1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46 /*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
53 int swiotlb_force;
54
55 /*
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58 * API.
59 */
60 static char *io_tlb_start, *io_tlb_end;
61
62 /*
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66 static unsigned long io_tlb_nslabs;
67
68 /*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71 static unsigned long io_tlb_overflow = 32*1024;
72
73 static void *io_tlb_overflow_buffer;
74
75 /*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81
82 /*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
86 static phys_addr_t *io_tlb_orig_addr;
87
88 /*
89 * Protect the above data structures in the map and unmap calls
90 */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92
93 static int late_alloc;
94
95 static int __init
setup_io_tlb_npages(char * str)96 setup_io_tlb_npages(char *str)
97 {
98 if (isdigit(*str)) {
99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
105 if (!strcmp(str, "force"))
106 swiotlb_force = 1;
107
108 return 1;
109 }
110 __setup("swiotlb=", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112
113 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)114 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
115 volatile void *address)
116 {
117 return phys_to_dma(hwdev, virt_to_phys(address));
118 }
119
swiotlb_print_info(void)120 void swiotlb_print_info(void)
121 {
122 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
123 phys_addr_t pstart, pend;
124
125 pstart = virt_to_phys(io_tlb_start);
126 pend = virt_to_phys(io_tlb_end);
127
128 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
129 bytes >> 20, io_tlb_start, io_tlb_end);
130 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
131 (unsigned long long)pstart,
132 (unsigned long long)pend);
133 }
134
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)135 void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
136 {
137 unsigned long i, bytes;
138
139 bytes = nslabs << IO_TLB_SHIFT;
140
141 io_tlb_nslabs = nslabs;
142 io_tlb_start = tlb;
143 io_tlb_end = io_tlb_start + bytes;
144
145 /*
146 * Allocate and initialize the free list array. This array is used
147 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
148 * between io_tlb_start and io_tlb_end.
149 */
150 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
151 for (i = 0; i < io_tlb_nslabs; i++)
152 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
153 io_tlb_index = 0;
154 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
155
156 /*
157 * Get the overflow emergency buffer
158 */
159 io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
160 if (!io_tlb_overflow_buffer)
161 panic("Cannot allocate SWIOTLB overflow buffer!\n");
162 if (verbose)
163 swiotlb_print_info();
164 }
165
166 /*
167 * Statically reserve bounce buffer space and initialize bounce buffer data
168 * structures for the software IO TLB used to implement the DMA API.
169 */
170 void __init
swiotlb_init_with_default_size(size_t default_size,int verbose)171 swiotlb_init_with_default_size(size_t default_size, int verbose)
172 {
173 unsigned long bytes;
174
175 if (!io_tlb_nslabs) {
176 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
177 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
178 }
179
180 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
181
182 /*
183 * Get IO TLB memory from the low pages
184 */
185 io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
186 if (!io_tlb_start)
187 panic("Cannot allocate SWIOTLB buffer");
188
189 swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
190 }
191
192 void __init
swiotlb_init(int verbose)193 swiotlb_init(int verbose)
194 {
195 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
196 }
197
198 /*
199 * Systems with larger DMA zones (those that don't support ISA) can
200 * initialize the swiotlb later using the slab allocator if needed.
201 * This should be just like above, but with some error catching.
