1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FIREWIRE_H
3 #define _LINUX_FIREWIRE_H
4
5 #include <linux/completion.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/kernel.h>
9 #include <linux/kref.h>
10 #include <linux/list.h>
11 #include <linux/mutex.h>
12 #include <linux/spinlock.h>
13 #include <linux/sysfs.h>
14 #include <linux/timer.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/atomic.h>
19 #include <asm/byteorder.h>
20
21 #define CSR_REGISTER_BASE 0xfffff0000000ULL
22
23 /* register offsets are relative to CSR_REGISTER_BASE */
24 #define CSR_STATE_CLEAR 0x0
25 #define CSR_STATE_SET 0x4
26 #define CSR_NODE_IDS 0x8
27 #define CSR_RESET_START 0xc
28 #define CSR_SPLIT_TIMEOUT_HI 0x18
29 #define CSR_SPLIT_TIMEOUT_LO 0x1c
30 #define CSR_CYCLE_TIME 0x200
31 #define CSR_BUS_TIME 0x204
32 #define CSR_BUSY_TIMEOUT 0x210
33 #define CSR_PRIORITY_BUDGET 0x218
34 #define CSR_BUS_MANAGER_ID 0x21c
35 #define CSR_BANDWIDTH_AVAILABLE 0x220
36 #define CSR_CHANNELS_AVAILABLE 0x224
37 #define CSR_CHANNELS_AVAILABLE_HI 0x224
38 #define CSR_CHANNELS_AVAILABLE_LO 0x228
39 #define CSR_MAINT_UTILITY 0x230
40 #define CSR_BROADCAST_CHANNEL 0x234
41 #define CSR_CONFIG_ROM 0x400
42 #define CSR_CONFIG_ROM_END 0x800
43 #define CSR_OMPR 0x900
44 #define CSR_OPCR(i) (0x904 + (i) * 4)
45 #define CSR_IMPR 0x980
46 #define CSR_IPCR(i) (0x984 + (i) * 4)
47 #define CSR_FCP_COMMAND 0xB00
48 #define CSR_FCP_RESPONSE 0xD00
49 #define CSR_FCP_END 0xF00
50 #define CSR_TOPOLOGY_MAP 0x1000
51 #define CSR_TOPOLOGY_MAP_END 0x1400
52 #define CSR_SPEED_MAP 0x2000
53 #define CSR_SPEED_MAP_END 0x3000
54
55 #define CSR_OFFSET 0x40
56 #define CSR_LEAF 0x80
57 #define CSR_DIRECTORY 0xc0
58
59 #define CSR_DESCRIPTOR 0x01
60 #define CSR_VENDOR 0x03
61 #define CSR_HARDWARE_VERSION 0x04
62 #define CSR_UNIT 0x11
63 #define CSR_SPECIFIER_ID 0x12
64 #define CSR_VERSION 0x13
65 #define CSR_DEPENDENT_INFO 0x14
66 #define CSR_MODEL 0x17
67 #define CSR_DIRECTORY_ID 0x20
68
69 struct fw_csr_iterator {
70 const u32 *p;
71 const u32 *end;
72 };
73
74 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
75 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
76 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
77
78 extern struct bus_type fw_bus_type;
79
80 struct fw_card_driver;
81 struct fw_node;
82
83 struct fw_card {
84 const struct fw_card_driver *driver;
85 struct device *device;
86 struct kref kref;
87 struct completion done;
88
89 int node_id;
90 int generation;
91 int current_tlabel;
92 u64 tlabel_mask;
93 struct list_head transaction_list;
94 u64 reset_jiffies;
95
96 u32 split_timeout_hi;
97 u32 split_timeout_lo;
98 unsigned int split_timeout_cycles;
99 unsigned int split_timeout_jiffies;
100
101 unsigned long long guid;
102 unsigned max_receive;
103 int link_speed;
104 int config_rom_generation;
105
106 spinlock_t lock; /* Take this lock when handling the lists in
107 * this struct. */
108 struct fw_node *local_node;
109 struct fw_node *root_node;
110 struct fw_node *irm_node;
111 u8 color; /* must be u8 to match the definition in struct fw_node */
112 int gap_count;
113 bool beta_repeaters_present;
114
115 int index;
116 struct list_head link;
117
118 struct list_head phy_receiver_list;
119
120 struct delayed_work br_work; /* bus reset job */
121 bool br_short;
122
123 struct delayed_work bm_work; /* bus manager job */
124 int bm_retries;
125 int bm_generation;
126 int bm_node_id;
127 bool bm_abdicate;
128
129 bool priority_budget_implemented; /* controller feature */
130 bool broadcast_channel_auto_allocated; /* controller feature */
131
132 bool broadcast_channel_allocated;
133 u32 broadcast_channel;
134 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
135
136 __be32 maint_utility_register;
137 };
138
fw_card_get(struct fw_card * card)139 static inline struct fw_card *fw_card_get(struct fw_card *card)
140 {
141 kref_get(&card->kref);
142
143 return card;
144 }
145
