1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define OFFSET(val,align) ((unsigned long)	\
42 	                   ( (val) & ( (align) - 1)))
43 
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 
46 /*
47  * Minimum IO TLB size to bother booting with.  Systems with mainly
48  * 64bit capable cards will only lightly use the swiotlb.  If we can't
49  * allocate a contiguous 1MB, we're probably in trouble anyway.
50  */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 
53 int swiotlb_force;
54 
55 /*
56  * Used to do a quick range check in swiotlb_tbl_unmap_single and
57  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58  * API.
59  */
60 static char *io_tlb_start, *io_tlb_end;
61 
62 /*
63  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
65  */
66 static unsigned long io_tlb_nslabs;
67 
68 /*
69  * When the IOMMU overflows we return a fallback buffer. This sets the size.
70  */
71 static unsigned long io_tlb_overflow = 32*1024;
72 
73 static void *io_tlb_overflow_buffer;
74 
75 /*
76  * This is a free list describing the number of free entries available from
77  * each index
78  */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81 
82 /*
83  * We need to save away the original address corresponding to a mapped entry
84  * for the sync operations.
85  */
86 static phys_addr_t *io_tlb_orig_addr;
87 
88 /*
89  * Protect the above data structures in the map and unmap calls
90  */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92 
93 static int late_alloc;
94 
95 static int __init
setup_io_tlb_npages(char * str)96 setup_io_tlb_npages(char *str)
97 {
98 	if (isdigit(*str)) {
99 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 	}
103 	if (*str == ',')
104 		++str;
105 	if (!strcmp(str, "force"))
106 		swiotlb_force = 1;
107 
108 	return 1;
109 }
110 __setup("swiotlb=", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112 
swiotlb_nr_tbl(void)113 unsigned long swiotlb_nr_tbl(void)
114 {
115 	return io_tlb_nslabs;
116 }
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
118 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)119 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120 				      volatile void *address)
121 {
122 	return phys_to_dma(hwdev, virt_to_phys(address));
123 }
124 
swiotlb_print_info(void)125 void swiotlb_print_info(void)
126 {
127 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128 	phys_addr_t pstart, pend;
129 
130 	pstart = virt_to_phys(io_tlb_start);
131 	pend = virt_to_phys(io_tlb_end);
132 
133 	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
134 	       bytes >> 20, io_tlb_start, io_tlb_end);
135 	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
136 	       (unsigned long long)pstart,
137 	       (unsigned long long)pend);
138 }
139 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)140 void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
141 {
142 	unsigned long i, bytes;
143 
144 	bytes = nslabs << IO_TLB_SHIFT;
145 
146 	io_tlb_nslabs = nslabs;
147 	io_tlb_start = tlb;
148 	io_tlb_end = io_tlb_start + bytes;
149 
150 	/*
151 	 * Allocate and initialize the free list array.  This array is used
152 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153 	 * between io_tlb_start and io_tlb_end.
154 	 */
155 	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
156 	for (i = 0; i < io_tlb_nslabs; i++)
157  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
158 	io_tlb_index = 0;
159 	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
160 
161 	/*
162 	 * Get the overflow emergency buffer
163 	 */
164 	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
165 	if (!io_tlb_overflow_buffer)
166 		panic("Cannot allocate SWIOTLB overflow buffer!\n");
167 	if (verbose)
168 		swiotlb_print_info();
169 }
170 
171 /*
172  * Statically reserve bounce buffer space and initialize bounce buffer data
173  * structures for the software IO TLB used to implement the DMA API.
174  */
175 void __init
swiotlb_init_with_default_size(size_t default_size,int verbose)176 swiotlb_init_with_default_size(size_t default_size, int verbose)
177 {
178 	unsigned long bytes;
179 
180 	if (!io_tlb_nslabs) {
181 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
182 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
183 	}
184 
185 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
186 
187 	/*
188 	 * Get IO TLB memory from the low pages
189 	 */
190 	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
191 	if (!io_tlb_start)
192 		panic("Cannot allocate SWIOTLB buffer");
193 
194 	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
195 }
196 
197 void __init
swiotlb_init(int verbose)198 swiotlb_init(int verbose)
199 {
200 	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
201 }
202 
203 /*
204  * Systems with larger DMA zones (those that don't support ISA) can
205  * initialize the swiotlb later using the slab allocator if needed.
