1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23
24 static struct workqueue_struct *ata_sff_wq;
25
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_prep = ata_noop_qc_prep,
30 .qc_issue = ata_sff_qc_issue,
31 .qc_fill_rtf = ata_sff_qc_fill_rtf,
32
33 .freeze = ata_sff_freeze,
34 .thaw = ata_sff_thaw,
35 .prereset = ata_sff_prereset,
36 .softreset = ata_sff_softreset,
37 .hardreset = sata_sff_hardreset,
38 .postreset = ata_sff_postreset,
39 .error_handler = ata_sff_error_handler,
40
41 .sff_dev_select = ata_sff_dev_select,
42 .sff_check_status = ata_sff_check_status,
43 .sff_tf_load = ata_sff_tf_load,
44 .sff_tf_read = ata_sff_tf_read,
45 .sff_exec_command = ata_sff_exec_command,
46 .sff_data_xfer = ata_sff_data_xfer,
47 .sff_drain_fifo = ata_sff_drain_fifo,
48
49 .lost_interrupt = ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53 /**
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
56 *
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
59 * from this device
60 *
61 * LOCKING:
62 * Inherited from caller.
63 */
ata_sff_check_status(struct ata_port * ap)64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70 /**
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
73 * @status: pointer to a status value
74 *
75 * Reads ATA alternate status register for currently-selected device
76 * and return its value.
77 *
78 * RETURN:
79 * true if the register exists, false if not.
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_altstatus(struct ata_port * ap,u8 * status)84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 u8 tmp;
87
88 if (ap->ops->sff_check_altstatus) {
89 tmp = ap->ops->sff_check_altstatus(ap);
90 goto read;
91 }
92 if (ap->ioaddr.altstatus_addr) {
93 tmp = ioread8(ap->ioaddr.altstatus_addr);
94 goto read;
95 }
96 return false;
97
98 read:
99 if (status)
100 *status = tmp;
101 return true;
102 }
103
104 /**
105 * ata_sff_irq_status - Check if the device is busy
106 * @ap: port where the device is
107 *
108 * Determine if the port is currently busy. Uses altstatus
109 * if available in order to avoid clearing shared IRQ status
110 * when finding an IRQ source. Non ctl capable devices don't
111 * share interrupt lines fortunately for us.
112 *
113 * LOCKING:
114 * Inherited from caller.
115 */
ata_sff_irq_status(struct ata_port * ap)116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 u8 status;
119
120 /* Not us: We are busy */
121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 return status;
123 /* Clear INTRQ latch */
124 status = ap->ops->sff_check_status(ap);
125 return status;
126 }
127
128 /**
129 * ata_sff_sync - Flush writes
130 * @ap: Port to wait for.
131 *
132 * CAUTION:
133 * If we have an mmio device with no ctl and no altstatus
134 * method this will fail. No such devices are known to exist.
135 *
136 * LOCKING:
137 * Inherited from caller.
138 */
139
ata_sff_sync(struct ata_port * ap)140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 ata_sff_altstatus(ap, NULL);
143 }
144
145 /**
146 * ata_sff_pause - Flush writes and wait 400nS
147 * @ap: Port to pause for.
148 *
149 * CAUTION:
150 * If we have an mmio device with no ctl and no altstatus
151 * method this will fail. No such devices are known to exist.
152 *
153 * LOCKING:
154 * Inherited from caller.
155 */
156
ata_sff_pause(struct ata_port * ap)157 void ata_sff_pause(struct ata_port *ap)
158 {
159 ata_sff_sync(ap);
160 ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163
164 /**
165 * ata_sff_dma_pause - Pause before commencing DMA
166 * @ap: Port to pause for.
167 *
168 * Perform I/O fencing and ensure sufficient cycle delays occur
169 * for the HDMA1:0 transition
170 */
171
ata_sff_dma_pause(struct ata_port * ap)172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 /*
175 * An altstatus read will cause the needed delay without
176 * messing up the IRQ status
177 */
178 if (ata_sff_altstatus(ap, NULL))
179 return;
180 /* There are no DMA controllers without ctl. BUG here to ensure
181 we never violate the HDMA1:0 transition timing and risk
182 corruption. */
183 BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186
187 /**
188 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
189 * @ap: port containing status register to be polled
190 * @tmout_pat: impatience timeout in msecs
191 * @tmout: overall timeout in msecs
192 *
193 * Sleep until ATA Status register bit BSY clears,
194 * or a timeout occurs.
195 *
196 * LOCKING:
197 * Kernel thread context (may sleep).
198 *
199 * RETURNS:
200 * 0 on success, -errno otherwise.
201 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)202 int ata_sff_busy_sleep(struct ata_port *ap,
203 unsigned long tmout_pat, unsigned long tmout)
204 {
205 unsigned long timer_start, timeout;
206 u8 status;
207
208 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
209 timer_start = jiffies;
210 timeout = ata_deadline(timer_start, tmout_pat);
211 while (status != 0xff && (status & ATA_BUSY) &&
212 time_before(jiffies, timeout)) {
213 ata_msleep(ap, 50);
214 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
215 }
216
217 if (status != 0xff && (status & ATA_BUSY))
218 ata_port_warn(ap,
219 "port is slow to respond, please be patient (Status 0x%x)\n",
220 status);
221
222 timeout = ata_deadline(timer_start, tmout);
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 ata_msleep(ap, 50);
226 status = ap->ops->sff_check_status(ap);
227 }
228
229 if (status == 0xff)
230 return -ENODEV;
231
232 if (status & ATA_BUSY) {
233 ata_port_err(ap,
234 "port failed to respond (%lu secs, Status 0x%x)\n",
235 DIV_ROUND_UP(tmout, 1000), status);
236 return -EBUSY;
237 }
238
239 return 0;
240 }
241 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
242
ata_sff_check_ready(struct ata_link * link)243 static int ata_sff_check_ready(struct ata_link *link)
244 {
245 u8 status = link->ap->ops->sff_check_status(link->ap);
246
247 return ata_check_ready(status);
248 }
249
250 /**
251 * ata_sff_wait_ready - sleep until BSY clears, or timeout
252 * @link: SFF link to wait ready status for
253 * @deadline: deadline jiffies for the operation
254 *
255 * Sleep until ATA Status register bit BSY clears, or timeout
256 * occurs.
257 *
258 * LOCKING:
259 * Kernel thread context (may sleep).
260 *
261 * RETURNS:
262 * 0 on success, -errno otherwise.
263 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)264 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
265 {
266 return ata_wait_ready(link, deadline, ata_sff_check_ready);
267 }
268 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
269
270 /**
271 * ata_sff_set_devctl - Write device control reg
272 * @ap: port where the device is
273 * @ctl: value to write
274 *
275 * Writes ATA device control register.
276 *
277 * RETURN:
278 * true if the register exists, false if not.
279 *
280 * LOCKING:
281 * Inherited from caller.
282 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)283 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
284 {
285 if (ap->ops->sff_set_devctl) {
286 ap->ops->sff_set_devctl(ap, ctl);
287 return true;
288 }
289 if (ap->ioaddr.ctl_addr) {
290 iowrite8(ctl, ap->ioaddr.ctl_addr);
291 return true;
292 }
293
294 return false;
295 }
296
297 /**
298 * ata_sff_dev_select - Select device 0/1 on ATA bus
299 * @ap: ATA channel to manipulate
300 * @device: ATA device (numbered from zero) to select
301 *
302 * Use the method defined in the ATA specification to
303 * make either device 0, or device 1, active on the
304 * ATA channel. Works with both PIO and MMIO.
305 *
306 * May be used as the dev_select() entry in ata_port_operations.
307 *
308 * LOCKING:
309 * caller.
310 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)311 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
312 {
313 u8 tmp;
314
315 if (device == 0)
316 tmp = ATA_DEVICE_OBS;
317 else
318 tmp = ATA_DEVICE_OBS | ATA_DEV1;
319
320 iowrite8(tmp, ap->ioaddr.device_addr);
321 ata_sff_pause(ap); /* needed; also flushes, for mmio */
322 }
323 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
324
325 /**
326 * ata_dev_select - Select device 0/1 on ATA bus
327 * @ap: ATA channel to manipulate
328 * @device: ATA device (numbered from zero) to select
329 * @wait: non-zero to wait for Status register BSY bit to clear
330 * @can_sleep: non-zero if context allows sleeping
331 *
332 * Use the method defined in the ATA specification to
333 * make either device 0, or device 1, active on the
334 * ATA channel.
335 *
336 * This is a high-level version of ata_sff_dev_select(), which
337 * additionally provides the services of inserting the proper
338 * pauses and status polling, where needed.
339 *
340 * LOCKING:
341 * caller.
342 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)343 static void ata_dev_select(struct ata_port *ap, unsigned int device,
344 unsigned int wait, unsigned int can_sleep)
345 {
346 if (wait)
347 ata_wait_idle(ap);
348
349 ap->ops->sff_dev_select(ap, device);
350
351 if (wait) {
352 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
353 ata_msleep(ap, 150);
354 ata_wait_idle(ap);
355 }
356 }
357
358 /**
359 * ata_sff_irq_on - Enable interrupts on a port.
360 * @ap: Port on which interrupts are enabled.
361 *
362 * Enable interrupts on a legacy IDE device using MMIO or PIO,
363 * wait for idle, clear any pending interrupts.
364 *
365 * Note: may NOT be used as the sff_irq_on() entry in
366 * ata_port_operations.
367 *
368 * LOCKING:
369 * Inherited from caller.
370 */
ata_sff_irq_on(struct ata_port * ap)371 void ata_sff_irq_on(struct ata_port *ap)
372 {
373 if (ap->ops->sff_irq_on) {
374 ap->ops->sff_irq_on(ap);
375 return;
376 }
377
378 ap->ctl &= ~ATA_NIEN;
379 ap->last_ctl = ap->ctl;
380
381 ata_sff_set_devctl(ap, ap->ctl);
382 ata_wait_idle(ap);
383
384 if (ap->ops->sff_irq_clear)
385 ap->ops->sff_irq_clear(ap);
386 }
387 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
388
389 /**
390 * ata_sff_tf_load - send taskfile registers to host controller
391 * @ap: Port to which output is sent
392 * @tf: ATA taskfile register set
393 *
394 * Outputs ATA taskfile to standard ATA host controller.
395 *
396 * LOCKING:
397 * Inherited from caller.
398 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)399 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
400 {
401 struct ata_ioports *ioaddr = &ap->ioaddr;
402 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
403
404 if (tf->ctl != ap->last_ctl) {
405 if (ioaddr->ctl_addr)
406 iowrite8(tf->ctl, ioaddr->ctl_addr);
407 ap->last_ctl = tf->ctl;
408 ata_wait_idle(ap);
409 }
410
411 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
412 WARN_ON_ONCE(!ioaddr->ctl_addr);
413 iowrite8(tf->hob_feature, ioaddr->feature_addr);
414 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
415 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
416 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
417 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
418 }
419
420 if (is_addr) {
421 iowrite8(tf->feature, ioaddr->feature_addr);
422 iowrite8(tf->nsect, ioaddr->nsect_addr);
423 iowrite8(tf->lbal, ioaddr->lbal_addr);
424 iowrite8(tf->lbam, ioaddr->lbam_addr);
425 iowrite8(tf->lbah, ioaddr->lbah_addr);
426 }
427
428 if (tf->flags & ATA_TFLAG_DEVICE)
429 iowrite8(tf->device, ioaddr->device_addr);
430
431 ata_wait_idle(ap);
432 }
433 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
434
435 /**
436 * ata_sff_tf_read - input device's ATA taskfile shadow registers
437 * @ap: Port from which input is read
438 * @tf: ATA taskfile register set for storing input
439 *
440 * Reads ATA taskfile registers for currently-selected device
441 * into @tf. Assumes the device has a fully SFF compliant task file
442 * layout and behaviour. If you device does not (eg has a different
443 * status method) then you will need to provide a replacement tf_read
444 *
445 * LOCKING:
446 * Inherited from caller.
