1@node Arithmetic, Date and Time, Mathematics, Top
2@c %MENU% Low level arithmetic functions
3@chapter Arithmetic Functions
4
5This chapter contains information about functions for doing basic
6arithmetic operations, such as splitting a float into its integer and
7fractional parts or retrieving the imaginary part of a complex value.
8These functions are declared in the header files @file{math.h} and
9@file{complex.h}.
10
11@menu
12* Integers::                    Basic integer types and concepts
13* Integer Division::            Integer division with guaranteed rounding.
14* Floating Point Numbers::      Basic concepts.  IEEE 754.
15* Floating Point Classes::      The five kinds of floating-point number.
16* Floating Point Errors::       When something goes wrong in a calculation.
17* Rounding::                    Controlling how results are rounded.
18* Control Functions::           Saving and restoring the FPU's state.
19* Arithmetic Functions::        Fundamental operations provided by the library.
20* Complex Numbers::             The types.  Writing complex constants.
21* Operations on Complex::       Projection, conjugation, decomposition.
22* Parsing of Numbers::          Converting strings to numbers.
23* Printing of Floats::          Converting floating-point numbers to strings.
24* System V Number Conversion::  An archaic way to convert numbers to strings.
25@end menu
26
27@node Integers
28@section Integers
29@cindex integer
30
31The C language defines several integer data types: integer, short integer,
32long integer, and character, all in both signed and unsigned varieties.
33The GNU C compiler extends the language to contain long long integers
34as well.
35@cindex signedness
36
37The C integer types were intended to allow code to be portable among
38machines with different inherent data sizes (word sizes), so each type
39may have different ranges on different machines.  The problem with
40this is that a program often needs to be written for a particular range
41of integers, and sometimes must be written for a particular size of
42storage, regardless of what machine the program runs on.
43
44To address this problem, @theglibc{} contains C type definitions
45you can use to declare integers that meet your exact needs.  Because the
46@glibcadj{} header files are customized to a specific machine, your
47program source code doesn't have to be.
48
49These @code{typedef}s are in @file{stdint.h}.
50@pindex stdint.h
51
52If you require that an integer be represented in exactly N bits, use one
53of the following types, with the obvious mapping to bit size and signedness:
54
55@itemize @bullet
56@item int8_t
57@item int16_t
58@item int32_t
59@item int64_t
60@item uint8_t
61@item uint16_t
62@item uint32_t
63@item uint64_t
64@end itemize
65
66If your C compiler and target machine do not allow integers of a certain
67size, the corresponding above type does not exist.
68
69If you don't need a specific storage size, but want the smallest data
70structure with @emph{at least} N bits, use one of these:
71
72@itemize @bullet
73@item int_least8_t
74@item int_least16_t
75@item int_least32_t
76@item int_least64_t
77@item uint_least8_t
78@item uint_least16_t
79@item uint_least32_t
80@item uint_least64_t
81@end itemize
82
83If you don't need a specific storage size, but want the data structure
84that allows the fastest access while having at least N bits (and
85among data structures with the same access speed, the smallest one), use
86one of these:
87
88@itemize @bullet
89@item int_fast8_t
90@item int_fast16_t
91@item int_fast32_t
92@item int_fast64_t
93@item uint_fast8_t
94@item uint_fast16_t
95@item uint_fast32_t
96@item uint_fast64_t
97@end itemize
98
99If you want an integer with the widest range possible on the platform on
100which it is being used, use one of the following.  If you use these,
101you should write code that takes into account the variable size and range
102of the integer.
103
104@itemize @bullet
105@item intmax_t
106@item uintmax_t
107@end itemize
108
109@Theglibc{} also provides macros that tell you the maximum and
110minimum possible values for each integer data type.  The macro names
111follow these examples: @code{INT32_MAX}, @code{UINT8_MAX},
112@code{INT_FAST32_MIN}, @code{INT_LEAST64_MIN}, @code{UINTMAX_MAX},
113@code{INTMAX_MAX}, @code{INTMAX_MIN}.  Note that there are no macros for
114unsigned integer minima.  These are always zero.  Similiarly, there
115are macros such as @code{INTMAX_WIDTH} for the width of these types.
116Those macros for integer type widths come from TS 18661-1:2014.
117@cindex maximum possible integer
118@cindex minimum possible integer
119
120There are similar macros for use with C's built in integer types which
121should come with your C compiler.  These are described in @ref{Data Type
122Measurements}.
123
124Don't forget you can use the C @code{sizeof} function with any of these
125data types to get the number of bytes of storage each uses.
126
127
128@node Integer Division
129@section Integer Division
130@cindex integer division functions
131
132This section describes functions for performing integer division.  These
133functions are redundant when GNU CC is used, because in GNU C the
134@samp{/} operator always rounds towards zero.  But in other C
135implementations, @samp{/} may round differently with negative arguments.
136@code{div} and @code{ldiv} are useful because they specify how to round
137the quotient: towards zero.  The remainder has the same sign as the
138numerator.
139
140These functions are specified to return a result @var{r} such that the value
141@code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
142@var{numerator}.
143
144@pindex stdlib.h
145To use these facilities, you should include the header file
146@file{stdlib.h} in your program.
147
148@deftp {Data Type} div_t
149@standards{ISO, stdlib.h}
150This is a structure type used to hold the result returned by the @code{div}
151function.  It has the following members:
152
153@table @code
154@item int quot
155The quotient from the division.
156
157@item int rem
158The remainder from the division.
159@end table
160@end deftp
161
162@deftypefun div_t div (int @var{numerator}, int @var{denominator})
163@standards{ISO, stdlib.h}
164@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
165@c Functions in this section are pure, and thus safe.
166The function @code{div} computes the quotient and remainder from
167the division of @var{numerator} by @var{denominator}, returning the
168result in a structure of type @code{div_t}.
169
170If the result cannot be represented (as in a division by zero), the
171behavior is undefined.
172
173Here is an example, albeit not a very useful one.
174
175@smallexample
176div_t result;
177result = div (20, -6);
178@end smallexample
179
180@noindent
181Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
182@end deftypefun
183
184@deftp {Data Type} ldiv_t
185@standards{ISO, stdlib.h}
186This is a structure type used to hold the result returned by the @code{ldiv}
187function.  It has the following members:
188
189@table @code
190@item long int quot
191The quotient from the division.
192
193@item long int rem
194The remainder from the division.
195@end table
196
197(This is identical to @code{div_t} except that the components are of
198type @code{long int} rather than @code{int}.)
199@end deftp
200
201@deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
202@standards{ISO, stdlib.h}
203@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
204The @code{ldiv} function is similar to @code{div}, except that the
205arguments are of type @code{long int} and the result is returned as a
206structure of type @code{ldiv_t}.
207@end deftypefun
208
209@deftp {Data Type} lldiv_t
210@standards{ISO, stdlib.h}
211This is a structure type used to hold the result returned by the @code{lldiv}
212function.  It has the following members:
213
214@table @code
215@item long long int quot
216The quotient from the division.
217
218@item long long int rem
219The remainder from the division.
220@end table
221
222(This is identical to @code{div_t} except that the components are of
223type @code{long long int} rather than @code{int}.)
224@end deftp
225
226@deftypefun lldiv_t lldiv (long long int @var{numerator}, long long int @var{denominator})
227@standards{ISO, stdlib.h}
228@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
229The @code{lldiv} function is like the @code{div} function, but the
230arguments are of type @code{long long int} and the result is returned as
231a structure of type @code{lldiv_t}.
232
233The @code{lldiv} function was added in @w{ISO C99}.
234@end deftypefun
235
236@deftp {Data Type} imaxdiv_t
237@standards{ISO, inttypes.h}
238This is a structure type used to hold the result returned by the @code{imaxdiv}
239function.  It has the following members:
240
241@table @code
242@item intmax_t quot
243The quotient from the division.
244
245@item intmax_t rem
246The remainder from the division.
247@end table
248
249(This is identical to @code{div_t} except that the components are of
250type @code{intmax_t} rather than @code{int}.)
251
252See @ref{Integers} for a description of the @code{intmax_t} type.
253
254@end deftp
255
256@deftypefun imaxdiv_t imaxdiv (intmax_t @var{numerator}, intmax_t @var{denominator})
257@standards{ISO, inttypes.h}
258@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
259The @code{imaxdiv} function is like the @code{div} function, but the
260arguments are of type @code{intmax_t} and the result is returned as
261a structure of type @code{imaxdiv_t}.
262
263See @ref{Integers} for a description of the @code{intmax_t} type.
264
265The @code{imaxdiv} function was added in @w{ISO C99}.
266@end deftypefun
267
268
269@node Floating Point Numbers
270@section Floating Point Numbers
271@cindex floating point
272@cindex IEEE 754
273@cindex IEEE floating point
274
275Most computer hardware has support for two different kinds of numbers:
276integers (@math{@dots{}-3, -2, -1, 0, 1, 2, 3@dots{}}) and
277floating-point numbers.  Floating-point numbers have three parts: the
278@dfn{mantissa}, the @dfn{exponent}, and the @dfn{sign bit}.  The real
279number represented by a floating-point value is given by
280@tex
281$(s \mathrel? -1 \mathrel: 1) \cdot 2^e \cdot M$
282@end tex
283@ifnottex
284@math{(s ? -1 : 1) @mul{} 2^e @mul{} M}
285@end ifnottex
286where @math{s} is the sign bit, @math{e} the exponent, and @math{M}
287the mantissa.  @xref{Floating Point Concepts}, for details.  (It is
288possible to have a different @dfn{base} for the exponent, but all modern
289hardware uses @math{2}.)
290
291Floating-point numbers can represent a finite subset of the real
292numbers.  While this subset is large enough for most purposes, it is
293important to remember that the only reals that can be represented
294exactly are rational numbers that have a terminating binary expansion
295shorter than the width of the mantissa.  Even simple fractions such as
296@math{1/5} can only be approximated by floating point.
297
298Mathematical operations and functions frequently need to produce values
299that are not representable.  Often these values can be approximated
300closely enough for practical purposes, but sometimes they can't.
301Historically there was no way to tell when the results of a calculation
302were inaccurate.  Modern computers implement the @w{IEEE 754} standard
303for numerical computations, which defines a framework for indicating to
304the program when the results of calculation are not trustworthy.  This
305framework consists of a set of @dfn{exceptions} that indicate why a
306result could not be represented, and the special values @dfn{infinity}
307and @dfn{not a number} (NaN).
308
309@node Floating Point Classes
310@section Floating-Point Number Classification Functions
311@cindex floating-point classes
312@cindex classes, floating-point
313@pindex math.h
314
315@w{ISO C99} defines macros that let you determine what sort of
316floating-point number a variable holds.
317
318@deftypefn {Macro} int fpclassify (@emph{float-type} @var{x})
319@standards{ISO, math.h}
320@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
321This is a generic macro which works on all floating-point types and
322which returns a value of type @code{int}.  The possible values are:
323
324@vtable @code
325@item FP_NAN
326@standards{C99, math.h}
327The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
328and NaN})
329@item FP_INFINITE
330@standards{C99, math.h}
331The value of @var{x} is either plus or minus infinity (@pxref{Infinity
332and NaN})
333@item FP_ZERO
334@standards{C99, math.h}
335The value of @var{x} is zero.  In floating-point formats like @w{IEEE
336754}, where zero can be signed, this value is also returned if
337@var{x} is negative zero.
338@item FP_SUBNORMAL
339@standards{C99, math.h}
340Numbers whose absolute value is too small to be represented in the
341normal format are represented in an alternate, @dfn{denormalized} format
342(@pxref{Floating Point Concepts}).  This format is less precise but can
343represent values closer to zero.  @code{fpclassify} returns this value
344for values of @var{x} in this alternate format.
345@item FP_NORMAL
346@standards{C99, math.h}
347This value is returned for all other values of @var{x}.  It indicates
348that there is nothing special about the number.
349@end vtable
350
351@end deftypefn
352
353@code{fpclassify} is most useful if more than one property of a number
354must be tested.  There are more specific macros which only test one
355property at a time.  Generally these macros execute faster than
356@code{fpclassify}, since there is special hardware support for them.
357You should therefore use the specific macros whenever possible.
358
359@deftypefn {Macro} int iscanonical (@emph{float-type} @var{x})
360@standards{ISO, math.h}
361@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
362In some floating-point formats, some values have canonical (preferred)
363and noncanonical encodings (for IEEE interchange binary formats, all
364encodings are canonical).  This macro returns a nonzero value if
365@var{x} has a canonical encoding.  It is from TS 18661-1:2014.
366
367Note that some formats have multiple encodings of a value which are
368all equally canonical; @code{iscanonical} returns a nonzero value for
369all such encodings.  Also, formats may have encodings that do not
370correspond to any valid value of the type.  In ISO C terms these are
371@dfn{trap representations}; in @theglibc{}, @code{iscanonical} returns
372zero for such encodings.
373@end deftypefn
374
375@deftypefn {Macro} int isfinite (@emph{float-type} @var{x})
376@standards{ISO, math.h}
377@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
378This macro returns a nonzero value if @var{x} is finite: not plus or
379minus infinity, and not NaN.  It is equivalent to
380
381@smallexample
382(fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)
383@end smallexample
384
385@code{isfinite} is implemented as a macro which accepts any
386floating-point type.
387@end deftypefn
388
389@deftypefn {Macro} int isnormal (@emph{float-type} @var{x})
390@standards{ISO, math.h}
391@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
392This macro returns a nonzero value if @var{x} is finite and normalized.
393It is equivalent to
394
395@smallexample
396(fpclassify (x) == FP_NORMAL)
397@end smallexample
398@end deftypefn
399
400@deftypefn {Macro} int isnan (@emph{float-type} @var{x})
401@standards{ISO, math.h}
402@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
403This macro returns a nonzero value if @var{x} is NaN.  It is equivalent
404to
405
406@smallexample
407(fpclassify (x) == FP_NAN)
408@end smallexample
409@end deftypefn
410
411@deftypefn {Macro} int issignaling (@emph{float-type} @var{x})
412@standards{ISO, math.h}
413@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
414This macro returns a nonzero value if @var{x} is a signaling NaN
415(sNaN).  It is from TS 18661-1:2014.
416@end deftypefn
417
418@deftypefn {Macro} int issubnormal (@emph{float-type} @var{x})
419@standards{ISO, math.h}
420@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
421This macro returns a nonzero value if @var{x} is subnormal.  It is
422from TS 18661-1:2014.
423@end deftypefn
424
425@deftypefn {Macro} int iszero (@emph{float-type} @var{x})
426@standards{ISO, math.h}
427@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
428This macro returns a nonzero value if @var{x} is zero.  It is from TS
42918661-1:2014.
430@end deftypefn
431
432Another set of floating-point classification functions was provided by
433BSD.  @Theglibc{} also supports these functions; however, we
434recommend that you use the ISO C99 macros in new code.  Those are standard
435and will be available more widely.  Also, since they are macros, you do
436not have to worry about the type of their argument.
437
438@deftypefun int isinf (double @var{x})
439@deftypefunx int isinff (float @var{x})
440@deftypefunx int isinfl (long double @var{x})
441@standards{BSD, math.h}
442@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
443This function returns @code{-1} if @var{x} represents negative infinity,
444@code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
445@end deftypefun
446
447@deftypefun int isnan (double @var{x})
448@deftypefunx int isnanf (float @var{x})
449@deftypefunx int isnanl (long double @var{x})
450@standards{BSD, math.h}
451@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
452This function returns a nonzero value if @var{x} is a ``not a number''
453value, and zero otherwise.
454
455@strong{NB:} The @code{isnan} macro defined by @w{ISO C99} overrides
456the BSD function.  This is normally not a problem, because the two
457routines behave identically.  However, if you really need to get the BSD
458function for some reason, you can write
459
460@smallexample
461(isnan) (x)
462@end smallexample
463@end deftypefun
464
465@deftypefun int finite (double @var{x})
466@deftypefunx int finitef (float @var{x})
467@deftypefunx int finitel (long double @var{x})
468@standards{BSD, math.h}
469@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
470This function returns a nonzero value if @var{x} is neither infinite nor
471a ``not a number'' value, and zero otherwise.
472@end deftypefun
473
474@strong{Portability Note:} The functions listed in this section are BSD
475extensions.
476
477
478@node Floating Point Errors
479@section Errors in Floating-Point Calculations
480
481@menu
482* FP Exceptions::               IEEE 754 math exceptions and how to detect them.
483* Infinity and NaN::            Special values returned by calculations.
484* Status bit operations::       Checking for exceptions after the fact.
485* Math Error Reporting::        How the math functions report errors.
486@end menu
487
488@node FP Exceptions
489@subsection FP Exceptions
490@cindex exception
491@cindex signal
492@cindex zero divide
493@cindex division by zero
494@cindex inexact exception
495@cindex invalid exception
496@cindex overflow exception
497@cindex underflow exception
498
499The @w{IEEE 754} standard defines five @dfn{exceptions} that can occur
500during a calculation.  Each corresponds to a particular sort of error,
501such as overflow.
502
503When exceptions occur (when exceptions are @dfn{raised}, in the language
504of the standard), one of two things can happen.  By default the
505exception is simply noted in the floating-point @dfn{status word}, and
506the program continues as if nothing had happened.  The operation
507produces a default value, which depends on the exception (see the table
508below).  Your program can check the status word to find out which
509exceptions happened.
510
511Alternatively, you can enable @dfn{traps} for exceptions.  In that case,
512when an exception is raised, your program will receive the @code{SIGFPE}
513signal.  The default action for this signal is to terminate the
514program.  @xref{Signal Handling}, for how you can change the effect of
515the signal.
516
517@noindent
518The exceptions defined in @w{IEEE 754} are:
519
520@table @samp
521@item Invalid Operation
522This exception is raised if the given operands are invalid for the
523operation to be performed.  Examples are
524(see @w{IEEE 754}, @w{section 7}):
525@enumerate
526@item
527Addition or subtraction: @math{@infinity{} - @infinity{}}.  (But
528@math{@infinity{} + @infinity{} = @infinity{}}).
