node(mm, addr);
985 if (err < 0)
986 goto out;
987 *policy = err;
988 } else if (pol == current->mempolicy &&
989 pol->mode == MPOL_INTERLEAVE) {
990 *policy = next_node_in(current->il_prev, pol->nodes);
991 } else {
992 err = -EINVAL;
993 goto out;
994 }
995 } else {
996 *policy = pol == &default_policy ? MPOL_DEFAULT :
997 pol->mode;
998 /*
999 * Internal mempolicy flags must be masked off before exposing
1000 * the policy to userspace.
1001 */
1002 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1003 }
1004
1005 err = 0;
1006 if (nmask) {
1007 if (mpol_store_user_nodemask(pol)) {
1008 *nmask = pol->w.user_nodemask;
1009 } else {
1010 task_lock(current);
1011 get_policy_nodemask(pol, nmask);
1012 task_unlock(current);
1013 }
1014 }
1015
1016 out:
1017 mpol_cond_put(pol);
1018 if (vma)
1019 mmap_read_unlock(mm);
1020 if (pol_refcount)
1021 mpol_put(pol_refcount);
1022 return err;
1023 }
1024
1025 #ifdef CONFIG_MIGRATION
1026 /*
1027 * page migration, thp tail pages can be passed.
1028 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1029 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1030 unsigned long flags)
1031 {
1032 struct page *head = compound_head(page);
1033 /*
1034 * Avoid migrating a page that is shared with others.
1035 */
1036 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1037 if (!isolate_lru_page(head)) {
1038 list_add_tail(&head->lru, pagelist);
1039 mod_node_page_state(page_pgdat(head),
1040 NR_ISOLATED_ANON + page_is_file_lru(head),
1041 thp_nr_pages(head));
1042 } else if (flags & MPOL_MF_STRICT) {
1043 /*
1044 * Non-movable page may reach here. And, there may be
1045 * temporary off LRU pages or non-LRU movable pages.
1046 * Treat them as unmovable pages since they can't be
1047 * isolated, so they can't be moved at the moment. It
1048 * should return -EIO for this case too.
1049 */
1050 return -EIO;
1051 }
1052 }
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * Migrate pages from one node to a target node.
1059 * Returns error or the number of pages not migrated.
1060 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1061 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1062 int flags)
1063 {
1064 nodemask_t nmask;
1065 struct vm_area_struct *vma;
1066 LIST_HEAD(pagelist);
1067 int err = 0;
1068 struct migration_target_control mtc = {
1069 .nid = dest,
1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 };
1072
1073 nodes_clear(nmask);
1074 node_set(source, nmask);
1075
1076 /*
1077 * This does not "check" the range but isolates all pages that
1078 * need migration. Between passing in the full user address
1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1080 */
1081 vma = find_vma(mm, 0);
1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1083 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1085
1086 if (!list_empty(&pagelist)) {
1087 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1088 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1089 if (err)
1090 putback_movable_pages(&pagelist);
1091 }
1092
1093 return err;
1094 }
1095
1096 /*
1097 * Move pages between the two nodesets so as to preserve the physical
1098 * layout as much as possible.
1099 *
1100 * Returns the number of page that could not be moved.
1101 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1103 const nodemask_t *to, int flags)
1104 {
1105 int busy = 0;
1106 int err = 0;
1107 nodemask_t tmp;
1108
1109 lru_cache_disable();
1110
1111 mmap_read_lock(mm);
1112
1113 /*
1114 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1115 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1116 * bit in 'tmp', and return that <source, dest> pair for migration.
1117 * The pair of nodemasks 'to' and 'from' define the map.
1118 *
1119 * If no pair of bits is found that way, fallback to picking some
1120 * pair of 'source' and 'dest' bits that are not the same. If the
1121 * 'source' and 'dest' bits are the same, this represents a node
1122 * that will be migrating to itself, so no pages need move.
1123 *
1124 * If no bits are left in 'tmp', or if all remaining bits left
1125 * in 'tmp' correspond to the same bit in 'to', return false
1126 * (nothing left to migrate).
1127 *
1128 * This lets us pick a pair of nodes to migrate between, such that
1129 * if possible the dest node is not already occupied by some other
1130 * source node, minimizing the risk of overloading the memory on a
1131 * node that would happen if we migrated incoming memory to a node
1132 * before migrating outgoing memory source that same node.
1133 *
1134 * A single scan of tmp is sufficient. As we go, we remember the
1135 * most recent <s, d> pair that moved (s != d). If we find a pair
1136 * that not only moved, but what's better, moved to an empty slot
1137 * (d is not set in tmp), then we break out then, with that pair.
1138 * Otherwise when we finish scanning from_tmp, we at least have the
1139 * most recent <s, d> pair that moved. If we get all the way through
1140 * the scan of tmp without finding any node that moved, much less
1141 * moved to an empty node, then there is nothing left worth migrating.
1142 */
1143
1144 tmp = *from;
1145 while (!nodes_empty(tmp)) {
1146 int s, d;
1147 int source = NUMA_NO_NODE;
1148 int dest = 0;
1149
1150 for_each_node_mask(s, tmp) {
1151
1152 /*
1153 * do_migrate_pages() tries to maintain the relative
1154 * node relationship of the pages established between
1155 * threads and memory areas.
1156 *
1157 * However if the number of source nodes is not equal to
1158 * the number of destination nodes we can not preserve
1159 * this node relative relationship. In that case, skip
1160 * copying memory from a node that is in the destination
1161 * mask.
1162 *
1163 * Example: [2,3,4] -> [3,4,5] moves everything.
1164 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1165 */
1166
1167 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1168 (node_isset(s, *to)))
1169 continue;
1170
1171 d = node_remap(s, *from, *to);
1172 if (s == d)
1173 continue;
1174
1175 source = s; /* Node moved. Memorize */
1176 dest = d;
1177
1178 /* dest not in remaining from nodes? */
1179 if (!node_isset(dest, tmp))
1180 break;
1181 }
1182 if (source == NUMA_NO_NODE)
1183 break;
1184
1185 node_clear(source, tmp);
1186 err = migrate_to_node(mm, source, dest, flags);
1187 if (err > 0)
1188 busy += err;
1189 if (err < 0)
1190 break;
1191 }
1192 mmap_read_unlock(mm);
1193
1194 lru_cache_enable();
1195 if (err < 0)
1196 return err;
1197 return busy;
1198
1199 }
1200
1201 /*
1202 * Allocate a new page for page migration based on vma policy.
1203 * Start by assuming the page is mapped by the same vma as contains @start.
1204 * Search forward from there, if not. N.B., this assumes that the
1205 * list of pages handed to migrate_pages()--which is how we get here--
1206 * is in virtual address order.