447 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)448 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
449 {
450 struct ata_ioports *ioaddr = &ap->ioaddr;
451
452 tf->status = ata_sff_check_status(ap);
453 tf->error = ioread8(ioaddr->error_addr);
454 tf->nsect = ioread8(ioaddr->nsect_addr);
455 tf->lbal = ioread8(ioaddr->lbal_addr);
456 tf->lbam = ioread8(ioaddr->lbam_addr);
457 tf->lbah = ioread8(ioaddr->lbah_addr);
458 tf->device = ioread8(ioaddr->device_addr);
459
460 if (tf->flags & ATA_TFLAG_LBA48) {
461 if (likely(ioaddr->ctl_addr)) {
462 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
463 tf->hob_feature = ioread8(ioaddr->error_addr);
464 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
465 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
466 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
467 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
468 iowrite8(tf->ctl, ioaddr->ctl_addr);
469 ap->last_ctl = tf->ctl;
470 } else
471 WARN_ON_ONCE(1);
472 }
473 }
474 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
475
476 /**
477 * ata_sff_exec_command - issue ATA command to host controller
478 * @ap: port to which command is being issued
479 * @tf: ATA taskfile register set
480 *
481 * Issues ATA command, with proper synchronization with interrupt
482 * handler / other threads.
483 *
484 * LOCKING:
485 * spin_lock_irqsave(host lock)
486 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)487 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
488 {
489 iowrite8(tf->command, ap->ioaddr.command_addr);
490 ata_sff_pause(ap);
491 }
492 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
493
494 /**
495 * ata_tf_to_host - issue ATA taskfile to host controller
496 * @ap: port to which command is being issued
497 * @tf: ATA taskfile register set
498 * @tag: tag of the associated command
499 *
500 * Issues ATA taskfile register set to ATA host controller,
501 * with proper synchronization with interrupt handler and
502 * other threads.
503 *
504 * LOCKING:
505 * spin_lock_irqsave(host lock)
506 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf,unsigned int tag)507 static inline void ata_tf_to_host(struct ata_port *ap,
508 const struct ata_taskfile *tf,
509 unsigned int tag)
510 {
511 trace_ata_tf_load(ap, tf);
512 ap->ops->sff_tf_load(ap, tf);
513 trace_ata_exec_command(ap, tf, tag);
514 ap->ops->sff_exec_command(ap, tf);
515 }
516
517 /**
518 * ata_sff_data_xfer - Transfer data by PIO
519 * @qc: queued command
520 * @buf: data buffer
521 * @buflen: buffer length
522 * @rw: read/write
523 *
524 * Transfer data from/to the device data register by PIO.
525 *
526 * LOCKING:
527 * Inherited from caller.
528 *
529 * RETURNS:
530 * Bytes consumed.
531 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)532 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
533 unsigned int buflen, int rw)
534 {
535 struct ata_port *ap = qc->dev->link->ap;
536 void __iomem *data_addr = ap->ioaddr.data_addr;
537 unsigned int words = buflen >> 1;
538
539 /* Transfer multiple of 2 bytes */
540 if (rw == READ)
541 ioread16_rep(data_addr, buf, words);
542 else
543 iowrite16_rep(data_addr, buf, words);
544
545 /* Transfer trailing byte, if any. */
546 if (unlikely(buflen & 0x01)) {
547 unsigned char pad[2] = { };
548
549 /* Point buf to the tail of buffer */
550 buf += buflen - 1;
551
552 /*
553 * Use io*16_rep() accessors here as well to avoid pointlessly
554 * swapping bytes to and from on the big endian machines...
555 */
556 if (rw == READ) {
557 ioread16_rep(data_addr, pad, 1);
558 *buf = pad[0];
559 } else {
560 pad[0] = *buf;
561 iowrite16_rep(data_addr, pad, 1);
562 }
563 words++;
564 }
565
566 return words << 1;
567 }
568 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
569
570 /**
571 * ata_sff_data_xfer32 - Transfer data by PIO
572 * @qc: queued command
573 * @buf: data buffer
574 * @buflen: buffer length
575 * @rw: read/write
576 *
577 * Transfer data from/to the device data register by PIO using 32bit
578 * I/O operations.
579 *
580 * LOCKING:
581 * Inherited from caller.
582 *
583 * RETURNS:
584 * Bytes consumed.
585 */
586
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)587 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
588 unsigned int buflen, int rw)
589 {
590 struct ata_device *dev = qc->dev;
591 struct ata_port *ap = dev->link->ap;
592 void __iomem *data_addr = ap->ioaddr.data_addr;
593 unsigned int words = buflen >> 2;
594 int slop = buflen & 3;
595
596 if (!(ap->pflags & ATA_PFLAG_PIO32))
597 return ata_sff_data_xfer(qc, buf, buflen, rw);
598
599 /* Transfer multiple of 4 bytes */
600 if (rw == READ)
601 ioread32_rep(data_addr, buf, words);
602 else
603 iowrite32_rep(data_addr, buf, words);
604
605 /* Transfer trailing bytes, if any */
606 if (unlikely(slop)) {
607 unsigned char pad[4] = { };
608
609 /* Point buf to the tail of buffer */
610 buf += buflen - slop;
611
612 /*
613 * Use io*_rep() accessors here as well to avoid pointlessly
614 * swapping bytes to and from on the big endian machines...
615 */
616 if (rw == READ) {
617 if (slop < 3)
618 ioread16_rep(data_addr, pad, 1);
619 else
620 ioread32_rep(data_addr, pad, 1);
621 memcpy(buf, pad, slop);
622 } else {
623 memcpy(pad, buf, slop);
624 if (slop < 3)
625 iowrite16_rep(data_addr, pad, 1);
626 else
627 iowrite32_rep(data_addr, pad, 1);
628 }
629 }
630 return (buflen + 1) & ~1;
631 }
632 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
633
ata_pio_xfer(struct ata_queued_cmd * qc,struct page * page,unsigned int offset,size_t xfer_size)634 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
635 unsigned int offset, size_t xfer_size)
636 {
637 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
638 unsigned char *buf;
639
640 buf = kmap_atomic(page);
641 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
642 kunmap_atomic(buf);
643
644 if (!do_write && !PageSlab(page))
645 flush_dcache_page(page);
646 }
647
648 /**
649 * ata_pio_sector - Transfer a sector of data.
650 * @qc: Command on going
651 *
652 * Transfer qc->sect_size bytes of data from/to the ATA device.
653 *
654 * LOCKING:
655 * Inherited from caller.
656 */
ata_pio_sector(struct ata_queued_cmd * qc)657 static void ata_pio_sector(struct ata_queued_cmd *qc)
658 {
659 struct ata_port *ap = qc->ap;
660 struct page *page;
661 unsigned int offset;
662
663 if (!qc->cursg) {
664 qc->curbytes = qc->nbytes;
665 return;
666 }
667 if (qc->curbytes == qc->nbytes - qc->sect_size)
668 ap->hsm_task_state = HSM_ST_LAST;
669
670 page = sg_page(qc->cursg);
671 offset = qc->cursg->offset + qc->cursg_ofs;
672
673 /* get the current page and offset */
674 page = nth_page(page, (offset >> PAGE_SHIFT));
675 offset %= PAGE_SIZE;
676
677 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
678
679 /*
680 * Split the transfer when it splits a page boundary. Note that the
681 * split still has to be dword aligned like all ATA data transfers.
682 */
683 WARN_ON_ONCE(offset % 4);
684 if (offset + qc->sect_size > PAGE_SIZE) {
685 unsigned int split_len = PAGE_SIZE - offset;
686
687 ata_pio_xfer(qc, page, offset, split_len);
688 ata_pio_xfer(qc, nth_page(page, 1), 0,
689 qc->sect_size - split_len);
690 } else {
691 ata_pio_xfer(qc, page, offset, qc->sect_size);
692 }
693
694 qc->curbytes += qc->sect_size;
695 qc->cursg_ofs += qc->sect_size;
696
697 if (qc->cursg_ofs == qc->cursg->length) {
698 qc->cursg = sg_next(qc->cursg);
699 if (!qc->cursg)
700 ap->hsm_task_state = HSM_ST_LAST;
701 qc->cursg_ofs = 0;
702 }
703 }
704
705 /**
706 * ata_pio_sectors - Transfer one or many sectors.
707 * @qc: Command on going
708 *
709 * Transfer one or many sectors of data from/to the
710 * ATA device for the DRQ request.
711 *
712 * LOCKING:
713 * Inherited from caller.
714 */
ata_pio_sectors(struct ata_queued_cmd * qc)715 static void ata_pio_sectors(struct ata_queued_cmd *qc)
716 {
717 if (is_multi_taskfile(&qc->tf)) {
718 /* READ/WRITE MULTIPLE */
719 unsigned int nsect;
720
721 WARN_ON_ONCE(qc->dev->multi_count == 0);
722
723 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
724 qc->dev->multi_count);
725 while (nsect--)
726 ata_pio_sector(qc);
727 } else
728 ata_pio_sector(qc);
729
730 ata_sff_sync(qc->ap); /* flush */
731 }
732
733 /**
734 * atapi_send_cdb - Write CDB bytes to hardware
735 * @ap: Port to which ATAPI device is attached.
736 * @qc: Taskfile currently active
737 *
738 * When device has indicated its readiness to accept
739 * a CDB, this function is called. Send the CDB.
740 *
741 * LOCKING:
742 * caller.
743 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)744 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
745 {
746 /* send SCSI cdb */
747 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
748 WARN_ON_ONCE(qc->dev->cdb_len < 12);
749
750 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
751 ata_sff_sync(ap);
752 /* FIXME: If the CDB is for DMA do we need to do the transition delay
753 or is bmdma_start guaranteed to do it ? */
754 switch (qc->tf.protocol) {
755 case ATAPI_PROT_PIO:
756 ap->hsm_task_state = HSM_ST;
757 break;
758 case ATAPI_PROT_NODATA:
759 ap->hsm_task_state = HSM_ST_LAST;
760 break;
761 #ifdef CONFIG_ATA_BMDMA
762 case ATAPI_PROT_DMA:
763 ap->hsm_task_state = HSM_ST_LAST;
764 /* initiate bmdma */
765 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
766 ap->ops->bmdma_start(qc);
767 break;
768 #endif /* CONFIG_ATA_BMDMA */
769 default:
770 BUG();
771 }
772 }
773
774 /**
775 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
776 * @qc: Command on going
777 * @bytes: number of bytes
778 *
779 * Transfer Transfer data from/to the ATAPI device.
780 *
781 * LOCKING:
782 * Inherited from caller.
783 *
784 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)785 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
786 {
787 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
788 struct ata_port *ap = qc->ap;
789 struct ata_device *dev = qc->dev;
790 struct ata_eh_info *ehi = &dev->link->eh_info;
791 struct scatterlist *sg;
792 struct page *page;
793 unsigned char *buf;
794 unsigned int offset, count, consumed;
795
796 next_sg:
797 sg = qc->cursg;
798 if (unlikely(!sg)) {
799 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
800 "buf=%u cur=%u bytes=%u",
801 qc->nbytes, qc->curbytes, bytes);
802 return -1;
803 }
804
805 page = sg_page(sg);
806 offset = sg->offset + qc->cursg_ofs;
807
808 /* get the current page and offset */
809 page = nth_page(page, (offset >> PAGE_SHIFT));
810 offset %= PAGE_SIZE;
811
812 /* don't overrun current sg */
813 count = min(sg->length - qc->cursg_ofs, bytes);
814
815 /* don't cross page boundaries */
816 count = min(count, (unsigned int)PAGE_SIZE - offset);
817
818 trace_atapi_pio_transfer_data(qc, offset, count);
819
820 /* do the actual data transfer */
821 buf = kmap_atomic(page);
822 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
823 kunmap_atomic(buf);
824
825 bytes -= min(bytes, consumed);
826 qc->curbytes += count;
827 qc->cursg_ofs += count;
828
829 if (qc->cursg_ofs == sg->length) {
830 qc->cursg = sg_next(qc->cursg);
831 qc->cursg_ofs = 0;
832 }
833
834 /*
835 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
836 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
837 * check correctly as it doesn't know if it is the last request being
838 * made. Somebody should implement a proper sanity check.
839 */
840 if (bytes)
841 goto next_sg;
842 return 0;
843 }
844
845 /**
846 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
847 * @qc: Command on going
848 *
849 * Transfer Transfer data from/to the ATAPI device.
850 *
851 * LOCKING:
852 * Inherited from caller.