206  * This should be just like above, but with some error catching.
207  */
208 int
swiotlb_late_init_with_default_size(size_t default_size)209 swiotlb_late_init_with_default_size(size_t default_size)
210 {
211 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
212 	unsigned int order;
213 
214 	if (!io_tlb_nslabs) {
215 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
216 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
217 	}
218 
219 	/*
220 	 * Get IO TLB memory from the low pages
221 	 */
222 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
223 	io_tlb_nslabs = SLABS_PER_PAGE << order;
224 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
225 
226 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
227 		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
228 							order);
229 		if (io_tlb_start)
230 			break;
231 		order--;
232 	}
233 
234 	if (!io_tlb_start)
235 		goto cleanup1;
236 
237 	if (order != get_order(bytes)) {
238 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
239 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
240 		io_tlb_nslabs = SLABS_PER_PAGE << order;
241 		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
242 	}
243 	io_tlb_end = io_tlb_start + bytes;
244 	memset(io_tlb_start, 0, bytes);
245 
246 	/*
247 	 * Allocate and initialize the free list array.  This array is used
248 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
249 	 * between io_tlb_start and io_tlb_end.
250 	 */
251 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
252 	                              get_order(io_tlb_nslabs * sizeof(int)));
253 	if (!io_tlb_list)
254 		goto cleanup2;
255 
256 	for (i = 0; i < io_tlb_nslabs; i++)
257  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
258 	io_tlb_index = 0;
259 
260 	io_tlb_orig_addr = (phys_addr_t *)
261 		__get_free_pages(GFP_KERNEL,
262 				 get_order(io_tlb_nslabs *
263 					   sizeof(phys_addr_t)));
264 	if (!io_tlb_orig_addr)
265 		goto cleanup3;
266 
267 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
268 
269 	/*
270 	 * Get the overflow emergency buffer
271 	 */
272 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
273 	                                          get_order(io_tlb_overflow));
274 	if (!io_tlb_overflow_buffer)
275 		goto cleanup4;
276 
277 	swiotlb_print_info();
278 
279 	late_alloc = 1;
280 
281 	return 0;
282 
283 cleanup4:
284 	free_pages((unsigned long)io_tlb_orig_addr,
285 		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
286 	io_tlb_orig_addr = NULL;
287 cleanup3:
288 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
289 	                                                 sizeof(int)));
290 	io_tlb_list = NULL;
291 cleanup2:
292 	io_tlb_end = NULL;
293 	free_pages((unsigned long)io_tlb_start, order);
294 	io_tlb_start = NULL;
295 cleanup1:
296 	io_tlb_nslabs = req_nslabs;
297 	return -ENOMEM;
298 }
299 
swiotlb_free(void)300 void __init swiotlb_free(void)
301 {
302 	if (!io_tlb_overflow_buffer)
303 		return;
304 
305 	if (late_alloc) {
306 		free_pages((unsigned long)io_tlb_overflow_buffer,
307 			   get_order(io_tlb_overflow));
308 		free_pages((unsigned long)io_tlb_orig_addr,
309 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
310 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
311 								 sizeof(int)));
312 		free_pages((unsigned long)io_tlb_start,
313 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
314 	} else {
315 		free_bootmem_late(__pa(io_tlb_overflow_buffer),
316 				  PAGE_ALIGN(io_tlb_overflow));
317 		free_bootmem_late(__pa(io_tlb_orig_addr),
318 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
319 		free_bootmem_late(__pa(io_tlb_list),
320 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
321 		free_bootmem_late(__pa(io_tlb_start),
322 				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
323 	}
324 	io_tlb_nslabs = 0;
325 }
326 
is_swiotlb_buffer(phys_addr_t paddr)327 static int is_swiotlb_buffer(phys_addr_t paddr)
328 {
329 	return paddr >= virt_to_phys(io_tlb_start) &&
330 		paddr < virt_to_phys(io_tlb_end);
331 }