529@item
530Multiplication: @math{0 @mul{} @infinity{}}.
531@item
532Division: @math{0/0} or @math{@infinity{}/@infinity{}}.
533@item
534Remainder: @math{x} REM @math{y}, where @math{y} is zero or @math{x} is
535infinite.
536@item
537Square root if the operand is less than zero.  More generally, any
538mathematical function evaluated outside its domain produces this
539exception.
540@item
541Conversion of a floating-point number to an integer or decimal
542string, when the number cannot be represented in the target format (due
543to overflow, infinity, or NaN).
544@item
545Conversion of an unrecognizable input string.
546@item
547Comparison via predicates involving @math{<} or @math{>}, when one or
548other of the operands is NaN.  You can prevent this exception by using
549the unordered comparison functions instead; see @ref{FP Comparison Functions}.
550@end enumerate
551
552If the exception does not trap, the result of the operation is NaN.
553
554@item Division by Zero
555This exception is raised when a finite nonzero number is divided
556by zero.  If no trap occurs the result is either @math{+@infinity{}} or
557@math{-@infinity{}}, depending on the signs of the operands.
558
559@item Overflow
560This exception is raised whenever the result cannot be represented
561as a finite value in the precision format of the destination.  If no trap
562occurs the result depends on the sign of the intermediate result and the
563current rounding mode (@w{IEEE 754}, @w{section 7.3}):
564@enumerate
565@item
566Round to nearest carries all overflows to @math{@infinity{}}
567with the sign of the intermediate result.
568@item
569Round toward @math{0} carries all overflows to the largest representable
570finite number with the sign of the intermediate result.
571@item
572Round toward @math{-@infinity{}} carries positive overflows to the
573largest representable finite number and negative overflows to
574@math{-@infinity{}}.
575
576@item
577Round toward @math{@infinity{}} carries negative overflows to the
578most negative representable finite number and positive overflows
579to @math{@infinity{}}.
580@end enumerate
581
582Whenever the overflow exception is raised, the inexact exception is also
583raised.
584
585@item Underflow
586The underflow exception is raised when an intermediate result is too
587small to be calculated accurately, or if the operation's result rounded
588to the destination precision is too small to be normalized.
589
590When no trap is installed for the underflow exception, underflow is
591signaled (via the underflow flag) only when both tininess and loss of
592accuracy have been detected.  If no trap handler is installed the
593operation continues with an imprecise small value, or zero if the
594destination precision cannot hold the small exact result.
595
596@item Inexact
597This exception is signalled if a rounded result is not exact (such as
598when calculating the square root of two) or a result overflows without
599an overflow trap.
600@end table
601
602@node Infinity and NaN
603@subsection Infinity and NaN
604@cindex infinity
605@cindex not a number
606@cindex NaN
607
608@w{IEEE 754} floating point numbers can represent positive or negative
609infinity, and @dfn{NaN} (not a number).  These three values arise from
610calculations whose result is undefined or cannot be represented
611accurately.  You can also deliberately set a floating-point variable to
612any of them, which is sometimes useful.  Some examples of calculations
613that produce infinity or NaN:
614
615@ifnottex
616@smallexample
617@math{1/0 = @infinity{}}
618@math{log (0) = -@infinity{}}
619@math{sqrt (-1) = NaN}
620@end smallexample
621@end ifnottex
622@tex
623$${1\over0} = \infty$$
624$$\log 0 = -\infty$$
625$$\sqrt{-1} = \hbox{NaN}$$
626@end tex
627
628When a calculation produces any of these values, an exception also
629occurs; see @ref{FP Exceptions}.
630
631The basic operations and math functions all accept infinity and NaN and
632produce sensible output.  Infinities propagate through calculations as
633one would expect: for example, @math{2 + @infinity{} = @infinity{}},
634@math{4/@infinity{} = 0}, atan @math{(@infinity{}) = @pi{}/2}.  NaN, on
635the other hand, infects any calculation that involves it.  Unless the
636calculation would produce the same result no matter what real value
637replaced NaN, the result is NaN.
638
639In comparison operations, positive infinity is larger than all values
640except itself and NaN, and negative infinity is smaller than all values
641except itself and NaN.  NaN is @dfn{unordered}: it is not equal to,
642greater than, or less than anything, @emph{including itself}. @code{x ==
643x} is false if the value of @code{x} is NaN.  You can use this to test
644whether a value is NaN or not, but the recommended way to test for NaN
645is with the @code{isnan} function (@pxref{Floating Point Classes}).  In
646addition, @code{<}, @code{>}, @code{<=}, and @code{>=} will raise an
647exception when applied to NaNs.
648
649@file{math.h} defines macros that allow you to explicitly set a variable
650to infinity or NaN.
651
652@deftypevr Macro float INFINITY
653@standards{ISO, math.h}
654An expression representing positive infinity.  It is equal to the value
655produced  by mathematical operations like @code{1.0 / 0.0}.
656@code{-INFINITY} represents negative infinity.
657
658You can test whether a floating-point value is infinite by comparing it
659to this macro.  However, this is not recommended; you should use the
660@code{isfinite} macro instead.  @xref{Floating Point Classes}.
661
662This macro was introduced in the @w{ISO C99} standard.
663@end deftypevr
664
665@deftypevr Macro float NAN
666@standards{GNU, math.h}
667An expression representing a value which is ``not a number''.  This
668macro is a GNU extension, available only on machines that support the
669``not a number'' value---that is to say, on all machines that support
670IEEE floating point.
671
672You can use @samp{#ifdef NAN} to test whether the machine supports
673NaN.  (Of course, you must arrange for GNU extensions to be visible,
674such as by defining @code{_GNU_SOURCE}, and then you must include
675@file{math.h}.)
676@end deftypevr
677
678@deftypevr Macro float SNANF
679@deftypevrx Macro double SNAN
680@deftypevrx Macro {long double} SNANL
681@deftypevrx Macro _FloatN SNANFN
682@deftypevrx Macro _FloatNx SNANFNx
683@standards{TS 18661-1:2014, math.h}
684@standardsx{SNANFN, TS 18661-3:2015, math.h}
685@standardsx{SNANFNx, TS 18661-3:2015, math.h}
686These macros, defined by TS 18661-1:2014 and TS 18661-3:2015, are
687constant expressions for signaling NaNs.
688@end deftypevr
689
690@deftypevr Macro int FE_SNANS_ALWAYS_SIGNAL
691@standards{ISO, fenv.h}
692This macro, defined by TS 18661-1:2014, is defined to @code{1} in
693@file{fenv.h} to indicate that functions and operations with signaling
694NaN inputs and floating-point results always raise the invalid
695exception and return a quiet NaN, even in cases (such as @code{fmax},
696@code{hypot} and @code{pow}) where a quiet NaN input can produce a
697non-NaN result.  Because some compiler optimizations may not handle
698signaling NaNs correctly, this macro is only defined if compiler
699support for signaling NaNs is enabled.  That support can be enabled
700with the GCC option @option{-fsignaling-nans}.
701@end deftypevr
702
703@w{IEEE 754} also allows for another unusual value: negative zero.  This
704value is produced when you divide a positive number by negative
705infinity, or when a negative result is smaller than the limits of
706representation.
707
708@node Status bit operations
709@subsection Examining the FPU status word
710
711@w{ISO C99} defines functions to query and manipulate the
712floating-point status word.  You can use these functions to check for
713untrapped exceptions when it's convenient, rather than worrying about
714them in the middle of a calculation.
715
716These constants represent the various @w{IEEE 754} exceptions.  Not all
717FPUs report all the different exceptions.  Each constant is defined if
718and only if the FPU you are compiling for supports that exception, so
719you can test for FPU support with @samp{#ifdef}.  They are defined in
720@file{fenv.h}.
721
722@vtable @code
723@item FE_INEXACT
724@standards{ISO, fenv.h}
725 The inexact exception.
726@item FE_DIVBYZERO
727@standards{ISO, fenv.h}
728 The divide by zero exception.
729@item FE_UNDERFLOW
730@standards{ISO, fenv.h}
731 The underflow exception.
732@item FE_OVERFLOW
733@standards{ISO, fenv.h}
734 The overflow exception.
735@item FE_INVALID
736@standards{ISO, fenv.h}
737 The invalid exception.
738@end vtable
739
740The macro @code{FE_ALL_EXCEPT} is the bitwise OR of all exception macros
741which are supported by the FP implementation.
742
743These functions allow you to clear exception flags, test for exceptions,
744and save and restore the set of exceptions flagged.
745
746@deftypefun int feclearexcept (int @var{excepts})
747@standards{ISO, fenv.h}
748@safety{@prelim{}@mtsafe{}@assafe{@assposix{}}@acsafe{@acsposix{}}}
749@c The other functions in this section that modify FP status register
750@c mostly do so with non-atomic load-modify-store sequences, but since
751@c the register is thread-specific, this should be fine, and safe for
752@c cancellation.  As long as the FP environment is restored before the
753@c signal handler returns control to the interrupted thread (like any
754@c kernel should do), the functions are also safe for use in signal
755@c handlers.
756This function clears all of the supported exception flags indicated by
757@var{excepts}.
758
759The function returns zero in case the operation was successful, a
760non-zero value otherwise.
761@end deftypefun
762
763@deftypefun int feraiseexcept (int @var{excepts})
764@standards{ISO, fenv.h}
765@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
766This function raises the supported exceptions indicated by
767@var{excepts}.  If more than one exception bit in @var{excepts} is set
768the order in which the exceptions are raised is undefined except that
769overflow (@code{FE_OVERFLOW}) or underflow (@code{FE_UNDERFLOW}) are
770raised before inexact (@code{FE_INEXACT}).  Whether for overflow or
771underflow the inexact exception is also raised is also implementation
772dependent.
773
774The function returns zero in case the operation was successful, a
775non-zero value otherwise.
776@end deftypefun
777
778@deftypefun int fesetexcept (int @var{excepts})
779@standards{ISO, fenv.h}
780@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
781This function sets the supported exception flags indicated by
782@var{excepts}, like @code{feraiseexcept}, but without causing enabled
783traps to be taken.  @code{fesetexcept} is from TS 18661-1:2014.
784
785The function returns zero in case the operation was successful, a
786non-zero value otherwise.
787@end deftypefun
788
789@deftypefun int fetestexcept (int @var{excepts})
790@standards{ISO, fenv.h}
791@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
792Test whether the exception flags indicated by the parameter @var{except}
793are currently set.  If any of them are, a nonzero value is returned
794which specifies which exceptions are set.  Otherwise the result is zero.
795@end deftypefun
796
797To understand these functions, imagine that the status word is an
798integer variable named @var{status}.  @code{feclearexcept} is then
799equivalent to @samp{status &= ~excepts} and @code{fetestexcept} is
800equivalent to @samp{(status & excepts)}.  The actual implementation may
801be very different, of course.
802
803Exception flags are only cleared when the program explicitly requests it,
804by calling @code{feclearexcept}.  If you want to check for exceptions
805from a set of calculations, you should clear all the flags first.  Here
806is a simple example of the way to use @code{fetestexcept}:
807
808@smallexample
809@{
810  double f;
811  int raised;
812  feclearexcept (FE_ALL_EXCEPT);
813  f = compute ();
814  raised = fetestexcept (FE_OVERFLOW | FE_INVALID);
815  if (raised & FE_OVERFLOW) @{ /* @dots{} */ @}
816  if (raised & FE_INVALID) @{ /* @dots{} */ @}
817  /* @dots{} */
818@}
819@end smallexample
820
821You cannot explicitly set bits in the status word.  You can, however,
822save the entire status word and restore it later.  This is done with the
823following functions:
824
825@deftypefun int fegetexceptflag (fexcept_t *@var{flagp}, int @var{excepts})
826@standards{ISO, fenv.h}
827@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
828This function stores in the variable pointed to by @var{flagp} an
829implementation-defined value representing the current setting of the
830exception flags indicated by @var{excepts}.
831
832The function returns zero in case the operation was successful, a
833non-zero value otherwise.
834@end deftypefun
835
836@deftypefun int fesetexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
837@standards{ISO, fenv.h}
838@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
839This function restores the flags for the exceptions indicated by
840@var{excepts} to the values stored in the variable pointed to by
841@var{flagp}.
842
843The function returns zero in case the operation was successful, a
844non-zero value otherwise.
845@end deftypefun
846
847Note that the value stored in @code{fexcept_t} bears no resemblance to
848the bit mask returned by @code{fetestexcept}.  The type may not even be
849an integer.  Do not attempt to modify an @code{fexcept_t} variable.
850
851@deftypefun int fetestexceptflag (const fexcept_t *@var{flagp}, int @var{excepts})
852@standards{ISO, fenv.h}
853@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
854Test whether the exception flags indicated by the parameter
855@var{excepts} are set in the variable pointed to by @var{flagp}.  If
856any of them are, a nonzero value is returned which specifies which
857exceptions are set.  Otherwise the result is zero.
858@code{fetestexceptflag} is from TS 18661-1:2014.
859@end deftypefun
860
861@node Math Error Reporting
862@subsection Error Reporting by Mathematical Functions
863@cindex errors, mathematical
864@cindex domain error
865@cindex range error
866
867Many of the math functions are defined only over a subset of the real or
868complex numbers.  Even if they are mathematically defined, their result
869may be larger or smaller than the range representable by their return
870type without loss of accuracy.  These are known as @dfn{domain errors},
871@dfn{overflows}, and
872@dfn{underflows}, respectively.  Math functions do several things when
873one of these errors occurs.  In this manual we will refer to the
874complete response as @dfn{signalling} a domain error, overflow, or
875underflow.
876
877When a math function suffers a domain error, it raises the invalid
878exception and returns NaN.  It also sets @code{errno} to @code{EDOM};
879this is for compatibility with old systems that do not support @w{IEEE
880754} exception handling.  Likewise, when overflow occurs, math
881functions raise the overflow exception and, in the default rounding
882mode, return @math{@infinity{}} or @math{-@infinity{}} as appropriate
883(in other rounding modes, the largest finite value of the appropriate
884sign is returned when appropriate for that rounding mode).  They also
885set @code{errno} to @code{ERANGE} if returning @math{@infinity{}} or
886@math{-@infinity{}}; @code{errno} may or may not be set to
887@code{ERANGE} when a finite value is returned on overflow.  When
888underflow occurs, the underflow exception is raised, and zero
889(appropriately signed) or a subnormal value, as appropriate for the
890mathematical result of the function and the rounding mode, is
891returned.  @code{errno} may be set to @code{ERANGE}, but this is not
892guaranteed; it is intended that @theglibc{} should set it when the
893underflow is to an appropriately signed zero, but not necessarily for
894other underflows.
895
896When a math function has an argument that is a signaling NaN,
897@theglibc{} does not consider this a domain error, so @code{errno} is
898unchanged, but the invalid exception is still raised (except for a few
899functions that are specified to handle signaling NaNs differently).
900
901Some of the math functions are defined mathematically to result in a
902complex value over parts of their domains.  The most familiar example of
903this is taking the square root of a negative number.  The complex math
904functions, such as @code{csqrt}, will return the appropriate complex value
905in this case.  The real-valued functions, such as @code{sqrt}, will
906signal a domain error.
907
908Some older hardware does not support infinities.  On that hardware,
909overflows instead return a particular very large number (usually the
910largest representable number).  @file{math.h} defines macros you can use
911to test for overflow on both old and new hardware.
912
913@deftypevr Macro double HUGE_VAL
914@deftypevrx Macro float HUGE_VALF
915@deftypevrx Macro {long double} HUGE_VALL
916@deftypevrx Macro _FloatN HUGE_VAL_FN
917@deftypevrx Macro _FloatNx HUGE_VAL_FNx
918@standards{ISO, math.h}
919@standardsx{HUGE_VAL_FN, TS 18661-3:2015, math.h}
920@standardsx{HUGE_VAL_FNx, TS 18661-3:2015, math.h}
921An expression representing a particular very large number.  On machines
922that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
923On other machines, it's typically the largest positive number that can
924be represented.
925
926Mathematical functions return the appropriately typed version of
927@code{HUGE_VAL} or @code{@minus{}HUGE_VAL} when the result is too large
928to be represented.
929@end deftypevr
930
931@node Rounding
932@section Rounding Modes
933
934Floating-point calculations are carried out internally with extra
935precision, and then rounded to fit into the destination type.  This
936ensures that results are as precise as the input data.  @w{IEEE 754}
937defines four possible rounding modes:
938
939@table @asis
940@item Round to nearest.
941This is the default mode.  It should be used unless there is a specific
942need for one of the others.  In this mode results are rounded to the
943nearest representable value.  If the result is midway between two
944representable values, the even representable is chosen. @dfn{Even} here
945means the lowest-order bit is zero.  This rounding mode prevents
946statistical bias and guarantees numeric stability: round-off errors in a
947lengthy calculation will remain smaller than half of @code{FLT_EPSILON}.
948
949@c @item Round toward @math{+@infinity{}}
950@item Round toward plus Infinity.
951All results are rounded to the smallest representable value
952which is greater than the result.
953
954@c @item Round toward @math{-@infinity{}}
955@item Round toward minus Infinity.
956All results are rounded to the largest representable value which is less
957than the result.
958
959@item Round toward zero.
960All results are rounded to the largest representable value whose
961magnitude is less than that of the result.  In other words, if the
962result is negative it is rounded up; if it is positive, it is rounded
963down.
964@end table
965
966@noindent
967@file{fenv.h} defines constants which you can use to refer to the
968various rounding modes.  Each one will be defined if and only if the FPU
969supports the corresponding rounding mode.
970
971@vtable @code
972@item FE_TONEAREST
973@standards{ISO, fenv.h}
974Round to nearest.