1207 */
new_page(struct page * page,unsigned long start)1208 static struct page *new_page(struct page *page, unsigned long start)
1209 {
1210 struct folio *dst, *src = page_folio(page);
1211 struct vm_area_struct *vma;
1212 unsigned long address;
1213 VMA_ITERATOR(vmi, current->mm, start);
1214 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1215
1216 for_each_vma(vmi, vma) {
1217 address = page_address_in_vma(page, vma);
1218 if (address != -EFAULT)
1219 break;
1220 }
1221
1222 if (folio_test_hugetlb(src))
1223 return alloc_huge_page_vma(page_hstate(&src->page),
1224 vma, address);
1225
1226 if (folio_test_large(src))
1227 gfp = GFP_TRANSHUGE;
1228
1229 /*
1230 * if !vma, vma_alloc_folio() will use task or system default policy
1231 */
1232 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1233 folio_test_large(src));
1234 return &dst->page;
1235 }
1236 #else
1237
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1238 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1239 unsigned long flags)
1240 {
1241 return -EIO;
1242 }
1243
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1245 const nodemask_t *to, int flags)
1246 {
1247 return -ENOSYS;
1248 }
1249
new_page(struct page * page,unsigned long start)1250 static struct page *new_page(struct page *page, unsigned long start)
1251 {
1252 return NULL;
1253 }
1254 #endif
1255
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1256 static long do_mbind(unsigned long start, unsigned long len,
1257 unsigned short mode, unsigned short mode_flags,
1258 nodemask_t *nmask, unsigned long flags)
1259 {
1260 struct mm_struct *mm = current->mm;
1261 struct mempolicy *new;
1262 unsigned long end;
1263 int err;
1264 int ret;
1265 LIST_HEAD(pagelist);
1266
1267 if (flags & ~(unsigned long)MPOL_MF_VALID)
1268 return -EINVAL;
1269 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1270 return -EPERM;
1271
1272 if (start & ~PAGE_MASK)
1273 return -EINVAL;
1274
1275 if (mode == MPOL_DEFAULT)
1276 flags &= ~MPOL_MF_STRICT;
1277
1278 len = PAGE_ALIGN(len);
1279 end = start + len;
1280
1281 if (end < start)
1282 return -EINVAL;
1283 if (end == start)
1284 return 0;
1285
1286 new = mpol_new(mode, mode_flags, nmask);
1287 if (IS_ERR(new))
1288 return PTR_ERR(new);
1289
1290 if (flags & MPOL_MF_LAZY)
1291 new->flags |= MPOL_F_MOF;
1292
1293 /*
1294 * If we are using the default policy then operation
1295 * on discontinuous address spaces is okay after all
1296 */
1297 if (!new)
1298 flags |= MPOL_MF_DISCONTIG_OK;
1299
1300 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1301 start, start + len, mode, mode_flags,
1302 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1303
1304 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1305
1306 lru_cache_disable();
1307 }
1308 {
1309 NODEMASK_SCRATCH(scratch);
1310 if (scratch) {
1311 mmap_write_lock(mm);
1312 err = mpol_set_nodemask(new, nmask, scratch);
1313 if (err)
1314 mmap_write_unlock(mm);
1315 } else
1316 err = -ENOMEM;
1317 NODEMASK_SCRATCH_FREE(scratch);
1318 }
1319 if (err)
1320 goto mpol_out;
1321
1322 ret = queue_pages_range(mm, start, end, nmask,
1323 flags | MPOL_MF_INVERT, &pagelist);
1324
1325 if (ret < 0) {
1326 err = ret;
1327 goto up_out;
1328 }
1329
1330 err = mbind_range(mm, start, end, new);
1331
1332 if (!err) {
1333 int nr_failed = 0;
1334
1335 if (!list_empty(&pagelist)) {
1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1339 if (nr_failed)
1340 putback_movable_pages(&pagelist);
1341 }
1342
1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1344 err = -EIO;
1345 } else {
1346 up_out:
1347 if (!list_empty(&pagelist))
1348 putback_movable_pages(&pagelist);
1349 }
1350
1351 mmap_write_unlock(mm);
1352 mpol_out:
1353 mpol_put(new);
1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1355 lru_cache_enable();
1356 return err;
1357 }
1358
1359 /*
1360 * User space interface with variable sized bitmaps for nodelists.
1361 */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 unsigned long maxnode)
1364 {
1365 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1366 int ret;
1367
1368 if (in_compat_syscall())
1369 ret = compat_get_bitmap(mask,
1370 (const compat_ulong_t __user *)nmask,
1371 maxnode);
1372 else
1373 ret = copy_from_user(mask, nmask,
1374 nlongs * sizeof(unsigned long));
1375
1376 if (ret)
1377 return -EFAULT;
1378
1379 if (maxnode % BITS_PER_LONG)
1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1381
1382 return 0;
1383 }
1384
1385 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 unsigned long maxnode)
1388 {
1389 --maxnode;
1390 nodes_clear(*nodes);
1391 if (maxnode == 0 || !nmask)
1392 return 0;
1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1394 return -EINVAL;
1395
1396 /*
1397 * When the user specified more nodes than supported just check
1398 * if the non supported part is all zero, one word at a time,
1399 * starting at the end.
1400 */
1401 while (maxnode > MAX_NUMNODES) {
1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1403 unsigned long t;
1404
1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1406 return -EFAULT;
1407
1408 if (maxnode - bits >= MAX_NUMNODES) {
1409 maxnode -= bits;
1410 } else {
1411 maxnode = MAX_NUMNODES;
1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1413 }
1414 if (t)
1415 return -EINVAL;
1416 }
1417
1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1419 }
1420
1421 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1423 nodemask_t *nodes)
1424 {
1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 bool compat = in_compat_syscall();
1428
1429 if (compat)
1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1431
1432 if (copy > nbytes) {
1433 if (copy > PAGE_SIZE)
1434 return -EINVAL;
1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1436 return -EFAULT;
1437 copy = nbytes;
1438 maxnode = nr_node_ids;
1439 }
1440
1441 if (compat)
1442 return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 nodes_addr(*nodes), maxnode);
1444
1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1446 }
1447
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1450 {
1451 *flags = *mode & MPOL_MODE_FLAGS;
1452 *mode &= ~MPOL_MODE_FLAGS;
1453
1454 if ((unsigned int)(*mode) >= MPOL_MAX)
1455 return -EINVAL;
1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1457 return -EINVAL;
1458 if (*flags & MPOL_F_NUMA_BALANCING) {
1459 if (*mode != MPOL_BIND)
1460 return -EINVAL;
1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1462 }
1463 return 0;
1464 }
1465
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 unsigned long mode, const unsigned long __user *nmask,
1468 unsigned long maxnode, unsigned int flags)
1469 {
1470 unsigned short mode_flags;
1471 nodemask_t nodes;
1472 int lmode = mode;
1473 int err;
1474
1475 start = untagged_addr(start);
1476 err = sanitize_mpol_flags(&lmode, &mode_flags);
1477 if (err)
1478 return err;
1479
1480 err = get_nodes(&nodes, nmask, maxnode);
1481 if (err)
1482 return err;
1483
1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1485 }
1486
SYSCALL_DEFINE4(set_mempolicy_home_node,unsigned long,start,unsigned long,len,unsigned long,home_node,unsigned long,flags)1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 unsigned long, home_node, unsigned long, flags)
1489 {
1490 struct mm_struct *mm = current->mm;
1491 struct vm_area_struct *vma;
1492 struct mempolicy *new;
1493 unsigned long vmstart;
1494 unsigned long vmend;
1495 unsigned long end;
1496 int err = -ENOENT;
1497 VMA_ITERATOR(vmi, mm, start);
1498
1499 start = untagged_addr(start);
1500 if (start & ~PAGE_MASK)
1501 return -EINVAL;
1502 /*
1503 * flags is used for future extension if any.
1504 */
1505 if (flags != 0)
1506 return -EINVAL;
1507
1508 /*
1509 * Check home_node is online to avoid accessing uninitialized
1510 * NODE_DATA.
1511 */
1512 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513 return -EINVAL;
1514
1515 len = PAGE_ALIGN(len);
1516 end = start + len;
1517
1518 if (end < start)
1519 return -EINVAL;
1520 if (end == start)
1521 return 0;
1522 mmap_write_lock(mm);
1523 for_each_vma_range(vmi, vma, end) {
1524 vmstart = max(start, vma->vm_start);
1525 vmend = min(end, vma->vm_end);
1526 new = mpol_dup(vma_policy(vma));
1527 if (IS_ERR(new)) {
1528 err = PTR_ERR(new);
1529 break;
1530 }
1531 /*
1532 * Only update home node if there is an existing vma policy
1533 */
1534 if (!new)
1535 continue;
1536
1537 /*
1538 * If any vma in the range got policy other than MPOL_BIND
1539 * or MPOL_PREFERRED_MANY we return error. We don't reset
1540 * the home node for vmas we already updated before.