146 void fw_card_release(struct kref *kref);
147
fw_card_put(struct fw_card * card)148 static inline void fw_card_put(struct fw_card *card)
149 {
150 kref_put(&card->kref, fw_card_release);
151 }
152
153 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time);
154
155 struct fw_attribute_group {
156 struct attribute_group *groups[2];
157 struct attribute_group group;
158 struct attribute *attrs[13];
159 };
160
161 enum fw_device_state {
162 FW_DEVICE_INITIALIZING,
163 FW_DEVICE_RUNNING,
164 FW_DEVICE_GONE,
165 FW_DEVICE_SHUTDOWN,
166 };
167
168 /*
169 * Note, fw_device.generation always has to be read before fw_device.node_id.
170 * Use SMP memory barriers to ensure this. Otherwise requests will be sent
171 * to an outdated node_id if the generation was updated in the meantime due
172 * to a bus reset.
173 *
174 * Likewise, fw-core will take care to update .node_id before .generation so
175 * that whenever fw_device.generation is current WRT the actual bus generation,
176 * fw_device.node_id is guaranteed to be current too.
177 *
178 * The same applies to fw_device.card->node_id vs. fw_device.generation.
179 *
180 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
181 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
182 * was called on the last fw_unit. Alternatively, they may be accessed while
183 * holding fw_device_rwsem.
184 */
185 struct fw_device {
186 atomic_t state;
187 struct fw_node *node;
188 int node_id;
189 int generation;
190 unsigned max_speed;
191 struct fw_card *card;
192 struct device device;
193
194 struct mutex client_list_mutex;
195 struct list_head client_list;
196
197 const u32 *config_rom;
198 size_t config_rom_length;
199 int config_rom_retries;
200 unsigned is_local:1;
201 unsigned max_rec:4;
202 unsigned cmc:1;
203 unsigned irmc:1;
204 unsigned bc_implemented:2;
205
206 work_func_t workfn;
207 struct delayed_work work;
208 struct fw_attribute_group attribute_group;
209 };
210
fw_device(struct device * dev)211 static inline struct fw_device *fw_device(struct device *dev)
212 {
213 return container_of(dev, struct fw_device, device);
214 }
215
fw_device_is_shutdown(struct fw_device * device)216 static inline int fw_device_is_shutdown(struct fw_device *device)
217 {
218 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
219 }
220
221 int fw_device_enable_phys_dma(struct fw_device *device);
222
223 /*
224 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
225 */
226 struct fw_unit {
227 struct device device;
228 const u32 *directory;
229 struct fw_attribute_group attribute_group;
230 };
231
fw_unit(struct device * dev)232 static inline struct fw_unit *fw_unit(struct device *dev)
233 {
234 return container_of(dev, struct fw_unit, device);
235 }
236
fw_unit_get(struct fw_unit * unit)237 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
238 {
239 get_device(&unit->device);
240
241 return unit;
242 }
243
fw_unit_put(struct fw_unit * unit)244 static inline void fw_unit_put(struct fw_unit *unit)
245 {
246 put_device(&unit->device);
247 }
248
fw_parent_device(struct fw_unit * unit)249 static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
250 {
251 return fw_device(unit->device.parent);
252 }
253
254 struct ieee1394_device_id;
255
256 struct fw_driver {
257 struct device_driver driver;
258 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
259 /* Called when the parent device sits through a bus reset. */
260 void (*update)(struct fw_unit *unit);
261 void (*remove)(struct fw_unit *unit);
262 const struct ieee1394_device_id *id_table;
263 };
264
265 struct fw_packet;
266 struct fw_request;
267
268 typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
269 struct fw_card *card, int status);
270 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
271 void *data, size_t length,
272 void *callback_data);
273 /*
274 * This callback handles an inbound request subaction. It is called in
275 * RCU read-side context, therefore must not sleep.