975
976@item FE_UPWARD
977@standards{ISO, fenv.h}
978Round toward @math{+@infinity{}}.
979
980@item FE_DOWNWARD
981@standards{ISO, fenv.h}
982Round toward @math{-@infinity{}}.
983
984@item FE_TOWARDZERO
985@standards{ISO, fenv.h}
986Round toward zero.
987@end vtable
988
989Underflow is an unusual case.  Normally, @w{IEEE 754} floating point
990numbers are always normalized (@pxref{Floating Point Concepts}).
991Numbers smaller than @math{2^r} (where @math{r} is the minimum exponent,
992@code{FLT_MIN_RADIX-1} for @var{float}) cannot be represented as
993normalized numbers.  Rounding all such numbers to zero or @math{2^r}
994would cause some algorithms to fail at 0.  Therefore, they are left in
995denormalized form.  That produces loss of precision, since some bits of
996the mantissa are stolen to indicate the decimal point.
997
998If a result is too small to be represented as a denormalized number, it
999is rounded to zero.  However, the sign of the result is preserved; if
1000the calculation was negative, the result is @dfn{negative zero}.
1001Negative zero can also result from some operations on infinity, such as
1002@math{4/-@infinity{}}.
1003
1004At any time, one of the above four rounding modes is selected.  You can
1005find out which one with this function:
1006
1007@deftypefun int fegetround (void)
1008@standards{ISO, fenv.h}
1009@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1010Returns the currently selected rounding mode, represented by one of the
1011values of the defined rounding mode macros.
1012@end deftypefun
1013
1014@noindent
1015To change the rounding mode, use this function:
1016
1017@deftypefun int fesetround (int @var{round})
1018@standards{ISO, fenv.h}
1019@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1020Changes the currently selected rounding mode to @var{round}.  If
1021@var{round} does not correspond to one of the supported rounding modes
1022nothing is changed.  @code{fesetround} returns zero if it changed the
1023rounding mode, or a nonzero value if the mode is not supported.
1024@end deftypefun
1025
1026You should avoid changing the rounding mode if possible.  It can be an
1027expensive operation; also, some hardware requires you to compile your
1028program differently for it to work.  The resulting code may run slower.
1029See your compiler documentation for details.
1030@c This section used to claim that functions existed to round one number
1031@c in a specific fashion.  I can't find any functions in the library
1032@c that do that. -zw
1033
1034@node Control Functions
1035@section Floating-Point Control Functions
1036
1037@w{IEEE 754} floating-point implementations allow the programmer to
1038decide whether traps will occur for each of the exceptions, by setting
1039bits in the @dfn{control word}.  In C, traps result in the program
1040receiving the @code{SIGFPE} signal; see @ref{Signal Handling}.
1041
1042@strong{NB:} @w{IEEE 754} says that trap handlers are given details of
1043the exceptional situation, and can set the result value.  C signals do
1044not provide any mechanism to pass this information back and forth.
1045Trapping exceptions in C is therefore not very useful.
1046
1047It is sometimes necessary to save the state of the floating-point unit
1048while you perform some calculation.  The library provides functions
1049which save and restore the exception flags, the set of exceptions that
1050generate traps, and the rounding mode.  This information is known as the
1051@dfn{floating-point environment}.
1052
1053The functions to save and restore the floating-point environment all use
1054a variable of type @code{fenv_t} to store information.  This type is
1055defined in @file{fenv.h}.  Its size and contents are
1056implementation-defined.  You should not attempt to manipulate a variable
1057of this type directly.
1058
1059To save the state of the FPU, use one of these functions:
1060
1061@deftypefun int fegetenv (fenv_t *@var{envp})
1062@standards{ISO, fenv.h}
1063@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1064Store the floating-point environment in the variable pointed to by
1065@var{envp}.
1066
1067The function returns zero in case the operation was successful, a
1068non-zero value otherwise.
1069@end deftypefun
1070
1071@deftypefun int feholdexcept (fenv_t *@var{envp})
1072@standards{ISO, fenv.h}
1073@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1074Store the current floating-point environment in the object pointed to by
1075@var{envp}.  Then clear all exception flags, and set the FPU to trap no
1076exceptions.  Not all FPUs support trapping no exceptions; if
1077@code{feholdexcept} cannot set this mode, it returns nonzero value.  If it
1078succeeds, it returns zero.
1079@end deftypefun
1080
1081The functions which restore the floating-point environment can take these
1082kinds of arguments:
1083
1084@itemize @bullet
1085@item
1086Pointers to @code{fenv_t} objects, which were initialized previously by a
1087call to @code{fegetenv} or @code{feholdexcept}.
1088@item
1089@vindex FE_DFL_ENV
1090The special macro @code{FE_DFL_ENV} which represents the floating-point
1091environment as it was available at program start.
1092@item
1093Implementation defined macros with names starting with @code{FE_} and
1094having type @code{fenv_t *}.
1095
1096@vindex FE_NOMASK_ENV
1097If possible, @theglibc{} defines a macro @code{FE_NOMASK_ENV}
1098which represents an environment where every exception raised causes a
1099trap to occur.  You can test for this macro using @code{#ifdef}.  It is
1100only defined if @code{_GNU_SOURCE} is defined.
1101
1102Some platforms might define other predefined environments.
1103@end itemize
1104
1105@noindent
1106To set the floating-point environment, you can use either of these
1107functions:
1108
1109@deftypefun int fesetenv (const fenv_t *@var{envp})
1110@standards{ISO, fenv.h}
1111@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1112Set the floating-point environment to that described by @var{envp}.
1113
1114The function returns zero in case the operation was successful, a
1115non-zero value otherwise.
1116@end deftypefun
1117
1118@deftypefun int feupdateenv (const fenv_t *@var{envp})
1119@standards{ISO, fenv.h}
1120@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1121Like @code{fesetenv}, this function sets the floating-point environment
1122to that described by @var{envp}.  However, if any exceptions were
1123flagged in the status word before @code{feupdateenv} was called, they
1124remain flagged after the call.  In other words, after @code{feupdateenv}
1125is called, the status word is the bitwise OR of the previous status word
1126and the one saved in @var{envp}.
1127
1128The function returns zero in case the operation was successful, a
1129non-zero value otherwise.
1130@end deftypefun
1131
1132@noindent
1133TS 18661-1:2014 defines additional functions to save and restore
1134floating-point control modes (such as the rounding mode and whether
1135traps are enabled) while leaving other status (such as raised flags)
1136unchanged.
1137
1138@vindex FE_DFL_MODE
1139The special macro @code{FE_DFL_MODE} may be passed to
1140@code{fesetmode}.  It represents the floating-point control modes at
1141program start.
1142
1143@deftypefun int fegetmode (femode_t *@var{modep})
1144@standards{ISO, fenv.h}
1145@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1146Store the floating-point control modes in the variable pointed to by
1147@var{modep}.
1148
1149The function returns zero in case the operation was successful, a
1150non-zero value otherwise.
1151@end deftypefun
1152
1153@deftypefun int fesetmode (const femode_t *@var{modep})
1154@standards{ISO, fenv.h}
1155@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1156Set the floating-point control modes to those described by
1157@var{modep}.
1158
1159The function returns zero in case the operation was successful, a
1160non-zero value otherwise.
1161@end deftypefun
1162
1163@noindent
1164To control for individual exceptions if raising them causes a trap to
1165occur, you can use the following two functions.
1166
1167@strong{Portability Note:} These functions are all GNU extensions.
1168
1169@deftypefun int feenableexcept (int @var{excepts})
1170@standards{GNU, fenv.h}
1171@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1172This function enables traps for each of the exceptions as indicated by
1173the parameter @var{excepts}.  The individual exceptions are described in
1174@ref{Status bit operations}.  Only the specified exceptions are
1175enabled, the status of the other exceptions is not changed.
1176
1177The function returns the previous enabled exceptions in case the
1178operation was successful, @code{-1} otherwise.
1179@end deftypefun
1180
1181@deftypefun int fedisableexcept (int @var{excepts})
1182@standards{GNU, fenv.h}
1183@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1184This function disables traps for each of the exceptions as indicated by
1185the parameter @var{excepts}.  The individual exceptions are described in
1186@ref{Status bit operations}.  Only the specified exceptions are
1187disabled, the status of the other exceptions is not changed.
1188
1189The function returns the previous enabled exceptions in case the
1190operation was successful, @code{-1} otherwise.
1191@end deftypefun
1192
1193@deftypefun int fegetexcept (void)
1194@standards{GNU, fenv.h}
1195@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1196The function returns a bitmask of all currently enabled exceptions.  It
1197returns @code{-1} in case of failure.
1198@end deftypefun
1199
1200@node Arithmetic Functions
1201@section Arithmetic Functions
1202
1203The C library provides functions to do basic operations on
1204floating-point numbers.  These include absolute value, maximum and minimum,
1205normalization, bit twiddling, rounding, and a few others.
1206
1207@menu
1208* Absolute Value::              Absolute values of integers and floats.
1209* Normalization Functions::     Extracting exponents and putting them back.
1210* Rounding Functions::          Rounding floats to integers.
1211* Remainder Functions::         Remainders on division, precisely defined.
1212* FP Bit Twiddling::            Sign bit adjustment.  Adding epsilon.
1213* FP Comparison Functions::     Comparisons without risk of exceptions.
1214* Misc FP Arithmetic::          Max, min, positive difference, multiply-add.
1215@end menu
1216
1217@node Absolute Value
1218@subsection Absolute Value
1219@cindex absolute value functions
1220
1221These functions are provided for obtaining the @dfn{absolute value} (or
1222@dfn{magnitude}) of a number.  The absolute value of a real number
1223@var{x} is @var{x} if @var{x} is positive, @minus{}@var{x} if @var{x} is
1224negative.  For a complex number @var{z}, whose real part is @var{x} and
1225whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
1226(@var{x}*@var{x} + @var{y}*@var{y})}}.
1227
1228@pindex math.h
1229@pindex stdlib.h
1230Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
1231@code{imaxabs} is declared in @file{inttypes.h};
1232the @code{fabs} functions are declared in @file{math.h};
1233the @code{cabs} functions are declared in @file{complex.h}.
1234
1235@deftypefun int abs (int @var{number})
1236@deftypefunx {long int} labs (long int @var{number})
1237@deftypefunx {long long int} llabs (long long int @var{number})
1238@deftypefunx intmax_t imaxabs (intmax_t @var{number})
1239@standards{ISO, stdlib.h}
1240@standardsx{imaxabs, ISO, inttypes.h}
1241@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1242These functions return the absolute value of @var{number}.
1243
1244Most computers use a two's complement integer representation, in which
1245the absolute value of @code{INT_MIN} (the smallest possible @code{int})
1246cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
1247
1248@code{llabs} and @code{imaxdiv} are new to @w{ISO C99}.
1249
1250See @ref{Integers} for a description of the @code{intmax_t} type.
1251
1252@end deftypefun
1253
1254@deftypefun double fabs (double @var{number})
1255@deftypefunx float fabsf (float @var{number})
1256@deftypefunx {long double} fabsl (long double @var{number})
1257@deftypefunx _FloatN fabsfN (_Float@var{N} @var{number})
1258@deftypefunx _FloatNx fabsfNx (_Float@var{N}x @var{number})
1259@standards{ISO, math.h}
1260@standardsx{fabsfN, TS 18661-3:2015, math.h}
1261@standardsx{fabsfNx, TS 18661-3:2015, math.h}
1262@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1263This function returns the absolute value of the floating-point number
1264@var{number}.
1265@end deftypefun
1266
1267@deftypefun double cabs (complex double @var{z})
1268@deftypefunx float cabsf (complex float @var{z})
1269@deftypefunx {long double} cabsl (complex long double @var{z})
1270@deftypefunx _FloatN cabsfN (complex _Float@var{N} @var{z})
1271@deftypefunx _FloatNx cabsfNx (complex _Float@var{N}x @var{z})
1272@standards{ISO, complex.h}
1273@standardsx{cabsfN, TS 18661-3:2015, complex.h}
1274@standardsx{cabsfNx, TS 18661-3:2015, complex.h}
1275@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1276These functions return the absolute  value of the complex number @var{z}
1277(@pxref{Complex Numbers}).  The absolute value of a complex number is:
1278
1279@smallexample
1280sqrt (creal (@var{z}) * creal (@var{z}) + cimag (@var{z}) * cimag (@var{z}))
1281@end smallexample
1282
1283This function should always be used instead of the direct formula
1284because it takes special care to avoid losing precision.  It may also
1285take advantage of hardware support for this operation.  See @code{hypot}
1286in @ref{Exponents and Logarithms}.
1287@end deftypefun
1288
1289@node Normalization Functions
1290@subsection Normalization Functions
1291@cindex normalization functions (floating-point)
1292
1293The functions described in this section are primarily provided as a way
1294to efficiently perform certain low-level manipulations on floating point
1295numbers that are represented internally using a binary radix;
1296see @ref{Floating Point Concepts}.  These functions are required to
1297have equivalent behavior even if the representation does not use a radix
1298of 2, but of course they are unlikely to be particularly efficient in
1299those cases.
1300
1301@pindex math.h
1302All these functions are declared in @file{math.h}.
1303
1304@deftypefun double frexp (double @var{value}, int *@var{exponent})
1305@deftypefunx float frexpf (float @var{value}, int *@var{exponent})
1306@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
1307@deftypefunx _FloatN frexpfN (_Float@var{N} @var{value}, int *@var{exponent})
1308@deftypefunx _FloatNx frexpfNx (_Float@var{N}x @var{value}, int *@var{exponent})
1309@standards{ISO, math.h}
1310@standardsx{frexpfN, TS 18661-3:2015, math.h}
1311@standardsx{frexpfNx, TS 18661-3:2015, math.h}
1312@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1313These functions are used to split the number @var{value}
1314into a normalized fraction and an exponent.
1315
1316If the argument @var{value} is not zero, the return value is @var{value}
1317times a power of two, and its magnitude is always in the range 1/2
1318(inclusive) to 1 (exclusive).  The corresponding exponent is stored in
1319@code{*@var{exponent}}; the return value multiplied by 2 raised to this
1320exponent equals the original number @var{value}.
1321
1322For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
1323stores @code{4} in @code{exponent}.
1324
1325If @var{value} is zero, then the return value is zero and
1326zero is stored in @code{*@var{exponent}}.
1327@end deftypefun
1328
1329@deftypefun double ldexp (double @var{value}, int @var{exponent})
1330@deftypefunx float ldexpf (float @var{value}, int @var{exponent})
1331@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
1332@deftypefunx _FloatN ldexpfN (_Float@var{N} @var{value}, int @var{exponent})
1333@deftypefunx _FloatNx ldexpfNx (_Float@var{N}x @var{value}, int @var{exponent})
1334@standards{ISO, math.h}
1335@standardsx{ldexpfN, TS 18661-3:2015, math.h}
1336@standardsx{ldexpfNx, TS 18661-3:2015, math.h}
1337@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1338These functions return the result of multiplying the floating-point
1339number @var{value} by 2 raised to the power @var{exponent}.  (It can
1340be used to reassemble floating-point numbers that were taken apart
1341by @code{frexp}.)
1342
1343For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
1344@end deftypefun
1345
1346The following functions, which come from BSD, provide facilities
1347equivalent to those of @code{ldexp} and @code{frexp}.  See also the
1348@w{ISO C} function @code{logb} which originally also appeared in BSD.
1349The @code{_Float@var{N}} and @code{_Float@var{N}} variants of the
1350following functions come from TS 18661-3:2015.
1351
1352@deftypefun double scalb (double @var{value}, double @var{exponent})
1353@deftypefunx float scalbf (float @var{value}, float @var{exponent})
1354@deftypefunx {long double} scalbl (long double @var{value}, long double @var{exponent})
1355@standards{BSD, math.h}
1356@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1357The @code{scalb} function is the BSD name for @code{ldexp}.
1358@end deftypefun
1359
1360@deftypefun double scalbn (double @var{x}, int @var{n})
1361@deftypefunx float scalbnf (float @var{x}, int @var{n})
1362@deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
1363@deftypefunx _FloatN scalbnfN (_Float@var{N} @var{x}, int @var{n})
1364@deftypefunx _FloatNx scalbnfNx (_Float@var{N}x @var{x}, int @var{n})
1365@standards{BSD, math.h}
1366@standardsx{scalbnfN, TS 18661-3:2015, math.h}
1367@standardsx{scalbnfNx, TS 18661-3:2015, math.h}
1368@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1369@code{scalbn} is identical to @code{scalb}, except that the exponent
1370@var{n} is an @code{int} instead of a floating-point number.
1371@end deftypefun
1372
1373@deftypefun double scalbln (double @var{x}, long int @var{n})
1374@deftypefunx float scalblnf (float @var{x}, long int @var{n})
1375@deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
1376@deftypefunx _FloatN scalblnfN (_Float@var{N} @var{x}, long int @var{n})
1377@deftypefunx _FloatNx scalblnfNx (_Float@var{N}x @var{x}, long int @var{n})
1378@standards{BSD, math.h}
1379@standardsx{scalblnfN, TS 18661-3:2015, math.h}
1380@standardsx{scalblnfNx, TS 18661-3:2015, math.h}
1381@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1382@code{scalbln} is identical to @code{scalb}, except that the exponent
1383@var{n} is a @code{long int} instead of a floating-point number.
1384@end deftypefun
1385
1386@deftypefun double significand (double @var{x})
1387@deftypefunx float significandf (float @var{x})
1388@deftypefunx {long double} significandl (long double @var{x})
1389@standards{BSD, math.h}
1390@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1391@code{significand} returns the mantissa of @var{x} scaled to the range
1392@math{[1, 2)}.
1393It is equivalent to @w{@code{scalb (@var{x}, (double) -ilogb (@var{x}))}}.
1394
1395This function exists mainly for use in certain standardized tests
1396of @w{IEEE 754} conformance.