1541 */
1542 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1543 mpol_put(new);
1544 err = -EOPNOTSUPP;
1545 break;
1546 }
1547
1548 new->home_node = home_node;
1549 err = mbind_range(mm, vmstart, vmend, new);
1550 mpol_put(new);
1551 if (err)
1552 break;
1553 }
1554 mmap_write_unlock(mm);
1555 return err;
1556 }
1557
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1558 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1559 unsigned long, mode, const unsigned long __user *, nmask,
1560 unsigned long, maxnode, unsigned int, flags)
1561 {
1562 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1563 }
1564
1565 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1566 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1567 unsigned long maxnode)
1568 {
1569 unsigned short mode_flags;
1570 nodemask_t nodes;
1571 int lmode = mode;
1572 int err;
1573
1574 err = sanitize_mpol_flags(&lmode, &mode_flags);
1575 if (err)
1576 return err;
1577
1578 err = get_nodes(&nodes, nmask, maxnode);
1579 if (err)
1580 return err;
1581
1582 return do_set_mempolicy(lmode, mode_flags, &nodes);
1583 }
1584
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1585 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1586 unsigned long, maxnode)
1587 {
1588 return kernel_set_mempolicy(mode, nmask, maxnode);
1589 }
1590
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1591 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1592 const unsigned long __user *old_nodes,
1593 const unsigned long __user *new_nodes)
1594 {
1595 struct mm_struct *mm = NULL;
1596 struct task_struct *task;
1597 nodemask_t task_nodes;
1598 int err;
1599 nodemask_t *old;
1600 nodemask_t *new;
1601 NODEMASK_SCRATCH(scratch);
1602
1603 if (!scratch)
1604 return -ENOMEM;
1605
1606 old = &scratch->mask1;
1607 new = &scratch->mask2;
1608
1609 err = get_nodes(old, old_nodes, maxnode);
1610 if (err)
1611 goto out;
1612
1613 err = get_nodes(new, new_nodes, maxnode);
1614 if (err)
1615 goto out;
1616
1617 /* Find the mm_struct */
1618 rcu_read_lock();
1619 task = pid ? find_task_by_vpid(pid) : current;
1620 if (!task) {
1621 rcu_read_unlock();
1622 err = -ESRCH;
1623 goto out;
1624 }
1625 get_task_struct(task);
1626
1627 err = -EINVAL;
1628
1629 /*
1630 * Check if this process has the right to modify the specified process.
1631 * Use the regular "ptrace_may_access()" checks.
1632 */
1633 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1634 rcu_read_unlock();
1635 err = -EPERM;
1636 goto out_put;
1637 }
1638 rcu_read_unlock();
1639
1640 task_nodes = cpuset_mems_allowed(task);
1641 /* Is the user allowed to access the target nodes? */
1642 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1643 err = -EPERM;
1644 goto out_put;
1645 }
1646
1647 task_nodes = cpuset_mems_allowed(current);
1648 nodes_and(*new, *new, task_nodes);
1649 if (nodes_empty(*new))
1650 goto out_put;
1651
1652 err = security_task_movememory(task);
1653 if (err)
1654 goto out_put;
1655
1656 mm = get_task_mm(task);
1657 put_task_struct(task);
1658
1659 if (!mm) {
1660 err = -EINVAL;
1661 goto out;
1662 }
1663
1664 err = do_migrate_pages(mm, old, new,
1665 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1666
1667 mmput(mm);
1668 out:
1669 NODEMASK_SCRATCH_FREE(scratch);
1670
1671 return err;
1672
1673 out_put:
1674 put_task_struct(task);
1675 goto out;
1676
1677 }
1678
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1679 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1680 const unsigned long __user *, old_nodes,
1681 const unsigned long __user *, new_nodes)
1682 {
1683 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1684 }
1685
1686
1687 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1688 static int kernel_get_mempolicy(int __user *policy,
1689 unsigned long __user *nmask,
1690 unsigned long maxnode,
1691 unsigned long addr,
1692 unsigned long flags)
1693 {
1694 int err;
1695 int pval;
1696 nodemask_t nodes;
1697
1698 if (nmask != NULL && maxnode < nr_node_ids)
1699 return -EINVAL;
1700
1701 addr = untagged_addr(addr);
1702
1703 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1704
1705 if (err)
1706 return err;
1707
1708 if (policy && put_user(pval, policy))
1709 return -EFAULT;
1710
1711 if (nmask)
1712 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1713
1714 return err;
1715 }
1716
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1717 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1718 unsigned long __user *, nmask, unsigned long, maxnode,
1719 unsigned long, addr, unsigned long, flags)
1720 {
1721 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1722 }
1723
vma_migratable(struct vm_area_struct * vma)1724 bool vma_migratable(struct vm_area_struct *vma)
1725 {
1726 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1727 return false;
1728
1729 /*
1730 * DAX device mappings require predictable access latency, so avoid
1731 * incurring periodic faults.
1732 */
1733 if (vma_is_dax(vma))
1734 return false;
1735
1736 if (is_vm_hugetlb_page(vma) &&
1737 !hugepage_migration_supported(hstate_vma(vma)))
1738 return false;
1739
1740 /*
1741 * Migration allocates pages in the highest zone. If we cannot
1742 * do so then migration (at least from node to node) is not
1743 * possible.
1744 */
1745 if (vma->vm_file &&
1746 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1747 < policy_zone)
1748 return false;
1749 return true;
1750 }
1751
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1752 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1753 unsigned long addr)
1754 {
1755 struct mempolicy *pol = NULL;
1756
1757 if (vma) {
1758 if (vma->vm_ops && vma->vm_ops->get_policy) {
1759 pol = vma->vm_ops->get_policy(vma, addr);
1760 } else if (vma->vm_policy) {
1761 pol = vma->vm_policy;
1762
1763 /*
1764 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1765 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1766 * count on these policies which will be dropped by
1767 * mpol_cond_put() later
1768 */
1769 if (mpol_needs_cond_ref(pol))
1770 mpol_get(pol);
1771 }
1772 }
1773
1774 return pol;
1775 }
1776
1777 /*
1778 * get_vma_policy(@vma, @addr)
1779 * @vma: virtual memory area whose policy is sought
1780 * @addr: address in @vma for shared policy lookup
1781 *
1782 * Returns effective policy for a VMA at specified address.
1783 * Falls back to current->mempolicy or system default policy, as necessary.
1784 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1785 * count--added by the get_policy() vm_op, as appropriate--to protect against
1786 * freeing by another task. It is the caller's responsibility to free the
1787 * extra reference for shared policies.
1788 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1789 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1790 unsigned long addr)
1791 {
1792 struct mempolicy *pol = __get_vma_policy(vma, addr);
1793
1794 if (!pol)
1795 pol = get_task_policy(current);
1796
1797 return pol;
1798 }
1799
vma_policy_mof(struct vm_area_struct * vma)1800 bool vma_policy_mof(struct vm_area_struct *vma)
1801 {
1802 struct mempolicy *pol;
1803
1804 if (vma->vm_ops && vma->vm_ops->get_policy) {
1805 bool ret = false;
1806
1807 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1808 if (pol && (pol->flags & MPOL_F_MOF))
1809 ret = true;
1810 mpol_cond_put(pol);
1811
1812 return ret;
1813 }
1814
1815 pol = vma->vm_policy;
1816 if (!pol)
1817 pol = get_task_policy(current);
1818
1819 return pol->flags & MPOL_F_MOF;
1820 }
1821
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1822 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1823 {
1824 enum zone_type dynamic_policy_zone = policy_zone;
1825
1826 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1827
1828 /*
1829 * if policy->nodes has movable memory only,
1830 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1831 *
1832 * policy->nodes is intersect with node_states[N_MEMORY].
1833 * so if the following test fails, it implies
1834 * policy->nodes has movable memory only.
1835 */
1836 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1837 dynamic_policy_zone = ZONE_MOVABLE;
1838
1839 return zone >= dynamic_policy_zone;
1840 }
1841
1842 /*
1843 * Return a nodemask representing a mempolicy for filtering nodes for
1844 * page allocation
1845 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1846 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1847 {
1848 int mode = policy->mode;
1849
1850 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1851 if (unlikely(mode == MPOL_BIND) &&
1852 apply_policy_zone(policy, gfp_zone(gfp)) &&
1853 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1854 return &policy->nodes;
1855
1856 if (mode == MPOL_PREFERRED_MANY)
1857 return &policy->nodes;
1858
1859 return NULL;
1860 }
1861
1862 /*
1863 * Return the preferred node id for 'prefer' mempolicy, and return
1864 * the given id for all other policies.