202 */
203 int
swiotlb_late_init_with_default_size(size_t default_size)204 swiotlb_late_init_with_default_size(size_t default_size)
205 {
206 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
207 unsigned int order;
208
209 if (!io_tlb_nslabs) {
210 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
211 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
212 }
213
214 /*
215 * Get IO TLB memory from the low pages
216 */
217 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
218 io_tlb_nslabs = SLABS_PER_PAGE << order;
219 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
220
221 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
222 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
223 order);
224 if (io_tlb_start)
225 break;
226 order--;
227 }
228
229 if (!io_tlb_start)
230 goto cleanup1;
231
232 if (order != get_order(bytes)) {
233 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
234 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
235 io_tlb_nslabs = SLABS_PER_PAGE << order;
236 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
237 }
238 io_tlb_end = io_tlb_start + bytes;
239 memset(io_tlb_start, 0, bytes);
240
241 /*
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
245 */
246 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
247 get_order(io_tlb_nslabs * sizeof(int)));
248 if (!io_tlb_list)
249 goto cleanup2;
250
251 for (i = 0; i < io_tlb_nslabs; i++)
252 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
253 io_tlb_index = 0;
254
255 io_tlb_orig_addr = (phys_addr_t *)
256 __get_free_pages(GFP_KERNEL,
257 get_order(io_tlb_nslabs *
258 sizeof(phys_addr_t)));
259 if (!io_tlb_orig_addr)
260 goto cleanup3;
261
262 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
263
264 /*
265 * Get the overflow emergency buffer
266 */
267 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
268 get_order(io_tlb_overflow));
269 if (!io_tlb_overflow_buffer)
270 goto cleanup4;
271
272 swiotlb_print_info();
273
274 late_alloc = 1;
275
276 return 0;
277
278 cleanup4:
279 free_pages((unsigned long)io_tlb_orig_addr,
280 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
281 io_tlb_orig_addr = NULL;
282 cleanup3:
283 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
284 sizeof(int)));
285 io_tlb_list = NULL;
286 cleanup2:
287 io_tlb_end = NULL;
288 free_pages((unsigned long)io_tlb_start, order);
289 io_tlb_start = NULL;
290 cleanup1:
291 io_tlb_nslabs = req_nslabs;
292 return -ENOMEM;
293 }
294
swiotlb_free(void)295 void __init swiotlb_free(void)
296 {
297 if (!io_tlb_overflow_buffer)
298 return;
299
300 if (late_alloc) {
301 free_pages((unsigned long)io_tlb_overflow_buffer,
302 get_order(io_tlb_overflow));
303 free_pages((unsigned long)io_tlb_orig_addr,
304 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
305 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
306 sizeof(int)));
307 free_pages((unsigned long)io_tlb_start,
308 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
309 } else {
310 free_bootmem_late(__pa(io_tlb_overflow_buffer),
311 PAGE_ALIGN(io_tlb_overflow));
312 free_bootmem_late(__pa(io_tlb_orig_addr),
313 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
314 free_bootmem_late(__pa(io_tlb_list),
315 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
316 free_bootmem_late(__pa(io_tlb_start),
317 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
318 }
319 }
320
is_swiotlb_buffer(phys_addr_t paddr)321 static int is_swiotlb_buffer(phys_addr_t paddr)
322 {
323 return paddr >= virt_to_phys(io_tlb_start) &&
324 paddr < virt_to_phys(io_tlb_end);
325 }
326
327 /*
328 * Bounce: copy the swiotlb buffer back to the original dma location
329 */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)330 void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
331 enum dma_data_direction dir)
332 {
333 unsigned long pfn = PFN_DOWN(phys);
334
335 if (PageHighMem(pfn_to_page(pfn))) {
336 /* The buffer does not have a mapping. Map it in and copy */
337 unsigned int offset = phys & ~PAGE_MASK;
338 char *buffer;
339 unsigned int sz = 0;
340 unsigned long flags;
341
342 while (size) {
343 sz = min_t(size_t, PAGE_SIZE - offset, size);
344
345 local_irq_save(flags);
346 buffer = kmap_atomic(pfn_to_page(pfn),
347 KM_BOUNCE_READ);
348 if (dir == DMA_TO_DEVICE)
349 memcpy(dma_addr, buffer + offset, sz);
350 else
351 memcpy(buffer + offset, dma_addr, sz);
352 kunmap_atomic(buffer, KM_BOUNCE_READ);
353 local_irq_restore(flags);
354
355 size -= sz;
356 pfn++;
357 dma_addr += sz;
358 offset = 0;
359 }
360 } else {
361 if (dir == DMA_TO_DEVICE)
362 memcpy(dma_addr, phys_to_virt(phys), size);
363 else
364 memcpy(phys_to_virt(phys), dma_addr, size);
365 }
366 }
367 EXPORT_SYMBOL_GPL(swiotlb_bounce);
368
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t phys,size_t size,enum dma_data_direction dir)369 void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
370 phys_addr_t phys, size_t size,
371 enum dma_data_direction dir)
372 {
373 unsigned long flags;
374 char *dma_addr;
375 unsigned int nslots, stride, index, wrap;
376 int i;
377 unsigned long mask;
378 unsigned long offset_slots;
379 unsigned long max_slots;
380
381 mask = dma_get_seg_boundary(hwdev);
382
383 tbl_dma_addr &= mask;
384
385 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
386
387 /*
388 * Carefully handle integer overflow which can occur when mask == ~0UL.
389 */
390 max_slots = mask + 1
391 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
392 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
393
394 /*
395 * For mappings greater than a page, we limit the stride (and
396 * hence alignment) to a page size.
397 */
398 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
399 if (size > PAGE_SIZE)
400 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
401 else
402 stride = 1;
403
404 BUG_ON(!nslots);
405
406 /*
407 * Find suitable number of IO TLB entries size that will fit this
408 * request and allocate a buffer from that IO TLB pool.