1397@end deftypefun
1398
1399@node Rounding Functions
1400@subsection Rounding Functions
1401@cindex converting floats to integers
1402
1403@pindex math.h
1404The functions listed here perform operations such as rounding and
1405truncation of floating-point values.  Some of these functions convert
1406floating point numbers to integer values.  They are all declared in
1407@file{math.h}.
1408
1409You can also convert floating-point numbers to integers simply by
1410casting them to @code{int}.  This discards the fractional part,
1411effectively rounding towards zero.  However, this only works if the
1412result can actually be represented as an @code{int}---for very large
1413numbers, this is impossible.  The functions listed here return the
1414result as a @code{double} instead to get around this problem.
1415
1416The @code{fromfp} functions use the following macros, from TS
141718661-1:2014, to specify the direction of rounding.  These correspond
1418to the rounding directions defined in IEEE 754-2008.
1419
1420@vtable @code
1421@item FP_INT_UPWARD
1422@standards{ISO, math.h}
1423Round toward @math{+@infinity{}}.
1424
1425@item FP_INT_DOWNWARD
1426@standards{ISO, math.h}
1427Round toward @math{-@infinity{}}.
1428
1429@item FP_INT_TOWARDZERO
1430@standards{ISO, math.h}
1431Round toward zero.
1432
1433@item FP_INT_TONEARESTFROMZERO
1434@standards{ISO, math.h}
1435Round to nearest, ties round away from zero.
1436
1437@item FP_INT_TONEAREST
1438@standards{ISO, math.h}
1439Round to nearest, ties round to even.
1440@end vtable
1441
1442@deftypefun double ceil (double @var{x})
1443@deftypefunx float ceilf (float @var{x})
1444@deftypefunx {long double} ceill (long double @var{x})
1445@deftypefunx _FloatN ceilfN (_Float@var{N} @var{x})
1446@deftypefunx _FloatNx ceilfNx (_Float@var{N}x @var{x})
1447@standards{ISO, math.h}
1448@standardsx{ceilfN, TS 18661-3:2015, math.h}
1449@standardsx{ceilfNx, TS 18661-3:2015, math.h}
1450@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1451These functions round @var{x} upwards to the nearest integer,
1452returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
1453is @code{2.0}.
1454@end deftypefun
1455
1456@deftypefun double floor (double @var{x})
1457@deftypefunx float floorf (float @var{x})
1458@deftypefunx {long double} floorl (long double @var{x})
1459@deftypefunx _FloatN floorfN (_Float@var{N} @var{x})
1460@deftypefunx _FloatNx floorfNx (_Float@var{N}x @var{x})
1461@standards{ISO, math.h}
1462@standardsx{floorfN, TS 18661-3:2015, math.h}
1463@standardsx{floorfNx, TS 18661-3:2015, math.h}
1464@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1465These functions round @var{x} downwards to the nearest
1466integer, returning that value as a @code{double}.  Thus, @code{floor
1467(1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
1468@end deftypefun
1469
1470@deftypefun double trunc (double @var{x})
1471@deftypefunx float truncf (float @var{x})
1472@deftypefunx {long double} truncl (long double @var{x})
1473@deftypefunx _FloatN truncfN (_Float@var{N} @var{x})
1474@deftypefunx _FloatNx truncfNx (_Float@var{N}x @var{x})
1475@standards{ISO, math.h}
1476@standardsx{truncfN, TS 18661-3:2015, math.h}
1477@standardsx{truncfNx, TS 18661-3:2015, math.h}
1478@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1479The @code{trunc} functions round @var{x} towards zero to the nearest
1480integer (returned in floating-point format).  Thus, @code{trunc (1.5)}
1481is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
1482@end deftypefun
1483
1484@deftypefun double rint (double @var{x})
1485@deftypefunx float rintf (float @var{x})
1486@deftypefunx {long double} rintl (long double @var{x})
1487@deftypefunx _FloatN rintfN (_Float@var{N} @var{x})
1488@deftypefunx _FloatNx rintfNx (_Float@var{N}x @var{x})
1489@standards{ISO, math.h}
1490@standardsx{rintfN, TS 18661-3:2015, math.h}
1491@standardsx{rintfNx, TS 18661-3:2015, math.h}
1492@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1493These functions round @var{x} to an integer value according to the
1494current rounding mode.  @xref{Floating Point Parameters}, for
1495information about the various rounding modes.  The default
1496rounding mode is to round to the nearest integer; some machines
1497support other modes, but round-to-nearest is always used unless
1498you explicitly select another.
1499
1500If @var{x} was not initially an integer, these functions raise the
1501inexact exception.
1502@end deftypefun
1503
1504@deftypefun double nearbyint (double @var{x})
1505@deftypefunx float nearbyintf (float @var{x})
1506@deftypefunx {long double} nearbyintl (long double @var{x})
1507@deftypefunx _FloatN nearbyintfN (_Float@var{N} @var{x})
1508@deftypefunx _FloatNx nearbyintfNx (_Float@var{N}x @var{x})
1509@standards{ISO, math.h}
1510@standardsx{nearbyintfN, TS 18661-3:2015, math.h}
1511@standardsx{nearbyintfNx, TS 18661-3:2015, math.h}
1512@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1513These functions return the same value as the @code{rint} functions, but
1514do not raise the inexact exception if @var{x} is not an integer.
1515@end deftypefun
1516
1517@deftypefun double round (double @var{x})
1518@deftypefunx float roundf (float @var{x})
1519@deftypefunx {long double} roundl (long double @var{x})
1520@deftypefunx _FloatN roundfN (_Float@var{N} @var{x})
1521@deftypefunx _FloatNx roundfNx (_Float@var{N}x @var{x})
1522@standards{ISO, math.h}
1523@standardsx{roundfN, TS 18661-3:2015, math.h}
1524@standardsx{roundfNx, TS 18661-3:2015, math.h}
1525@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1526These functions are similar to @code{rint}, but they round halfway
1527cases away from zero instead of to the nearest integer (or other
1528current rounding mode).
1529@end deftypefun
1530
1531@deftypefun double roundeven (double @var{x})
1532@deftypefunx float roundevenf (float @var{x})
1533@deftypefunx {long double} roundevenl (long double @var{x})
1534@deftypefunx _FloatN roundevenfN (_Float@var{N} @var{x})
1535@deftypefunx _FloatNx roundevenfNx (_Float@var{N}x @var{x})
1536@standards{ISO, math.h}
1537@standardsx{roundevenfN, TS 18661-3:2015, math.h}
1538@standardsx{roundevenfNx, TS 18661-3:2015, math.h}
1539@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1540These functions, from TS 18661-1:2014 and TS 18661-3:2015, are similar
1541to @code{round}, but they round halfway cases to even instead of away
1542from zero.
1543@end deftypefun
1544
1545@deftypefun {long int} lrint (double @var{x})
1546@deftypefunx {long int} lrintf (float @var{x})
1547@deftypefunx {long int} lrintl (long double @var{x})
1548@deftypefunx {long int} lrintfN (_Float@var{N} @var{x})
1549@deftypefunx {long int} lrintfNx (_Float@var{N}x @var{x})
1550@standards{ISO, math.h}
1551@standardsx{lrintfN, TS 18661-3:2015, math.h}
1552@standardsx{lrintfNx, TS 18661-3:2015, math.h}
1553@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1554These functions are just like @code{rint}, but they return a
1555@code{long int} instead of a floating-point number.
1556@end deftypefun
1557
1558@deftypefun {long long int} llrint (double @var{x})
1559@deftypefunx {long long int} llrintf (float @var{x})
1560@deftypefunx {long long int} llrintl (long double @var{x})
1561@deftypefunx {long long int} llrintfN (_Float@var{N} @var{x})
1562@deftypefunx {long long int} llrintfNx (_Float@var{N}x @var{x})
1563@standards{ISO, math.h}
1564@standardsx{llrintfN, TS 18661-3:2015, math.h}
1565@standardsx{llrintfNx, TS 18661-3:2015, math.h}
1566@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1567These functions are just like @code{rint}, but they return a
1568@code{long long int} instead of a floating-point number.
1569@end deftypefun
1570
1571@deftypefun {long int} lround (double @var{x})
1572@deftypefunx {long int} lroundf (float @var{x})
1573@deftypefunx {long int} lroundl (long double @var{x})
1574@deftypefunx {long int} lroundfN (_Float@var{N} @var{x})
1575@deftypefunx {long int} lroundfNx (_Float@var{N}x @var{x})
1576@standards{ISO, math.h}
1577@standardsx{lroundfN, TS 18661-3:2015, math.h}
1578@standardsx{lroundfNx, TS 18661-3:2015, math.h}
1579@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1580These functions are just like @code{round}, but they return a
1581@code{long int} instead of a floating-point number.
1582@end deftypefun
1583
1584@deftypefun {long long int} llround (double @var{x})
1585@deftypefunx {long long int} llroundf (float @var{x})
1586@deftypefunx {long long int} llroundl (long double @var{x})
1587@deftypefunx {long long int} llroundfN (_Float@var{N} @var{x})
1588@deftypefunx {long long int} llroundfNx (_Float@var{N}x @var{x})
1589@standards{ISO, math.h}
1590@standardsx{llroundfN, TS 18661-3:2015, math.h}
1591@standardsx{llroundfNx, TS 18661-3:2015, math.h}
1592@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1593These functions are just like @code{round}, but they return a
1594@code{long long int} instead of a floating-point number.
1595@end deftypefun
1596
1597@deftypefun intmax_t fromfp (double @var{x}, int @var{round}, unsigned int @var{width})
1598@deftypefunx intmax_t fromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
1599@deftypefunx intmax_t fromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
1600@deftypefunx intmax_t fromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1601@deftypefunx intmax_t fromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1602@deftypefunx uintmax_t ufromfp (double @var{x}, int @var{round}, unsigned int @var{width})
1603@deftypefunx uintmax_t ufromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
1604@deftypefunx uintmax_t ufromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
1605@deftypefunx uintmax_t ufromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1606@deftypefunx uintmax_t ufromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1607@deftypefunx intmax_t fromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
1608@deftypefunx intmax_t fromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
1609@deftypefunx intmax_t fromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
1610@deftypefunx intmax_t fromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1611@deftypefunx intmax_t fromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1612@deftypefunx uintmax_t ufromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
1613@deftypefunx uintmax_t ufromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
1614@deftypefunx uintmax_t ufromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
1615@deftypefunx uintmax_t ufromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
1616@deftypefunx uintmax_t ufromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
1617@standards{ISO, math.h}
1618@standardsx{fromfpfN, TS 18661-3:2015, math.h}
1619@standardsx{fromfpfNx, TS 18661-3:2015, math.h}
1620@standardsx{ufromfpfN, TS 18661-3:2015, math.h}
1621@standardsx{ufromfpfNx, TS 18661-3:2015, math.h}
1622@standardsx{fromfpxfN, TS 18661-3:2015, math.h}
1623@standardsx{fromfpxfNx, TS 18661-3:2015, math.h}
1624@standardsx{ufromfpxfN, TS 18661-3:2015, math.h}
1625@standardsx{ufromfpxfNx, TS 18661-3:2015, math.h}
1626@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1627These functions, from TS 18661-1:2014 and TS 18661-3:2015, convert a
1628floating-point number to an integer according to the rounding direction
1629@var{round} (one of the @code{FP_INT_*} macros).  If the integer is
1630outside the range of a signed or unsigned (depending on the return type
1631of the function) type of width @var{width} bits (or outside the range of
1632the return type, if @var{width} is larger), or if @var{x} is infinite or
1633NaN, or if @var{width} is zero, a domain error occurs and an unspecified
1634value is returned.  The functions with an @samp{x} in their names raise
1635the inexact exception when a domain error does not occur and the
1636argument is not an integer; the other functions do not raise the inexact
1637exception.
1638@end deftypefun
1639
1640
1641@deftypefun double modf (double @var{value}, double *@var{integer-part})
1642@deftypefunx float modff (float @var{value}, float *@var{integer-part})
1643@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
1644@deftypefunx _FloatN modffN (_Float@var{N} @var{value}, _Float@var{N} *@var{integer-part})
1645@deftypefunx _FloatNx modffNx (_Float@var{N}x @var{value}, _Float@var{N}x *@var{integer-part})
1646@standards{ISO, math.h}
1647@standardsx{modffN, TS 18661-3:2015, math.h}
1648@standardsx{modffNx, TS 18661-3:2015, math.h}
1649@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1650These functions break the argument @var{value} into an integer part and a
1651fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
1652equals @var{value}.  Each of the parts has the same sign as @var{value},
1653and the integer part is always rounded toward zero.
1654
1655@code{modf} stores the integer part in @code{*@var{integer-part}}, and
1656returns the fractional part.  For example, @code{modf (2.5, &intpart)}
1657returns @code{0.5} and stores @code{2.0} into @code{intpart}.
1658@end deftypefun
1659
1660@node Remainder Functions
1661@subsection Remainder Functions
1662
1663The functions in this section compute the remainder on division of two
1664floating-point numbers.  Each is a little different; pick the one that
1665suits your problem.
1666
1667@deftypefun double fmod (double @var{numerator}, double @var{denominator})
1668@deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
1669@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
1670@deftypefunx _FloatN fmodfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
1671@deftypefunx _FloatNx fmodfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
1672@standards{ISO, math.h}
1673@standardsx{fmodfN, TS 18661-3:2015, math.h}
1674@standardsx{fmodfNx, TS 18661-3:2015, math.h}
1675@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1676These functions compute the remainder from the division of
1677@var{numerator} by @var{denominator}.  Specifically, the return value is
1678@code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
1679is the quotient of @var{numerator} divided by @var{denominator}, rounded
1680towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
1681@code{1.9}, which is @code{6.5} minus @code{4.6}.
1682
1683The result has the same sign as the @var{numerator} and has magnitude
1684less than the magnitude of the @var{denominator}.
1685
1686If @var{denominator} is zero, @code{fmod} signals a domain error.
1687@end deftypefun
1688
1689@deftypefun double remainder (double @var{numerator}, double @var{denominator})
1690@deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
1691@deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
1692@deftypefunx _FloatN remainderfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
1693@deftypefunx _FloatNx remainderfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
1694@standards{ISO, math.h}
1695@standardsx{remainderfN, TS 18661-3:2015, math.h}
1696@standardsx{remainderfNx, TS 18661-3:2015, math.h}
1697@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1698These functions are like @code{fmod} except that they round the
1699internal quotient @var{n} to the nearest integer instead of towards zero
1700to an integer.  For example, @code{remainder (6.5, 2.3)} returns
1701@code{-0.4}, which is @code{6.5} minus @code{6.9}.
1702
1703The absolute value of the result is less than or equal to half the
1704absolute value of the @var{denominator}.  The difference between
1705@code{fmod (@var{numerator}, @var{denominator})} and @code{remainder
1706(@var{numerator}, @var{denominator})} is always either
1707@var{denominator}, minus @var{denominator}, or zero.
1708
1709If @var{denominator} is zero, @code{remainder} signals a domain error.
1710@end deftypefun
1711
1712@deftypefun double drem (double @var{numerator}, double @var{denominator})
1713@deftypefunx float dremf (float @var{numerator}, float @var{denominator})
1714@deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator})
1715@standards{BSD, math.h}
1716@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1717This function is another name for @code{remainder}.
1718@end deftypefun
1719
1720@node FP Bit Twiddling
1721@subsection Setting and modifying single bits of FP values
1722@cindex FP arithmetic
1723
1724There are some operations that are too complicated or expensive to
1725perform by hand on floating-point numbers.  @w{ISO C99} defines
1726functions to do these operations, which mostly involve changing single
1727bits.
1728
1729@deftypefun double copysign (double @var{x}, double @var{y})
1730@deftypefunx float copysignf (float @var{x}, float @var{y})
1731@deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
1732@deftypefunx _FloatN copysignfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
1733@deftypefunx _FloatNx copysignfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
1734@standards{ISO, math.h}
1735@standardsx{copysignfN, TS 18661-3:2015, math.h}
1736@standardsx{copysignfNx, TS 18661-3:2015, math.h}
1737@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1738These functions return @var{x} but with the sign of @var{y}.  They work
1739even if @var{x} or @var{y} are NaN or zero.  Both of these can carry a
1740sign (although not all implementations support it) and this is one of
1741the few operations that can tell the difference.
1742
1743@code{copysign} never raises an exception.
1744@c except signalling NaNs
1745
1746This function is defined in @w{IEC 559} (and the appendix with
1747recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1748@end deftypefun
1749
1750@deftypefun int signbit (@emph{float-type} @var{x})
1751@standards{ISO, math.h}
1752@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1753@code{signbit} is a generic macro which can work on all floating-point
1754types.  It returns a nonzero value if the value of @var{x} has its sign
1755bit set.
1756
1757This is not the same as @code{x < 0.0}, because @w{IEEE 754} floating
1758point allows zero to be signed.  The comparison @code{-0.0 < 0.0} is
1759false, but @code{signbit (-0.0)} will return a nonzero value.
1760@end deftypefun
1761
1762@deftypefun double nextafter (double @var{x}, double @var{y})
1763@deftypefunx float nextafterf (float @var{x}, float @var{y})
1764@deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
1765@deftypefunx _FloatN nextafterfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
1766@deftypefunx _FloatNx nextafterfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
1767@standards{ISO, math.h}
1768@standardsx{nextafterfN, TS 18661-3:2015, math.h}
1769@standardsx{nextafterfNx, TS 18661-3:2015, math.h}
1770@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1771The @code{nextafter} function returns the next representable neighbor of
1772@var{x} in the direction towards @var{y}.  The size of the step between
1773@var{x} and the result depends on the type of the result.  If
1774@math{@var{x} = @var{y}} the function simply returns @var{y}.  If either
1775value is @code{NaN}, @code{NaN} is returned.  Otherwise
1776a value corresponding to the value of the least significant bit in the
1777mantissa is added or subtracted, depending on the direction.