1865 *
1866 * policy_node() is always coupled with policy_nodemask(), which
1867 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1868 */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1869 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1870 {
1871 if (policy->mode == MPOL_PREFERRED) {
1872 nd = first_node(policy->nodes);
1873 } else {
1874 /*
1875 * __GFP_THISNODE shouldn't even be used with the bind policy
1876 * because we might easily break the expectation to stay on the
1877 * requested node and not break the policy.
1878 */
1879 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1880 }
1881
1882 if ((policy->mode == MPOL_BIND ||
1883 policy->mode == MPOL_PREFERRED_MANY) &&
1884 policy->home_node != NUMA_NO_NODE)
1885 return policy->home_node;
1886
1887 return nd;
1888 }
1889
1890 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1891 static unsigned interleave_nodes(struct mempolicy *policy)
1892 {
1893 unsigned next;
1894 struct task_struct *me = current;
1895
1896 next = next_node_in(me->il_prev, policy->nodes);
1897 if (next < MAX_NUMNODES)
1898 me->il_prev = next;
1899 return next;
1900 }
1901
1902 /*
1903 * Depending on the memory policy provide a node from which to allocate the
1904 * next slab entry.
1905 */
mempolicy_slab_node(void)1906 unsigned int mempolicy_slab_node(void)
1907 {
1908 struct mempolicy *policy;
1909 int node = numa_mem_id();
1910
1911 if (!in_task())
1912 return node;
1913
1914 policy = current->mempolicy;
1915 if (!policy)
1916 return node;
1917
1918 switch (policy->mode) {
1919 case MPOL_PREFERRED:
1920 return first_node(policy->nodes);
1921
1922 case MPOL_INTERLEAVE:
1923 return interleave_nodes(policy);
1924
1925 case MPOL_BIND:
1926 case MPOL_PREFERRED_MANY:
1927 {
1928 struct zoneref *z;
1929
1930 /*
1931 * Follow bind policy behavior and start allocation at the
1932 * first node.
1933 */
1934 struct zonelist *zonelist;
1935 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1936 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1937 z = first_zones_zonelist(zonelist, highest_zoneidx,
1938 &policy->nodes);
1939 return z->zone ? zone_to_nid(z->zone) : node;
1940 }
1941 case MPOL_LOCAL:
1942 return node;
1943
1944 default:
1945 BUG();
1946 }
1947 }
1948
1949 /*
1950 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1951 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1952 * number of present nodes.
1953 */
offset_il_node(struct mempolicy * pol,unsigned long n)1954 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1955 {
1956 nodemask_t nodemask = pol->nodes;
1957 unsigned int target, nnodes;
1958 int i;
1959 int nid;
1960 /*
1961 * The barrier will stabilize the nodemask in a register or on
1962 * the stack so that it will stop changing under the code.
1963 *
1964 * Between first_node() and next_node(), pol->nodes could be changed
1965 * by other threads. So we put pol->nodes in a local stack.
1966 */
1967 barrier();
1968
1969 nnodes = nodes_weight(nodemask);
1970 if (!nnodes)
1971 return numa_node_id();
1972 target = (unsigned int)n % nnodes;
1973 nid = first_node(nodemask);
1974 for (i = 0; i < target; i++)
1975 nid = next_node(nid, nodemask);
1976 return nid;
1977 }
1978
1979 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1980 static inline unsigned interleave_nid(struct mempolicy *pol,
1981 struct vm_area_struct *vma, unsigned long addr, int shift)
1982 {
1983 if (vma) {
1984 unsigned long off;
1985
1986 /*
1987 * for small pages, there is no difference between
1988 * shift and PAGE_SHIFT, so the bit-shift is safe.
1989 * for huge pages, since vm_pgoff is in units of small
1990 * pages, we need to shift off the always 0 bits to get
1991 * a useful offset.
1992 */
1993 BUG_ON(shift < PAGE_SHIFT);
1994 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1995 off += (addr - vma->vm_start) >> shift;
1996 return offset_il_node(pol, off);
1997 } else
1998 return interleave_nodes(pol);
1999 }
2000
2001 #ifdef CONFIG_HUGETLBFS
2002 /*
2003 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2004 * @vma: virtual memory area whose policy is sought
2005 * @addr: address in @vma for shared policy lookup and interleave policy
2006 * @gfp_flags: for requested zone
2007 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2008 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2009 *
2010 * Returns a nid suitable for a huge page allocation and a pointer
2011 * to the struct mempolicy for conditional unref after allocation.
2012 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2013 * to the mempolicy's @nodemask for filtering the zonelist.
2014 *
2015 * Must be protected by read_mems_allowed_begin()
2016 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2017 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2018 struct mempolicy **mpol, nodemask_t **nodemask)
2019 {
2020 int nid;
2021 int mode;
2022
2023 *mpol = get_vma_policy(vma, addr);
2024 *nodemask = NULL;
2025 mode = (*mpol)->mode;
2026
2027 if (unlikely(mode == MPOL_INTERLEAVE)) {
2028 nid = interleave_nid(*mpol, vma, addr,
2029 huge_page_shift(hstate_vma(vma)));
2030 } else {
2031 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2032 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2033 *nodemask = &(*mpol)->nodes;
2034 }
2035 return nid;
2036 }
2037
2038 /*
2039 * init_nodemask_of_mempolicy
2040 *
2041 * If the current task's mempolicy is "default" [NULL], return 'false'
2042 * to indicate default policy. Otherwise, extract the policy nodemask
2043 * for 'bind' or 'interleave' policy into the argument nodemask, or
2044 * initialize the argument nodemask to contain the single node for
2045 * 'preferred' or 'local' policy and return 'true' to indicate presence
2046 * of non-default mempolicy.
2047 *
2048 * We don't bother with reference counting the mempolicy [mpol_get/put]
2049 * because the current task is examining it's own mempolicy and a task's
2050 * mempolicy is only ever changed by the task itself.
2051 *
2052 * N.B., it is the caller's responsibility to free a returned nodemask.
2053 */
init_nodemask_of_mempolicy(nodemask_t * mask)2054 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2055 {
2056 struct mempolicy *mempolicy;
2057
2058 if (!(mask && current->mempolicy))
2059 return false;
2060
2061 task_lock(current);
2062 mempolicy = current->mempolicy;
2063 switch (mempolicy->mode) {
2064 case MPOL_PREFERRED:
2065 case MPOL_PREFERRED_MANY:
2066 case MPOL_BIND:
2067 case MPOL_INTERLEAVE:
2068 *mask = mempolicy->nodes;
2069 break;
2070
2071 case MPOL_LOCAL:
2072 init_nodemask_of_node(mask, numa_node_id());
2073 break;
2074
2075 default:
2076 BUG();
2077 }
2078 task_unlock(current);
2079
2080 return true;
2081 }
2082 #endif
2083
2084 /*
2085 * mempolicy_in_oom_domain
2086 *
2087 * If tsk's mempolicy is "bind", check for intersection between mask and
2088 * the policy nodemask. Otherwise, return true for all other policies
2089 * including "interleave", as a tsk with "interleave" policy may have
2090 * memory allocated from all nodes in system.
2091 *
2092 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2093 */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2094 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2095 const nodemask_t *mask)
2096 {
2097 struct mempolicy *mempolicy;
2098 bool ret = true;
2099
2100 if (!mask)
2101 return ret;
2102
2103 task_lock(tsk);
2104 mempolicy = tsk->mempolicy;
2105 if (mempolicy && mempolicy->mode == MPOL_BIND)
2106 ret = nodes_intersects(mempolicy->nodes, *mask);
2107 task_unlock(tsk);
2108
2109 return ret;
2110 }
2111
2112 /* Allocate a page in interleaved policy.
2113 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2114 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2115 unsigned nid)
2116 {
2117 struct page *page;
2118
2119 page = __alloc_pages(gfp, order, nid, NULL);
2120 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2121 if (!static_branch_likely(&vm_numa_stat_key))
2122 return page;
2123 if (page && page_to_nid(page) == nid) {
2124 preempt_disable();
2125 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2126 preempt_enable();
2127 }
2128 return page;
2129 }
2130
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,struct mempolicy * pol)2131 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2132 int nid, struct mempolicy *pol)
2133 {
2134 struct page *page;
2135 gfp_t preferred_gfp;
2136
2137 /*
2138 * This is a two pass approach. The first pass will only try the
2139 * preferred nodes but skip the direct reclaim and allow the
2140 * allocation to fail, while the second pass will try all the
2141 * nodes in system.
