1 /* Compute complex base 10 logarithm.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <complex.h>
20 #include <math.h>
21 #include <math_private.h>
22 #include <math-underflow.h>
23 #include <float.h>
24 
25 /* log_10 (2).  */
26 #define LOG10_2 M_LIT (0.3010299956639811952137388947244930267682)
27 
28 /* pi * log10 (e).  */
29 #define PI_LOG10E M_LIT (1.364376353841841347485783625431355770210)
30 
31 CFLOAT
M_DECL_FUNC(__clog10)32 M_DECL_FUNC (__clog10) (CFLOAT x)
33 {
34   CFLOAT result;
35   int rcls = fpclassify (__real__ x);
36   int icls = fpclassify (__imag__ x);
37 
38   if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
39     {
40       /* Real and imaginary part are 0.0.  */
41       __imag__ result = signbit (__real__ x) ? PI_LOG10E : 0;
42       __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x);
43       /* Yes, the following line raises an exception.  */
44       __real__ result = -1 / M_FABS (__real__ x);
45     }
46   else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
47     {
48       /* Neither real nor imaginary part is NaN.  */
49       FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x);
50       int scale = 0;
51 
52       if (absx < absy)
53 	{
54 	  FLOAT t = absx;
55 	  absx = absy;
56 	  absy = t;
57 	}
58 
59       if (absx > M_MAX / 2)
60 	{
61 	  scale = -1;
62 	  absx = M_SCALBN (absx, scale);
63 	  absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0);
64 	}
65       else if (absx < M_MIN && absy < M_MIN)
66 	{
67 	  scale = M_MANT_DIG;
68 	  absx = M_SCALBN (absx, scale);
69 	  absy = M_SCALBN (absy, scale);
70 	}
71 
72       if (absx == 1 && scale == 0)
73 	{
74 	  __real__ result = (M_LOG1P (absy * absy)
75 			     * (M_MLIT (M_LOG10E) / 2));
76 	  math_check_force_underflow_nonneg (__real__ result);
77 	}
78       else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
79 	{
80 	  FLOAT d2m1 = (absx - 1) * (absx + 1);
81 	  if (absy >= M_EPSILON)
82 	    d2m1 += absy * absy;
83 	  __real__ result = M_LOG1P (d2m1) * (M_MLIT (M_LOG10E) / 2);
84 	}
85       else if (absx < 1
86 	       && absx >= M_LIT (0.5)
87 	       && absy < M_EPSILON / 2
88 	       && scale == 0)
89 	{
90 	  FLOAT d2m1 = (absx - 1) * (absx + 1);
91 	  __real__ result = M_LOG1P (d2m1) * (M_MLIT (M_LOG10E) / 2);
92 	}
93       else if (absx < 1
94 	       && absx >= M_LIT (0.5)
95 	       && scale == 0
96 	       && absx * absx + absy * absy >= M_LIT (0.5))
97 	{
98 	  FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy);
99 	  __real__ result = M_LOG1P (d2m1) * (M_MLIT (M_LOG10E) / 2);
100 	}
101       else
102 	{
103 	  FLOAT d = M_HYPOT (absx, absy);
104 	  __real__ result = M_SUF (__ieee754_log10) (d) - scale * LOG10_2;
105 	}
106 
107       __imag__ result = M_MLIT (M_LOG10E) * M_ATAN2 (__imag__ x, __real__ x);
108     }
109   else
110     {
111       __imag__ result = M_NAN;
112       if (rcls == FP_INFINITE || icls == FP_INFINITE)
113 	/* Real or imaginary part is infinite.  */
114 	__real__ result = M_HUGE_VAL;
115       else
116 	__real__ result = M_NAN;
117     }
118 
119   return result;
120 }
121 
122 declare_mgen_alias (__clog10, clog10)
123