1778@code{nextafter} will signal overflow or underflow if the result goes
1779outside of the range of normalized numbers.
1780
1781This function is defined in @w{IEC 559} (and the appendix with
1782recommended functions in @w{IEEE 754}/@w{IEEE 854}).
1783@end deftypefun
1784
1785@deftypefun double nexttoward (double @var{x}, long double @var{y})
1786@deftypefunx float nexttowardf (float @var{x}, long double @var{y})
1787@deftypefunx {long double} nexttowardl (long double @var{x}, long double @var{y})
1788@standards{ISO, math.h}
1789@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1790These functions are identical to the corresponding versions of
1791@code{nextafter} except that their second argument is a @code{long
1792double}.
1793@end deftypefun
1794
1795@deftypefun double nextup (double @var{x})
1796@deftypefunx float nextupf (float @var{x})
1797@deftypefunx {long double} nextupl (long double @var{x})
1798@deftypefunx _FloatN nextupfN (_Float@var{N} @var{x})
1799@deftypefunx _FloatNx nextupfNx (_Float@var{N}x @var{x})
1800@standards{ISO, math.h}
1801@standardsx{nextupfN, TS 18661-3:2015, math.h}
1802@standardsx{nextupfNx, TS 18661-3:2015, math.h}
1803@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1804The @code{nextup} function returns the next representable neighbor of @var{x}
1805in the direction of positive infinity.  If @var{x} is the smallest negative
1806subnormal number in the type of @var{x} the function returns @code{-0}.  If
1807@math{@var{x} = @code{0}} the function returns the smallest positive subnormal
1808number in the type of @var{x}.  If @var{x} is NaN, NaN is returned.
1809If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
1810@code{nextup} is from TS 18661-1:2014 and TS 18661-3:2015.
1811@code{nextup} never raises an exception except for signaling NaNs.
1812@end deftypefun
1813
1814@deftypefun double nextdown (double @var{x})
1815@deftypefunx float nextdownf (float @var{x})
1816@deftypefunx {long double} nextdownl (long double @var{x})
1817@deftypefunx _FloatN nextdownfN (_Float@var{N} @var{x})
1818@deftypefunx _FloatNx nextdownfNx (_Float@var{N}x @var{x})
1819@standards{ISO, math.h}
1820@standardsx{nextdownfN, TS 18661-3:2015, math.h}
1821@standardsx{nextdownfNx, TS 18661-3:2015, math.h}
1822@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1823The @code{nextdown} function returns the next representable neighbor of @var{x}
1824in the direction of negative infinity.  If @var{x} is the smallest positive
1825subnormal number in the type of @var{x} the function returns @code{+0}.  If
1826@math{@var{x} = @code{0}} the function returns the smallest negative subnormal
1827number in the type of @var{x}.  If @var{x} is NaN, NaN is returned.
1828If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
1829@code{nextdown} is from TS 18661-1:2014 and TS 18661-3:2015.
1830@code{nextdown} never raises an exception except for signaling NaNs.
1831@end deftypefun
1832
1833@cindex NaN
1834@deftypefun double nan (const char *@var{tagp})
1835@deftypefunx float nanf (const char *@var{tagp})
1836@deftypefunx {long double} nanl (const char *@var{tagp})
1837@deftypefunx _FloatN nanfN (const char *@var{tagp})
1838@deftypefunx _FloatNx nanfNx (const char *@var{tagp})
1839@standards{ISO, math.h}
1840@standardsx{nanfN, TS 18661-3:2015, math.h}
1841@standardsx{nanfNx, TS 18661-3:2015, math.h}
1842@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
1843@c The unsafe-but-ruled-safe locale use comes from strtod.
1844The @code{nan} function returns a representation of NaN, provided that
1845NaN is supported by the target platform.
1846@code{nan ("@var{n-char-sequence}")} is equivalent to
1847@code{strtod ("NAN(@var{n-char-sequence})")}.
1848
1849The argument @var{tagp} is used in an unspecified manner.  On @w{IEEE
1850754} systems, there are many representations of NaN, and @var{tagp}
1851selects one.  On other systems it may do nothing.
1852@end deftypefun
1853
1854@deftypefun int canonicalize (double *@var{cx}, const double *@var{x})
1855@deftypefunx int canonicalizef (float *@var{cx}, const float *@var{x})
1856@deftypefunx int canonicalizel (long double *@var{cx}, const long double *@var{x})
1857@deftypefunx int canonicalizefN (_Float@var{N} *@var{cx}, const _Float@var{N} *@var{x})
1858@deftypefunx int canonicalizefNx (_Float@var{N}x *@var{cx}, const _Float@var{N}x *@var{x})
1859@standards{ISO, math.h}
1860@standardsx{canonicalizefN, TS 18661-3:2015, math.h}
1861@standardsx{canonicalizefNx, TS 18661-3:2015, math.h}
1862@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1863In some floating-point formats, some values have canonical (preferred)
1864and noncanonical encodings (for IEEE interchange binary formats, all
1865encodings are canonical).  These functions, defined by TS
186618661-1:2014 and TS 18661-3:2015, attempt to produce a canonical version
1867of the floating-point value pointed to by @var{x}; if that value is a
1868signaling NaN, they raise the invalid exception and produce a quiet
1869NaN.  If a canonical value is produced, it is stored in the object
1870pointed to by @var{cx}, and these functions return zero.  Otherwise
1871(if a canonical value could not be produced because the object pointed
1872to by @var{x} is not a valid representation of any floating-point
1873value), the object pointed to by @var{cx} is unchanged and a nonzero
1874value is returned.
1875
1876Note that some formats have multiple encodings of a value which are
1877all equally canonical; when such an encoding is used as an input to
1878this function, any such encoding of the same value (or of the
1879corresponding quiet NaN, if that value is a signaling NaN) may be
1880produced as output.
1881@end deftypefun
1882
1883@deftypefun double getpayload (const double *@var{x})
1884@deftypefunx float getpayloadf (const float *@var{x})
1885@deftypefunx {long double} getpayloadl (const long double *@var{x})
1886@deftypefunx _FloatN getpayloadfN (const _Float@var{N} *@var{x})
1887@deftypefunx _FloatNx getpayloadfNx (const _Float@var{N}x *@var{x})
1888@standards{ISO, math.h}
1889@standardsx{getpayloadfN, TS 18661-3:2015, math.h}
1890@standardsx{getpayloadfNx, TS 18661-3:2015, math.h}
1891@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1892IEEE 754 defines the @dfn{payload} of a NaN to be an integer value
1893encoded in the representation of the NaN.  Payloads are typically
1894propagated from NaN inputs to the result of a floating-point
1895operation.  These functions, defined by TS 18661-1:2014 and TS
189618661-3:2015, return the payload of the NaN pointed to by @var{x}
1897(returned as a positive integer, or positive zero, represented as a
1898floating-point number); if @var{x} is not a NaN, they return
1899@minus{}1.  They raise no floating-point exceptions even for signaling
1900NaNs.  (The return value of @minus{}1 for an argument that is not a
1901NaN is specified in C2x; the value was unspecified in TS 18661.)
1902@end deftypefun
1903
1904@deftypefun int setpayload (double *@var{x}, double @var{payload})
1905@deftypefunx int setpayloadf (float *@var{x}, float @var{payload})
1906@deftypefunx int setpayloadl (long double *@var{x}, long double @var{payload})
1907@deftypefunx int setpayloadfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
1908@deftypefunx int setpayloadfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
1909@standards{ISO, math.h}
1910@standardsx{setpayloadfN, TS 18661-3:2015, math.h}
1911@standardsx{setpayloadfNx, TS 18661-3:2015, math.h}
1912@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1913These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
1914object pointed to by @var{x} to a quiet NaN with payload @var{payload}
1915and a zero sign bit and return zero.  If @var{payload} is not a
1916positive-signed integer that is a valid payload for a quiet NaN of the
1917given type, the object pointed to by @var{x} is set to positive zero and
1918a nonzero value is returned.  They raise no floating-point exceptions.
1919@end deftypefun
1920
1921@deftypefun int setpayloadsig (double *@var{x}, double @var{payload})
1922@deftypefunx int setpayloadsigf (float *@var{x}, float @var{payload})
1923@deftypefunx int setpayloadsigl (long double *@var{x}, long double @var{payload})
1924@deftypefunx int setpayloadsigfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
1925@deftypefunx int setpayloadsigfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
1926@standards{ISO, math.h}
1927@standardsx{setpayloadsigfN, TS 18661-3:2015, math.h}
1928@standardsx{setpayloadsigfNx, TS 18661-3:2015, math.h}
1929@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1930These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
1931object pointed to by @var{x} to a signaling NaN with payload
1932@var{payload} and a zero sign bit and return zero.  If @var{payload} is
1933not a positive-signed integer that is a valid payload for a signaling
1934NaN of the given type, the object pointed to by @var{x} is set to
1935positive zero and a nonzero value is returned.  They raise no
1936floating-point exceptions.
1937@end deftypefun
1938
1939@node FP Comparison Functions
1940@subsection Floating-Point Comparison Functions
1941@cindex unordered comparison
1942
1943The standard C comparison operators provoke exceptions when one or other
1944of the operands is NaN.  For example,
1945
1946@smallexample
1947int v = a < 1.0;
1948@end smallexample
1949
1950@noindent
1951will raise an exception if @var{a} is NaN.  (This does @emph{not}
1952happen with @code{==} and @code{!=}; those merely return false and true,
1953respectively, when NaN is examined.)  Frequently this exception is
1954undesirable.  @w{ISO C99} therefore defines comparison functions that
1955do not raise exceptions when NaN is examined.  All of the functions are
1956implemented as macros which allow their arguments to be of any
1957floating-point type.  The macros are guaranteed to evaluate their
1958arguments only once.  TS 18661-1:2014 adds such a macro for an
1959equality comparison that @emph{does} raise an exception for a NaN
1960argument; it also adds functions that provide a total ordering on all
1961floating-point values, including NaNs, without raising any exceptions
1962even for signaling NaNs.
1963
1964@deftypefn Macro int isgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1965@standards{ISO, math.h}
1966@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1967This macro determines whether the argument @var{x} is greater than
1968@var{y}.  It is equivalent to @code{(@var{x}) > (@var{y})}, but no
1969exception is raised if @var{x} or @var{y} are NaN.
1970@end deftypefn
1971
1972@deftypefn Macro int isgreaterequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1973@standards{ISO, math.h}
1974@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1975This macro determines whether the argument @var{x} is greater than or
1976equal to @var{y}.  It is equivalent to @code{(@var{x}) >= (@var{y})}, but no
1977exception is raised if @var{x} or @var{y} are NaN.
1978@end deftypefn
1979
1980@deftypefn Macro int isless (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1981@standards{ISO, math.h}
1982@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1983This macro determines whether the argument @var{x} is less than @var{y}.
1984It is equivalent to @code{(@var{x}) < (@var{y})}, but no exception is
1985raised if @var{x} or @var{y} are NaN.
1986@end deftypefn
1987
1988@deftypefn Macro int islessequal (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1989@standards{ISO, math.h}
1990@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1991This macro determines whether the argument @var{x} is less than or equal
1992to @var{y}.  It is equivalent to @code{(@var{x}) <= (@var{y})}, but no
1993exception is raised if @var{x} or @var{y} are NaN.
1994@end deftypefn
1995
1996@deftypefn Macro int islessgreater (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
1997@standards{ISO, math.h}
1998@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
1999This macro determines whether the argument @var{x} is less or greater
2000than @var{y}.  It is equivalent to @code{(@var{x}) < (@var{y}) ||
2001(@var{x}) > (@var{y})} (although it only evaluates @var{x} and @var{y}
2002once), but no exception is raised if @var{x} or @var{y} are NaN.
2003
2004This macro is not equivalent to @code{@var{x} != @var{y}}, because that
2005expression is true if @var{x} or @var{y} are NaN.
2006@end deftypefn
2007
2008@deftypefn Macro int isunordered (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2009@standards{ISO, math.h}
2010@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2011This macro determines whether its arguments are unordered.  In other
2012words, it is true if @var{x} or @var{y} are NaN, and false otherwise.
2013@end deftypefn
2014
2015@deftypefn Macro int iseqsig (@emph{real-floating} @var{x}, @emph{real-floating} @var{y})
2016@standards{ISO, math.h}
2017@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2018This macro determines whether its arguments are equal.  It is
2019equivalent to @code{(@var{x}) == (@var{y})}, but it raises the invalid
2020exception and sets @code{errno} to @code{EDOM} if either argument is a
2021NaN.
2022@end deftypefn
2023
2024@deftypefun int totalorder (const double *@var{x}, const double *@var{y})
2025@deftypefunx int totalorderf (const float *@var{x}, const float *@var{y})
2026@deftypefunx int totalorderl (const long double *@var{x}, const long double *@var{y})
2027@deftypefunx int totalorderfN (const _Float@var{N} *@var{x}, const _Float@var{N} *@var{y})
2028@deftypefunx int totalorderfNx (const _Float@var{N}x *@var{x}, const _Float@var{N}x *@var{y})
2029@standards{TS 18661-1:2014, math.h}
2030@standardsx{totalorderfN, TS 18661-3:2015, math.h}
2031@standardsx{totalorderfNx, TS 18661-3:2015, math.h}
2032@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2033These functions determine whether the total order relationship,
2034defined in IEEE 754-2008, is true for @code{*@var{x}} and
2035@code{*@var{y}}, returning
2036nonzero if it is true and zero if it is false.  No exceptions are
2037raised even for signaling NaNs.  The relationship is true if they are
2038the same floating-point value (including sign for zero and NaNs, and
2039payload for NaNs), or if @code{*@var{x}} comes before @code{*@var{y}}
2040in the following
2041order: negative quiet NaNs, in order of decreasing payload; negative
2042signaling NaNs, in order of decreasing payload; negative infinity;
2043finite numbers, in ascending order, with negative zero before positive
2044zero; positive infinity; positive signaling NaNs, in order of
2045increasing payload; positive quiet NaNs, in order of increasing
2046payload.
2047@end deftypefun
2048
2049@deftypefun int totalordermag (const double *@var{x}, const double *@var{y})
2050@deftypefunx int totalordermagf (const float *@var{x}, const float *@var{y})
2051@deftypefunx int totalordermagl (const long double *@var{x}, const long double *@var{y})
2052@deftypefunx int totalordermagfN (const _Float@var{N} *@var{x}, const _Float@var{N} *@var{y})
2053@deftypefunx int totalordermagfNx (const _Float@var{N}x *@var{x}, const _Float@var{N}x *@var{y})
2054@standards{TS 18661-1:2014, math.h}
2055@standardsx{totalordermagfN, TS 18661-3:2015, math.h}
2056@standardsx{totalordermagfNx, TS 18661-3:2015, math.h}
2057@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2058These functions determine whether the total order relationship,
2059defined in IEEE 754-2008, is true for the absolute values of @code{*@var{x}}
2060and @code{*@var{y}}, returning nonzero if it is true and zero if it is false.
2061No exceptions are raised even for signaling NaNs.
2062@end deftypefun
2063
2064Not all machines provide hardware support for these operations.  On
2065machines that don't, the macros can be very slow.  Therefore, you should
2066not use these functions when NaN is not a concern.
2067
2068@strong{NB:} There are no macros @code{isequal} or @code{isunequal}.
2069They are unnecessary, because the @code{==} and @code{!=} operators do
2070@emph{not} throw an exception if one or both of the operands are NaN.
2071
2072@node Misc FP Arithmetic
2073@subsection Miscellaneous FP arithmetic functions
2074@cindex minimum
2075@cindex maximum
2076@cindex positive difference
2077@cindex multiply-add
2078
2079The functions in this section perform miscellaneous but common
2080operations that are awkward to express with C operators.  On some
2081processors these functions can use special machine instructions to
2082perform these operations faster than the equivalent C code.
2083
2084@deftypefun double fmin (double @var{x}, double @var{y})
2085@deftypefunx float fminf (float @var{x}, float @var{y})
2086@deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
2087@deftypefunx _FloatN fminfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2088@deftypefunx _FloatNx fminfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2089@standards{ISO, math.h}
2090@standardsx{fminfN, TS 18661-3:2015, math.h}
2091@standardsx{fminfNx, TS 18661-3:2015, math.h}
2092@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2093The @code{fmin} function returns the lesser of the two values @var{x}
2094and @var{y}.  It is similar to the expression
2095@smallexample
2096((x) < (y) ? (x) : (y))
2097@end smallexample
2098except that @var{x} and @var{y} are only evaluated once.
2099
2100If an argument is a quiet NaN, the other argument is returned.  If both arguments
2101are NaN, or either is a signaling NaN, NaN is returned.
2102@end deftypefun
2103
2104@deftypefun double fmax (double @var{x}, double @var{y})
2105@deftypefunx float fmaxf (float @var{x}, float @var{y})
2106@deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
2107@deftypefunx _FloatN fmaxfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2108@deftypefunx _FloatNx fmaxfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2109@standards{ISO, math.h}
2110@standardsx{fmaxfN, TS 18661-3:2015, math.h}
2111@standardsx{fmaxfNx, TS 18661-3:2015, math.h}
2112@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2113The @code{fmax} function returns the greater of the two values @var{x}
2114and @var{y}.
2115
2116If an argument is a quiet NaN, the other argument is returned.  If both arguments
2117are NaN, or either is a signaling NaN, NaN is returned.
2118@end deftypefun
2119
2120@deftypefun double fminimum (double @var{x}, double @var{y})
2121@deftypefunx float fminimumf (float @var{x}, float @var{y})
2122@deftypefunx {long double} fminimuml (long double @var{x}, long double @var{y})
2123@deftypefunx _FloatN fminimumfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2124@deftypefunx _FloatNx fminimumfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2125@standards{C2X, math.h}
2126@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2127The @code{fminimum} function returns the lesser of the two values @var{x}
2128and @var{y}.  Unlike @code{fmin}, if either argument is a NaN, NaN is returned.
