1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
3 
4 /*
5  * SLUB : A Slab allocator without object queues.
6  *
7  * (C) 2007 SGI, Christoph Lameter
8  */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 
14 #include <linux/kmemleak.h>
15 
16 enum stat_item {
17 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
18 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
19 	FREE_FASTPATH,		/* Free to cpu slub */
20 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
21 	FREE_FROZEN,		/* Freeing to frozen slab */
22 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
23 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
24 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from partial list */
25 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
26 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
27 	FREE_SLAB,		/* Slab freed to the page allocator */
28 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
29 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
30 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
31 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
32 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
33 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
35 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
36 	NR_SLUB_STAT_ITEMS };
37 
38 struct kmem_cache_cpu {
39 	void **freelist;	/* Pointer to next available object */
40 #ifdef CONFIG_CMPXCHG_LOCAL
41 	unsigned long tid;	/* Globally unique transaction id */
42 #endif
43 	struct page *page;	/* The slab from which we are allocating */
44 	int node;		/* The node of the page (or -1 for debug) */
45 #ifdef CONFIG_SLUB_STATS
46 	unsigned stat[NR_SLUB_STAT_ITEMS];
47 #endif
48 };
49 
50 struct kmem_cache_node {
51 	spinlock_t list_lock;	/* Protect partial list and nr_partial */
52 	unsigned long nr_partial;
53 	struct list_head partial;
54 #ifdef CONFIG_SLUB_DEBUG
55 	atomic_long_t nr_slabs;
56 	atomic_long_t total_objects;
57 	struct list_head full;
58 #endif
59 };
60 
61 /*
62  * Word size structure that can be atomically updated or read and that
63  * contains both the order and the number of objects that a slab of the
64  * given order would contain.
65  */
66 struct kmem_cache_order_objects {
67 	unsigned long x;
68 };
69 
70 /*
71  * Slab cache management.
72  */
73 struct kmem_cache {
74 	struct kmem_cache_cpu __percpu *cpu_slab;
75 	/* Used for retriving partial slabs etc */
76 	unsigned long flags;
77 	unsigned long min_partial;
78 	int size;		/* The size of an object including meta data */
79 	int objsize;		/* The size of an object without meta data */
80 	int offset;		/* Free pointer offset. */
81 	struct kmem_cache_order_objects oo;
82 
83 	/* Allocation and freeing of slabs */
84 	struct kmem_cache_order_objects max;
85 	struct kmem_cache_order_objects min;
86 	gfp_t allocflags;	/* gfp flags to use on each alloc */
87 	int refcount;		/* Refcount for slab cache destroy */
88 	void (*ctor)(void *);
89 	int inuse;		/* Offset to metadata */
90 	int align;		/* Alignment */
91 	int reserved;		/* Reserved bytes at the end of slabs */
92 	const char *name;	/* Name (only for display!) */
93 	struct list_head list;	/* List of slab caches */
94 #ifdef CONFIG_SYSFS
95 	struct kobject kobj;	/* For sysfs */
96 #endif
97 
98 #ifdef CONFIG_NUMA
99 	/*
100 	 * Defragmentation by allocating from a remote node.
101 	 */
102 	int remote_node_defrag_ratio;
103 #endif
104 	struct kmem_cache_node *node[MAX_NUMNODES];
105 };
106 
107 /*
108  * Kmalloc subsystem.
109  */
110 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
111 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
112 #else
113 #define KMALLOC_MIN_SIZE 8
114 #endif
115 
116 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
117 
118 #ifdef ARCH_DMA_MINALIGN
119 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
120 #else
121 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
122 #endif
123 
124 #ifndef ARCH_SLAB_MINALIGN
125 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
126 #endif
127 
128 /*
129  * Maximum kmalloc object size handled by SLUB. Larger object allocations
130  * are passed through to the page allocator. The page allocator "fastpath"
131  * is relatively slow so we need this value sufficiently high so that
132  * performance critical objects are allocated through the SLUB fastpath.
133  *
134  * This should be dropped to PAGE_SIZE / 2 once the page allocator
135  * "fastpath" becomes competitive with the slab allocator fastpaths.
136  */
137 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
138 
139 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
140 
141 #ifdef CONFIG_ZONE_DMA
142 #define SLUB_DMA __GFP_DMA
143 #else
144 /* Disable DMA functionality */
145 #define SLUB_DMA (__force gfp_t)0
146 #endif
147 
148 /*
149  * We keep the general caches in an array of slab caches that are used for
150  * 2^x bytes of allocations.
151  */
152 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
153 
154 /*
155  * Sorry that the following has to be that ugly but some versions of GCC
156  * have trouble with constant propagation and loops.