409 */
410 spin_lock_irqsave(&io_tlb_lock, flags);
411 index = ALIGN(io_tlb_index, stride);
412 if (index >= io_tlb_nslabs)
413 index = 0;
414 wrap = index;
415
416 do {
417 while (iommu_is_span_boundary(index, nslots, offset_slots,
418 max_slots)) {
419 index += stride;
420 if (index >= io_tlb_nslabs)
421 index = 0;
422 if (index == wrap)
423 goto not_found;
424 }
425
426 /*
427 * If we find a slot that indicates we have 'nslots' number of
428 * contiguous buffers, we allocate the buffers from that slot
429 * and mark the entries as '0' indicating unavailable.
430 */
431 if (io_tlb_list[index] >= nslots) {
432 int count = 0;
433
434 for (i = index; i < (int) (index + nslots); i++)
435 io_tlb_list[i] = 0;
436 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
437 io_tlb_list[i] = ++count;
438 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
439
440 /*
441 * Update the indices to avoid searching in the next
442 * round.
443 */
444 io_tlb_index = ((index + nslots) < io_tlb_nslabs
445 ? (index + nslots) : 0);
446
447 goto found;
448 }
449 index += stride;
450 if (index >= io_tlb_nslabs)
451 index = 0;
452 } while (index != wrap);
453
454 not_found:
455 spin_unlock_irqrestore(&io_tlb_lock, flags);
456 return NULL;
457 found:
458 spin_unlock_irqrestore(&io_tlb_lock, flags);
459
460 /*
461 * Save away the mapping from the original address to the DMA address.
462 * This is needed when we sync the memory. Then we sync the buffer if
463 * needed.
464 */
465 for (i = 0; i < nslots; i++)
466 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
467 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
468 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
469
470 return dma_addr;
471 }
472 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
473
474 /*
475 * Allocates bounce buffer and returns its kernel virtual address.
476 */
477
478 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)479 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
480 enum dma_data_direction dir)
481 {
482 dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
483
484 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
485 }
486
487 /*
488 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
489 */
490 void
swiotlb_tbl_unmap_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir)491 swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
492 enum dma_data_direction dir)
493 {
494 unsigned long flags;
495 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
496 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
497 phys_addr_t phys = io_tlb_orig_addr[index];
498
499 /*
500 * First, sync the memory before unmapping the entry
501 */
502 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
503 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
504
505 /*
506 * Return the buffer to the free list by setting the corresponding
507 * entries to indicate the number of contiguous entries available.
508 * While returning the entries to the free list, we merge the entries
509 * with slots below and above the pool being returned.
510 */
511 spin_lock_irqsave(&io_tlb_lock, flags);
512 {
513 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
514 io_tlb_list[index + nslots] : 0);
515 /*
516 * Step 1: return the slots to the free list, merging the
517 * slots with superceeding slots
518 */
519 for (i = index + nslots - 1; i >= index; i--)
520 io_tlb_list[i] = ++count;
521 /*
522 * Step 2: merge the returned slots with the preceding slots,
523 * if available (non zero)
524 */
525 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
526 io_tlb_list[i] = ++count;
527 }
528 spin_unlock_irqrestore(&io_tlb_lock, flags);
529 }
530 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
531
532 void
swiotlb_tbl_sync_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)533 swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
534 enum dma_data_direction dir,
535 enum dma_sync_target target)
536 {
537 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
538 phys_addr_t phys = io_tlb_orig_addr[index];
539
540 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
541
542 switch (target) {
543 case SYNC_FOR_CPU:
544 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
545 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
546 else
547 BUG_ON(dir != DMA_TO_DEVICE);
548 break;
549 case SYNC_FOR_DEVICE:
550 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
551 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
552 else
553 BUG_ON(dir != DMA_FROM_DEVICE);
554 break;
555 default:
556 BUG();
557 }
558 }
559 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
560
561 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)562 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
563 dma_addr_t *dma_handle, gfp_t flags)
564 {
565 dma_addr_t dev_addr;
566 void *ret;
567 int order = get_order(size);
568 u64 dma_mask = DMA_BIT_MASK(32);
569
570 if (hwdev && hwdev->coherent_dma_mask)
571 dma_mask = hwdev->coherent_dma_mask;
572
573 ret = (void *)__get_free_pages(flags, order);
574 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
575 /*
576 * The allocated memory isn't reachable by the device.