2129Positive zero is treated as greater than negative zero.
2130@end deftypefun
2131
2132@deftypefun double fmaximum (double @var{x}, double @var{y})
2133@deftypefunx float fmaximumf (float @var{x}, float @var{y})
2134@deftypefunx {long double} fmaximuml (long double @var{x}, long double @var{y})
2135@deftypefunx _FloatN fmaximumfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2136@deftypefunx _FloatNx fmaximumfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2137@standards{C2X, math.h}
2138@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2139The @code{fmaximum} function returns the greater of the two values @var{x}
2140and @var{y}.  Unlike @code{fmax}, if either argument is a NaN, NaN is returned.
2141Positive zero is treated as greater than negative zero.
2142@end deftypefun
2143
2144@deftypefun double fminimum_num (double @var{x}, double @var{y})
2145@deftypefunx float fminimum_numf (float @var{x}, float @var{y})
2146@deftypefunx {long double} fminimum_numl (long double @var{x}, long double @var{y})
2147@deftypefunx _FloatN fminimum_numfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2148@deftypefunx _FloatNx fminimum_numfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2149@standards{C2X, math.h}
2150@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2151The @code{fminimum_num} function returns the lesser of the two values
2152@var{x} and @var{y}.  If one argument is a number and the other is a
2153NaN, even a signaling NaN, the number is returned.  Positive zero is
2154treated as greater than negative zero.
2155@end deftypefun
2156
2157@deftypefun double fmaximum_num (double @var{x}, double @var{y})
2158@deftypefunx float fmaximum_numf (float @var{x}, float @var{y})
2159@deftypefunx {long double} fmaximum_numl (long double @var{x}, long double @var{y})
2160@deftypefunx _FloatN fmaximum_numfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2161@deftypefunx _FloatNx fmaximum_numfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2162@standards{C2X, math.h}
2163@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2164The @code{fmaximum_num} function returns the greater of the two values
2165@var{x} and @var{y}.  If one argument is a number and the other is a
2166NaN, even a signaling NaN, the number is returned.  Positive zero is
2167treated as greater than negative zero.
2168@end deftypefun
2169
2170@deftypefun double fminmag (double @var{x}, double @var{y})
2171@deftypefunx float fminmagf (float @var{x}, float @var{y})
2172@deftypefunx {long double} fminmagl (long double @var{x}, long double @var{y})
2173@deftypefunx _FloatN fminmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2174@deftypefunx _FloatNx fminmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2175@standards{ISO, math.h}
2176@standardsx{fminmagfN, TS 18661-3:2015, math.h}
2177@standardsx{fminmagfNx, TS 18661-3:2015, math.h}
2178@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2179These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2180whichever of the two values @var{x} and @var{y} has the smaller absolute
2181value.  If both have the same absolute value, or either is NaN, they
2182behave the same as the @code{fmin} functions.
2183@end deftypefun
2184
2185@deftypefun double fmaxmag (double @var{x}, double @var{y})
2186@deftypefunx float fmaxmagf (float @var{x}, float @var{y})
2187@deftypefunx {long double} fmaxmagl (long double @var{x}, long double @var{y})
2188@deftypefunx _FloatN fmaxmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2189@deftypefunx _FloatNx fmaxmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2190@standards{ISO, math.h}
2191@standardsx{fmaxmagfN, TS 18661-3:2015, math.h}
2192@standardsx{fmaxmagfNx, TS 18661-3:2015, math.h}
2193@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2194These functions, from TS 18661-1:2014, return whichever of the two
2195values @var{x} and @var{y} has the greater absolute value.  If both
2196have the same absolute value, or either is NaN, they behave the same
2197as the @code{fmax} functions.
2198@end deftypefun
2199
2200@deftypefun double fminimum_mag (double @var{x}, double @var{y})
2201@deftypefunx float fminimum_magf (float @var{x}, float @var{y})
2202@deftypefunx {long double} fminimum_magl (long double @var{x}, long double @var{y})
2203@deftypefunx _FloatN fminimum_magfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2204@deftypefunx _FloatNx fminimum_magfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2205@standards{C2X, math.h}
2206@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2207These functions return whichever of the two values @var{x} and @var{y}
2208has the smaller absolute value.  If both have the same absolute value,
2209or either is NaN, they behave the same as the @code{fminimum}
2210functions.
2211@end deftypefun
2212
2213@deftypefun double fmaximum_mag (double @var{x}, double @var{y})
2214@deftypefunx float fmaximum_magf (float @var{x}, float @var{y})
2215@deftypefunx {long double} fmaximum_magl (long double @var{x}, long double @var{y})
2216@deftypefunx _FloatN fmaximum_magfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2217@deftypefunx _FloatNx fmaximum_magfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2218@standards{C2X, math.h}
2219@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2220These functions return whichever of the two values @var{x} and @var{y}
2221has the greater absolute value.  If both have the same absolute value,
2222or either is NaN, they behave the same as the @code{fmaximum}
2223functions.
2224@end deftypefun
2225
2226@deftypefun double fminimum_mag_num (double @var{x}, double @var{y})
2227@deftypefunx float fminimum_mag_numf (float @var{x}, float @var{y})
2228@deftypefunx {long double} fminimum_mag_numl (long double @var{x}, long double @var{y})
2229@deftypefunx _FloatN fminimum_mag_numfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2230@deftypefunx _FloatNx fminimum_mag_numfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2231@standards{C2X, math.h}
2232@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2233These functions return whichever of the two values @var{x} and @var{y}
2234has the smaller absolute value.  If both have the same absolute value,
2235or either is NaN, they behave the same as the @code{fminimum_num}
2236functions.
2237@end deftypefun
2238
2239@deftypefun double fmaximum_mag_num (double @var{x}, double @var{y})
2240@deftypefunx float fmaximum_mag_numf (float @var{x}, float @var{y})
2241@deftypefunx {long double} fmaximum_mag_numl (long double @var{x}, long double @var{y})
2242@deftypefunx _FloatN fmaximum_mag_numfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2243@deftypefunx _FloatNx fmaximum_mag_numfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2244@standards{C2X, math.h}
2245@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2246These functions return whichever of the two values @var{x} and @var{y}
2247has the greater absolute value.  If both have the same absolute value,
2248or either is NaN, they behave the same as the @code{fmaximum_num}
2249functions.
2250@end deftypefun
2251
2252@deftypefun double fdim (double @var{x}, double @var{y})
2253@deftypefunx float fdimf (float @var{x}, float @var{y})
2254@deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
2255@deftypefunx _FloatN fdimfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2256@deftypefunx _FloatNx fdimfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2257@standards{ISO, math.h}
2258@standardsx{fdimfN, TS 18661-3:2015, math.h}
2259@standardsx{fdimfNx, TS 18661-3:2015, math.h}
2260@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2261The @code{fdim} function returns the positive difference between
2262@var{x} and @var{y}.  The positive difference is @math{@var{x} -
2263@var{y}} if @var{x} is greater than @var{y}, and @math{0} otherwise.
2264
2265If @var{x}, @var{y}, or both are NaN, NaN is returned.
2266@end deftypefun
2267
2268@deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
2269@deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
2270@deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
2271@deftypefunx _FloatN fmafN (_Float@var{N} @var{x}, _Float@var{N} @var{y}, _Float@var{N} @var{z})
2272@deftypefunx _FloatNx fmafNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y}, _Float@var{N}x @var{z})
2273@standards{ISO, math.h}
2274@standardsx{fmafN, TS 18661-3:2015, math.h}
2275@standardsx{fmafNx, TS 18661-3:2015, math.h}
2276@cindex butterfly
2277@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2278The @code{fma} function performs floating-point multiply-add.  This is
2279the operation @math{(@var{x} @mul{} @var{y}) + @var{z}}, but the
2280intermediate result is not rounded to the destination type.  This can
2281sometimes improve the precision of a calculation.
2282
2283This function was introduced because some processors have a special
2284instruction to perform multiply-add.  The C compiler cannot use it
2285directly, because the expression @samp{x*y + z} is defined to round the
2286intermediate result.  @code{fma} lets you choose when you want to round
2287only once.
2288
2289@vindex FP_FAST_FMA
2290On processors which do not implement multiply-add in hardware,
2291@code{fma} can be very slow since it must avoid intermediate rounding.
2292@file{math.h} defines the symbols @code{FP_FAST_FMA},
2293@code{FP_FAST_FMAF}, and @code{FP_FAST_FMAL} when the corresponding
2294version of @code{fma} is no slower than the expression @samp{x*y + z}.
2295In @theglibc{}, this always means the operation is implemented in
2296hardware.
2297@end deftypefun
2298
2299@deftypefun float fadd (double @var{x}, double @var{y})
2300@deftypefunx float faddl (long double @var{x}, long double @var{y})
2301@deftypefunx double daddl (long double @var{x}, long double @var{y})
2302@deftypefunx _FloatM fMaddfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2303@deftypefunx _FloatM fMaddfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2304@deftypefunx _FloatMx fMxaddfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2305@deftypefunx _FloatMx fMxaddfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2306@standards{TS 18661-1:2014, math.h}
2307@standardsx{fMaddfN, TS 18661-3:2015, math.h}
2308@standardsx{fMaddfNx, TS 18661-3:2015, math.h}
2309@standardsx{fMxaddfN, TS 18661-3:2015, math.h}
2310@standardsx{fMxaddfNx, TS 18661-3:2015, math.h}
2311@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2312These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2313@math{@var{x} + @var{y}}, rounded once to the return type of the
2314function without any intermediate rounding to the type of the
2315arguments.
2316@end deftypefun
2317
2318@deftypefun float fsub (double @var{x}, double @var{y})
2319@deftypefunx float fsubl (long double @var{x}, long double @var{y})
2320@deftypefunx double dsubl (long double @var{x}, long double @var{y})
2321@deftypefunx _FloatM fMsubfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2322@deftypefunx _FloatM fMsubfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2323@deftypefunx _FloatMx fMxsubfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2324@deftypefunx _FloatMx fMxsubfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2325@standards{TS 18661-1:2014, math.h}
2326@standardsx{fMsubfN, TS 18661-3:2015, math.h}
2327@standardsx{fMsubfNx, TS 18661-3:2015, math.h}
2328@standardsx{fMxsubfN, TS 18661-3:2015, math.h}
2329@standardsx{fMxsubfNx, TS 18661-3:2015, math.h}
2330@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2331These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2332@math{@var{x} - @var{y}}, rounded once to the return type of the
2333function without any intermediate rounding to the type of the
2334arguments.
2335@end deftypefun
2336
2337@deftypefun float fmul (double @var{x}, double @var{y})
2338@deftypefunx float fmull (long double @var{x}, long double @var{y})
2339@deftypefunx double dmull (long double @var{x}, long double @var{y})
2340@deftypefunx _FloatM fMmulfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2341@deftypefunx _FloatM fMmulfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2342@deftypefunx _FloatMx fMxmulfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2343@deftypefunx _FloatMx fMxmulfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2344@standards{TS 18661-1:2014, math.h}
2345@standardsx{fMmulfN, TS 18661-3:2015, math.h}
2346@standardsx{fMmulfNx, TS 18661-3:2015, math.h}
2347@standardsx{fMxmulfN, TS 18661-3:2015, math.h}
2348@standardsx{fMxmulfNx, TS 18661-3:2015, math.h}
2349@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2350These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2351@math{@var{x} * @var{y}}, rounded once to the return type of the
2352function without any intermediate rounding to the type of the
2353arguments.
2354@end deftypefun
2355
2356@deftypefun float fdiv (double @var{x}, double @var{y})
2357@deftypefunx float fdivl (long double @var{x}, long double @var{y})
2358@deftypefunx double ddivl (long double @var{x}, long double @var{y})
2359@deftypefunx _FloatM fMdivfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2360@deftypefunx _FloatM fMdivfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2361@deftypefunx _FloatMx fMxdivfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
2362@deftypefunx _FloatMx fMxdivfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
2363@standards{TS 18661-1:2014, math.h}
2364@standardsx{fMdivfN, TS 18661-3:2015, math.h}
2365@standardsx{fMdivfNx, TS 18661-3:2015, math.h}
2366@standardsx{fMxdivfN, TS 18661-3:2015, math.h}
2367@standardsx{fMxdivfNx, TS 18661-3:2015, math.h}
2368@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2369These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2370@math{@var{x} / @var{y}}, rounded once to the return type of the
2371function without any intermediate rounding to the type of the
2372arguments.
2373@end deftypefun
2374
2375@deftypefun float fsqrt (double @var{x})
2376@deftypefunx float fsqrtl (long double @var{x})
2377@deftypefunx double dsqrtl (long double @var{x})
2378@deftypefunx _FloatM fMsqrtfN (_Float@var{N} @var{x})
2379@deftypefunx _FloatM fMsqrtfNx (_Float@var{N}x @var{x})
2380@deftypefunx _FloatMx fMxsqrtfN (_Float@var{N} @var{x})
2381@deftypefunx _FloatMx fMxsqrtfNx (_Float@var{N}x @var{x})
2382@standards{TS 18661-1:2014, math.h}
2383@standardsx{fMsqrtfN, TS 18661-3:2015, math.h}
2384@standardsx{fMsqrtfNx, TS 18661-3:2015, math.h}
2385@standardsx{fMxsqrtfN, TS 18661-3:2015, math.h}
2386@standardsx{fMxsqrtfNx, TS 18661-3:2015, math.h}
2387@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2388These functions, from TS 18661-1:2014 and TS 18661-3:2015, return the
2389square root of @var{x}, rounded once to the return type of the
2390function without any intermediate rounding to the type of the
2391arguments.
2392@end deftypefun
2393
2394@deftypefun float ffma (double @var{x}, double @var{y}, double @var{z})
2395@deftypefunx float ffmal (long double @var{x}, long double @var{y}, long double @var{z})
2396@deftypefunx double dfmal (long double @var{x}, long double @var{y}, long double @var{z})
2397@deftypefunx _FloatM fMfmafN (_Float@var{N} @var{x}, _Float@var{N} @var{y}, _Float@var{N} @var{z})
2398@deftypefunx _FloatM fMfmafNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y}, _Float@var{N}x @var{z})
2399@deftypefunx _FloatMx fMxfmafN (_Float@var{N} @var{x}, _Float@var{N} @var{y}, _Float@var{N} @var{z})
2400@deftypefunx _FloatMx fMxfmafNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y}, _Float@var{N}x @var{z})
2401@standards{TS 18661-1:2014, math.h}
2402@standardsx{fMfmafN, TS 18661-3:2015, math.h}
2403@standardsx{fMfmafNx, TS 18661-3:2015, math.h}
2404@standardsx{fMxfmafN, TS 18661-3:2015, math.h}
2405@standardsx{fMxfmafNx, TS 18661-3:2015, math.h}
2406@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2407
2408These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
2409@math{(@var{x} @mul{} @var{y}) + @var{z}}, rounded once to the return
2410type of the function without any intermediate rounding to the type of
2411the arguments and without any intermediate rounding of result of the
2412multiplication.
2413@end deftypefun
2414
2415@node Complex Numbers
2416@section Complex Numbers
2417@pindex complex.h
2418@cindex complex numbers
2419
2420@w{ISO C99} introduces support for complex numbers in C.  This is done
2421with a new type qualifier, @code{complex}.  It is a keyword if and only
2422if @file{complex.h} has been included.  There are three complex types,
2423corresponding to the three real types:  @code{float complex},
2424@code{double complex}, and @code{long double complex}.
2425
2426Likewise, on machines that have support for @code{_Float@var{N}} or
2427@code{_Float@var{N}x} enabled, the complex types @code{_Float@var{N}
2428complex} and @code{_Float@var{N}x complex} are also available if
2429@file{complex.h} has been included; @pxref{Mathematics}.
2430
2431To construct complex numbers you need a way to indicate the imaginary
2432part of a number.  There is no standard notation for an imaginary
2433floating point constant.  Instead, @file{complex.h} defines two macros
2434that can be used to create complex numbers.
2435
2436@deftypevr Macro {const float complex} _Complex_I
2437@standards{C99, complex.h}
2438This macro is a representation of the complex number ``@math{0+1i}''.
2439Multiplying a real floating-point value by @code{_Complex_I} gives a
2440complex number whose value is purely imaginary.  You can use this to
2441construct complex constants:
2442
2443@smallexample
2444@math{3.0 + 4.0i} = @code{3.0 + 4.0 * _Complex_I}
2445@end smallexample
2446
2447Note that @code{_Complex_I * _Complex_I} has the value @code{-1}, but
2448the type of that value is @code{complex}.
2449@end deftypevr
2450
2451@c Put this back in when gcc supports _Imaginary_I.  It's too confusing.
2452@ignore
2453@noindent
2454Without an optimizing compiler this is more expensive than the use of
2455@code{_Imaginary_I} but with is better than nothing.  You can avoid all
2456the hassles if you use the @code{I} macro below if the name is not
2457problem.
2458
2459@deftypevr Macro {const float imaginary} _Imaginary_I
2460This macro is a representation of the value ``@math{1i}''.  I.e., it is
2461the value for which
2462
2463@smallexample
2464_Imaginary_I * _Imaginary_I = -1
2465@end smallexample
2466
2467@noindent
2468The result is not of type @code{float imaginary} but instead @code{float}.
2469One can use it to easily construct complex number like in
2470
2471@smallexample
24723.0 - _Imaginary_I * 4.0
2473@end smallexample
2474
2475@noindent
2476which results in the complex number with a real part of 3.0 and a
2477imaginary part -4.0.
2478@end deftypevr
2479@end ignore
2480
2481@noindent
2482@code{_Complex_I} is a bit of a mouthful.  @file{complex.h} also defines
2483a shorter name for the same constant.