853 */
atapi_pio_bytes(struct ata_queued_cmd * qc)854 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
855 {
856 struct ata_port *ap = qc->ap;
857 struct ata_device *dev = qc->dev;
858 struct ata_eh_info *ehi = &dev->link->eh_info;
859 unsigned int ireason, bc_lo, bc_hi, bytes;
860 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
861
862 /* Abuse qc->result_tf for temp storage of intermediate TF
863 * here to save some kernel stack usage.
864 * For normal completion, qc->result_tf is not relevant. For
865 * error, qc->result_tf is later overwritten by ata_qc_complete().
866 * So, the correctness of qc->result_tf is not affected.
867 */
868 ap->ops->sff_tf_read(ap, &qc->result_tf);
869 ireason = qc->result_tf.nsect;
870 bc_lo = qc->result_tf.lbam;
871 bc_hi = qc->result_tf.lbah;
872 bytes = (bc_hi << 8) | bc_lo;
873
874 /* shall be cleared to zero, indicating xfer of data */
875 if (unlikely(ireason & ATAPI_COD))
876 goto atapi_check;
877
878 /* make sure transfer direction matches expected */
879 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
880 if (unlikely(do_write != i_write))
881 goto atapi_check;
882
883 if (unlikely(!bytes))
884 goto atapi_check;
885
886 if (unlikely(__atapi_pio_bytes(qc, bytes)))
887 goto err_out;
888 ata_sff_sync(ap); /* flush */
889
890 return;
891
892 atapi_check:
893 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
894 ireason, bytes);
895 err_out:
896 qc->err_mask |= AC_ERR_HSM;
897 ap->hsm_task_state = HSM_ST_ERR;
898 }
899
900 /**
901 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
902 * @ap: the target ata_port
903 * @qc: qc on going
904 *
905 * RETURNS:
906 * 1 if ok in workqueue, 0 otherwise.
907 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)908 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
909 struct ata_queued_cmd *qc)
910 {
911 if (qc->tf.flags & ATA_TFLAG_POLLING)
912 return 1;
913
914 if (ap->hsm_task_state == HSM_ST_FIRST) {
915 if (qc->tf.protocol == ATA_PROT_PIO &&
916 (qc->tf.flags & ATA_TFLAG_WRITE))
917 return 1;
918
919 if (ata_is_atapi(qc->tf.protocol) &&
920 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
921 return 1;
922 }
923
924 return 0;
925 }
926
927 /**
928 * ata_hsm_qc_complete - finish a qc running on standard HSM
929 * @qc: Command to complete
930 * @in_wq: 1 if called from workqueue, 0 otherwise
931 *
932 * Finish @qc which is running on standard HSM.
933 *
934 * LOCKING:
935 * If @in_wq is zero, spin_lock_irqsave(host lock).
936 * Otherwise, none on entry and grabs host lock.
937 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)938 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
939 {
940 struct ata_port *ap = qc->ap;
941
942 if (ap->ops->error_handler) {
943 if (in_wq) {
944 /* EH might have kicked in while host lock is
945 * released.
946 */
947 qc = ata_qc_from_tag(ap, qc->tag);
948 if (qc) {
949 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
950 ata_sff_irq_on(ap);
951 ata_qc_complete(qc);
952 } else
953 ata_port_freeze(ap);
954 }
955 } else {
956 if (likely(!(qc->err_mask & AC_ERR_HSM)))
957 ata_qc_complete(qc);
958 else
959 ata_port_freeze(ap);
960 }
961 } else {
962 if (in_wq) {
963 ata_sff_irq_on(ap);
964 ata_qc_complete(qc);
965 } else
966 ata_qc_complete(qc);
967 }
968 }
969
970 /**
971 * ata_sff_hsm_move - move the HSM to the next state.
972 * @ap: the target ata_port
973 * @qc: qc on going
974 * @status: current device status
975 * @in_wq: 1 if called from workqueue, 0 otherwise
976 *
977 * RETURNS:
978 * 1 when poll next status needed, 0 otherwise.
979 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)980 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
981 u8 status, int in_wq)
982 {
983 struct ata_link *link = qc->dev->link;
984 struct ata_eh_info *ehi = &link->eh_info;
985 int poll_next;
986
987 lockdep_assert_held(ap->lock);
988
989 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
990
991 /* Make sure ata_sff_qc_issue() does not throw things
992 * like DMA polling into the workqueue. Notice that
993 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
994 */
995 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
996
997 fsm_start:
998 trace_ata_sff_hsm_state(qc, status);
999
1000 switch (ap->hsm_task_state) {
1001 case HSM_ST_FIRST:
1002 /* Send first data block or PACKET CDB */
1003
1004 /* If polling, we will stay in the work queue after
1005 * sending the data. Otherwise, interrupt handler
1006 * takes over after sending the data.
1007 */
1008 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1009
1010 /* check device status */
1011 if (unlikely((status & ATA_DRQ) == 0)) {
1012 /* handle BSY=0, DRQ=0 as error */
1013 if (likely(status & (ATA_ERR | ATA_DF)))
1014 /* device stops HSM for abort/error */
1015 qc->err_mask |= AC_ERR_DEV;
1016 else {
1017 /* HSM violation. Let EH handle this */
1018 ata_ehi_push_desc(ehi,
1019 "ST_FIRST: !(DRQ|ERR|DF)");
1020 qc->err_mask |= AC_ERR_HSM;
1021 }
1022
1023 ap->hsm_task_state = HSM_ST_ERR;
1024 goto fsm_start;
1025 }
1026
1027 /* Device should not ask for data transfer (DRQ=1)
1028 * when it finds something wrong.
1029 * We ignore DRQ here and stop the HSM by
1030 * changing hsm_task_state to HSM_ST_ERR and
1031 * let the EH abort the command or reset the device.
1032 */
1033 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1034 /* Some ATAPI tape drives forget to clear the ERR bit
1035 * when doing the next command (mostly request sense).
1036 * We ignore ERR here to workaround and proceed sending
1037 * the CDB.
1038 */
1039 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1040 ata_ehi_push_desc(ehi, "ST_FIRST: "
1041 "DRQ=1 with device error, "
1042 "dev_stat 0x%X", status);
1043 qc->err_mask |= AC_ERR_HSM;
1044 ap->hsm_task_state = HSM_ST_ERR;
1045 goto fsm_start;
1046 }
1047 }
1048
1049 if (qc->tf.protocol == ATA_PROT_PIO) {
1050 /* PIO data out protocol.
1051 * send first data block.
1052 */
1053
1054 /* ata_pio_sectors() might change the state
1055 * to HSM_ST_LAST. so, the state is changed here
1056 * before ata_pio_sectors().
1057 */
1058 ap->hsm_task_state = HSM_ST;
1059 ata_pio_sectors(qc);
1060 } else
1061 /* send CDB */
1062 atapi_send_cdb(ap, qc);
1063
1064 /* if polling, ata_sff_pio_task() handles the rest.
1065 * otherwise, interrupt handler takes over from here.
1066 */
1067 break;
1068
1069 case HSM_ST:
1070 /* complete command or read/write the data register */
1071 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1072 /* ATAPI PIO protocol */
1073 if ((status & ATA_DRQ) == 0) {
1074 /* No more data to transfer or device error.
1075 * Device error will be tagged in HSM_ST_LAST.
1076 */
1077 ap->hsm_task_state = HSM_ST_LAST;
1078 goto fsm_start;
1079 }
1080
1081 /* Device should not ask for data transfer (DRQ=1)
1082 * when it finds something wrong.
1083 * We ignore DRQ here and stop the HSM by
1084 * changing hsm_task_state to HSM_ST_ERR and
1085 * let the EH abort the command or reset the device.
1086 */
1087 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1088 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1089 "DRQ=1 with device error, "
1090 "dev_stat 0x%X", status);
1091 qc->err_mask |= AC_ERR_HSM;
1092 ap->hsm_task_state = HSM_ST_ERR;
1093 goto fsm_start;
1094 }
1095
1096 atapi_pio_bytes(qc);
1097
1098 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1099 /* bad ireason reported by device */
1100 goto fsm_start;
1101
1102 } else {
1103 /* ATA PIO protocol */
1104 if (unlikely((status & ATA_DRQ) == 0)) {
1105 /* handle BSY=0, DRQ=0 as error */
1106 if (likely(status & (ATA_ERR | ATA_DF))) {
1107 /* device stops HSM for abort/error */
1108 qc->err_mask |= AC_ERR_DEV;
1109
1110 /* If diagnostic failed and this is
1111 * IDENTIFY, it's likely a phantom
1112 * device. Mark hint.
1113 */
1114 if (qc->dev->horkage &
1115 ATA_HORKAGE_DIAGNOSTIC)
1116 qc->err_mask |=
1117 AC_ERR_NODEV_HINT;
1118 } else {
1119 /* HSM violation. Let EH handle this.
1120 * Phantom devices also trigger this
1121 * condition. Mark hint.
1122 */
1123 ata_ehi_push_desc(ehi, "ST-ATA: "
1124 "DRQ=0 without device error, "
1125 "dev_stat 0x%X", status);
1126 qc->err_mask |= AC_ERR_HSM |
1127 AC_ERR_NODEV_HINT;
1128 }
1129
1130 ap->hsm_task_state = HSM_ST_ERR;
1131 goto fsm_start;
1132 }
1133
1134 /* For PIO reads, some devices may ask for
1135 * data transfer (DRQ=1) alone with ERR=1.
1136 * We respect DRQ here and transfer one
1137 * block of junk data before changing the
1138 * hsm_task_state to HSM_ST_ERR.
1139 *
1140 * For PIO writes, ERR=1 DRQ=1 doesn't make
1141 * sense since the data block has been
1142 * transferred to the device.
1143 */
1144 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1145 /* data might be corrputed */
1146 qc->err_mask |= AC_ERR_DEV;
1147
1148 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1149 ata_pio_sectors(qc);
1150 status = ata_wait_idle(ap);
1151 }
1152
1153 if (status & (ATA_BUSY | ATA_DRQ)) {
1154 ata_ehi_push_desc(ehi, "ST-ATA: "
1155 "BUSY|DRQ persists on ERR|DF, "
1156 "dev_stat 0x%X", status);
1157 qc->err_mask |= AC_ERR_HSM;
1158 }
1159
1160 /* There are oddball controllers with
1161 * status register stuck at 0x7f and
1162 * lbal/m/h at zero which makes it
1163 * pass all other presence detection
1164 * mechanisms we have. Set NODEV_HINT
1165 * for it. Kernel bz#7241.
1166 */
1167 if (status == 0x7f)
1168 qc->err_mask |= AC_ERR_NODEV_HINT;
1169
1170 /* ata_pio_sectors() might change the
1171 * state to HSM_ST_LAST. so, the state
1172 * is changed after ata_pio_sectors().