276 *
277 * The callback should not initiate outbound request subactions directly.
278 * Otherwise there is a danger of recursion of inbound and outbound
279 * transactions from and to the local node.
280 *
281 * The callback is responsible that either fw_send_response() or kfree()
282 * is called on the @request, except for FCP registers for which the core
283 * takes care of that.
284 */
285 typedef void (*fw_address_callback_t)(struct fw_card *card,
286 struct fw_request *request,
287 int tcode, int destination, int source,
288 int generation,
289 unsigned long long offset,
290 void *data, size_t length,
291 void *callback_data);
292
293 struct fw_packet {
294 int speed;
295 int generation;
296 u32 header[4];
297 size_t header_length;
298 void *payload;
299 size_t payload_length;
300 dma_addr_t payload_bus;
301 bool payload_mapped;
302 u32 timestamp;
303
304 /*
305 * This callback is called when the packet transmission has completed.
306 * For successful transmission, the status code is the ack received
307 * from the destination. Otherwise it is one of the juju-specific
308 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
309 * The callback can be called from tasklet context and thus
310 * must never block.
311 */
312 fw_packet_callback_t callback;
313 int ack;
314 struct list_head link;
315 void *driver_data;
316 };
317
318 struct fw_transaction {
319 int node_id; /* The generation is implied; it is always the current. */
320 int tlabel;
321 struct list_head link;
322 struct fw_card *card;
323 bool is_split_transaction;
324 struct timer_list split_timeout_timer;
325
326 struct fw_packet packet;
327
328 /*
329 * The data passed to the callback is valid only during the
330 * callback.
331 */
332 fw_transaction_callback_t callback;
333 void *callback_data;
334 };
335
336 struct fw_address_handler {
337 u64 offset;
338 u64 length;
339 fw_address_callback_t address_callback;
340 void *callback_data;
341 struct list_head link;
342 };
343
344 struct fw_address_region {
345 u64 start;
346 u64 end;
347 };
348
349 extern const struct fw_address_region fw_high_memory_region;
350
351 int fw_core_add_address_handler(struct fw_address_handler *handler,
352 const struct fw_address_region *region);
353 void fw_core_remove_address_handler(struct fw_address_handler *handler);
354 void fw_send_response(struct fw_card *card,
355 struct fw_request *request, int rcode);
356 int fw_get_request_speed(struct fw_request *request);
357 u32 fw_request_get_timestamp(const struct fw_request *request);
358 void fw_send_request(struct fw_card *card, struct fw_transaction *t,
359 int tcode, int destination_id, int generation, int speed,
360 unsigned long long offset, void *payload, size_t length,
361 fw_transaction_callback_t callback, void *callback_data);
362 int fw_cancel_transaction(struct fw_card *card,
363 struct fw_transaction *transaction);
364 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
365 int generation, int speed, unsigned long long offset,
366 void *payload, size_t length);
367 const char *fw_rcode_string(int rcode);
368
fw_stream_packet_destination_id(int tag,int channel,int sy)369 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
370 {
371 return tag << 14 | channel << 8 | sy;
372 }
373
374 void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
375 bool short_reset);
376
377 struct fw_descriptor {
378 struct list_head link;
379 size_t length;
380 u32 immediate;
381 u32 key;
382 const u32 *data;
383 };
384
385 int fw_core_add_descriptor(struct fw_descriptor *desc);
386 void fw_core_remove_descriptor(struct fw_descriptor *desc);
387
388 /*
389 * The iso packet format allows for an immediate header/payload part
390 * stored in 'header' immediately after the packet info plus an
391 * indirect payload part that is pointer to by the 'payload' field.