2142 */
2143 preferred_gfp = gfp | __GFP_NOWARN;
2144 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2145 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2146 if (!page)
2147 page = __alloc_pages(gfp, order, nid, NULL);
2148
2149 return page;
2150 }
2151
2152 /**
2153 * vma_alloc_folio - Allocate a folio for a VMA.
2154 * @gfp: GFP flags.
2155 * @order: Order of the folio.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual address of the allocation. Must be inside @vma.
2158 * @hugepage: For hugepages try only the preferred node if possible.
2159 *
2160 * Allocate a folio for a specific address in @vma, using the appropriate
2161 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2162 * of the mm_struct of the VMA to prevent it from going away. Should be
2163 * used for all allocations for folios that will be mapped into user space.
2164 *
2165 * Return: The folio on success or NULL if allocation fails.
2166 */
vma_alloc_folio(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,bool hugepage)2167 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2168 unsigned long addr, bool hugepage)
2169 {
2170 struct mempolicy *pol;
2171 int node = numa_node_id();
2172 struct folio *folio;
2173 int preferred_nid;
2174 nodemask_t *nmask;
2175
2176 pol = get_vma_policy(vma, addr);
2177
2178 if (pol->mode == MPOL_INTERLEAVE) {
2179 struct page *page;
2180 unsigned nid;
2181
2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2183 mpol_cond_put(pol);
2184 gfp |= __GFP_COMP;
2185 page = alloc_page_interleave(gfp, order, nid);
2186 if (page && order > 1)
2187 prep_transhuge_page(page);
2188 folio = (struct folio *)page;
2189 goto out;
2190 }
2191
2192 if (pol->mode == MPOL_PREFERRED_MANY) {
2193 struct page *page;
2194
2195 node = policy_node(gfp, pol, node);
2196 gfp |= __GFP_COMP;
2197 page = alloc_pages_preferred_many(gfp, order, node, pol);
2198 mpol_cond_put(pol);
2199 if (page && order > 1)
2200 prep_transhuge_page(page);
2201 folio = (struct folio *)page;
2202 goto out;
2203 }
2204
2205 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2206 int hpage_node = node;
2207
2208 /*
2209 * For hugepage allocation and non-interleave policy which
2210 * allows the current node (or other explicitly preferred
2211 * node) we only try to allocate from the current/preferred
2212 * node and don't fall back to other nodes, as the cost of
2213 * remote accesses would likely offset THP benefits.
2214 *
2215 * If the policy is interleave or does not allow the current
2216 * node in its nodemask, we allocate the standard way.
2217 */
2218 if (pol->mode == MPOL_PREFERRED)
2219 hpage_node = first_node(pol->nodes);
2220
2221 nmask = policy_nodemask(gfp, pol);
2222 if (!nmask || node_isset(hpage_node, *nmask)) {
2223 mpol_cond_put(pol);
2224 /*
2225 * First, try to allocate THP only on local node, but
2226 * don't reclaim unnecessarily, just compact.
2227 */
2228 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2229 __GFP_NORETRY, order, hpage_node);
2230
2231 /*
2232 * If hugepage allocations are configured to always
2233 * synchronous compact or the vma has been madvised
2234 * to prefer hugepage backing, retry allowing remote
2235 * memory with both reclaim and compact as well.
2236 */
2237 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2238 folio = __folio_alloc(gfp, order, hpage_node,
2239 nmask);
2240
2241 goto out;
2242 }
2243 }
2244
2245 nmask = policy_nodemask(gfp, pol);
2246 preferred_nid = policy_node(gfp, pol, node);
2247 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2248 mpol_cond_put(pol);
2249 out:
2250 return folio;
2251 }
2252 EXPORT_SYMBOL(vma_alloc_folio);
2253
2254 /**
2255 * alloc_pages - Allocate pages.
2256 * @gfp: GFP flags.
2257 * @order: Power of two of number of pages to allocate.
2258 *
2259 * Allocate 1 << @order contiguous pages. The physical address of the
2260 * first page is naturally aligned (eg an order-3 allocation will be aligned
2261 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2262 * process is honoured when in process context.
2263 *
2264 * Context: Can be called from any context, providing the appropriate GFP
2265 * flags are used.
2266 * Return: The page on success or NULL if allocation fails.
2267 */
alloc_pages(gfp_t gfp,unsigned order)2268 struct page *alloc_pages(gfp_t gfp, unsigned order)
2269 {
2270 struct mempolicy *pol = &default_policy;
2271 struct page *page;
2272
2273 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2274 pol = get_task_policy(current);
2275
2276 /*
2277 * No reference counting needed for current->mempolicy
2278 * nor system default_policy
2279 */
2280 if (pol->mode == MPOL_INTERLEAVE)
2281 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2282 else if (pol->mode == MPOL_PREFERRED_MANY)
2283 page = alloc_pages_preferred_many(gfp, order,
2284 policy_node(gfp, pol, numa_node_id()), pol);
2285 else
2286 page = __alloc_pages(gfp, order,
2287 policy_node(gfp, pol, numa_node_id()),
2288 policy_nodemask(gfp, pol));
2289
2290 return page;
2291 }
2292 EXPORT_SYMBOL(alloc_pages);
2293
folio_alloc(gfp_t gfp,unsigned order)2294 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2295 {
2296 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2297
2298 if (page && order > 1)
2299 prep_transhuge_page(page);
2300 return (struct folio *)page;
2301 }
2302 EXPORT_SYMBOL(folio_alloc);
2303
alloc_pages_bulk_array_interleave(gfp_t gfp,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2304 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2305 struct mempolicy *pol, unsigned long nr_pages,
2306 struct page **page_array)
2307 {
2308 int nodes;
2309 unsigned long nr_pages_per_node;
2310 int delta;
2311 int i;
2312 unsigned long nr_allocated;
2313 unsigned long total_allocated = 0;
2314
2315 nodes = nodes_weight(pol->nodes);
2316 nr_pages_per_node = nr_pages / nodes;
2317 delta = nr_pages - nodes * nr_pages_per_node;
2318
2319 for (i = 0; i < nodes; i++) {
2320 if (delta) {
2321 nr_allocated = __alloc_pages_bulk(gfp,
2322 interleave_nodes(pol), NULL,
2323 nr_pages_per_node + 1, NULL,
2324 page_array);
2325 delta--;
2326 } else {
2327 nr_allocated = __alloc_pages_bulk(gfp,
2328 interleave_nodes(pol), NULL,
2329 nr_pages_per_node, NULL, page_array);
2330 }
2331
2332 page_array += nr_allocated;
2333 total_allocated += nr_allocated;
2334 }
2335
2336 return total_allocated;
2337 }
2338
alloc_pages_bulk_array_preferred_many(gfp_t gfp,int nid,struct mempolicy * pol,unsigned long nr_pages,struct page ** page_array)2339 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2340 struct mempolicy *pol, unsigned long nr_pages,
2341 struct page **page_array)
2342 {
2343 gfp_t preferred_gfp;
2344 unsigned long nr_allocated = 0;
2345
2346 preferred_gfp = gfp | __GFP_NOWARN;
2347 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2348
2349 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2350 nr_pages, NULL, page_array);
2351
2352 if (nr_allocated < nr_pages)
2353 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2354 nr_pages - nr_allocated, NULL,
2355 page_array + nr_allocated);
2356 return nr_allocated;
2357 }
2358
2359 /* alloc pages bulk and mempolicy should be considered at the
2360 * same time in some situation such as vmalloc.
2361 *
2362 * It can accelerate memory allocation especially interleaving
2363 * allocate memory.