1173 */
1174 ap->hsm_task_state = HSM_ST_ERR;
1175 goto fsm_start;
1176 }
1177
1178 ata_pio_sectors(qc);
1179
1180 if (ap->hsm_task_state == HSM_ST_LAST &&
1181 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1182 /* all data read */
1183 status = ata_wait_idle(ap);
1184 goto fsm_start;
1185 }
1186 }
1187
1188 poll_next = 1;
1189 break;
1190
1191 case HSM_ST_LAST:
1192 if (unlikely(!ata_ok(status))) {
1193 qc->err_mask |= __ac_err_mask(status);
1194 ap->hsm_task_state = HSM_ST_ERR;
1195 goto fsm_start;
1196 }
1197
1198 /* no more data to transfer */
1199 trace_ata_sff_hsm_command_complete(qc, status);
1200
1201 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1202
1203 ap->hsm_task_state = HSM_ST_IDLE;
1204
1205 /* complete taskfile transaction */
1206 ata_hsm_qc_complete(qc, in_wq);
1207
1208 poll_next = 0;
1209 break;
1210
1211 case HSM_ST_ERR:
1212 ap->hsm_task_state = HSM_ST_IDLE;
1213
1214 /* complete taskfile transaction */
1215 ata_hsm_qc_complete(qc, in_wq);
1216
1217 poll_next = 0;
1218 break;
1219 default:
1220 poll_next = 0;
1221 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1222 ap->print_id, ap->hsm_task_state);
1223 }
1224
1225 return poll_next;
1226 }
1227 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1228
ata_sff_queue_work(struct work_struct * work)1229 void ata_sff_queue_work(struct work_struct *work)
1230 {
1231 queue_work(ata_sff_wq, work);
1232 }
1233 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1234
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1235 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1236 {
1237 queue_delayed_work(ata_sff_wq, dwork, delay);
1238 }
1239 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1240
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1241 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1242 {
1243 struct ata_port *ap = link->ap;
1244
1245 WARN_ON((ap->sff_pio_task_link != NULL) &&
1246 (ap->sff_pio_task_link != link));
1247 ap->sff_pio_task_link = link;
1248
1249 /* may fail if ata_sff_flush_pio_task() in progress */
1250 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1251 }
1252 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1253
ata_sff_flush_pio_task(struct ata_port * ap)1254 void ata_sff_flush_pio_task(struct ata_port *ap)
1255 {
1256 trace_ata_sff_flush_pio_task(ap);
1257
1258 cancel_delayed_work_sync(&ap->sff_pio_task);
1259
1260 /*
1261 * We wanna reset the HSM state to IDLE. If we do so without
1262 * grabbing the port lock, critical sections protected by it which
1263 * expect the HSM state to stay stable may get surprised. For
1264 * example, we may set IDLE in between the time
1265 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1266 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1267 */
1268 spin_lock_irq(ap->lock);
1269 ap->hsm_task_state = HSM_ST_IDLE;
1270 spin_unlock_irq(ap->lock);
1271
1272 ap->sff_pio_task_link = NULL;
1273 }
1274
ata_sff_pio_task(struct work_struct * work)1275 static void ata_sff_pio_task(struct work_struct *work)
1276 {
1277 struct ata_port *ap =
1278 container_of(work, struct ata_port, sff_pio_task.work);
1279 struct ata_link *link = ap->sff_pio_task_link;
1280 struct ata_queued_cmd *qc;
1281 u8 status;
1282 int poll_next;
1283
1284 spin_lock_irq(ap->lock);
1285
1286 BUG_ON(ap->sff_pio_task_link == NULL);
1287 /* qc can be NULL if timeout occurred */
1288 qc = ata_qc_from_tag(ap, link->active_tag);
1289 if (!qc) {
1290 ap->sff_pio_task_link = NULL;
1291 goto out_unlock;
1292 }
1293
1294 fsm_start:
1295 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1296
1297 /*
1298 * This is purely heuristic. This is a fast path.
1299 * Sometimes when we enter, BSY will be cleared in
1300 * a chk-status or two. If not, the drive is probably seeking
1301 * or something. Snooze for a couple msecs, then
1302 * chk-status again. If still busy, queue delayed work.
1303 */
1304 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1305 if (status & ATA_BUSY) {
1306 spin_unlock_irq(ap->lock);
1307 ata_msleep(ap, 2);
1308 spin_lock_irq(ap->lock);
1309
1310 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1311 if (status & ATA_BUSY) {
1312 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1313 goto out_unlock;
1314 }
1315 }
1316
1317 /*
1318 * hsm_move() may trigger another command to be processed.
1319 * clean the link beforehand.
1320 */
1321 ap->sff_pio_task_link = NULL;
1322 /* move the HSM */
1323 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1324
1325 /* another command or interrupt handler
1326 * may be running at this point.
1327 */
1328 if (poll_next)
1329 goto fsm_start;
1330 out_unlock:
1331 spin_unlock_irq(ap->lock);
1332 }
1333
1334 /**
1335 * ata_sff_qc_issue - issue taskfile to a SFF controller
1336 * @qc: command to issue to device
1337 *
1338 * This function issues a PIO or NODATA command to a SFF
1339 * controller.
1340 *
1341 * LOCKING:
1342 * spin_lock_irqsave(host lock)
1343 *
1344 * RETURNS:
1345 * Zero on success, AC_ERR_* mask on failure
1346 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1347 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1348 {
1349 struct ata_port *ap = qc->ap;
1350 struct ata_link *link = qc->dev->link;
1351
1352 /* Use polling pio if the LLD doesn't handle
1353 * interrupt driven pio and atapi CDB interrupt.
1354 */
1355 if (ap->flags & ATA_FLAG_PIO_POLLING)
1356 qc->tf.flags |= ATA_TFLAG_POLLING;
1357
1358 /* select the device */
1359 ata_dev_select(ap, qc->dev->devno, 1, 0);
1360
1361 /* start the command */
1362 switch (qc->tf.protocol) {
1363 case ATA_PROT_NODATA:
1364 if (qc->tf.flags & ATA_TFLAG_POLLING)
1365 ata_qc_set_polling(qc);
1366
1367 ata_tf_to_host(ap, &qc->tf, qc->tag);
1368 ap->hsm_task_state = HSM_ST_LAST;
1369
1370 if (qc->tf.flags & ATA_TFLAG_POLLING)
1371 ata_sff_queue_pio_task(link, 0);
1372
1373 break;
1374
1375 case ATA_PROT_PIO:
1376 if (qc->tf.flags & ATA_TFLAG_POLLING)
1377 ata_qc_set_polling(qc);
1378
1379 ata_tf_to_host(ap, &qc->tf, qc->tag);
1380
1381 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1382 /* PIO data out protocol */
1383 ap->hsm_task_state = HSM_ST_FIRST;
1384 ata_sff_queue_pio_task(link, 0);
1385
1386 /* always send first data block using the
1387 * ata_sff_pio_task() codepath.
1388 */
1389 } else {
1390 /* PIO data in protocol */
1391 ap->hsm_task_state = HSM_ST;
1392
1393 if (qc->tf.flags & ATA_TFLAG_POLLING)
1394 ata_sff_queue_pio_task(link, 0);
1395
1396 /* if polling, ata_sff_pio_task() handles the
1397 * rest. otherwise, interrupt handler takes
1398 * over from here.
1399 */
1400 }
1401
1402 break;
1403
1404 case ATAPI_PROT_PIO:
1405 case ATAPI_PROT_NODATA:
1406 if (qc->tf.flags & ATA_TFLAG_POLLING)
1407 ata_qc_set_polling(qc);
1408
1409 ata_tf_to_host(ap, &qc->tf, qc->tag);
1410
1411 ap->hsm_task_state = HSM_ST_FIRST;
1412
1413 /* send cdb by polling if no cdb interrupt */
1414 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1415 (qc->tf.flags & ATA_TFLAG_POLLING))
1416 ata_sff_queue_pio_task(link, 0);
1417 break;
1418
1419 default:
1420 return AC_ERR_SYSTEM;
1421 }
1422
1423 return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1426
1427 /**
1428 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1429 * @qc: qc to fill result TF for
1430 *
1431 * @qc is finished and result TF needs to be filled. Fill it
1432 * using ->sff_tf_read.
1433 *
1434 * LOCKING:
1435 * spin_lock_irqsave(host lock)
1436 *
1437 * RETURNS:
1438 * true indicating that result TF is successfully filled.
1439 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1440 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1441 {
1442 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1443 return true;
1444 }
1445 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1446
ata_sff_idle_irq(struct ata_port * ap)1447 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1448 {
1449 ap->stats.idle_irq++;
1450
1451 #ifdef ATA_IRQ_TRAP
1452 if ((ap->stats.idle_irq % 1000) == 0) {
1453 ap->ops->sff_check_status(ap);
1454 if (ap->ops->sff_irq_clear)
1455 ap->ops->sff_irq_clear(ap);
1456 ata_port_warn(ap, "irq trap\n");
1457 return 1;
1458 }
1459 #endif
1460 return 0; /* irq not handled */
1461 }
1462
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1463 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1464 struct ata_queued_cmd *qc,
1465 bool hsmv_on_idle)
1466 {
1467 u8 status;
1468
1469 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1470
1471 /* Check whether we are expecting interrupt in this state */
1472 switch (ap->hsm_task_state) {
1473 case HSM_ST_FIRST:
1474 /* Some pre-ATAPI-4 devices assert INTRQ
1475 * at this state when ready to receive CDB.
1476 */
1477
1478 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1479 * The flag was turned on only for atapi devices. No
1480 * need to check ata_is_atapi(qc->tf.protocol) again.
1481 */
1482 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1483 return ata_sff_idle_irq(ap);
1484 break;
1485 case HSM_ST_IDLE:
1486 return ata_sff_idle_irq(ap);
1487 default:
1488 break;
1489 }
1490
1491 /* check main status, clearing INTRQ if needed */
1492 status = ata_sff_irq_status(ap);
1493 if (status & ATA_BUSY) {
1494 if (hsmv_on_idle) {
1495 /* BMDMA engine is already stopped, we're screwed */
1496 qc->err_mask |= AC_ERR_HSM;
1497 ap->hsm_task_state = HSM_ST_ERR;
1498 } else
1499 return ata_sff_idle_irq(ap);
1500 }
1501
1502 /* clear irq events */
1503 if (ap->ops->sff_irq_clear)
1504 ap->ops->sff_irq_clear(ap);
1505
1506 ata_sff_hsm_move(ap, qc, status, 0);
1507
1508 return 1; /* irq handled */
1509 }
1510
1511 /**
1512 * ata_sff_port_intr - Handle SFF port interrupt
1513 * @ap: Port on which interrupt arrived (possibly...)
1514 * @qc: Taskfile currently active in engine
1515 *
1516 * Handle port interrupt for given queued command.
1517 *
1518 * LOCKING:
1519 * spin_lock_irqsave(host lock)
1520 *
1521 * RETURNS:
1522 * One if interrupt was handled, zero if not (shared irq).
1523 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1524 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1525 {
1526 return __ata_sff_port_intr(ap, qc, false);
1527 }
1528 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1529
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1530 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1531 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1532 {
1533 struct ata_host *host = dev_instance;
1534 bool retried = false;
1535 unsigned int i;
1536 unsigned int handled, idle, polling;
1537 unsigned long flags;
1538
1539 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1540 spin_lock_irqsave(&host->lock, flags);
1541
1542 retry:
1543 handled = idle = polling = 0;
1544 for (i = 0; i < host->n_ports; i++) {
1545 struct ata_port *ap = host->ports[i];
1546 struct ata_queued_cmd *qc;
1547
1548 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1549 if (qc) {
1550 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1551 handled |= port_intr(ap, qc);
1552 else
1553 polling |= 1 << i;
1554 } else
1555 idle |= 1 << i;
1556 }
1557
1558 /*
1559 * If no port was expecting IRQ but the controller is actually
1560 * asserting IRQ line, nobody cared will ensue. Check IRQ
1561 * pending status if available and clear spurious IRQ.
1562 */
1563 if (!handled && !retried) {
1564 bool retry = false;
1565
1566 for (i = 0; i < host->n_ports; i++) {
1567 struct ata_port *ap = host->ports[i];
1568
1569 if (polling & (1 << i))
1570 continue;
1571
1572 if (!ap->ops->sff_irq_check ||
1573 !ap->ops->sff_irq_check(ap))
1574 continue;
1575
1576 if (idle & (1 << i)) {
1577 ap->ops->sff_check_status(ap);
1578 if (ap->ops->sff_irq_clear)
1579 ap->ops->sff_irq_clear(ap);
1580 } else {
1581 /* clear INTRQ and check if BUSY cleared */
1582 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1583 retry |= true;
1584 /*
1585 * With command in flight, we can't do
1586 * sff_irq_clear() w/o racing with completion.
1587 */
1588 }
1589 }
1590
1591 if (retry) {
1592 retried = true;
1593 goto retry;
1594 }
1595 }
1596
1597 spin_unlock_irqrestore(&host->lock, flags);
1598
1599 return IRQ_RETVAL(handled);
1600 }
1601
1602 /**
1603 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1604 * @irq: irq line (unused)
1605 * @dev_instance: pointer to our ata_host information structure
1606 *
1607 * Default interrupt handler for PCI IDE devices. Calls
1608 * ata_sff_port_intr() for each port that is not disabled.
1609 *
1610 * LOCKING:
1611 * Obtains host lock during operation.
1612 *
1613 * RETURNS:
1614 * IRQ_NONE or IRQ_HANDLED.
1615 */
ata_sff_interrupt(int irq,void * dev_instance)1616 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1617 {
1618 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1619 }
1620 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1621
1622 /**
1623 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1624 * @ap: port that appears to have timed out
1625 *
1626 * Called from the libata error handlers when the core code suspects
1627 * an interrupt has been lost. If it has complete anything we can and
1628 * then return. Interface must support altstatus for this faster
1629 * recovery to occur.