2484
2485@deftypevr Macro {const float complex} I
2486@standards{C99, complex.h}
2487This macro has exactly the same value as @code{_Complex_I}.  Most of the
2488time it is preferable.  However, it causes problems if you want to use
2489the identifier @code{I} for something else.  You can safely write
2490
2491@smallexample
2492#include <complex.h>
2493#undef I
2494@end smallexample
2495
2496@noindent
2497if you need @code{I} for your own purposes.  (In that case we recommend
2498you also define some other short name for @code{_Complex_I}, such as
2499@code{J}.)
2500
2501@ignore
2502If the implementation does not support the @code{imaginary} types
2503@code{I} is defined as @code{_Complex_I} which is the second best
2504solution.  It still can be used in the same way but requires a most
2505clever compiler to get the same results.
2506@end ignore
2507@end deftypevr
2508
2509@node Operations on Complex
2510@section Projections, Conjugates, and Decomposing of Complex Numbers
2511@cindex project complex numbers
2512@cindex conjugate complex numbers
2513@cindex decompose complex numbers
2514@pindex complex.h
2515
2516@w{ISO C99} also defines functions that perform basic operations on
2517complex numbers, such as decomposition and conjugation.  The prototypes
2518for all these functions are in @file{complex.h}.  All functions are
2519available in three variants, one for each of the three complex types.
2520
2521@deftypefun double creal (complex double @var{z})
2522@deftypefunx float crealf (complex float @var{z})
2523@deftypefunx {long double} creall (complex long double @var{z})
2524@deftypefunx _FloatN crealfN (complex _Float@var{N} @var{z})
2525@deftypefunx _FloatNx crealfNx (complex _Float@var{N}x @var{z})
2526@standards{ISO, complex.h}
2527@standardsx{crealfN, TS 18661-3:2015, complex.h}
2528@standardsx{crealfNx, TS 18661-3:2015, complex.h}
2529@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2530These functions return the real part of the complex number @var{z}.
2531@end deftypefun
2532
2533@deftypefun double cimag (complex double @var{z})
2534@deftypefunx float cimagf (complex float @var{z})
2535@deftypefunx {long double} cimagl (complex long double @var{z})
2536@deftypefunx _FloatN cimagfN (complex _Float@var{N} @var{z})
2537@deftypefunx _FloatNx cimagfNx (complex _Float@var{N}x @var{z})
2538@standards{ISO, complex.h}
2539@standardsx{cimagfN, TS 18661-3:2015, complex.h}
2540@standardsx{cimagfNx, TS 18661-3:2015, complex.h}
2541@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2542These functions return the imaginary part of the complex number @var{z}.
2543@end deftypefun
2544
2545@deftypefun {complex double} conj (complex double @var{z})
2546@deftypefunx {complex float} conjf (complex float @var{z})
2547@deftypefunx {complex long double} conjl (complex long double @var{z})
2548@deftypefunx {complex _FloatN} conjfN (complex _Float@var{N} @var{z})
2549@deftypefunx {complex _FloatNx} conjfNx (complex _Float@var{N}x @var{z})
2550@standards{ISO, complex.h}
2551@standardsx{conjfN, TS 18661-3:2015, complex.h}
2552@standardsx{conjfNx, TS 18661-3:2015, complex.h}
2553@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2554These functions return the conjugate value of the complex number
2555@var{z}.  The conjugate of a complex number has the same real part and a
2556negated imaginary part.  In other words, @samp{conj(a + bi) = a + -bi}.
2557@end deftypefun
2558
2559@deftypefun double carg (complex double @var{z})
2560@deftypefunx float cargf (complex float @var{z})
2561@deftypefunx {long double} cargl (complex long double @var{z})
2562@deftypefunx _FloatN cargfN (complex _Float@var{N} @var{z})
2563@deftypefunx _FloatNx cargfNx (complex _Float@var{N}x @var{z})
2564@standards{ISO, complex.h}
2565@standardsx{cargfN, TS 18661-3:2015, complex.h}
2566@standardsx{cargfNx, TS 18661-3:2015, complex.h}
2567@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2568These functions return the argument of the complex number @var{z}.
2569The argument of a complex number is the angle in the complex plane
2570between the positive real axis and a line passing through zero and the
2571number.  This angle is measured in the usual fashion and ranges from
2572@math{-@pi{}} to @math{@pi{}}.
2573
2574@code{carg} has a branch cut along the negative real axis.
2575@end deftypefun
2576
2577@deftypefun {complex double} cproj (complex double @var{z})
2578@deftypefunx {complex float} cprojf (complex float @var{z})
2579@deftypefunx {complex long double} cprojl (complex long double @var{z})
2580@deftypefunx {complex _FloatN} cprojfN (complex _Float@var{N} @var{z})
2581@deftypefunx {complex _FloatNx} cprojfNx (complex _Float@var{N}x @var{z})
2582@standards{ISO, complex.h}
2583@standardsx{cprojfN, TS 18661-3:2015, complex.h}
2584@standardsx{cprojfNx, TS 18661-3:2015, complex.h}
2585@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
2586These functions return the projection of the complex value @var{z} onto
2587the Riemann sphere.  Values with an infinite imaginary part are projected
2588to positive infinity on the real axis, even if the real part is NaN.  If
2589the real part is infinite, the result is equivalent to
2590
2591@smallexample
2592INFINITY + I * copysign (0.0, cimag (z))
2593@end smallexample
2594@end deftypefun
2595
2596@node Parsing of Numbers
2597@section Parsing of Numbers
2598@cindex parsing numbers (in formatted input)
2599@cindex converting strings to numbers
2600@cindex number syntax, parsing
2601@cindex syntax, for reading numbers
2602
2603This section describes functions for ``reading'' integer and
2604floating-point numbers from a string.  It may be more convenient in some
2605cases to use @code{sscanf} or one of the related functions; see
2606@ref{Formatted Input}.  But often you can make a program more robust by
2607finding the tokens in the string by hand, then converting the numbers
2608one by one.
2609
2610@menu
2611* Parsing of Integers::         Functions for conversion of integer values.
2612* Parsing of Floats::           Functions for conversion of floating-point
2613				 values.
2614@end menu
2615
2616@node Parsing of Integers
2617@subsection Parsing of Integers
2618
2619@pindex stdlib.h
2620@pindex wchar.h
2621The @samp{str} functions are declared in @file{stdlib.h} and those
2622beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2623wonder about the use of @code{restrict} in the prototypes of the
2624functions in this section.  It is seemingly useless but the @w{ISO C}
2625standard uses it (for the functions defined there) so we have to do it
2626as well.
2627
2628@deftypefun {long int} strtol (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2629@standards{ISO, stdlib.h}
2630@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2631@c strtol uses the thread-local pointer to the locale in effect, and
2632@c strtol_l loads the LC_NUMERIC locale data from it early on and once,
2633@c but if the locale is the global locale, and another thread calls
2634@c setlocale in a way that modifies the pointer to the LC_CTYPE locale
2635@c category, the behavior of e.g. IS*, TOUPPER will vary throughout the
2636@c execution of the function, because they re-read the locale data from
2637@c the given locale pointer.  We solved this by documenting setlocale as
2638@c MT-Unsafe.
2639The @code{strtol} (``string-to-long'') function converts the initial
2640part of @var{string} to a signed integer, which is returned as a value
2641of type @code{long int}.
2642
2643This function attempts to decompose @var{string} as follows:
2644
2645@itemize @bullet
2646@item
2647A (possibly empty) sequence of whitespace characters.  Which characters
2648are whitespace is determined by the @code{isspace} function
2649(@pxref{Classification of Characters}).  These are discarded.
2650
2651@item
2652An optional plus or minus sign (@samp{+} or @samp{-}).
2653
2654@item
2655A nonempty sequence of digits in the radix specified by @var{base}.
2656
2657If @var{base} is zero, decimal radix is assumed unless the series of
2658digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
2659@samp{0X} (specifying hexadecimal radix); in other words, the same
2660syntax used for integer constants in C.
2661
2662Otherwise @var{base} must have a value between @code{2} and @code{36}.
2663If @var{base} is @code{16}, the digits may optionally be preceded by
2664@samp{0x} or @samp{0X}.  If base has no legal value the value returned
2665is @code{0l} and the global variable @code{errno} is set to @code{EINVAL}.
2666
2667@item
2668Any remaining characters in the string.  If @var{tailptr} is not a null
2669pointer, @code{strtol} stores a pointer to this tail in
2670@code{*@var{tailptr}}.
2671@end itemize
2672
2673If the string is empty, contains only whitespace, or does not contain an
2674initial substring that has the expected syntax for an integer in the
2675specified @var{base}, no conversion is performed.  In this case,
2676@code{strtol} returns a value of zero and the value stored in
2677@code{*@var{tailptr}} is the value of @var{string}.
2678
2679In a locale other than the standard @code{"C"} locale, this function
2680may recognize additional implementation-dependent syntax.
2681
2682If the string has valid syntax for an integer but the value is not
2683representable because of overflow, @code{strtol} returns either
2684@code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
2685appropriate for the sign of the value.  It also sets @code{errno}
2686to @code{ERANGE} to indicate there was overflow.
2687
2688You should not check for errors by examining the return value of
2689@code{strtol}, because the string might be a valid representation of
2690@code{0l}, @code{LONG_MAX}, or @code{LONG_MIN}.  Instead, check whether
2691@var{tailptr} points to what you expect after the number
2692(e.g. @code{'\0'} if the string should end after the number).  You also
2693need to clear @code{errno} before the call and check it afterward, in
2694case there was overflow.
2695
2696There is an example at the end of this section.
2697@end deftypefun
2698
2699@deftypefun {long int} wcstol (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2700@standards{ISO, wchar.h}
2701@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2702The @code{wcstol} function is equivalent to the @code{strtol} function
2703in nearly all aspects but handles wide character strings.
2704
2705The @code{wcstol} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2706@end deftypefun
2707
2708@deftypefun {unsigned long int} strtoul (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2709@standards{ISO, stdlib.h}
2710@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2711The @code{strtoul} (``string-to-unsigned-long'') function is like
2712@code{strtol} except it converts to an @code{unsigned long int} value.
2713The syntax is the same as described above for @code{strtol}.  The value
2714returned on overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
2715
2716If @var{string} depicts a negative number, @code{strtoul} acts the same
2717as @var{strtol} but casts the result to an unsigned integer.  That means
2718for example that @code{strtoul} on @code{"-1"} returns @code{ULONG_MAX}
2719and an input more negative than @code{LONG_MIN} returns
2720(@code{ULONG_MAX} + 1) / 2.
2721
2722@code{strtoul} sets @code{errno} to @code{EINVAL} if @var{base} is out of
2723range, or @code{ERANGE} on overflow.
2724@end deftypefun
2725
2726@deftypefun {unsigned long int} wcstoul (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2727@standards{ISO, wchar.h}
2728@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2729The @code{wcstoul} function is equivalent to the @code{strtoul} function
2730in nearly all aspects but handles wide character strings.
2731
2732The @code{wcstoul} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2733@end deftypefun
2734
2735@deftypefun {long long int} strtoll (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2736@standards{ISO, stdlib.h}
2737@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2738The @code{strtoll} function is like @code{strtol} except that it returns
2739a @code{long long int} value, and accepts numbers with a correspondingly
2740larger range.
2741
2742If the string has valid syntax for an integer but the value is not
2743representable because of overflow, @code{strtoll} returns either
2744@code{LLONG_MAX} or @code{LLONG_MIN} (@pxref{Range of Type}), as
2745appropriate for the sign of the value.  It also sets @code{errno} to
2746@code{ERANGE} to indicate there was overflow.
2747
2748The @code{strtoll} function was introduced in @w{ISO C99}.
2749@end deftypefun
2750
2751@deftypefun {long long int} wcstoll (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2752@standards{ISO, wchar.h}
2753@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2754The @code{wcstoll} function is equivalent to the @code{strtoll} function
2755in nearly all aspects but handles wide character strings.
2756
2757The @code{wcstoll} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2758@end deftypefun
2759
2760@deftypefun {long long int} strtoq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2761@standards{BSD, stdlib.h}
2762@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2763@code{strtoq} (``string-to-quad-word'') is the BSD name for @code{strtoll}.
2764@end deftypefun
2765
2766@deftypefun {long long int} wcstoq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2767@standards{GNU, wchar.h}
2768@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2769The @code{wcstoq} function is equivalent to the @code{strtoq} function
2770in nearly all aspects but handles wide character strings.
2771
2772The @code{wcstoq} function is a GNU extension.
2773@end deftypefun
2774
2775@deftypefun {unsigned long long int} strtoull (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2776@standards{ISO, stdlib.h}
2777@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2778The @code{strtoull} function is related to @code{strtoll} the same way
2779@code{strtoul} is related to @code{strtol}.
2780
2781The @code{strtoull} function was introduced in @w{ISO C99}.
2782@end deftypefun
2783
2784@deftypefun {unsigned long long int} wcstoull (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2785@standards{ISO, wchar.h}
2786@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2787The @code{wcstoull} function is equivalent to the @code{strtoull} function
2788in nearly all aspects but handles wide character strings.
2789
2790The @code{wcstoull} function was introduced in @w{Amendment 1} of @w{ISO C90}.
2791@end deftypefun
2792
2793@deftypefun {unsigned long long int} strtouq (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2794@standards{BSD, stdlib.h}
2795@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2796@code{strtouq} is the BSD name for @code{strtoull}.
2797@end deftypefun
2798
2799@deftypefun {unsigned long long int} wcstouq (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2800@standards{GNU, wchar.h}
2801@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2802The @code{wcstouq} function is equivalent to the @code{strtouq} function
2803in nearly all aspects but handles wide character strings.
2804
2805The @code{wcstouq} function is a GNU extension.
2806@end deftypefun
2807
2808@deftypefun intmax_t strtoimax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2809@standards{ISO, inttypes.h}
2810@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2811The @code{strtoimax} function is like @code{strtol} except that it returns
2812a @code{intmax_t} value, and accepts numbers of a corresponding range.
2813
2814If the string has valid syntax for an integer but the value is not
2815representable because of overflow, @code{strtoimax} returns either
2816@code{INTMAX_MAX} or @code{INTMAX_MIN} (@pxref{Integers}), as
2817appropriate for the sign of the value.  It also sets @code{errno} to
2818@code{ERANGE} to indicate there was overflow.
2819
2820See @ref{Integers} for a description of the @code{intmax_t} type.  The
2821@code{strtoimax} function was introduced in @w{ISO C99}.
2822@end deftypefun
2823
2824@deftypefun intmax_t wcstoimax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2825@standards{ISO, wchar.h}
2826@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2827The @code{wcstoimax} function is equivalent to the @code{strtoimax} function
2828in nearly all aspects but handles wide character strings.
2829
2830The @code{wcstoimax} function was introduced in @w{ISO C99}.
2831@end deftypefun
2832
2833@deftypefun uintmax_t strtoumax (const char *restrict @var{string}, char **restrict @var{tailptr}, int @var{base})
2834@standards{ISO, inttypes.h}
2835@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2836The @code{strtoumax} function is related to @code{strtoimax}
2837the same way that @code{strtoul} is related to @code{strtol}.
2838
2839See @ref{Integers} for a description of the @code{intmax_t} type.  The
2840@code{strtoumax} function was introduced in @w{ISO C99}.
2841@end deftypefun
2842
2843@deftypefun uintmax_t wcstoumax (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr}, int @var{base})
2844@standards{ISO, wchar.h}
2845@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2846The @code{wcstoumax} function is equivalent to the @code{strtoumax} function
2847in nearly all aspects but handles wide character strings.
2848
2849The @code{wcstoumax} function was introduced in @w{ISO C99}.
2850@end deftypefun
2851
2852@deftypefun {long int} atol (const char *@var{string})
2853@standards{ISO, stdlib.h}
2854@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2855This function is similar to the @code{strtol} function with a @var{base}
2856argument of @code{10}, except that it need not detect overflow errors.
2857The @code{atol} function is provided mostly for compatibility with
2858existing code; using @code{strtol} is more robust.
2859@end deftypefun
2860
2861@deftypefun int atoi (const char *@var{string})
2862@standards{ISO, stdlib.h}
2863@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2864This function is like @code{atol}, except that it returns an @code{int}.
2865The @code{atoi} function is also considered obsolete; use @code{strtol}
2866instead.
2867@end deftypefun
2868
2869@deftypefun {long long int} atoll (const char *@var{string})
2870@standards{ISO, stdlib.h}
2871@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2872This function is similar to @code{atol}, except it returns a @code{long
2873long int}.
2874
2875The @code{atoll} function was introduced in @w{ISO C99}.  It too is
2876obsolete (despite having just been added); use @code{strtoll} instead.
2877@end deftypefun
2878
2879All the functions mentioned in this section so far do not handle
2880alternative representations of characters as described in the locale
2881data.  Some locales specify thousands separator and the way they have to
2882be used which can help to make large numbers more readable.  To read
2883such numbers one has to use the @code{scanf} functions with the @samp{'}
2884flag.
2885
2886Here is a function which parses a string as a sequence of integers and
2887returns the sum of them:
2888
2889@smallexample
2890int
2891sum_ints_from_string (char *string)
2892@{
2893  int sum = 0;
2894
2895  while (1) @{
2896    char *tail;
2897    int next;
2898
2899    /* @r{Skip whitespace by hand, to detect the end.}  */
2900    while (isspace (*string)) string++;
2901    if (*string == 0)
2902      break;
2903
2904    /* @r{There is more nonwhitespace,}  */
2905    /* @r{so it ought to be another number.}  */
2906    errno = 0;
2907    /* @r{Parse it.}  */
2908    next = strtol (string, &tail, 0);
2909    /* @r{Add it in, if not overflow.}  */
2910    if (errno)
2911      printf ("Overflow\n");
2912    else
2913      sum += next;
2914    /* @r{Advance past it.}  */
2915    string = tail;
2916  @}
2917
2918  return sum;
2919@}
2920@end smallexample
2921
2922@node Parsing of Floats
2923@subsection Parsing of Floats
2924
2925@pindex stdlib.h
2926The @samp{str} functions are declared in @file{stdlib.h} and those
2927beginning with @samp{wcs} are declared in @file{wchar.h}.  One might
2928wonder about the use of @code{restrict} in the prototypes of the
2929functions in this section.  It is seemingly useless but the @w{ISO C}
2930standard uses it (for the functions defined there) so we have to do it
2931as well.