392 * Applications can use one or the other or both to implement simple
393 * low-bandwidth streaming (e.g. audio) or more advanced
394 * scatter-gather streaming (e.g. assembling video frame automatically).
395 */
396 struct fw_iso_packet {
397 u16 payload_length; /* Length of indirect payload */
398 u32 interrupt:1; /* Generate interrupt on this packet */
399 u32 skip:1; /* tx: Set to not send packet at all */
400 /* rx: Sync bit, wait for matching sy */
401 u32 tag:2; /* tx: Tag in packet header */
402 u32 sy:4; /* tx: Sy in packet header */
403 u32 header_length:8; /* Length of immediate header */
404 u32 header[0]; /* tx: Top of 1394 isoch. data_block */
405 };
406
407 #define FW_ISO_CONTEXT_TRANSMIT 0
408 #define FW_ISO_CONTEXT_RECEIVE 1
409 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2
410
411 #define FW_ISO_CONTEXT_MATCH_TAG0 1
412 #define FW_ISO_CONTEXT_MATCH_TAG1 2
413 #define FW_ISO_CONTEXT_MATCH_TAG2 4
414 #define FW_ISO_CONTEXT_MATCH_TAG3 8
415 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
416
417 /*
418 * An iso buffer is just a set of pages mapped for DMA in the
419 * specified direction. Since the pages are to be used for DMA, they
420 * are not mapped into the kernel virtual address space. We store the
421 * DMA address in the page private. The helper function
422 * fw_iso_buffer_map() will map the pages into a given vma.
423 */
424 struct fw_iso_buffer {
425 enum dma_data_direction direction;
426 struct page **pages;
427 int page_count;
428 int page_count_mapped;
429 };
430
431 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
432 int page_count, enum dma_data_direction direction);
433 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
434 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
435
436 struct fw_iso_context;
437 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
438 u32 cycle, size_t header_length,
439 void *header, void *data);
440 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
441 dma_addr_t completed, void *data);
442
443 union fw_iso_callback {
444 fw_iso_callback_t sc;
445 fw_iso_mc_callback_t mc;
446 };
447
448 struct fw_iso_context {
449 struct fw_card *card;
450 int type;
451 int channel;
452 int speed;
453 bool drop_overflow_headers;
454 size_t header_size;
455 union fw_iso_callback callback;
456 void *callback_data;
457 };
458
459 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
460 int type, int channel, int speed, size_t header_size,
461 fw_iso_callback_t callback, void *callback_data);
462 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
463 int fw_iso_context_queue(struct fw_iso_context *ctx,
464 struct fw_iso_packet *packet,
465 struct fw_iso_buffer *buffer,
466 unsigned long payload);
467 void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
468 int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
469 int fw_iso_context_start(struct fw_iso_context *ctx,
470 int cycle, int sync, int tags);
471 int fw_iso_context_stop(struct fw_iso_context *ctx);
472 void fw_iso_context_destroy(struct fw_iso_context *ctx);
473 void fw_iso_resource_manage(struct fw_card *card, int generation,
474 u64 channels_mask, int *channel, int *bandwidth,
475 bool allocate);
476
477 extern struct workqueue_struct *fw_workqueue;
478
479 #endif /* _LINUX_FIREWIRE_H */
480