1630 *
1631 * Locking:
1632 * Caller holds host lock
1633 */
1634
ata_sff_lost_interrupt(struct ata_port * ap)1635 void ata_sff_lost_interrupt(struct ata_port *ap)
1636 {
1637 u8 status = 0;
1638 struct ata_queued_cmd *qc;
1639
1640 /* Only one outstanding command per SFF channel */
1641 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1642 /* We cannot lose an interrupt on a non-existent or polled command */
1643 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1644 return;
1645 /* See if the controller thinks it is still busy - if so the command
1646 isn't a lost IRQ but is still in progress */
1647 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1648 return;
1649 if (status & ATA_BUSY)
1650 return;
1651
1652 /* There was a command running, we are no longer busy and we have
1653 no interrupt. */
1654 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1655 /* Run the host interrupt logic as if the interrupt had not been
1656 lost */
1657 ata_sff_port_intr(ap, qc);
1658 }
1659 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1660
1661 /**
1662 * ata_sff_freeze - Freeze SFF controller port
1663 * @ap: port to freeze
1664 *
1665 * Freeze SFF controller port.
1666 *
1667 * LOCKING:
1668 * Inherited from caller.
1669 */
ata_sff_freeze(struct ata_port * ap)1670 void ata_sff_freeze(struct ata_port *ap)
1671 {
1672 ap->ctl |= ATA_NIEN;
1673 ap->last_ctl = ap->ctl;
1674
1675 ata_sff_set_devctl(ap, ap->ctl);
1676
1677 /* Under certain circumstances, some controllers raise IRQ on
1678 * ATA_NIEN manipulation. Also, many controllers fail to mask
1679 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1680 */
1681 ap->ops->sff_check_status(ap);
1682
1683 if (ap->ops->sff_irq_clear)
1684 ap->ops->sff_irq_clear(ap);
1685 }
1686 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1687
1688 /**
1689 * ata_sff_thaw - Thaw SFF controller port
1690 * @ap: port to thaw
1691 *
1692 * Thaw SFF controller port.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
ata_sff_thaw(struct ata_port * ap)1697 void ata_sff_thaw(struct ata_port *ap)
1698 {
1699 /* clear & re-enable interrupts */
1700 ap->ops->sff_check_status(ap);
1701 if (ap->ops->sff_irq_clear)
1702 ap->ops->sff_irq_clear(ap);
1703 ata_sff_irq_on(ap);
1704 }
1705 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1706
1707 /**
1708 * ata_sff_prereset - prepare SFF link for reset
1709 * @link: SFF link to be reset
1710 * @deadline: deadline jiffies for the operation
1711 *
1712 * SFF link @link is about to be reset. Initialize it. It first
1713 * calls ata_std_prereset() and wait for !BSY if the port is
1714 * being softreset.
1715 *
1716 * LOCKING:
1717 * Kernel thread context (may sleep)
1718 *
1719 * RETURNS:
1720 * Always 0.
1721 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1722 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1723 {
1724 struct ata_eh_context *ehc = &link->eh_context;
1725 int rc;
1726
1727 /* The standard prereset is best-effort and always returns 0 */
1728 ata_std_prereset(link, deadline);
1729
1730 /* if we're about to do hardreset, nothing more to do */
1731 if (ehc->i.action & ATA_EH_HARDRESET)
1732 return 0;
1733
1734 /* wait for !BSY if we don't know that no device is attached */
1735 if (!ata_link_offline(link)) {
1736 rc = ata_sff_wait_ready(link, deadline);
1737 if (rc && rc != -ENODEV) {
1738 ata_link_warn(link,
1739 "device not ready (errno=%d), forcing hardreset\n",
1740 rc);
1741 ehc->i.action |= ATA_EH_HARDRESET;
1742 }
1743 }
1744
1745 return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748
1749 /**
1750 * ata_devchk - PATA device presence detection
1751 * @ap: ATA channel to examine
1752 * @device: Device to examine (starting at zero)
1753 *
1754 * This technique was originally described in
1755 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1756 * later found its way into the ATA/ATAPI spec.
1757 *
1758 * Write a pattern to the ATA shadow registers,
1759 * and if a device is present, it will respond by
1760 * correctly storing and echoing back the
1761 * ATA shadow register contents.
1762 *
1763 * RETURN:
1764 * true if device is present, false if not.
1765 *
1766 * LOCKING:
1767 * caller.
1768 */
ata_devchk(struct ata_port * ap,unsigned int device)1769 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1770 {
1771 struct ata_ioports *ioaddr = &ap->ioaddr;
1772 u8 nsect, lbal;
1773
1774 ap->ops->sff_dev_select(ap, device);
1775
1776 iowrite8(0x55, ioaddr->nsect_addr);
1777 iowrite8(0xaa, ioaddr->lbal_addr);
1778
1779 iowrite8(0xaa, ioaddr->nsect_addr);
1780 iowrite8(0x55, ioaddr->lbal_addr);
1781
1782 iowrite8(0x55, ioaddr->nsect_addr);
1783 iowrite8(0xaa, ioaddr->lbal_addr);
1784
1785 nsect = ioread8(ioaddr->nsect_addr);
1786 lbal = ioread8(ioaddr->lbal_addr);
1787
1788 if ((nsect == 0x55) && (lbal == 0xaa))
1789 return true; /* we found a device */
1790
1791 return false; /* nothing found */
1792 }
1793
1794 /**
1795 * ata_sff_dev_classify - Parse returned ATA device signature
1796 * @dev: ATA device to classify (starting at zero)
1797 * @present: device seems present
1798 * @r_err: Value of error register on completion
1799 *
1800 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1801 * an ATA/ATAPI-defined set of values is placed in the ATA
1802 * shadow registers, indicating the results of device detection
1803 * and diagnostics.
1804 *
1805 * Select the ATA device, and read the values from the ATA shadow
1806 * registers. Then parse according to the Error register value,
1807 * and the spec-defined values examined by ata_dev_classify().
1808 *
1809 * LOCKING:
1810 * caller.
1811 *
1812 * RETURNS:
1813 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1814 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1815 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1816 u8 *r_err)
1817 {
1818 struct ata_port *ap = dev->link->ap;
1819 struct ata_taskfile tf;
1820 unsigned int class;
1821 u8 err;
1822
1823 ap->ops->sff_dev_select(ap, dev->devno);
1824
1825 memset(&tf, 0, sizeof(tf));
1826
1827 ap->ops->sff_tf_read(ap, &tf);
1828 err = tf.error;
1829 if (r_err)
1830 *r_err = err;
1831
1832 /* see if device passed diags: continue and warn later */
1833 if (err == 0)
1834 /* diagnostic fail : do nothing _YET_ */
1835 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1836 else if (err == 1)
1837 /* do nothing */ ;
1838 else if ((dev->devno == 0) && (err == 0x81))
1839 /* do nothing */ ;
1840 else
1841 return ATA_DEV_NONE;
1842
1843 /* determine if device is ATA or ATAPI */
1844 class = ata_port_classify(ap, &tf);
1845 switch (class) {
1846 case ATA_DEV_UNKNOWN:
1847 /*
1848 * If the device failed diagnostic, it's likely to
1849 * have reported incorrect device signature too.
1850 * Assume ATA device if the device seems present but
1851 * device signature is invalid with diagnostic
1852 * failure.
1853 */
1854 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1855 class = ATA_DEV_ATA;
1856 else
1857 class = ATA_DEV_NONE;
1858 break;
1859 case ATA_DEV_ATA:
1860 if (ap->ops->sff_check_status(ap) == 0)
1861 class = ATA_DEV_NONE;
1862 break;
1863 }
1864 return class;
1865 }
1866 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1867
1868 /**
1869 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1870 * @link: SFF link which is just reset
1871 * @devmask: mask of present devices
1872 * @deadline: deadline jiffies for the operation
1873 *
1874 * Wait devices attached to SFF @link to become ready after
1875 * reset. It contains preceding 150ms wait to avoid accessing TF
1876 * status register too early.
1877 *
1878 * LOCKING:
1879 * Kernel thread context (may sleep).
1880 *
1881 * RETURNS:
1882 * 0 on success, -ENODEV if some or all of devices in @devmask
1883 * don't seem to exist. -errno on other errors.
1884 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1885 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1886 unsigned long deadline)
1887 {
1888 struct ata_port *ap = link->ap;
1889 struct ata_ioports *ioaddr = &ap->ioaddr;
1890 unsigned int dev0 = devmask & (1 << 0);
1891 unsigned int dev1 = devmask & (1 << 1);
1892 int rc, ret = 0;
1893
1894 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1895
1896 /* always check readiness of the master device */
1897 rc = ata_sff_wait_ready(link, deadline);
1898 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1899 * and TF status is 0xff, bail out on it too.
1900 */
1901 if (rc)
1902 return rc;
1903
1904 /* if device 1 was found in ata_devchk, wait for register
1905 * access briefly, then wait for BSY to clear.
1906 */
1907 if (dev1) {
1908 int i;
1909
1910 ap->ops->sff_dev_select(ap, 1);
1911
1912 /* Wait for register access. Some ATAPI devices fail
1913 * to set nsect/lbal after reset, so don't waste too
1914 * much time on it. We're gonna wait for !BSY anyway.
1915 */
1916 for (i = 0; i < 2; i++) {
1917 u8 nsect, lbal;
1918
1919 nsect = ioread8(ioaddr->nsect_addr);
1920 lbal = ioread8(ioaddr->lbal_addr);
1921 if ((nsect == 1) && (lbal == 1))
1922 break;
1923 ata_msleep(ap, 50); /* give drive a breather */
1924 }
1925
1926 rc = ata_sff_wait_ready(link, deadline);
1927 if (rc) {
1928 if (rc != -ENODEV)
1929 return rc;
1930 ret = rc;
1931 }
1932 }
1933
1934 /* is all this really necessary? */
1935 ap->ops->sff_dev_select(ap, 0);
1936 if (dev1)
1937 ap->ops->sff_dev_select(ap, 1);
1938 if (dev0)
1939 ap->ops->sff_dev_select(ap, 0);
1940
1941 return ret;
1942 }
1943 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1944
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1945 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1946 unsigned long deadline)
1947 {
1948 struct ata_ioports *ioaddr = &ap->ioaddr;
1949
1950 if (ap->ioaddr.ctl_addr) {
1951 /* software reset. causes dev0 to be selected */
1952 iowrite8(ap->ctl, ioaddr->ctl_addr);
1953 udelay(20); /* FIXME: flush */
1954 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1955 udelay(20); /* FIXME: flush */
1956 iowrite8(ap->ctl, ioaddr->ctl_addr);
1957 ap->last_ctl = ap->ctl;
1958 }
1959
1960 /* wait the port to become ready */
1961 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1962 }
1963
1964 /**
1965 * ata_sff_softreset - reset host port via ATA SRST
1966 * @link: ATA link to reset
1967 * @classes: resulting classes of attached devices
1968 * @deadline: deadline jiffies for the operation
1969 *
1970 * Reset host port using ATA SRST.
1971 *
1972 * LOCKING:
1973 * Kernel thread context (may sleep)
1974 *
1975 * RETURNS:
1976 * 0 on success, -errno otherwise.
1977 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1978 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1979 unsigned long deadline)
1980 {
1981 struct ata_port *ap = link->ap;
1982 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1983 unsigned int devmask = 0;
1984 int rc;
1985 u8 err;
1986
1987 /* determine if device 0/1 are present */
1988 if (ata_devchk(ap, 0))
1989 devmask |= (1 << 0);
1990 if (slave_possible && ata_devchk(ap, 1))
1991 devmask |= (1 << 1);
1992
1993 /* select device 0 again */
1994 ap->ops->sff_dev_select(ap, 0);
1995
1996 /* issue bus reset */
1997 rc = ata_bus_softreset(ap, devmask, deadline);
1998 /* if link is occupied, -ENODEV too is an error */
1999 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2000 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2001 return rc;
2002 }
2003
2004 /* determine by signature whether we have ATA or ATAPI devices */
2005 classes[0] = ata_sff_dev_classify(&link->device[0],
2006 devmask & (1 << 0), &err);
2007 if (slave_possible && err != 0x81)
2008 classes[1] = ata_sff_dev_classify(&link->device[1],
2009 devmask & (1 << 1), &err);
2010
2011 return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014
2015 /**
2016 * sata_sff_hardreset - reset host port via SATA phy reset
2017 * @link: link to reset
2018 * @class: resulting class of attached device
2019 * @deadline: deadline jiffies for the operation
2020 *
2021 * SATA phy-reset host port using DET bits of SControl register,
2022 * wait for !BSY and classify the attached device.