332 
333 /*
334  * Bounce: copy the swiotlb buffer back to the original dma location
335  */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)336 void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
337 		    enum dma_data_direction dir)
338 {
339 	unsigned long pfn = PFN_DOWN(phys);
340 
341 	if (PageHighMem(pfn_to_page(pfn))) {
342 		/* The buffer does not have a mapping.  Map it in and copy */
343 		unsigned int offset = phys & ~PAGE_MASK;
344 		char *buffer;
345 		unsigned int sz = 0;
346 		unsigned long flags;
347 
348 		while (size) {
349 			sz = min_t(size_t, PAGE_SIZE - offset, size);
350 
351 			local_irq_save(flags);
352 			buffer = kmap_atomic(pfn_to_page(pfn));
353 			if (dir == DMA_TO_DEVICE)
354 				memcpy(dma_addr, buffer + offset, sz);
355 			else
356 				memcpy(buffer + offset, dma_addr, sz);
357 			kunmap_atomic(buffer);
358 			local_irq_restore(flags);
359 
360 			size -= sz;
361 			pfn++;
362 			dma_addr += sz;
363 			offset = 0;
364 		}
365 	} else {
366 		if (dir == DMA_TO_DEVICE)
367 			memcpy(dma_addr, phys_to_virt(phys), size);
368 		else
369 			memcpy(phys_to_virt(phys), dma_addr, size);
370 	}
371 }
372 EXPORT_SYMBOL_GPL(swiotlb_bounce);
373 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t phys,size_t size,enum dma_data_direction dir)374 void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
375 			     phys_addr_t phys, size_t size,
376 			     enum dma_data_direction dir)
377 {
378 	unsigned long flags;
379 	char *dma_addr;
380 	unsigned int nslots, stride, index, wrap;
381 	int i;
382 	unsigned long mask;
383 	unsigned long offset_slots;
384 	unsigned long max_slots;
385 
386 	mask = dma_get_seg_boundary(hwdev);
387 
388 	tbl_dma_addr &= mask;
389 
390 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
391 
392 	/*
393  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
394  	 */
395 	max_slots = mask + 1
396 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
397 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
398 
399 	/*
400 	 * For mappings greater than a page, we limit the stride (and
401 	 * hence alignment) to a page size.
402 	 */
403 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
404 	if (size > PAGE_SIZE)
405 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
406 	else
407 		stride = 1;
408 
409 	BUG_ON(!nslots);
410 
411 	/*
412 	 * Find suitable number of IO TLB entries size that will fit this
413 	 * request and allocate a buffer from that IO TLB pool.
414 	 */
415 	spin_lock_irqsave(&io_tlb_lock, flags);
416 	index = ALIGN(io_tlb_index, stride);
417 	if (index >= io_tlb_nslabs)
418 		index = 0;
419 	wrap = index;
420 
421 	do {
422 		while (iommu_is_span_boundary(index, nslots, offset_slots,
423 					      max_slots)) {
424 			index += stride;
425 			if (index >= io_tlb_nslabs)
426 				index = 0;
427 			if (index == wrap)
428 				goto not_found;
429 		}
430 
431 		/*
432 		 * If we find a slot that indicates we have 'nslots' number of
433 		 * contiguous buffers, we allocate the buffers from that slot
434 		 * and mark the entries as '0' indicating unavailable.
435 		 */
436 		if (io_tlb_list[index] >= nslots) {
437 			int count = 0;
438 
439 			for (i = index; i < (int) (index + nslots); i++)
440 				io_tlb_list[i] = 0;
441 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
442 				io_tlb_list[i] = ++count;
443 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
444 
445 			/*
446 			 * Update the indices to avoid searching in the next
447 			 * round.
448 			 */
449 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
450 					? (index + nslots) : 0);
451 
452 			goto found;
453 		}
454 		index += stride;
455 		if (index >= io_tlb_nslabs)
456 			index = 0;
457 	} while (index != wrap);
458 
459 not_found:
460 	spin_unlock_irqrestore(&io_tlb_lock, flags);
461 	return NULL;
462 found:
463 	spin_unlock_irqrestore(&io_tlb_lock, flags);
464 
465 	/*
466 	 * Save away the mapping from the original address to the DMA address.
467 	 * This is needed when we sync the memory.  Then we sync the buffer if
468 	 * needed.