577 */
578 free_pages((unsigned long) ret, order);
579 ret = NULL;
580 }
581 if (!ret) {
582 /*
583 * We are either out of memory or the device can't DMA to
584 * GFP_DMA memory; fall back on map_single(), which
585 * will grab memory from the lowest available address range.
586 */
587 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
588 if (!ret)
589 return NULL;
590 }
591
592 memset(ret, 0, size);
593 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
594
595 /* Confirm address can be DMA'd by device */
596 if (dev_addr + size - 1 > dma_mask) {
597 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
598 (unsigned long long)dma_mask,
599 (unsigned long long)dev_addr);
600
601 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
602 swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
603 return NULL;
604 }
605 *dma_handle = dev_addr;
606 return ret;
607 }
608 EXPORT_SYMBOL(swiotlb_alloc_coherent);
609
610 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)611 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
612 dma_addr_t dev_addr)
613 {
614 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
615
616 WARN_ON(irqs_disabled());
617 if (!is_swiotlb_buffer(paddr))
618 free_pages((unsigned long)vaddr, get_order(size));
619 else
620 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
621 swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
622 }
623 EXPORT_SYMBOL(swiotlb_free_coherent);
624
625 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)626 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
627 int do_panic)
628 {
629 /*
630 * Ran out of IOMMU space for this operation. This is very bad.
631 * Unfortunately the drivers cannot handle this operation properly.
632 * unless they check for dma_mapping_error (most don't)
633 * When the mapping is small enough return a static buffer to limit
634 * the damage, or panic when the transfer is too big.
635 */
636 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
637 "device %s\n", size, dev ? dev_name(dev) : "?");
638
639 if (size <= io_tlb_overflow || !do_panic)
640 return;
641
642 if (dir == DMA_BIDIRECTIONAL)
643 panic("DMA: Random memory could be DMA accessed\n");
644 if (dir == DMA_FROM_DEVICE)
645 panic("DMA: Random memory could be DMA written\n");
646 if (dir == DMA_TO_DEVICE)
647 panic("DMA: Random memory could be DMA read\n");
648 }
649
650 /*
651 * Map a single buffer of the indicated size for DMA in streaming mode. The
652 * physical address to use is returned.
653 *
654 * Once the device is given the dma address, the device owns this memory until
655 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
656 */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)657 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
658 unsigned long offset, size_t size,
659 enum dma_data_direction dir,
660 struct dma_attrs *attrs)
661 {
662 phys_addr_t phys = page_to_phys(page) + offset;
663 dma_addr_t dev_addr = phys_to_dma(dev, phys);
664 void *map;
665
666 BUG_ON(dir == DMA_NONE);
667 /*
668 * If the address happens to be in the device's DMA window,
669 * we can safely return the device addr and not worry about bounce
670 * buffering it.
671 */
672 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
673 return dev_addr;
674
675 /*
676 * Oh well, have to allocate and map a bounce buffer.
677 */
678 map = map_single(dev, phys, size, dir);
679 if (!map) {
680 swiotlb_full(dev, size, dir, 1);
681 map = io_tlb_overflow_buffer;
682 }
683
684 dev_addr = swiotlb_virt_to_bus(dev, map);
685
686 /*
687 * Ensure that the address returned is DMA'ble
688 */
689 if (!dma_capable(dev, dev_addr, size)) {
690 swiotlb_tbl_unmap_single(dev, map, size, dir);
691 dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
692 }
693
694 return dev_addr;
695 }
696 EXPORT_SYMBOL_GPL(swiotlb_map_page);
697
698 /*
699 * Unmap a single streaming mode DMA translation. The dma_addr and size must
700 * match what was provided for in a previous swiotlb_map_page call. All
701 * other usages are undefined.
702 *
703 * After this call, reads by the cpu to the buffer are guaranteed to see
704 * whatever the device wrote there.
705 */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)706 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
707 size_t size, enum dma_data_direction dir)
708 {
709 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
710
711 BUG_ON(dir == DMA_NONE);
712
713 if (is_swiotlb_buffer(paddr)) {
714 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
715 return;
716 }
717
718 if (dir != DMA_FROM_DEVICE)
719 return;
720
721 /*
722 * phys_to_virt doesn't work with hihgmem page but we could
723 * call dma_mark_clean() with hihgmem page here. However, we
724 * are fine since dma_mark_clean() is null on POWERPC. We can
725 * make dma_mark_clean() take a physical address if necessary.
726 */
727 dma_mark_clean(phys_to_virt(paddr), size);
728 }
729
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)730 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
731 size_t size, enum dma_data_direction dir,
732 struct dma_attrs *attrs)
733 {
734 unmap_single(hwdev, dev_addr, size, dir);
735 }
736 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
737
738 /*
739 * Make physical memory consistent for a single streaming mode DMA translation
740 * after a transfer.