2023 *
2024 * LOCKING:
2025 * Kernel thread context (may sleep)
2026 *
2027 * RETURNS:
2028 * 0 on success, -errno otherwise.
2029 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2030 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031 unsigned long deadline)
2032 {
2033 struct ata_eh_context *ehc = &link->eh_context;
2034 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035 bool online;
2036 int rc;
2037
2038 rc = sata_link_hardreset(link, timing, deadline, &online,
2039 ata_sff_check_ready);
2040 if (online)
2041 *class = ata_sff_dev_classify(link->device, 1, NULL);
2042
2043 return rc;
2044 }
2045 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2046
2047 /**
2048 * ata_sff_postreset - SFF postreset callback
2049 * @link: the target SFF ata_link
2050 * @classes: classes of attached devices
2051 *
2052 * This function is invoked after a successful reset. It first
2053 * calls ata_std_postreset() and performs SFF specific postreset
2054 * processing.
2055 *
2056 * LOCKING:
2057 * Kernel thread context (may sleep)
2058 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2059 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2060 {
2061 struct ata_port *ap = link->ap;
2062
2063 ata_std_postreset(link, classes);
2064
2065 /* is double-select really necessary? */
2066 if (classes[0] != ATA_DEV_NONE)
2067 ap->ops->sff_dev_select(ap, 1);
2068 if (classes[1] != ATA_DEV_NONE)
2069 ap->ops->sff_dev_select(ap, 0);
2070
2071 /* bail out if no device is present */
2072 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2073 return;
2074
2075 /* set up device control */
2076 if (ata_sff_set_devctl(ap, ap->ctl))
2077 ap->last_ctl = ap->ctl;
2078 }
2079 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2080
2081 /**
2082 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2083 * @qc: command
2084 *
2085 * Drain the FIFO and device of any stuck data following a command
2086 * failing to complete. In some cases this is necessary before a
2087 * reset will recover the device.
2088 *
2089 */
2090
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2091 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2092 {
2093 int count;
2094 struct ata_port *ap;
2095
2096 /* We only need to flush incoming data when a command was running */
2097 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2098 return;
2099
2100 ap = qc->ap;
2101 /* Drain up to 64K of data before we give up this recovery method */
2102 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2103 && count < 65536; count += 2)
2104 ioread16(ap->ioaddr.data_addr);
2105
2106 if (count)
2107 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2108
2109 }
2110 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2111
2112 /**
2113 * ata_sff_error_handler - Stock error handler for SFF controller
2114 * @ap: port to handle error for
2115 *
2116 * Stock error handler for SFF controller. It can handle both
2117 * PATA and SATA controllers. Many controllers should be able to
2118 * use this EH as-is or with some added handling before and
2119 * after.
2120 *
2121 * LOCKING:
2122 * Kernel thread context (may sleep)
2123 */
ata_sff_error_handler(struct ata_port * ap)2124 void ata_sff_error_handler(struct ata_port *ap)
2125 {
2126 ata_reset_fn_t softreset = ap->ops->softreset;
2127 ata_reset_fn_t hardreset = ap->ops->hardreset;
2128 struct ata_queued_cmd *qc;
2129 unsigned long flags;
2130
2131 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2132 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2133 qc = NULL;
2134
2135 spin_lock_irqsave(ap->lock, flags);
2136
2137 /*
2138 * We *MUST* do FIFO draining before we issue a reset as
2139 * several devices helpfully clear their internal state and
2140 * will lock solid if we touch the data port post reset. Pass
2141 * qc in case anyone wants to do different PIO/DMA recovery or
2142 * has per command fixups
2143 */
2144 if (ap->ops->sff_drain_fifo)
2145 ap->ops->sff_drain_fifo(qc);
2146
2147 spin_unlock_irqrestore(ap->lock, flags);
2148
2149 /* ignore built-in hardresets if SCR access is not available */
2150 if ((hardreset == sata_std_hardreset ||
2151 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2152 hardreset = NULL;
2153
2154 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2155 ap->ops->postreset);
2156 }
2157 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2158
2159 /**
2160 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2161 * @ioaddr: IO address structure to be initialized
2162 *
2163 * Utility function which initializes data_addr, error_addr,
2164 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2165 * device_addr, status_addr, and command_addr to standard offsets
2166 * relative to cmd_addr.
2167 *
2168 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2169 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2170 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2171 {
2172 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2173 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2174 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2175 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2176 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2177 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2178 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2179 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2180 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2181 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2184
2185 #ifdef CONFIG_PCI
2186
ata_resources_present(struct pci_dev * pdev,int port)2187 static bool ata_resources_present(struct pci_dev *pdev, int port)
2188 {
2189 int i;
2190
2191 /* Check the PCI resources for this channel are enabled */
2192 port *= 2;
2193 for (i = 0; i < 2; i++) {
2194 if (pci_resource_start(pdev, port + i) == 0 ||
2195 pci_resource_len(pdev, port + i) == 0)
2196 return false;
2197 }
2198 return true;
2199 }
2200
2201 /**
2202 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2203 * @host: target ATA host
2204 *
2205 * Acquire native PCI ATA resources for @host and initialize the
2206 * first two ports of @host accordingly. Ports marked dummy are
2207 * skipped and allocation failure makes the port dummy.
2208 *
2209 * Note that native PCI resources are valid even for legacy hosts
2210 * as we fix up pdev resources array early in boot, so this
2211 * function can be used for both native and legacy SFF hosts.
2212 *
2213 * LOCKING:
2214 * Inherited from calling layer (may sleep).
2215 *
2216 * RETURNS:
2217 * 0 if at least one port is initialized, -ENODEV if no port is
2218 * available.
2219 */
ata_pci_sff_init_host(struct ata_host * host)2220 int ata_pci_sff_init_host(struct ata_host *host)
2221 {
2222 struct device *gdev = host->dev;
2223 struct pci_dev *pdev = to_pci_dev(gdev);
2224 unsigned int mask = 0;
2225 int i, rc;
2226
2227 /* request, iomap BARs and init port addresses accordingly */
2228 for (i = 0; i < 2; i++) {
2229 struct ata_port *ap = host->ports[i];
2230 int base = i * 2;
2231 void __iomem * const *iomap;
2232
2233 if (ata_port_is_dummy(ap))
2234 continue;
2235
2236 /* Discard disabled ports. Some controllers show
2237 * their unused channels this way. Disabled ports are
2238 * made dummy.
2239 */
2240 if (!ata_resources_present(pdev, i)) {
2241 ap->ops = &ata_dummy_port_ops;
2242 continue;
2243 }
2244
2245 rc = pcim_iomap_regions(pdev, 0x3 << base,
2246 dev_driver_string(gdev));
2247 if (rc) {
2248 dev_warn(gdev,
2249 "failed to request/iomap BARs for port %d (errno=%d)\n",
2250 i, rc);
2251 if (rc == -EBUSY)
2252 pcim_pin_device(pdev);
2253 ap->ops = &ata_dummy_port_ops;
2254 continue;
2255 }
2256 host->iomap = iomap = pcim_iomap_table(pdev);
2257
2258 ap->ioaddr.cmd_addr = iomap[base];
2259 ap->ioaddr.altstatus_addr =
2260 ap->ioaddr.ctl_addr = (void __iomem *)
2261 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2262 ata_sff_std_ports(&ap->ioaddr);
2263
2264 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2265 (unsigned long long)pci_resource_start(pdev, base),
2266 (unsigned long long)pci_resource_start(pdev, base + 1));
2267
2268 mask |= 1 << i;
2269 }
2270
2271 if (!mask) {
2272 dev_err(gdev, "no available native port\n");
2273 return -ENODEV;
2274 }
2275
2276 return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2279
2280 /**
2281 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2282 * @pdev: target PCI device
2283 * @ppi: array of port_info, must be enough for two ports
2284 * @r_host: out argument for the initialized ATA host
2285 *
2286 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2287 * all PCI resources and initialize it accordingly in one go.
2288 *
2289 * LOCKING:
2290 * Inherited from calling layer (may sleep).
2291 *
2292 * RETURNS:
2293 * 0 on success, -errno otherwise.
2294 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2295 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2296 const struct ata_port_info * const *ppi,
2297 struct ata_host **r_host)
2298 {
2299 struct ata_host *host;
2300 int rc;
2301
2302 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2303 return -ENOMEM;
2304
2305 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2306 if (!host) {
2307 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2308 rc = -ENOMEM;
2309 goto err_out;
2310 }
2311
2312 rc = ata_pci_sff_init_host(host);
2313 if (rc)
2314 goto err_out;
2315
2316 devres_remove_group(&pdev->dev, NULL);
2317 *r_host = host;
2318 return 0;
2319
2320 err_out:
2321 devres_release_group(&pdev->dev, NULL);
2322 return rc;
2323 }
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2325
2326 /**
2327 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2328 * @host: target SFF ATA host
2329 * @irq_handler: irq_handler used when requesting IRQ(s)
2330 * @sht: scsi_host_template to use when registering the host
2331 *
2332 * This is the counterpart of ata_host_activate() for SFF ATA
2333 * hosts. This separate helper is necessary because SFF hosts
2334 * use two separate interrupts in legacy mode.
2335 *
2336 * LOCKING:
2337 * Inherited from calling layer (may sleep).
2338 *
2339 * RETURNS:
2340 * 0 on success, -errno otherwise.
2341 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2342 int ata_pci_sff_activate_host(struct ata_host *host,
2343 irq_handler_t irq_handler,
2344 struct scsi_host_template *sht)
2345 {
2346 struct device *dev = host->dev;
2347 struct pci_dev *pdev = to_pci_dev(dev);
2348 const char *drv_name = dev_driver_string(host->dev);
2349 int legacy_mode = 0, rc;
2350
2351 rc = ata_host_start(host);
2352 if (rc)
2353 return rc;
2354
2355 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2356 u8 tmp8, mask = 0;
2357
2358 /*
2359 * ATA spec says we should use legacy mode when one
2360 * port is in legacy mode, but disabled ports on some
2361 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2362 * on which the secondary port is not wired, so
2363 * ignore ports that are marked as 'dummy' during
2364 * this check
2365 */
2366 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2367 if (!ata_port_is_dummy(host->ports[0]))
2368 mask |= (1 << 0);
2369 if (!ata_port_is_dummy(host->ports[1]))
2370 mask |= (1 << 2);
2371 if ((tmp8 & mask) != mask)
2372 legacy_mode = 1;
2373 }
2374
2375 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2376 return -ENOMEM;
2377
2378 if (!legacy_mode && pdev->irq) {
2379 int i;
2380
2381 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2382 IRQF_SHARED, drv_name, host);
2383 if (rc)
2384 goto out;
2385
2386 for (i = 0; i < 2; i++) {
2387 if (ata_port_is_dummy(host->ports[i]))
2388 continue;
2389 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2390 }
2391 } else if (legacy_mode) {
2392 if (!ata_port_is_dummy(host->ports[0])) {
2393 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2394 irq_handler, IRQF_SHARED,
2395 drv_name, host);
2396 if (rc)
2397 goto out;
2398
2399 ata_port_desc(host->ports[0], "irq %d",
2400 ATA_PRIMARY_IRQ(pdev));
2401 }
2402
2403 if (!ata_port_is_dummy(host->ports[1])) {
2404 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2405 irq_handler, IRQF_SHARED,
2406 drv_name, host);
2407 if (rc)
2408 goto out;
2409
2410 ata_port_desc(host->ports[1], "irq %d",
2411 ATA_SECONDARY_IRQ(pdev));
2412 }
2413 }
2414
2415 rc = ata_host_register(host, sht);
2416 out:
2417 if (rc == 0)
2418 devres_remove_group(dev, NULL);
2419 else
2420 devres_release_group(dev, NULL);
2421
2422 return rc;
2423 }
2424 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2425
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2426 static const struct ata_port_info *ata_sff_find_valid_pi(
2427 const struct ata_port_info * const *ppi)
2428 {
2429 int i;
2430
2431 /* look up the first valid port_info */
2432 for (i = 0; i < 2 && ppi[i]; i++)
2433 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2434 return ppi[i];
2435
2436 return NULL;
2437 }
2438
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2439 static int ata_pci_init_one(struct pci_dev *pdev,
2440 const struct ata_port_info * const *ppi,
2441 struct scsi_host_template *sht, void *host_priv,
2442 int hflags, bool bmdma)
2443 {
2444 struct device *dev = &pdev->dev;
2445 const struct ata_port_info *pi;
2446 struct ata_host *host = NULL;
2447 int rc;
2448
2449 pi = ata_sff_find_valid_pi(ppi);
2450 if (!pi) {
2451 dev_err(&pdev->dev, "no valid port_info specified\n");
2452 return -EINVAL;
2453 }
2454
2455 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2456 return -ENOMEM;
2457
2458 rc = pcim_enable_device(pdev);
2459 if (rc)
2460 goto out;
2461
2462 #ifdef CONFIG_ATA_BMDMA
2463 if (bmdma)
2464 /* prepare and activate BMDMA host */
2465 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2466 else
2467 #endif
2468 /* prepare and activate SFF host */
2469 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2470 if (rc)
2471 goto out;
2472 host->private_data = host_priv;
2473 host->flags |= hflags;
2474
2475 #ifdef CONFIG_ATA_BMDMA
2476 if (bmdma) {
2477 pci_set_master(pdev);
2478 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2479 } else
2480 #endif
2481 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2482 out:
2483 if (rc == 0)
2484 devres_remove_group(&pdev->dev, NULL);
2485 else
2486 devres_release_group(&pdev->dev, NULL);
2487
2488 return rc;
2489 }
2490
2491 /**
2492 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2493 * @pdev: Controller to be initialized
2494 * @ppi: array of port_info, must be enough for two ports
2495 * @sht: scsi_host_template to use when registering the host
2496 * @host_priv: host private_data
2497 * @hflag: host flags
2498 *
2499 * This is a helper function which can be called from a driver's
2500 * xxx_init_one() probe function if the hardware uses traditional
2501 * IDE taskfile registers and is PIO only.