469 	 */
470 	for (i = 0; i < nslots; i++)
471 		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
472 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
473 		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
474 
475 	return dma_addr;
476 }
477 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
478 
479 /*
480  * Allocates bounce buffer and returns its kernel virtual address.
481  */
482 
483 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)484 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
485 	   enum dma_data_direction dir)
486 {
487 	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
488 
489 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
490 }
491 
492 /*
493  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
494  */
495 void
swiotlb_tbl_unmap_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir)496 swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
497 			enum dma_data_direction dir)
498 {
499 	unsigned long flags;
500 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
501 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
502 	phys_addr_t phys = io_tlb_orig_addr[index];
503 
504 	/*
505 	 * First, sync the memory before unmapping the entry
506 	 */
507 	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
508 		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
509 
510 	/*
511 	 * Return the buffer to the free list by setting the corresponding
512 	 * entries to indicate the number of contiguous entries available.
513 	 * While returning the entries to the free list, we merge the entries
514 	 * with slots below and above the pool being returned.
515 	 */
516 	spin_lock_irqsave(&io_tlb_lock, flags);
517 	{
518 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
519 			 io_tlb_list[index + nslots] : 0);
520 		/*
521 		 * Step 1: return the slots to the free list, merging the
522 		 * slots with superceeding slots
523 		 */
524 		for (i = index + nslots - 1; i >= index; i--)
525 			io_tlb_list[i] = ++count;
526 		/*
527 		 * Step 2: merge the returned slots with the preceding slots,
528 		 * if available (non zero)
529 		 */
530 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
531 			io_tlb_list[i] = ++count;
532 	}
533 	spin_unlock_irqrestore(&io_tlb_lock, flags);
534 }
535 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
536 
537 void
swiotlb_tbl_sync_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)538 swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
539 			enum dma_data_direction dir,
540 			enum dma_sync_target target)
541 {
542 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
543 	phys_addr_t phys = io_tlb_orig_addr[index];
544 
545 	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
546 
547 	switch (target) {
548 	case SYNC_FOR_CPU:
549 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
550 			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
551 		else
552 			BUG_ON(dir != DMA_TO_DEVICE);
553 		break;
554 	case SYNC_FOR_DEVICE:
555 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
556 			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
557 		else
558 			BUG_ON(dir != DMA_FROM_DEVICE);
559 		break;
560 	default:
561 		BUG();
562 	}
563 }
564 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
565 
566 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)567 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
568 		       dma_addr_t *dma_handle, gfp_t flags)
569 {
570 	dma_addr_t dev_addr;
571 	void *ret;
572 	int order = get_order(size);
573 	u64 dma_mask = DMA_BIT_MASK(32);
574 
575 	if (hwdev && hwdev->coherent_dma_mask)
576 		dma_mask = hwdev->coherent_dma_mask;
577 
578 	ret = (void *)__get_free_pages(flags, order);
579 	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
580 		/*
581 		 * The allocated memory isn't reachable by the device.
582 		 */
583 		free_pages((unsigned long) ret, order);
584 		ret = NULL;
585 	}
586 	if (!ret) {
587 		/*
588 		 * We are either out of memory or the device can't DMA to
589 		 * GFP_DMA memory; fall back on map_single(), which
590 		 * will grab memory from the lowest available address range.
591 		 */
592 		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
593 		if (!ret)
594 			return NULL;
595 	}
596 
597 	memset(ret, 0, size);
598 	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
599 
600 	/* Confirm address can be DMA'd by device */
601 	if (dev_addr + size - 1 > dma_mask) {
602 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
603 		       (unsigned long long)dma_mask,
604 		       (unsigned long long)dev_addr);
605 
606 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607 		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
608 		return NULL;
609 	}
610 	*dma_handle = dev_addr;
611 	return ret;
612 }
613 EXPORT_SYMBOL(swiotlb_alloc_coherent);
614 
615 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)616 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
617 		      dma_addr_t dev_addr)
618 {
619 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
620 
621 	WARN_ON(irqs_disabled());
622 	if (!is_swiotlb_buffer(paddr))
623 		free_pages((unsigned long)vaddr, get_order(size));
624 	else
625 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
626 		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
627 }
628 EXPORT_SYMBOL(swiotlb_free_coherent);
629 
630 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)631 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
632 	     int do_panic)
633 {
634 	/*
635 	 * Ran out of IOMMU space for this operation. This is very bad.