2932
2933@deftypefun double strtod (const char *restrict @var{string}, char **restrict @var{tailptr})
2934@standards{ISO, stdlib.h}
2935@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
2936@c Besides the unsafe-but-ruled-safe locale uses, this uses a lot of
2937@c mpn, but it's all safe.
2938@c
2939@c round_and_return
2940@c   get_rounding_mode ok
2941@c   mpn_add_1 ok
2942@c   mpn_rshift ok
2943@c   MPN_ZERO ok
2944@c   MPN2FLOAT -> mpn_construct_(float|double|long_double) ok
2945@c str_to_mpn
2946@c   mpn_mul_1 -> umul_ppmm ok
2947@c   mpn_add_1 ok
2948@c mpn_lshift_1 -> mpn_lshift ok
2949@c STRTOF_INTERNAL
2950@c   MPN_VAR ok
2951@c   SET_NAN_PAYLOAD ok
2952@c   STRNCASECMP ok, wide and narrow
2953@c   round_and_return ok
2954@c   mpn_mul ok
2955@c     mpn_addmul_1 ok
2956@c     ... mpn_sub
2957@c   mpn_lshift ok
2958@c   udiv_qrnnd ok
2959@c   count_leading_zeros ok
2960@c   add_ssaaaa ok
2961@c   sub_ddmmss ok
2962@c   umul_ppmm ok
2963@c   mpn_submul_1 ok
2964The @code{strtod} (``string-to-double'') function converts the initial
2965part of @var{string} to a floating-point number, which is returned as a
2966value of type @code{double}.
2967
2968This function attempts to decompose @var{string} as follows:
2969
2970@itemize @bullet
2971@item
2972A (possibly empty) sequence of whitespace characters.  Which characters
2973are whitespace is determined by the @code{isspace} function
2974(@pxref{Classification of Characters}).  These are discarded.
2975
2976@item
2977An optional plus or minus sign (@samp{+} or @samp{-}).
2978
2979@item A floating point number in decimal or hexadecimal format.  The
2980decimal format is:
2981@itemize @minus
2982
2983@item
2984A nonempty sequence of digits optionally containing a decimal-point
2985character---normally @samp{.}, but it depends on the locale
2986(@pxref{General Numeric}).
2987
2988@item
2989An optional exponent part, consisting of a character @samp{e} or
2990@samp{E}, an optional sign, and a sequence of digits.
2991
2992@end itemize
2993
2994The hexadecimal format is as follows:
2995@itemize @minus
2996
2997@item
2998A 0x or 0X followed by a nonempty sequence of hexadecimal digits
2999optionally containing a decimal-point character---normally @samp{.}, but
3000it depends on the locale (@pxref{General Numeric}).
3001
3002@item
3003An optional binary-exponent part, consisting of a character @samp{p} or
3004@samp{P}, an optional sign, and a sequence of digits.
3005
3006@end itemize
3007
3008@item
3009Any remaining characters in the string.  If @var{tailptr} is not a null
3010pointer, a pointer to this tail of the string is stored in
3011@code{*@var{tailptr}}.
3012@end itemize
3013
3014If the string is empty, contains only whitespace, or does not contain an
3015initial substring that has the expected syntax for a floating-point
3016number, no conversion is performed.  In this case, @code{strtod} returns
3017a value of zero and the value returned in @code{*@var{tailptr}} is the
3018value of @var{string}.
3019
3020In a locale other than the standard @code{"C"} or @code{"POSIX"} locales,
3021this function may recognize additional locale-dependent syntax.
3022
3023If the string has valid syntax for a floating-point number but the value
3024is outside the range of a @code{double}, @code{strtod} will signal
3025overflow or underflow as described in @ref{Math Error Reporting}.
3026
3027@code{strtod} recognizes four special input strings.  The strings
3028@code{"inf"} and @code{"infinity"} are converted to @math{@infinity{}},
3029or to the largest representable value if the floating-point format
3030doesn't support infinities.  You can prepend a @code{"+"} or @code{"-"}
3031to specify the sign.  Case is ignored when scanning these strings.
3032
3033The strings @code{"nan"} and @code{"nan(@var{chars@dots{}})"} are converted
3034to NaN.  Again, case is ignored.  If @var{chars@dots{}} are provided, they
3035are used in some unspecified fashion to select a particular
3036representation of NaN (there can be several).
3037
3038Since zero is a valid result as well as the value returned on error, you
3039should check for errors in the same way as for @code{strtol}, by
3040examining @code{errno} and @var{tailptr}.
3041@end deftypefun
3042
3043@deftypefun float strtof (const char *@var{string}, char **@var{tailptr})
3044@deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr})
3045@standards{ISO, stdlib.h}
3046@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3047@comment See safety comments for strtod.
3048These functions are analogous to @code{strtod}, but return @code{float}
3049and @code{long double} values respectively.  They report errors in the
3050same way as @code{strtod}.  @code{strtof} can be substantially faster
3051than @code{strtod}, but has less precision; conversely, @code{strtold}
3052can be much slower but has more precision (on systems where @code{long
3053double} is a separate type).
3054
3055These functions have been GNU extensions and are new to @w{ISO C99}.
3056@end deftypefun
3057
3058@deftypefun _FloatN strtofN (const char *@var{string}, char **@var{tailptr})
3059@deftypefunx _FloatNx strtofNx (const char *@var{string}, char **@var{tailptr})
3060@standards{ISO/IEC TS 18661-3, stdlib.h}
3061@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3062@comment See safety comments for strtod.
3063These functions are like @code{strtod}, except for the return type.
3064
3065They were introduced in @w{ISO/IEC TS 18661-3} and are available on machines
3066that support the related types; @pxref{Mathematics}.
3067@end deftypefun
3068
3069@deftypefun double wcstod (const wchar_t *restrict @var{string}, wchar_t **restrict @var{tailptr})
3070@deftypefunx float wcstof (const wchar_t *@var{string}, wchar_t **@var{tailptr})
3071@deftypefunx {long double} wcstold (const wchar_t *@var{string}, wchar_t **@var{tailptr})
3072@deftypefunx _FloatN wcstofN (const wchar_t *@var{string}, wchar_t **@var{tailptr})
3073@deftypefunx _FloatNx wcstofNx (const wchar_t *@var{string}, wchar_t **@var{tailptr})
3074@standards{ISO, wchar.h}
3075@standardsx{wcstofN, GNU, wchar.h}
3076@standardsx{wcstofNx, GNU, wchar.h}
3077@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3078@comment See safety comments for strtod.
3079The @code{wcstod}, @code{wcstof}, @code{wcstol}, @code{wcstof@var{N}},
3080and @code{wcstof@var{N}x} functions are equivalent in nearly all aspects
3081to the @code{strtod}, @code{strtof}, @code{strtold},
3082@code{strtof@var{N}}, and @code{strtof@var{N}x} functions, but they
3083handle wide character strings.
3084
3085The @code{wcstod} function was introduced in @w{Amendment 1} of @w{ISO
3086C90}.  The @code{wcstof} and @code{wcstold} functions were introduced in
3087@w{ISO C99}.
3088
3089The @code{wcstof@var{N}} and @code{wcstof@var{N}x} functions are not in
3090any standard, but are added to provide completeness for the
3091non-deprecated interface of wide character string to floating-point
3092conversion functions.  They are only available on machines that support
3093the related types; @pxref{Mathematics}.
3094@end deftypefun
3095
3096@deftypefun double atof (const char *@var{string})
3097@standards{ISO, stdlib.h}
3098@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
3099This function is similar to the @code{strtod} function, except that it
3100need not detect overflow and underflow errors.  The @code{atof} function
3101is provided mostly for compatibility with existing code; using
3102@code{strtod} is more robust.
3103@end deftypefun
3104
3105@Theglibc{} also provides @samp{_l} versions of these functions,
3106which take an additional argument, the locale to use in conversion.
3107
3108See also @ref{Parsing of Integers}.
3109
3110@node Printing of Floats
3111@section Printing of Floats
3112
3113@pindex stdlib.h
3114The @samp{strfrom} functions are declared in @file{stdlib.h}.
3115
3116@deftypefun int strfromd (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, double @var{value})
3117@deftypefunx int strfromf (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, float @var{value})
3118@deftypefunx int strfroml (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, long double @var{value})
3119@standards{ISO/IEC TS 18661-1, stdlib.h}
3120@safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3121@comment All these functions depend on both __printf_fp and __printf_fphex,
3122@comment which are both AS-unsafe (ascuheap) and AC-unsafe (acsmem).
3123The functions @code{strfromd} (``string-from-double''), @code{strfromf}
3124(``string-from-float''), and @code{strfroml} (``string-from-long-double'')
3125convert the floating-point number @var{value} to a string of characters and
3126stores them into the area pointed to by @var{string}.  The conversion
3127writes at most @var{size} characters and respects the format specified by
3128@var{format}.
3129
3130The format string must start with the character @samp{%}.  An optional
3131precision follows, which starts with a period, @samp{.}, and may be
3132followed by a decimal integer, representing the precision.  If a decimal
3133integer is not specified after the period, the precision is taken to be
3134zero.  The character @samp{*} is not allowed.  Finally, the format string
3135ends with one of the following conversion specifiers: @samp{a}, @samp{A},
3136@samp{e}, @samp{E}, @samp{f}, @samp{F}, @samp{g} or @samp{G} (@pxref{Table
3137of Output Conversions}).  Invalid format strings result in undefined
3138behavior.
3139
3140These functions return the number of characters that would have been
3141written to @var{string} had @var{size} been sufficiently large, not
3142counting the terminating null character.  Thus, the null-terminated output
3143has been completely written if and only if the returned value is less than
3144@var{size}.
3145
3146These functions were introduced by ISO/IEC TS 18661-1.
3147@end deftypefun
3148
3149@deftypefun int strfromfN (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, _Float@var{N} @var{value})
3150@deftypefunx int strfromfNx (char *restrict @var{string}, size_t @var{size}, const char *restrict @var{format}, _Float@var{N}x @var{value})
3151@standards{ISO/IEC TS 18661-3, stdlib.h}
3152@safety{@prelim{}@mtsafe{@mtslocale{}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3153@comment See safety comments for strfromd.
3154These functions are like @code{strfromd}, except for the type of
3155@code{value}.
3156
3157They were introduced in @w{ISO/IEC TS 18661-3} and are available on machines
3158that support the related types; @pxref{Mathematics}.
3159@end deftypefun
3160
3161@node System V Number Conversion
3162@section Old-fashioned System V number-to-string functions
3163
3164The old @w{System V} C library provided three functions to convert
3165numbers to strings, with unusual and hard-to-use semantics.  @Theglibc{}
3166also provides these functions and some natural extensions.
3167
3168These functions are only available in @theglibc{} and on systems descended
3169from AT&T Unix.  Therefore, unless these functions do precisely what you
3170need, it is better to use @code{sprintf}, which is standard.
3171
3172All these functions are defined in @file{stdlib.h}.
3173
3174@deftypefun {char *} ecvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3175@standards{SVID, stdlib.h}
3176@standards{Unix98, stdlib.h}
3177@safety{@prelim{}@mtunsafe{@mtasurace{:ecvt}}@asunsafe{}@acsafe{}}
3178The function @code{ecvt} converts the floating-point number @var{value}
3179to a string with at most @var{ndigit} decimal digits.  The
3180returned string contains no decimal point or sign.  The first digit of
3181the string is non-zero (unless @var{value} is actually zero) and the
3182last digit is rounded to nearest.  @code{*@var{decpt}} is set to the
3183index in the string of the first digit after the decimal point.
3184@code{*@var{neg}} is set to a nonzero value if @var{value} is negative,
3185zero otherwise.
3186
3187If @var{ndigit} decimal digits would exceed the precision of a
3188@code{double} it is reduced to a system-specific value.
3189
3190The returned string is statically allocated and overwritten by each call
3191to @code{ecvt}.
3192
3193If @var{value} is zero, it is implementation defined whether
3194@code{*@var{decpt}} is @code{0} or @code{1}.
3195
3196For example: @code{ecvt (12.3, 5, &d, &n)} returns @code{"12300"}
3197and sets @var{d} to @code{2} and @var{n} to @code{0}.
3198@end deftypefun
3199
3200@deftypefun {char *} fcvt (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3201@standards{SVID, stdlib.h}
3202@standards{Unix98, stdlib.h}
3203@safety{@prelim{}@mtunsafe{@mtasurace{:fcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3204The function @code{fcvt} is like @code{ecvt}, but @var{ndigit} specifies
3205the number of digits after the decimal point.  If @var{ndigit} is less
3206than zero, @var{value} is rounded to the @math{@var{ndigit}+1}'th place to the
3207left of the decimal point.  For example, if @var{ndigit} is @code{-1},
3208@var{value} will be rounded to the nearest 10.  If @var{ndigit} is
3209negative and larger than the number of digits to the left of the decimal
3210point in @var{value}, @var{value} will be rounded to one significant digit.
3211
3212If @var{ndigit} decimal digits would exceed the precision of a
3213@code{double} it is reduced to a system-specific value.
3214
3215The returned string is statically allocated and overwritten by each call
3216to @code{fcvt}.
3217@end deftypefun
3218
3219@deftypefun {char *} gcvt (double @var{value}, int @var{ndigit}, char *@var{buf})
3220@standards{SVID, stdlib.h}
3221@standards{Unix98, stdlib.h}
3222@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3223@c gcvt calls sprintf, that ultimately calls vfprintf, which malloc()s
3224@c args_value if it's too large, but gcvt never exercises this path.
3225@code{gcvt} is functionally equivalent to @samp{sprintf(buf, "%*g",
3226ndigit, value)}.  It is provided only for compatibility's sake.  It
3227returns @var{buf}.
3228
3229If @var{ndigit} decimal digits would exceed the precision of a
3230@code{double} it is reduced to a system-specific value.
3231@end deftypefun
3232
3233As extensions, @theglibc{} provides versions of these three
3234functions that take @code{long double} arguments.
3235
3236@deftypefun {char *} qecvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3237@standards{GNU, stdlib.h}
3238@safety{@prelim{}@mtunsafe{@mtasurace{:qecvt}}@asunsafe{}@acsafe{}}
3239This function is equivalent to @code{ecvt} except that it takes a
3240@code{long double} for the first parameter and that @var{ndigit} is
3241restricted by the precision of a @code{long double}.
3242@end deftypefun
3243
3244@deftypefun {char *} qfcvt (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg})
3245@standards{GNU, stdlib.h}
3246@safety{@prelim{}@mtunsafe{@mtasurace{:qfcvt}}@asunsafe{@ascuheap{}}@acunsafe{@acsmem{}}}
3247This function is equivalent to @code{fcvt} except that it
3248takes a @code{long double} for the first parameter and that @var{ndigit} is
3249restricted by the precision of a @code{long double}.
3250@end deftypefun
3251
3252@deftypefun {char *} qgcvt (long double @var{value}, int @var{ndigit}, char *@var{buf})
3253@standards{GNU, stdlib.h}
3254@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3255This function is equivalent to @code{gcvt} except that it takes a
3256@code{long double} for the first parameter and that @var{ndigit} is
3257restricted by the precision of a @code{long double}.
3258@end deftypefun
3259
3260
3261@cindex gcvt_r
3262The @code{ecvt} and @code{fcvt} functions, and their @code{long double}
3263equivalents, all return a string located in a static buffer which is
3264overwritten by the next call to the function.  @Theglibc{}
3265provides another set of extended functions which write the converted
3266string into a user-supplied buffer.  These have the conventional
3267@code{_r} suffix.
3268
3269@code{gcvt_r} is not necessary, because @code{gcvt} already uses a
3270user-supplied buffer.
3271
3272@deftypefun int ecvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3273@standards{GNU, stdlib.h}
3274@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3275The @code{ecvt_r} function is the same as @code{ecvt}, except
3276that it places its result into the user-specified buffer pointed to by
3277@var{buf}, with length @var{len}.  The return value is @code{-1} in
3278case of an error and zero otherwise.
3279
3280This function is a GNU extension.
3281@end deftypefun
3282
3283@deftypefun int fcvt_r (double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3284@standards{SVID, stdlib.h}
3285@standards{Unix98, stdlib.h}
3286@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3287The @code{fcvt_r} function is the same as @code{fcvt}, except that it
3288places its result into the user-specified buffer pointed to by
3289@var{buf}, with length @var{len}.  The return value is @code{-1} in
3290case of an error and zero otherwise.
3291
3292This function is a GNU extension.
3293@end deftypefun
3294
3295@deftypefun int qecvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3296@standards{GNU, stdlib.h}
3297@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3298The @code{qecvt_r} function is the same as @code{qecvt}, except
3299that it places its result into the user-specified buffer pointed to by
3300@var{buf}, with length @var{len}.  The return value is @code{-1} in
3301case of an error and zero otherwise.
3302
3303This function is a GNU extension.
3304@end deftypefun
3305
3306@deftypefun int qfcvt_r (long double @var{value}, int @var{ndigit}, int *@var{decpt}, int *@var{neg}, char *@var{buf}, size_t @var{len})
3307@standards{GNU, stdlib.h}
3308@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
3309The @code{qfcvt_r} function is the same as @code{qfcvt}, except
3310that it places its result into the user-specified buffer pointed to by
3311@var{buf}, with length @var{len}.  The return value is @code{-1} in
3312case of an error and zero otherwise.
3313
3314This function is a GNU extension.
3315@end deftypefun
3316