2364 */
alloc_pages_bulk_array_mempolicy(gfp_t gfp,unsigned long nr_pages,struct page ** page_array)2365 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2366 unsigned long nr_pages, struct page **page_array)
2367 {
2368 struct mempolicy *pol = &default_policy;
2369
2370 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2371 pol = get_task_policy(current);
2372
2373 if (pol->mode == MPOL_INTERLEAVE)
2374 return alloc_pages_bulk_array_interleave(gfp, pol,
2375 nr_pages, page_array);
2376
2377 if (pol->mode == MPOL_PREFERRED_MANY)
2378 return alloc_pages_bulk_array_preferred_many(gfp,
2379 numa_node_id(), pol, nr_pages, page_array);
2380
2381 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2382 policy_nodemask(gfp, pol), nr_pages, NULL,
2383 page_array);
2384 }
2385
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2386 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2387 {
2388 struct mempolicy *pol = mpol_dup(vma_policy(src));
2389
2390 if (IS_ERR(pol))
2391 return PTR_ERR(pol);
2392 dst->vm_policy = pol;
2393 return 0;
2394 }
2395
2396 /*
2397 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2398 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2399 * with the mems_allowed returned by cpuset_mems_allowed(). This
2400 * keeps mempolicies cpuset relative after its cpuset moves. See
2401 * further kernel/cpuset.c update_nodemask().
2402 *
2403 * current's mempolicy may be rebinded by the other task(the task that changes
2404 * cpuset's mems), so we needn't do rebind work for current task.
2405 */
2406
2407 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2408 struct mempolicy *__mpol_dup(struct mempolicy *old)
2409 {
2410 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2411
2412 if (!new)
2413 return ERR_PTR(-ENOMEM);
2414
2415 /* task's mempolicy is protected by alloc_lock */
2416 if (old == current->mempolicy) {
2417 task_lock(current);
2418 *new = *old;
2419 task_unlock(current);
2420 } else
2421 *new = *old;
2422
2423 if (current_cpuset_is_being_rebound()) {
2424 nodemask_t mems = cpuset_mems_allowed(current);
2425 mpol_rebind_policy(new, &mems);
2426 }
2427 atomic_set(&new->refcnt, 1);
2428 return new;
2429 }
2430
2431 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2432 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2433 {
2434 if (!a || !b)
2435 return false;
2436 if (a->mode != b->mode)
2437 return false;
2438 if (a->flags != b->flags)
2439 return false;
2440 if (a->home_node != b->home_node)
2441 return false;
2442 if (mpol_store_user_nodemask(a))
2443 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2444 return false;
2445
2446 switch (a->mode) {
2447 case MPOL_BIND:
2448 case MPOL_INTERLEAVE:
2449 case MPOL_PREFERRED:
2450 case MPOL_PREFERRED_MANY:
2451 return !!nodes_equal(a->nodes, b->nodes);
2452 case MPOL_LOCAL:
2453 return true;
2454 default:
2455 BUG();
2456 return false;
2457 }
2458 }
2459
2460 /*
2461 * Shared memory backing store policy support.
2462 *
2463 * Remember policies even when nobody has shared memory mapped.
2464 * The policies are kept in Red-Black tree linked from the inode.
2465 * They are protected by the sp->lock rwlock, which should be held
2466 * for any accesses to the tree.
2467 */
2468
2469 /*
2470 * lookup first element intersecting start-end. Caller holds sp->lock for
2471 * reading or for writing
2472 */
2473 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2474 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2475 {
2476 struct rb_node *n = sp->root.rb_node;
2477
2478 while (n) {
2479 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2480
2481 if (start >= p->end)
2482 n = n->rb_right;
2483 else if (end <= p->start)
2484 n = n->rb_left;
2485 else
2486 break;
2487 }
2488 if (!n)
2489 return NULL;
2490 for (;;) {
2491 struct sp_node *w = NULL;
2492 struct rb_node *prev = rb_prev(n);
2493 if (!prev)
2494 break;
2495 w = rb_entry(prev, struct sp_node, nd);
2496 if (w->end <= start)
2497 break;
2498 n = prev;
2499 }
2500 return rb_entry(n, struct sp_node, nd);
2501 }
2502
2503 /*
2504 * Insert a new shared policy into the list. Caller holds sp->lock for
2505 * writing.
2506 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2507 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2508 {
2509 struct rb_node **p = &sp->root.rb_node;
2510 struct rb_node *parent = NULL;
2511 struct sp_node *nd;
2512
2513 while (*p) {
2514 parent = *p;
2515 nd = rb_entry(parent, struct sp_node, nd);
2516 if (new->start < nd->start)
2517 p = &(*p)->rb_left;
2518 else if (new->end > nd->end)
2519 p = &(*p)->rb_right;
2520 else
2521 BUG();
2522 }
2523 rb_link_node(&new->nd, parent, p);
2524 rb_insert_color(&new->nd, &sp->root);
2525 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2526 new->policy ? new->policy->mode : 0);
2527 }
2528
2529 /* Find shared policy intersecting idx */
2530 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2531 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2532 {
2533 struct mempolicy *pol = NULL;
2534 struct sp_node *sn;
2535
2536 if (!sp->root.rb_node)
2537 return NULL;
2538 read_lock(&sp->lock);
2539 sn = sp_lookup(sp, idx, idx+1);
2540 if (sn) {
2541 mpol_get(sn->policy);
2542 pol = sn->policy;
2543 }
2544 read_unlock(&sp->lock);
2545 return pol;
2546 }
2547
sp_free(struct sp_node * n)2548 static void sp_free(struct sp_node *n)
2549 {
2550 mpol_put(n->policy);
2551 kmem_cache_free(sn_cache, n);
2552 }
2553
2554 /**
2555 * mpol_misplaced - check whether current page node is valid in policy
2556 *
2557 * @page: page to be checked
2558 * @vma: vm area where page mapped
2559 * @addr: virtual address where page mapped
2560 *
2561 * Lookup current policy node id for vma,addr and "compare to" page's
2562 * node id. Policy determination "mimics" alloc_page_vma().
2563 * Called from fault path where we know the vma and faulting address.
2564 *
2565 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2566 * policy, or a suitable node ID to allocate a replacement page from.
2567 */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2568 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2569 {
2570 struct mempolicy *pol;
2571 struct zoneref *z;
2572 int curnid = page_to_nid(page);
2573 unsigned long pgoff;
2574 int thiscpu = raw_smp_processor_id();
2575 int thisnid = cpu_to_node(thiscpu);
2576 int polnid = NUMA_NO_NODE;
2577 int ret = NUMA_NO_NODE;
2578
2579 pol = get_vma_policy(vma, addr);
2580 if (!(pol->flags & MPOL_F_MOF))
2581 goto out;
2582
2583 switch (pol->mode) {
2584 case MPOL_INTERLEAVE:
2585 pgoff = vma->vm_pgoff;
2586 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2587 polnid = offset_il_node(pol, pgoff);
2588 break;
2589
2590 case MPOL_PREFERRED:
2591 if (node_isset(curnid, pol->nodes))
2592 goto out;
2593 polnid = first_node(pol->nodes);
2594 break;
2595
2596 case MPOL_LOCAL:
2597 polnid = numa_node_id();
2598 break;
2599
2600 case MPOL_BIND:
2601 /* Optimize placement among multiple nodes via NUMA balancing */
2602 if (pol->flags & MPOL_F_MORON) {
2603 if (node_isset(thisnid, pol->nodes))
2604 break;
2605 goto out;
2606 }
2607 fallthrough;
2608
2609 case MPOL_PREFERRED_MANY:
2610 /*
2611 * use current page if in policy nodemask,
2612 * else select nearest allowed node, if any.
2613 * If no allowed nodes, use current [!misplaced].
2614 */
2615 if (node_isset(curnid, pol->nodes))
2616 goto out;
2617 z = first_zones_zonelist(
2618 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2619 gfp_zone(GFP_HIGHUSER),
2620 &pol->nodes);
2621 polnid = zone_to_nid(z->zone);
2622 break;
2623
2624 default:
2625 BUG();
2626 }
2627
2628 /* Migrate the page towards the node whose CPU is referencing it */
2629 if (pol->flags & MPOL_F_MORON) {
2630 polnid = thisnid;
2631
2632 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2633 goto out;
2634 }
2635
2636 if (curnid != polnid)
2637 ret = polnid;
2638 out:
2639 mpol_cond_put(pol);
2640
2641 return ret;
2642 }
2643
2644 /*
2645 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2646 * dropped after task->mempolicy is set to NULL so that any allocation done as
2647 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2648 * policy.