636 	 * Unfortunately the drivers cannot handle this operation properly.
637 	 * unless they check for dma_mapping_error (most don't)
638 	 * When the mapping is small enough return a static buffer to limit
639 	 * the damage, or panic when the transfer is too big.
640 	 */
641 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
642 	       "device %s\n", size, dev ? dev_name(dev) : "?");
643 
644 	if (size <= io_tlb_overflow || !do_panic)
645 		return;
646 
647 	if (dir == DMA_BIDIRECTIONAL)
648 		panic("DMA: Random memory could be DMA accessed\n");
649 	if (dir == DMA_FROM_DEVICE)
650 		panic("DMA: Random memory could be DMA written\n");
651 	if (dir == DMA_TO_DEVICE)
652 		panic("DMA: Random memory could be DMA read\n");
653 }
654 
655 /*
656  * Map a single buffer of the indicated size for DMA in streaming mode.  The
657  * physical address to use is returned.
658  *
659  * Once the device is given the dma address, the device owns this memory until
660  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
661  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)662 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
663 			    unsigned long offset, size_t size,
664 			    enum dma_data_direction dir,
665 			    struct dma_attrs *attrs)
666 {
667 	phys_addr_t phys = page_to_phys(page) + offset;
668 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
669 	void *map;
670 
671 	BUG_ON(dir == DMA_NONE);
672 	/*
673 	 * If the address happens to be in the device's DMA window,
674 	 * we can safely return the device addr and not worry about bounce
675 	 * buffering it.
676 	 */
677 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
678 		return dev_addr;
679 
680 	/*
681 	 * Oh well, have to allocate and map a bounce buffer.
682 	 */
683 	map = map_single(dev, phys, size, dir);
684 	if (!map) {
685 		swiotlb_full(dev, size, dir, 1);
686 		map = io_tlb_overflow_buffer;
687 	}
688 
689 	dev_addr = swiotlb_virt_to_bus(dev, map);
690 
691 	/*
692 	 * Ensure that the address returned is DMA'ble
693 	 */
694 	if (!dma_capable(dev, dev_addr, size)) {
695 		swiotlb_tbl_unmap_single(dev, map, size, dir);
696 		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
697 	}
698 
699 	return dev_addr;
700 }
701 EXPORT_SYMBOL_GPL(swiotlb_map_page);
702 
703 /*
704  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
705  * match what was provided for in a previous swiotlb_map_page call.  All
706  * other usages are undefined.
707  *
708  * After this call, reads by the cpu to the buffer are guaranteed to see
709  * whatever the device wrote there.
710  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)711 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
712 			 size_t size, enum dma_data_direction dir)
713 {
714 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
715 
716 	BUG_ON(dir == DMA_NONE);
717 
718 	if (is_swiotlb_buffer(paddr)) {
719 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
720 		return;
721 	}
722 
723 	if (dir != DMA_FROM_DEVICE)
724 		return;
725 
726 	/*
727 	 * phys_to_virt doesn't work with hihgmem page but we could
728 	 * call dma_mark_clean() with hihgmem page here. However, we
729 	 * are fine since dma_mark_clean() is null on POWERPC. We can
730 	 * make dma_mark_clean() take a physical address if necessary.
731 	 */
732 	dma_mark_clean(phys_to_virt(paddr), size);
733 }
734 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)735 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
736 			size_t size, enum dma_data_direction dir,
737 			struct dma_attrs *attrs)
738 {
739 	unmap_single(hwdev, dev_addr, size, dir);
740 }
741 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
742 
743 /*
744  * Make physical memory consistent for a single streaming mode DMA translation
745  * after a transfer.