157  */
kmalloc_index(size_t size)158 static __always_inline int kmalloc_index(size_t size)
159 {
160 	if (!size)
161 		return 0;
162 
163 	if (size <= KMALLOC_MIN_SIZE)
164 		return KMALLOC_SHIFT_LOW;
165 
166 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
167 		return 1;
168 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
169 		return 2;
170 	if (size <=          8) return 3;
171 	if (size <=         16) return 4;
172 	if (size <=         32) return 5;
173 	if (size <=         64) return 6;
174 	if (size <=        128) return 7;
175 	if (size <=        256) return 8;
176 	if (size <=        512) return 9;
177 	if (size <=       1024) return 10;
178 	if (size <=   2 * 1024) return 11;
179 	if (size <=   4 * 1024) return 12;
180 /*
181  * The following is only needed to support architectures with a larger page
182  * size than 4k.
183  */
184 	if (size <=   8 * 1024) return 13;
185 	if (size <=  16 * 1024) return 14;
186 	if (size <=  32 * 1024) return 15;
187 	if (size <=  64 * 1024) return 16;
188 	if (size <= 128 * 1024) return 17;
189 	if (size <= 256 * 1024) return 18;
190 	if (size <= 512 * 1024) return 19;
191 	if (size <= 1024 * 1024) return 20;
192 	if (size <=  2 * 1024 * 1024) return 21;
193 	return -1;
194 
195 /*
196  * What we really wanted to do and cannot do because of compiler issues is:
197  *	int i;
198  *	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
199  *		if (size <= (1 << i))
200  *			return i;
201  */
202 }
203 
204 /*
205  * Find the slab cache for a given combination of allocation flags and size.
206  *
207  * This ought to end up with a global pointer to the right cache
208  * in kmalloc_caches.
209  */
kmalloc_slab(size_t size)210 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
211 {
212 	int index = kmalloc_index(size);
213 
214 	if (index == 0)
215 		return NULL;
216 
217 	return kmalloc_caches[index];
218 }
219 
220 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
221 void *__kmalloc(size_t size, gfp_t flags);
222 
223 static __always_inline void *
kmalloc_order(size_t size,gfp_t flags,unsigned int order)224 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
225 {
226 	void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
227 	kmemleak_alloc(ret, size, 1, flags);
228 	return ret;
229 }
230 
231 #ifdef CONFIG_TRACING
232 extern void *
233 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
234 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
235 #else
236 static __always_inline void *
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)237 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
238 {
239 	return kmem_cache_alloc(s, gfpflags);
240 }
241 
242 static __always_inline void *
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)243 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
244 {
245 	return kmalloc_order(size, flags, order);
246 }
247 #endif
248 
kmalloc_large(size_t size,gfp_t flags)249 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
250 {
251 	unsigned int order = get_order(size);
252 	return kmalloc_order_trace(size, flags, order);
253 }
254 
kmalloc(size_t size,gfp_t flags)255 static __always_inline void *kmalloc(size_t size, gfp_t flags)
256 {
257 	if (__builtin_constant_p(size)) {
258 		if (size > SLUB_MAX_SIZE)
259 			return kmalloc_large(size, flags);
260 
261 		if (!(flags & SLUB_DMA)) {
262 			struct kmem_cache *s = kmalloc_slab(size);
263 
264 			if (!s)
265 				return ZERO_SIZE_PTR;
266 
267 			return kmem_cache_alloc_trace(s, flags, size);
268 		}
269 	}
270 	return __kmalloc(size, flags);
271 }
272 
273 #ifdef CONFIG_NUMA
274 void *__kmalloc_node(size_t size, gfp_t flags, int node);
275 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
276 
277 #ifdef CONFIG_TRACING
278 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
279 					   gfp_t gfpflags,
280 					   int node, size_t size);
281 #else
282 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)283 kmem_cache_alloc_node_trace(struct kmem_cache *s,
284 			      gfp_t gfpflags,
285 			      int node, size_t size)
286 {
287 	return kmem_cache_alloc_node(s, gfpflags, node);
288 }
289 #endif
290 
kmalloc_node(size_t size,gfp_t flags,int node)291 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
292 {
293 	if (__builtin_constant_p(size) &&
294 		size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
295 			struct kmem_cache *s = kmalloc_slab(size);
296 
297 		if (!s)
298 			return ZERO_SIZE_PTR;
299 
300 		return kmem_cache_alloc_node_trace(s, flags, node, size);
301 	}
302 	return __kmalloc_node(size, flags, node);
303 }
304 #endif
305 
306 #endif /* _LINUX_SLUB_DEF_H */
307