2502 *
2503 * ASSUMPTION:
2504 * Nobody makes a single channel controller that appears solely as
2505 * the secondary legacy port on PCI.
2506 *
2507 * LOCKING:
2508 * Inherited from PCI layer (may sleep).
2509 *
2510 * RETURNS:
2511 * Zero on success, negative on errno-based value on error.
2512 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2513 int ata_pci_sff_init_one(struct pci_dev *pdev,
2514 const struct ata_port_info * const *ppi,
2515 struct scsi_host_template *sht, void *host_priv, int hflag)
2516 {
2517 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2518 }
2519 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2520
2521 #endif /* CONFIG_PCI */
2522
2523 /*
2524 * BMDMA support
2525 */
2526
2527 #ifdef CONFIG_ATA_BMDMA
2528
2529 const struct ata_port_operations ata_bmdma_port_ops = {
2530 .inherits = &ata_sff_port_ops,
2531
2532 .error_handler = ata_bmdma_error_handler,
2533 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2534
2535 .qc_prep = ata_bmdma_qc_prep,
2536 .qc_issue = ata_bmdma_qc_issue,
2537
2538 .sff_irq_clear = ata_bmdma_irq_clear,
2539 .bmdma_setup = ata_bmdma_setup,
2540 .bmdma_start = ata_bmdma_start,
2541 .bmdma_stop = ata_bmdma_stop,
2542 .bmdma_status = ata_bmdma_status,
2543
2544 .port_start = ata_bmdma_port_start,
2545 };
2546 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2547
2548 const struct ata_port_operations ata_bmdma32_port_ops = {
2549 .inherits = &ata_bmdma_port_ops,
2550
2551 .sff_data_xfer = ata_sff_data_xfer32,
2552 .port_start = ata_bmdma_port_start32,
2553 };
2554 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2555
2556 /**
2557 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2558 * @qc: Metadata associated with taskfile to be transferred
2559 *
2560 * Fill PCI IDE PRD (scatter-gather) table with segments
2561 * associated with the current disk command.
2562 *
2563 * LOCKING:
2564 * spin_lock_irqsave(host lock)
2565 *
2566 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2567 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2568 {
2569 struct ata_port *ap = qc->ap;
2570 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2571 struct scatterlist *sg;
2572 unsigned int si, pi;
2573
2574 pi = 0;
2575 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2576 u32 addr, offset;
2577 u32 sg_len, len;
2578
2579 /* determine if physical DMA addr spans 64K boundary.
2580 * Note h/w doesn't support 64-bit, so we unconditionally
2581 * truncate dma_addr_t to u32.
2582 */
2583 addr = (u32) sg_dma_address(sg);
2584 sg_len = sg_dma_len(sg);
2585
2586 while (sg_len) {
2587 offset = addr & 0xffff;
2588 len = sg_len;
2589 if ((offset + sg_len) > 0x10000)
2590 len = 0x10000 - offset;
2591
2592 prd[pi].addr = cpu_to_le32(addr);
2593 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2594
2595 pi++;
2596 sg_len -= len;
2597 addr += len;
2598 }
2599 }
2600
2601 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2602 }
2603
2604 /**
2605 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2606 * @qc: Metadata associated with taskfile to be transferred
2607 *
2608 * Fill PCI IDE PRD (scatter-gather) table with segments
2609 * associated with the current disk command. Perform the fill
2610 * so that we avoid writing any length 64K records for
2611 * controllers that don't follow the spec.
2612 *
2613 * LOCKING:
2614 * spin_lock_irqsave(host lock)
2615 *
2616 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2617 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2618 {
2619 struct ata_port *ap = qc->ap;
2620 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2621 struct scatterlist *sg;
2622 unsigned int si, pi;
2623
2624 pi = 0;
2625 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2626 u32 addr, offset;
2627 u32 sg_len, len, blen;
2628
2629 /* determine if physical DMA addr spans 64K boundary.
2630 * Note h/w doesn't support 64-bit, so we unconditionally
2631 * truncate dma_addr_t to u32.
2632 */
2633 addr = (u32) sg_dma_address(sg);
2634 sg_len = sg_dma_len(sg);
2635
2636 while (sg_len) {
2637 offset = addr & 0xffff;
2638 len = sg_len;
2639 if ((offset + sg_len) > 0x10000)
2640 len = 0x10000 - offset;
2641
2642 blen = len & 0xffff;
2643 prd[pi].addr = cpu_to_le32(addr);
2644 if (blen == 0) {
2645 /* Some PATA chipsets like the CS5530 can't
2646 cope with 0x0000 meaning 64K as the spec
2647 says */
2648 prd[pi].flags_len = cpu_to_le32(0x8000);
2649 blen = 0x8000;
2650 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2651 }
2652 prd[pi].flags_len = cpu_to_le32(blen);
2653
2654 pi++;
2655 sg_len -= len;
2656 addr += len;
2657 }
2658 }
2659
2660 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2661 }
2662
2663 /**
2664 * ata_bmdma_qc_prep - Prepare taskfile for submission
2665 * @qc: Metadata associated with taskfile to be prepared
2666 *
2667 * Prepare ATA taskfile for submission.
2668 *
2669 * LOCKING:
2670 * spin_lock_irqsave(host lock)
2671 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2672 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2673 {
2674 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2675 return AC_ERR_OK;
2676
2677 ata_bmdma_fill_sg(qc);
2678
2679 return AC_ERR_OK;
2680 }
2681 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2682
2683 /**
2684 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2685 * @qc: Metadata associated with taskfile to be prepared
2686 *
2687 * Prepare ATA taskfile for submission.
2688 *
2689 * LOCKING:
2690 * spin_lock_irqsave(host lock)
2691 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2692 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2693 {
2694 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2695 return AC_ERR_OK;
2696
2697 ata_bmdma_fill_sg_dumb(qc);
2698
2699 return AC_ERR_OK;
2700 }
2701 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2702
2703 /**
2704 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2705 * @qc: command to issue to device
2706 *
2707 * This function issues a PIO, NODATA or DMA command to a
2708 * SFF/BMDMA controller. PIO and NODATA are handled by
2709 * ata_sff_qc_issue().
2710 *
2711 * LOCKING:
2712 * spin_lock_irqsave(host lock)
2713 *
2714 * RETURNS:
2715 * Zero on success, AC_ERR_* mask on failure
2716 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2717 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2718 {
2719 struct ata_port *ap = qc->ap;
2720 struct ata_link *link = qc->dev->link;
2721
2722 /* defer PIO handling to sff_qc_issue */
2723 if (!ata_is_dma(qc->tf.protocol))
2724 return ata_sff_qc_issue(qc);
2725
2726 /* select the device */
2727 ata_dev_select(ap, qc->dev->devno, 1, 0);
2728
2729 /* start the command */
2730 switch (qc->tf.protocol) {
2731 case ATA_PROT_DMA:
2732 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2733
2734 trace_ata_tf_load(ap, &qc->tf);
2735 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2736 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2737 ap->ops->bmdma_setup(qc); /* set up bmdma */
2738 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2739 ap->ops->bmdma_start(qc); /* initiate bmdma */
2740 ap->hsm_task_state = HSM_ST_LAST;
2741 break;
2742
2743 case ATAPI_PROT_DMA:
2744 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2745
2746 trace_ata_tf_load(ap, &qc->tf);
2747 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2748 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2749 ap->ops->bmdma_setup(qc); /* set up bmdma */
2750 ap->hsm_task_state = HSM_ST_FIRST;
2751
2752 /* send cdb by polling if no cdb interrupt */
2753 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2754 ata_sff_queue_pio_task(link, 0);
2755 break;
2756
2757 default:
2758 WARN_ON(1);
2759 return AC_ERR_SYSTEM;
2760 }
2761
2762 return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2765
2766 /**
2767 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2768 * @ap: Port on which interrupt arrived (possibly...)
2769 * @qc: Taskfile currently active in engine
2770 *
2771 * Handle port interrupt for given queued command.
2772 *
2773 * LOCKING:
2774 * spin_lock_irqsave(host lock)
2775 *
2776 * RETURNS:
2777 * One if interrupt was handled, zero if not (shared irq).
2778 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2779 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2780 {
2781 struct ata_eh_info *ehi = &ap->link.eh_info;
2782 u8 host_stat = 0;
2783 bool bmdma_stopped = false;
2784 unsigned int handled;
2785
2786 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2787 /* check status of DMA engine */
2788 host_stat = ap->ops->bmdma_status(ap);
2789 trace_ata_bmdma_status(ap, host_stat);
2790
2791 /* if it's not our irq... */
2792 if (!(host_stat & ATA_DMA_INTR))
2793 return ata_sff_idle_irq(ap);
2794
2795 /* before we do anything else, clear DMA-Start bit */
2796 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2797 ap->ops->bmdma_stop(qc);
2798 bmdma_stopped = true;
2799
2800 if (unlikely(host_stat & ATA_DMA_ERR)) {
2801 /* error when transferring data to/from memory */
2802 qc->err_mask |= AC_ERR_HOST_BUS;
2803 ap->hsm_task_state = HSM_ST_ERR;
2804 }
2805 }
2806
2807 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808
2809 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811
2812 return handled;
2813 }
2814 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815
2816 /**
2817 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 * @irq: irq line (unused)
2819 * @dev_instance: pointer to our ata_host information structure
2820 *
2821 * Default interrupt handler for PCI IDE devices. Calls
2822 * ata_bmdma_port_intr() for each port that is not disabled.
2823 *
2824 * LOCKING:
2825 * Obtains host lock during operation.
2826 *
2827 * RETURNS:
2828 * IRQ_NONE or IRQ_HANDLED.
2829 */
ata_bmdma_interrupt(int irq,void * dev_instance)2830 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831 {
2832 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835
2836 /**
2837 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 * @ap: port to handle error for
2839 *
2840 * Stock error handler for BMDMA controller. It can handle both
2841 * PATA and SATA controllers. Most BMDMA controllers should be
2842 * able to use this EH as-is or with some added handling before
2843 * and after.