746  *
747  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
748  * using the cpu, yet do not wish to teardown the dma mapping, you must
749  * call this function before doing so.  At the next point you give the dma
750  * address back to the card, you must first perform a
751  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
752  */
753 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)754 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
755 		    size_t size, enum dma_data_direction dir,
756 		    enum dma_sync_target target)
757 {
758 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
759 
760 	BUG_ON(dir == DMA_NONE);
761 
762 	if (is_swiotlb_buffer(paddr)) {
763 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
764 				       target);
765 		return;
766 	}
767 
768 	if (dir != DMA_FROM_DEVICE)
769 		return;
770 
771 	dma_mark_clean(phys_to_virt(paddr), size);
772 }
773 
774 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)775 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
776 			    size_t size, enum dma_data_direction dir)
777 {
778 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
779 }
780 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
781 
782 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)783 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
784 			       size_t size, enum dma_data_direction dir)
785 {
786 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
787 }
788 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
789 
790 /*
791  * Map a set of buffers described by scatterlist in streaming mode for DMA.
792  * This is the scatter-gather version of the above swiotlb_map_page
793  * interface.  Here the scatter gather list elements are each tagged with the
794  * appropriate dma address and length.  They are obtained via
795  * sg_dma_{address,length}(SG).
796  *
797  * NOTE: An implementation may be able to use a smaller number of
798  *       DMA address/length pairs than there are SG table elements.
799  *       (for example via virtual mapping capabilities)
800  *       The routine returns the number of addr/length pairs actually
801  *       used, at most nents.
802  *
803  * Device ownership issues as mentioned above for swiotlb_map_page are the
804  * same here.
805  */
806 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)807 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
808 		     enum dma_data_direction dir, struct dma_attrs *attrs)
809 {
810 	struct scatterlist *sg;
811 	int i;
812 
813 	BUG_ON(dir == DMA_NONE);
814 
815 	for_each_sg(sgl, sg, nelems, i) {
816 		phys_addr_t paddr = sg_phys(sg);
817 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
818 
819 		if (swiotlb_force ||
820 		    !dma_capable(hwdev, dev_addr, sg->length)) {
821 			void *map = map_single(hwdev, sg_phys(sg),
822 					       sg->length, dir);
823 			if (!map) {
824 				/* Don't panic here, we expect map_sg users
825 				   to do proper error handling. */
826 				swiotlb_full(hwdev, sg->length, dir, 0);
827 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
828 						       attrs);
829 				sgl[0].dma_length = 0;
830 				return 0;
831 			}
832 			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
833 		} else
834 			sg->dma_address = dev_addr;
835 		sg->dma_length = sg->length;
836 	}
837 	return nelems;
838 }
839 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
840 
841 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)842 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
843 	       enum dma_data_direction dir)
844 {
845 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
846 }
847 EXPORT_SYMBOL(swiotlb_map_sg);
848 
849 /*
850  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
851  * concerning calls here are the same as for swiotlb_unmap_page() above.
852  */
853 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)854 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
855 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
856 {
857 	struct scatterlist *sg;
858 	int i;
859 
860 	BUG_ON(dir == DMA_NONE);
861 
862 	for_each_sg(sgl, sg, nelems, i)
863 		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
864 
865 }
866 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
867 
868 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)869 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
870 		 enum dma_data_direction dir)
871 {
872 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
873 }
874 EXPORT_SYMBOL(swiotlb_unmap_sg);
875 
876 /*
877  * Make physical memory consistent for a set of streaming mode DMA translations
878  * after a transfer.
879  *
880  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
881  * and usage.
882  */
883 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)884 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
885 		int nelems, enum dma_data_direction dir,
886 		enum dma_sync_target target)
887 {
888 	struct scatterlist *sg;
889 	int i;
890 
891 	for_each_sg(sgl, sg, nelems, i)
892 		swiotlb_sync_single(hwdev, sg->dma_address,
893 				    sg->dma_length, dir, target);
894 }
895 
896 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)897 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
898 			int nelems, enum dma_data_direction dir)
899 {
900 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
901 }
902 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
903 
904 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)905 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
906 			   int nelems, enum dma_data_direction dir)
907 {
908 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
909 }
910 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
911 
912 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)913 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
914 {
915 	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
916 }
917 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
918 
919 /*
920  * Return whether the given device DMA address mask can be supported
921  * properly.  For example, if your device can only drive the low 24-bits
922  * during bus mastering, then you would pass 0x00ffffff as the mask to
923  * this function.
924  */
925 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)926 swiotlb_dma_supported(struct device *hwdev, u64 mask)
927 {
928 	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
929 }
930 EXPORT_SYMBOL(swiotlb_dma_supported);
931