2649 */
mpol_put_task_policy(struct task_struct * task)2650 void mpol_put_task_policy(struct task_struct *task)
2651 {
2652 struct mempolicy *pol;
2653
2654 task_lock(task);
2655 pol = task->mempolicy;
2656 task->mempolicy = NULL;
2657 task_unlock(task);
2658 mpol_put(pol);
2659 }
2660
sp_delete(struct shared_policy * sp,struct sp_node * n)2661 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2662 {
2663 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2664 rb_erase(&n->nd, &sp->root);
2665 sp_free(n);
2666 }
2667
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2668 static void sp_node_init(struct sp_node *node, unsigned long start,
2669 unsigned long end, struct mempolicy *pol)
2670 {
2671 node->start = start;
2672 node->end = end;
2673 node->policy = pol;
2674 }
2675
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2676 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2677 struct mempolicy *pol)
2678 {
2679 struct sp_node *n;
2680 struct mempolicy *newpol;
2681
2682 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2683 if (!n)
2684 return NULL;
2685
2686 newpol = mpol_dup(pol);
2687 if (IS_ERR(newpol)) {
2688 kmem_cache_free(sn_cache, n);
2689 return NULL;
2690 }
2691 newpol->flags |= MPOL_F_SHARED;
2692 sp_node_init(n, start, end, newpol);
2693
2694 return n;
2695 }
2696
2697 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2698 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2699 unsigned long end, struct sp_node *new)
2700 {
2701 struct sp_node *n;
2702 struct sp_node *n_new = NULL;
2703 struct mempolicy *mpol_new = NULL;
2704 int ret = 0;
2705
2706 restart:
2707 write_lock(&sp->lock);
2708 n = sp_lookup(sp, start, end);
2709 /* Take care of old policies in the same range. */
2710 while (n && n->start < end) {
2711 struct rb_node *next = rb_next(&n->nd);
2712 if (n->start >= start) {
2713 if (n->end <= end)
2714 sp_delete(sp, n);
2715 else
2716 n->start = end;
2717 } else {
2718 /* Old policy spanning whole new range. */
2719 if (n->end > end) {
2720 if (!n_new)
2721 goto alloc_new;
2722
2723 *mpol_new = *n->policy;
2724 atomic_set(&mpol_new->refcnt, 1);
2725 sp_node_init(n_new, end, n->end, mpol_new);
2726 n->end = start;
2727 sp_insert(sp, n_new);
2728 n_new = NULL;
2729 mpol_new = NULL;
2730 break;
2731 } else
2732 n->end = start;
2733 }
2734 if (!next)
2735 break;
2736 n = rb_entry(next, struct sp_node, nd);
2737 }
2738 if (new)
2739 sp_insert(sp, new);
2740 write_unlock(&sp->lock);
2741 ret = 0;
2742
2743 err_out:
2744 if (mpol_new)
2745 mpol_put(mpol_new);
2746 if (n_new)
2747 kmem_cache_free(sn_cache, n_new);
2748
2749 return ret;
2750
2751 alloc_new:
2752 write_unlock(&sp->lock);
2753 ret = -ENOMEM;
2754 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2755 if (!n_new)
2756 goto err_out;
2757 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2758 if (!mpol_new)
2759 goto err_out;
2760 atomic_set(&mpol_new->refcnt, 1);
2761 goto restart;
2762 }
2763
2764 /**
2765 * mpol_shared_policy_init - initialize shared policy for inode
2766 * @sp: pointer to inode shared policy
2767 * @mpol: struct mempolicy to install
2768 *
2769 * Install non-NULL @mpol in inode's shared policy rb-tree.
2770 * On entry, the current task has a reference on a non-NULL @mpol.
2771 * This must be released on exit.
2772 * This is called at get_inode() calls and we can use GFP_KERNEL.
2773 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2774 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2775 {
2776 int ret;
2777
2778 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2779 rwlock_init(&sp->lock);
2780
2781 if (mpol) {
2782 struct vm_area_struct pvma;
2783 struct mempolicy *new;
2784 NODEMASK_SCRATCH(scratch);
2785
2786 if (!scratch)
2787 goto put_mpol;
2788 /* contextualize the tmpfs mount point mempolicy */
2789 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2790 if (IS_ERR(new))
2791 goto free_scratch; /* no valid nodemask intersection */
2792
2793 task_lock(current);
2794 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2795 task_unlock(current);
2796 if (ret)
2797 goto put_new;
2798
2799 /* Create pseudo-vma that contains just the policy */
2800 vma_init(&pvma, NULL);
2801 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2802 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2803
2804 put_new:
2805 mpol_put(new); /* drop initial ref */
2806 free_scratch:
2807 NODEMASK_SCRATCH_FREE(scratch);
2808 put_mpol:
2809 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2810 }
2811 }
2812
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2813 int mpol_set_shared_policy(struct shared_policy *info,
2814 struct vm_area_struct *vma, struct mempolicy *npol)
2815 {
2816 int err;
2817 struct sp_node *new = NULL;
2818 unsigned long sz = vma_pages(vma);
2819
2820 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2821 vma->vm_pgoff,
2822 sz, npol ? npol->mode : -1,
2823 npol ? npol->flags : -1,
2824 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2825
2826 if (npol) {
2827 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2828 if (!new)
2829 return -ENOMEM;
2830 }
2831 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2832 if (err && new)
2833 sp_free(new);
2834 return err;
2835 }
2836
2837 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2838 void mpol_free_shared_policy(struct shared_policy *p)
2839 {
2840 struct sp_node *n;
2841 struct rb_node *next;
2842
2843 if (!p->root.rb_node)
2844 return;
2845 write_lock(&p->lock);
2846 next = rb_first(&p->root);
2847 while (next) {
2848 n = rb_entry(next, struct sp_node, nd);
2849 next = rb_next(&n->nd);
2850 sp_delete(p, n);
2851 }
2852 write_unlock(&p->lock);
2853 }
2854
2855 #ifdef CONFIG_NUMA_BALANCING
2856 static int __initdata numabalancing_override;
2857
check_numabalancing_enable(void)2858 static void __init check_numabalancing_enable(void)
2859 {
2860 bool numabalancing_default = false;
2861
2862 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2863 numabalancing_default = true;
2864
2865 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2866 if (numabalancing_override)
2867 set_numabalancing_state(numabalancing_override == 1);
2868
2869 if (num_online_nodes() > 1 && !numabalancing_override) {
2870 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2871 numabalancing_default ? "Enabling" : "Disabling");
2872 set_numabalancing_state(numabalancing_default);
2873 }
2874 }
2875
setup_numabalancing(char * str)2876 static int __init setup_numabalancing(char *str)
2877 {
2878 int ret = 0;
2879 if (!str)
2880 goto out;
2881
2882 if (!strcmp(str, "enable")) {
2883 numabalancing_override = 1;
2884 ret = 1;
2885 } else if (!strcmp(str, "disable")) {
2886 numabalancing_override = -1;
2887 ret = 1;
2888 }
2889 out:
2890 if (!ret)
2891 pr_warn("Unable to parse numa_balancing=\n");
2892
2893 return ret;
2894 }
2895 __setup("numa_balancing=", setup_numabalancing);
2896 #else
check_numabalancing_enable(void)2897 static inline void __init check_numabalancing_enable(void)
2898 {
2899 }
2900 #endif /* CONFIG_NUMA_BALANCING */
2901
2902 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2903 void __init numa_policy_init(void)
2904 {
2905 nodemask_t interleave_nodes;
2906 unsigned long largest = 0;
2907 int nid, prefer = 0;
2908
2909 policy_cache = kmem_cache_create("numa_policy",
2910 sizeof(struct mempolicy),
2911 0, SLAB_PANIC, NULL);
2912
2913 sn_cache = kmem_cache_create("shared_policy_node",
2914 sizeof(struct sp_node),
2915 0, SLAB_PANIC, NULL);
2916
2917 for_each_node(nid) {
2918 preferred_node_policy[nid] = (struct mempolicy) {
2919 .refcnt = ATOMIC_INIT(1),
2920 .mode = MPOL_PREFERRED,
2921 .flags = MPOL_F_MOF | MPOL_F_MORON,
2922 .nodes = nodemask_of_node(nid),
2923 };
2924 }
2925
2926 /*
2927 * Set interleaving policy for system init. Interleaving is only
2928 * enabled across suitably sized nodes (default is >= 16MB), or
2929 * fall back to the largest node if they're all smaller.