2844 *
2845 * LOCKING:
2846 * Kernel thread context (may sleep)
2847 */
ata_bmdma_error_handler(struct ata_port * ap)2848 void ata_bmdma_error_handler(struct ata_port *ap)
2849 {
2850 struct ata_queued_cmd *qc;
2851 unsigned long flags;
2852 bool thaw = false;
2853
2854 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856 qc = NULL;
2857
2858 /* reset PIO HSM and stop DMA engine */
2859 spin_lock_irqsave(ap->lock, flags);
2860
2861 if (qc && ata_is_dma(qc->tf.protocol)) {
2862 u8 host_stat;
2863
2864 host_stat = ap->ops->bmdma_status(ap);
2865 trace_ata_bmdma_status(ap, host_stat);
2866
2867 /* BMDMA controllers indicate host bus error by
2868 * setting DMA_ERR bit and timing out. As it wasn't
2869 * really a timeout event, adjust error mask and
2870 * cancel frozen state.
2871 */
2872 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2873 qc->err_mask = AC_ERR_HOST_BUS;
2874 thaw = true;
2875 }
2876
2877 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2878 ap->ops->bmdma_stop(qc);
2879
2880 /* if we're gonna thaw, make sure IRQ is clear */
2881 if (thaw) {
2882 ap->ops->sff_check_status(ap);
2883 if (ap->ops->sff_irq_clear)
2884 ap->ops->sff_irq_clear(ap);
2885 }
2886 }
2887
2888 spin_unlock_irqrestore(ap->lock, flags);
2889
2890 if (thaw)
2891 ata_eh_thaw_port(ap);
2892
2893 ata_sff_error_handler(ap);
2894 }
2895 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2896
2897 /**
2898 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2899 * @qc: internal command to clean up
2900 *
2901 * LOCKING:
2902 * Kernel thread context (may sleep)
2903 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2904 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2905 {
2906 struct ata_port *ap = qc->ap;
2907 unsigned long flags;
2908
2909 if (ata_is_dma(qc->tf.protocol)) {
2910 spin_lock_irqsave(ap->lock, flags);
2911 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2912 ap->ops->bmdma_stop(qc);
2913 spin_unlock_irqrestore(ap->lock, flags);
2914 }
2915 }
2916 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2917
2918 /**
2919 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2920 * @ap: Port associated with this ATA transaction.
2921 *
2922 * Clear interrupt and error flags in DMA status register.
2923 *
2924 * May be used as the irq_clear() entry in ata_port_operations.
2925 *
2926 * LOCKING:
2927 * spin_lock_irqsave(host lock)
2928 */
ata_bmdma_irq_clear(struct ata_port * ap)2929 void ata_bmdma_irq_clear(struct ata_port *ap)
2930 {
2931 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2932
2933 if (!mmio)
2934 return;
2935
2936 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2937 }
2938 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2939
2940 /**
2941 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2942 * @qc: Info associated with this ATA transaction.
2943 *
2944 * LOCKING:
2945 * spin_lock_irqsave(host lock)
2946 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2947 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2948 {
2949 struct ata_port *ap = qc->ap;
2950 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2951 u8 dmactl;
2952
2953 /* load PRD table addr. */
2954 mb(); /* make sure PRD table writes are visible to controller */
2955 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2956
2957 /* specify data direction, triple-check start bit is clear */
2958 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2959 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2960 if (!rw)
2961 dmactl |= ATA_DMA_WR;
2962 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2963
2964 /* issue r/w command */
2965 ap->ops->sff_exec_command(ap, &qc->tf);
2966 }
2967 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2968
2969 /**
2970 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2971 * @qc: Info associated with this ATA transaction.
2972 *
2973 * LOCKING:
2974 * spin_lock_irqsave(host lock)
2975 */
ata_bmdma_start(struct ata_queued_cmd * qc)2976 void ata_bmdma_start(struct ata_queued_cmd *qc)
2977 {
2978 struct ata_port *ap = qc->ap;
2979 u8 dmactl;
2980
2981 /* start host DMA transaction */
2982 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2983 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2984
2985 /* Strictly, one may wish to issue an ioread8() here, to
2986 * flush the mmio write. However, control also passes
2987 * to the hardware at this point, and it will interrupt
2988 * us when we are to resume control. So, in effect,
2989 * we don't care when the mmio write flushes.
2990 * Further, a read of the DMA status register _immediately_
2991 * following the write may not be what certain flaky hardware
2992 * is expected, so I think it is best to not add a readb()
2993 * without first all the MMIO ATA cards/mobos.
2994 * Or maybe I'm just being paranoid.
2995 *
2996 * FIXME: The posting of this write means I/O starts are
2997 * unnecessarily delayed for MMIO
2998 */
2999 }
3000 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3001
3002 /**
3003 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3004 * @qc: Command we are ending DMA for
3005 *
3006 * Clears the ATA_DMA_START flag in the dma control register
3007 *
3008 * May be used as the bmdma_stop() entry in ata_port_operations.
3009 *
3010 * LOCKING:
3011 * spin_lock_irqsave(host lock)
3012 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3013 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3014 {
3015 struct ata_port *ap = qc->ap;
3016 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3017
3018 /* clear start/stop bit */
3019 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3020 mmio + ATA_DMA_CMD);
3021
3022 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3023 ata_sff_dma_pause(ap);
3024 }
3025 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3026
3027 /**
3028 * ata_bmdma_status - Read PCI IDE BMDMA status
3029 * @ap: Port associated with this ATA transaction.
3030 *
3031 * Read and return BMDMA status register.
3032 *
3033 * May be used as the bmdma_status() entry in ata_port_operations.
3034 *
3035 * LOCKING:
3036 * spin_lock_irqsave(host lock)
3037 */
ata_bmdma_status(struct ata_port * ap)3038 u8 ata_bmdma_status(struct ata_port *ap)
3039 {
3040 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3041 }
3042 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3043
3044
3045 /**
3046 * ata_bmdma_port_start - Set port up for bmdma.
3047 * @ap: Port to initialize
3048 *
3049 * Called just after data structures for each port are
3050 * initialized. Allocates space for PRD table.
3051 *
3052 * May be used as the port_start() entry in ata_port_operations.
3053 *
3054 * LOCKING:
3055 * Inherited from caller.
3056 */
ata_bmdma_port_start(struct ata_port * ap)3057 int ata_bmdma_port_start(struct ata_port *ap)
3058 {
3059 if (ap->mwdma_mask || ap->udma_mask) {
3060 ap->bmdma_prd =
3061 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3062 &ap->bmdma_prd_dma, GFP_KERNEL);
3063 if (!ap->bmdma_prd)
3064 return -ENOMEM;
3065 }
3066
3067 return 0;
3068 }
3069 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3070
3071 /**
3072 * ata_bmdma_port_start32 - Set port up for dma.
3073 * @ap: Port to initialize
3074 *
3075 * Called just after data structures for each port are
3076 * initialized. Enables 32bit PIO and allocates space for PRD
3077 * table.
3078 *
3079 * May be used as the port_start() entry in ata_port_operations for
3080 * devices that are capable of 32bit PIO.
3081 *
3082 * LOCKING:
3083 * Inherited from caller.
3084 */
ata_bmdma_port_start32(struct ata_port * ap)3085 int ata_bmdma_port_start32(struct ata_port *ap)
3086 {
3087 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3088 return ata_bmdma_port_start(ap);
3089 }
3090 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3091
3092 #ifdef CONFIG_PCI
3093
3094 /**
3095 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3096 * @pdev: PCI device
3097 *
3098 * Some PCI ATA devices report simplex mode but in fact can be told to
3099 * enter non simplex mode. This implements the necessary logic to
3100 * perform the task on such devices. Calling it on other devices will
3101 * have -undefined- behaviour.
3102 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3103 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3104 {
3105 unsigned long bmdma = pci_resource_start(pdev, 4);
3106 u8 simplex;
3107
3108 if (bmdma == 0)
3109 return -ENOENT;
3110
3111 simplex = inb(bmdma + 0x02);
3112 outb(simplex & 0x60, bmdma + 0x02);
3113 simplex = inb(bmdma + 0x02);
3114 if (simplex & 0x80)
3115 return -EOPNOTSUPP;
3116 return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3119
ata_bmdma_nodma(struct ata_host * host,const char * reason)3120 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3121 {
3122 int i;
3123
3124 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3125
3126 for (i = 0; i < 2; i++) {
3127 host->ports[i]->mwdma_mask = 0;
3128 host->ports[i]->udma_mask = 0;
3129 }
3130 }
3131
3132 /**
3133 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3134 * @host: target ATA host
3135 *
3136 * Acquire PCI BMDMA resources and initialize @host accordingly.
3137 *
3138 * LOCKING:
3139 * Inherited from calling layer (may sleep).
3140 */
ata_pci_bmdma_init(struct ata_host * host)3141 void ata_pci_bmdma_init(struct ata_host *host)
3142 {
3143 struct device *gdev = host->dev;
3144 struct pci_dev *pdev = to_pci_dev(gdev);
3145 int i, rc;
3146
3147 /* No BAR4 allocation: No DMA */
3148 if (pci_resource_start(pdev, 4) == 0) {
3149 ata_bmdma_nodma(host, "BAR4 is zero");
3150 return;
3151 }
3152
3153 /*
3154 * Some controllers require BMDMA region to be initialized
3155 * even if DMA is not in use to clear IRQ status via
3156 * ->sff_irq_clear method. Try to initialize bmdma_addr
3157 * regardless of dma masks.
3158 */
3159 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3160 if (rc)
3161 ata_bmdma_nodma(host, "failed to set dma mask");
3162
3163 /* request and iomap DMA region */
3164 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3165 if (rc) {
3166 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3167 return;
3168 }
3169 host->iomap = pcim_iomap_table(pdev);
3170
3171 for (i = 0; i < 2; i++) {
3172 struct ata_port *ap = host->ports[i];
3173 void __iomem *bmdma = host->iomap[4] + 8 * i;
3174
3175 if (ata_port_is_dummy(ap))
3176 continue;
3177
3178 ap->ioaddr.bmdma_addr = bmdma;
3179 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3180 (ioread8(bmdma + 2) & 0x80))
3181 host->flags |= ATA_HOST_SIMPLEX;
3182
3183 ata_port_desc(ap, "bmdma 0x%llx",
3184 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3185 }
3186 }
3187 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3188
3189 /**
3190 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3191 * @pdev: target PCI device
3192 * @ppi: array of port_info, must be enough for two ports
3193 * @r_host: out argument for the initialized ATA host
3194 *
3195 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3196 * resources and initialize it accordingly in one go.
3197 *
3198 * LOCKING:
3199 * Inherited from calling layer (may sleep).
3200 *
3201 * RETURNS:
3202 * 0 on success, -errno otherwise.
3203 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3204 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3205 const struct ata_port_info * const * ppi,
3206 struct ata_host **r_host)
3207 {
3208 int rc;
3209
3210 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3211 if (rc)
3212 return rc;
3213
3214 ata_pci_bmdma_init(*r_host);
3215 return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3218
3219 /**
3220 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3221 * @pdev: Controller to be initialized
3222 * @ppi: array of port_info, must be enough for two ports
3223 * @sht: scsi_host_template to use when registering the host
3224 * @host_priv: host private_data
3225 * @hflags: host flags
3226 *
3227 * This function is similar to ata_pci_sff_init_one() but also
3228 * takes care of BMDMA initialization.
3229 *
3230 * LOCKING:
3231 * Inherited from PCI layer (may sleep).
3232 *
3233 * RETURNS:
3234 * Zero on success, negative on errno-based value on error.
3235 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3236 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3237 const struct ata_port_info * const * ppi,
3238 struct scsi_host_template *sht, void *host_priv,
3239 int hflags)
3240 {
3241 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3242 }
3243 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3244
3245 #endif /* CONFIG_PCI */
3246 #endif /* CONFIG_ATA_BMDMA */
3247
3248 /**
3249 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3250 * @ap: Port to initialize
3251 *
3252 * Called on port allocation to initialize SFF/BMDMA specific
3253 * fields.
3254 *
3255 * LOCKING:
3256 * None.
3257 */
ata_sff_port_init(struct ata_port * ap)3258 void ata_sff_port_init(struct ata_port *ap)
3259 {
3260 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3261 ap->ctl = ATA_DEVCTL_OBS;
3262 ap->last_ctl = 0xFF;
3263 }
3264
ata_sff_init(void)3265 int __init ata_sff_init(void)
3266 {
3267 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3268 if (!ata_sff_wq)
3269 return -ENOMEM;
3270
3271 return 0;
3272 }
3273
ata_sff_exit(void)3274 void ata_sff_exit(void)
3275 {
3276 destroy_workqueue(ata_sff_wq);
3277 }
3278