741 *
742 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
743 * using the cpu, yet do not wish to teardown the dma mapping, you must
744 * call this function before doing so. At the next point you give the dma
745 * address back to the card, you must first perform a
746 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
747 */
748 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)749 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
750 size_t size, enum dma_data_direction dir,
751 enum dma_sync_target target)
752 {
753 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
754
755 BUG_ON(dir == DMA_NONE);
756
757 if (is_swiotlb_buffer(paddr)) {
758 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
759 target);
760 return;
761 }
762
763 if (dir != DMA_FROM_DEVICE)
764 return;
765
766 dma_mark_clean(phys_to_virt(paddr), size);
767 }
768
769 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)770 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
771 size_t size, enum dma_data_direction dir)
772 {
773 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
774 }
775 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
776
777 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)778 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
779 size_t size, enum dma_data_direction dir)
780 {
781 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
782 }
783 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
784
785 /*
786 * Map a set of buffers described by scatterlist in streaming mode for DMA.
787 * This is the scatter-gather version of the above swiotlb_map_page
788 * interface. Here the scatter gather list elements are each tagged with the
789 * appropriate dma address and length. They are obtained via
790 * sg_dma_{address,length}(SG).
791 *
792 * NOTE: An implementation may be able to use a smaller number of
793 * DMA address/length pairs than there are SG table elements.
794 * (for example via virtual mapping capabilities)
795 * The routine returns the number of addr/length pairs actually
796 * used, at most nents.
797 *
798 * Device ownership issues as mentioned above for swiotlb_map_page are the
799 * same here.
800 */
801 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)802 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
803 enum dma_data_direction dir, struct dma_attrs *attrs)
804 {
805 struct scatterlist *sg;
806 int i;
807
808 BUG_ON(dir == DMA_NONE);
809
810 for_each_sg(sgl, sg, nelems, i) {
811 phys_addr_t paddr = sg_phys(sg);
812 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
813
814 if (swiotlb_force ||
815 !dma_capable(hwdev, dev_addr, sg->length)) {
816 void *map = map_single(hwdev, sg_phys(sg),
817 sg->length, dir);
818 if (!map) {
819 /* Don't panic here, we expect map_sg users
820 to do proper error handling. */
821 swiotlb_full(hwdev, sg->length, dir, 0);
822 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
823 attrs);
824 sgl[0].dma_length = 0;
825 return 0;
826 }
827 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
828 } else
829 sg->dma_address = dev_addr;
830 sg->dma_length = sg->length;
831 }
832 return nelems;
833 }
834 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
835
836 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)837 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
838 enum dma_data_direction dir)
839 {
840 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
841 }
842 EXPORT_SYMBOL(swiotlb_map_sg);
843
844 /*
845 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
846 * concerning calls here are the same as for swiotlb_unmap_page() above.
847 */
848 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)849 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
850 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
851 {
852 struct scatterlist *sg;
853 int i;
854
855 BUG_ON(dir == DMA_NONE);
856
857 for_each_sg(sgl, sg, nelems, i)
858 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
859
860 }
861 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
862
863 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)864 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
865 enum dma_data_direction dir)
866 {
867 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
868 }
869 EXPORT_SYMBOL(swiotlb_unmap_sg);
870
871 /*
872 * Make physical memory consistent for a set of streaming mode DMA translations
873 * after a transfer.
874 *
875 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
876 * and usage.
877 */
878 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)879 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
880 int nelems, enum dma_data_direction dir,
881 enum dma_sync_target target)
882 {
883 struct scatterlist *sg;
884 int i;
885
886 for_each_sg(sgl, sg, nelems, i)
887 swiotlb_sync_single(hwdev, sg->dma_address,
888 sg->dma_length, dir, target);
889 }
890
891 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)892 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
893 int nelems, enum dma_data_direction dir)
894 {
895 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
896 }
897 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
898
899 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)900 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
901 int nelems, enum dma_data_direction dir)
902 {
903 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
904 }
905 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
906
907 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)908 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
909 {
910 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
911 }
912 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
913
914 /*
915 * Return whether the given device DMA address mask can be supported
916 * properly. For example, if your device can only drive the low 24-bits
917 * during bus mastering, then you would pass 0x00ffffff as the mask to
918 * this function.
919 */
920 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)921 swiotlb_dma_supported(struct device *hwdev, u64 mask)
922 {
923 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
924 }
925 EXPORT_SYMBOL(swiotlb_dma_supported);
926