2930 */
2931 nodes_clear(interleave_nodes);
2932 for_each_node_state(nid, N_MEMORY) {
2933 unsigned long total_pages = node_present_pages(nid);
2934
2935 /* Preserve the largest node */
2936 if (largest < total_pages) {
2937 largest = total_pages;
2938 prefer = nid;
2939 }
2940
2941 /* Interleave this node? */
2942 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2943 node_set(nid, interleave_nodes);
2944 }
2945
2946 /* All too small, use the largest */
2947 if (unlikely(nodes_empty(interleave_nodes)))
2948 node_set(prefer, interleave_nodes);
2949
2950 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2951 pr_err("%s: interleaving failed\n", __func__);
2952
2953 check_numabalancing_enable();
2954 }
2955
2956 /* Reset policy of current process to default */
numa_default_policy(void)2957 void numa_default_policy(void)
2958 {
2959 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2960 }
2961
2962 /*
2963 * Parse and format mempolicy from/to strings
2964 */
2965
2966 static const char * const policy_modes[] =
2967 {
2968 [MPOL_DEFAULT] = "default",
2969 [MPOL_PREFERRED] = "prefer",
2970 [MPOL_BIND] = "bind",
2971 [MPOL_INTERLEAVE] = "interleave",
2972 [MPOL_LOCAL] = "local",
2973 [MPOL_PREFERRED_MANY] = "prefer (many)",
2974 };
2975
2976
2977 #ifdef CONFIG_TMPFS
2978 /**
2979 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2980 * @str: string containing mempolicy to parse
2981 * @mpol: pointer to struct mempolicy pointer, returned on success.
2982 *
2983 * Format of input:
2984 * <mode>[=<flags>][:<nodelist>]
2985 *
2986 * Return: %0 on success, else %1
2987 */
mpol_parse_str(char * str,struct mempolicy ** mpol)2988 int mpol_parse_str(char *str, struct mempolicy **mpol)
2989 {
2990 struct mempolicy *new = NULL;
2991 unsigned short mode_flags;
2992 nodemask_t nodes;
2993 char *nodelist = strchr(str, ':');
2994 char *flags = strchr(str, '=');
2995 int err = 1, mode;
2996
2997 if (flags)
2998 *flags++ = '\0'; /* terminate mode string */
2999
3000 if (nodelist) {
3001 /* NUL-terminate mode or flags string */
3002 *nodelist++ = '\0';
3003 if (nodelist_parse(nodelist, nodes))
3004 goto out;
3005 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3006 goto out;
3007 } else
3008 nodes_clear(nodes);
3009
3010 mode = match_string(policy_modes, MPOL_MAX, str);
3011 if (mode < 0)
3012 goto out;
3013
3014 switch (mode) {
3015 case MPOL_PREFERRED:
3016 /*
3017 * Insist on a nodelist of one node only, although later
3018 * we use first_node(nodes) to grab a single node, so here
3019 * nodelist (or nodes) cannot be empty.
3020 */
3021 if (nodelist) {
3022 char *rest = nodelist;
3023 while (isdigit(*rest))
3024 rest++;
3025 if (*rest)
3026 goto out;
3027 if (nodes_empty(nodes))
3028 goto out;
3029 }
3030 break;
3031 case MPOL_INTERLEAVE:
3032 /*
3033 * Default to online nodes with memory if no nodelist
3034 */
3035 if (!nodelist)
3036 nodes = node_states[N_MEMORY];
3037 break;
3038 case MPOL_LOCAL:
3039 /*
3040 * Don't allow a nodelist; mpol_new() checks flags
3041 */
3042 if (nodelist)
3043 goto out;
3044 break;
3045 case MPOL_DEFAULT:
3046 /*
3047 * Insist on a empty nodelist
3048 */
3049 if (!nodelist)
3050 err = 0;
3051 goto out;
3052 case MPOL_PREFERRED_MANY:
3053 case MPOL_BIND:
3054 /*
3055 * Insist on a nodelist
3056 */
3057 if (!nodelist)
3058 goto out;
3059 }
3060
3061 mode_flags = 0;
3062 if (flags) {
3063 /*
3064 * Currently, we only support two mutually exclusive
3065 * mode flags.
3066 */
3067 if (!strcmp(flags, "static"))
3068 mode_flags |= MPOL_F_STATIC_NODES;
3069 else if (!strcmp(flags, "relative"))
3070 mode_flags |= MPOL_F_RELATIVE_NODES;
3071 else
3072 goto out;
3073 }
3074
3075 new = mpol_new(mode, mode_flags, &nodes);
3076 if (IS_ERR(new))
3077 goto out;
3078
3079 /*
3080 * Save nodes for mpol_to_str() to show the tmpfs mount options
3081 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3082 */
3083 if (mode != MPOL_PREFERRED) {
3084 new->nodes = nodes;
3085 } else if (nodelist) {
3086 nodes_clear(new->nodes);
3087 node_set(first_node(nodes), new->nodes);
3088 } else {
3089 new->mode = MPOL_LOCAL;
3090 }
3091
3092 /*
3093 * Save nodes for contextualization: this will be used to "clone"
3094 * the mempolicy in a specific context [cpuset] at a later time.
3095 */
3096 new->w.user_nodemask = nodes;
3097
3098 err = 0;
3099
3100 out:
3101 /* Restore string for error message */
3102 if (nodelist)
3103 *--nodelist = ':';
3104 if (flags)
3105 *--flags = '=';
3106 if (!err)
3107 *mpol = new;
3108 return err;
3109 }
3110 #endif /* CONFIG_TMPFS */
3111
3112 /**
3113 * mpol_to_str - format a mempolicy structure for printing
3114 * @buffer: to contain formatted mempolicy string
3115 * @maxlen: length of @buffer
3116 * @pol: pointer to mempolicy to be formatted
3117 *
3118 * Convert @pol into a string. If @buffer is too short, truncate the string.
3119 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3120 * longest flag, "relative", and to display at least a few node ids.
3121 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3122 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3123 {
3124 char *p = buffer;
3125 nodemask_t nodes = NODE_MASK_NONE;
3126 unsigned short mode = MPOL_DEFAULT;
3127 unsigned short flags = 0;
3128
3129 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3130 mode = pol->mode;
3131 flags = pol->flags;
3132 }
3133
3134 switch (mode) {
3135 case MPOL_DEFAULT:
3136 case MPOL_LOCAL:
3137 break;
3138 case MPOL_PREFERRED:
3139 case MPOL_PREFERRED_MANY:
3140 case MPOL_BIND:
3141 case MPOL_INTERLEAVE:
3142 nodes = pol->nodes;
3143 break;
3144 default:
3145 WARN_ON_ONCE(1);
3146 snprintf(p, maxlen, "unknown");
3147 return;
3148 }
3149
3150 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3151
3152 if (flags & MPOL_MODE_FLAGS) {
3153 p += snprintf(p, buffer + maxlen - p, "=");
3154
3155 /*
3156 * Currently, the only defined flags are mutually exclusive
3157 */
3158 if (flags & MPOL_F_STATIC_NODES)
3159 p += snprintf(p, buffer + maxlen - p, "static");
3160 else if (flags & MPOL_F_RELATIVE_NODES)
3161 p += snprintf(p, buffer + maxlen - p, "relative");
3162 }
3163
3164 if (!nodes_empty(nodes))
3165 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3166 nodemask_pr_args(&nodes));
3167 }
3168