1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
36 
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40 
41 #define OFFSET(val,align) ((unsigned long)	\
42 	                   ( (val) & ( (align) - 1)))
43 
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 
46 /*
47  * Minimum IO TLB size to bother booting with.  Systems with mainly
48  * 64bit capable cards will only lightly use the swiotlb.  If we can't
49  * allocate a contiguous 1MB, we're probably in trouble anyway.
50  */
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 
53 int swiotlb_force;
54 
55 /*
56  * Used to do a quick range check in swiotlb_tbl_unmap_single and
57  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58  * API.
59  */
60 static char *io_tlb_start, *io_tlb_end;
61 
62 /*
63  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
65  */
66 static unsigned long io_tlb_nslabs;
67 
68 /*
69  * When the IOMMU overflows we return a fallback buffer. This sets the size.
70  */
71 static unsigned long io_tlb_overflow = 32*1024;
72 
73 static void *io_tlb_overflow_buffer;
74 
75 /*
76  * This is a free list describing the number of free entries available from
77  * each index
78  */
79 static unsigned int *io_tlb_list;
80 static unsigned int io_tlb_index;
81 
82 /*
83  * We need to save away the original address corresponding to a mapped entry
84  * for the sync operations.
85  */
86 static phys_addr_t *io_tlb_orig_addr;
87 
88 /*
89  * Protect the above data structures in the map and unmap calls
90  */
91 static DEFINE_SPINLOCK(io_tlb_lock);
92 
93 static int late_alloc;
94 
95 static int __init
setup_io_tlb_npages(char * str)96 setup_io_tlb_npages(char *str)
97 {
98 	if (isdigit(*str)) {
99 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 	}
103 	if (*str == ',')
104 		++str;
105 	if (!strcmp(str, "force"))
106 		swiotlb_force = 1;
107 
108 	return 1;
109 }
110 __setup("swiotlb=", setup_io_tlb_npages);
111 /* make io_tlb_overflow tunable too? */
112 
113 /* Note that this doesn't work with highmem page */
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)114 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
115 				      volatile void *address)
116 {
117 	return phys_to_dma(hwdev, virt_to_phys(address));
118 }
119 
swiotlb_print_info(void)120 void swiotlb_print_info(void)
121 {
122 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
123 	phys_addr_t pstart, pend;
124 
125 	pstart = virt_to_phys(io_tlb_start);
126 	pend = virt_to_phys(io_tlb_end);
127 
128 	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
129 	       bytes >> 20, io_tlb_start, io_tlb_end);
130 	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
131 	       (unsigned long long)pstart,
132 	       (unsigned long long)pend);
133 }
134 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)135 void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
136 {
137 	unsigned long i, bytes;
138 
139 	bytes = nslabs << IO_TLB_SHIFT;
140 
141 	io_tlb_nslabs = nslabs;
142 	io_tlb_start = tlb;
143 	io_tlb_end = io_tlb_start + bytes;
144 
145 	/*
146 	 * Allocate and initialize the free list array.  This array is used
147 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
148 	 * between io_tlb_start and io_tlb_end.
149 	 */
150 	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
151 	for (i = 0; i < io_tlb_nslabs; i++)
152  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
153 	io_tlb_index = 0;
154 	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
155 
156 	/*
157 	 * Get the overflow emergency buffer
158 	 */
159 	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
160 	if (!io_tlb_overflow_buffer)
161 		panic("Cannot allocate SWIOTLB overflow buffer!\n");
162 	if (verbose)
163 		swiotlb_print_info();
164 }
165 
166 /*
167  * Statically reserve bounce buffer space and initialize bounce buffer data
168  * structures for the software IO TLB used to implement the DMA API.
169  */
170 void __init
swiotlb_init_with_default_size(size_t default_size,int verbose)171 swiotlb_init_with_default_size(size_t default_size, int verbose)
172 {
173 	unsigned long bytes;
174 
175 	if (!io_tlb_nslabs) {
176 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
177 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
178 	}
179 
180 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
181 
182 	/*
183 	 * Get IO TLB memory from the low pages
184 	 */
185 	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
186 	if (!io_tlb_start)
187 		panic("Cannot allocate SWIOTLB buffer");
188 
189 	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
190 }
191 
192 void __init
swiotlb_init(int verbose)193 swiotlb_init(int verbose)
194 {
195 	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
196 }
197 
198 /*
199  * Systems with larger DMA zones (those that don't support ISA) can
200  * initialize the swiotlb later using the slab allocator if needed.
201  * This should be just like above, but with some error catching.
202  */
203 int
swiotlb_late_init_with_default_size(size_t default_size)204 swiotlb_late_init_with_default_size(size_t default_size)
205 {
206 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
207 	unsigned int order;
208 
209 	if (!io_tlb_nslabs) {
210 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
211 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
212 	}
213 
214 	/*
215 	 * Get IO TLB memory from the low pages
216 	 */
217 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
218 	io_tlb_nslabs = SLABS_PER_PAGE << order;
219 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
220 
221 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
222 		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
223 							order);
224 		if (io_tlb_start)
225 			break;
226 		order--;
227 	}
228 
229 	if (!io_tlb_start)
230 		goto cleanup1;
231 
232 	if (order != get_order(bytes)) {
233 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
234 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
235 		io_tlb_nslabs = SLABS_PER_PAGE << order;
236 		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
237 	}
238 	io_tlb_end = io_tlb_start + bytes;
239 	memset(io_tlb_start, 0, bytes);
240 
241 	/*
242 	 * Allocate and initialize the free list array.  This array is used
243 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 	 * between io_tlb_start and io_tlb_end.
245 	 */
246 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
247 	                              get_order(io_tlb_nslabs * sizeof(int)));
248 	if (!io_tlb_list)
249 		goto cleanup2;
250 
251 	for (i = 0; i < io_tlb_nslabs; i++)
252  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
253 	io_tlb_index = 0;
254 
255 	io_tlb_orig_addr = (phys_addr_t *)
256 		__get_free_pages(GFP_KERNEL,
257 				 get_order(io_tlb_nslabs *
258 					   sizeof(phys_addr_t)));
259 	if (!io_tlb_orig_addr)
260 		goto cleanup3;
261 
262 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
263 
264 	/*
265 	 * Get the overflow emergency buffer
266 	 */
267 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
268 	                                          get_order(io_tlb_overflow));
269 	if (!io_tlb_overflow_buffer)
270 		goto cleanup4;
271 
272 	swiotlb_print_info();
273 
274 	late_alloc = 1;
275 
276 	return 0;
277 
278 cleanup4:
279 	free_pages((unsigned long)io_tlb_orig_addr,
280 		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
281 	io_tlb_orig_addr = NULL;
282 cleanup3:
283 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
284 	                                                 sizeof(int)));
285 	io_tlb_list = NULL;
286 cleanup2:
287 	io_tlb_end = NULL;
288 	free_pages((unsigned long)io_tlb_start, order);
289 	io_tlb_start = NULL;
290 cleanup1:
291 	io_tlb_nslabs = req_nslabs;
292 	return -ENOMEM;
293 }
294 
swiotlb_free(void)295 void __init swiotlb_free(void)
296 {
297 	if (!io_tlb_overflow_buffer)
298 		return;
299 
300 	if (late_alloc) {
301 		free_pages((unsigned long)io_tlb_overflow_buffer,
302 			   get_order(io_tlb_overflow));
303 		free_pages((unsigned long)io_tlb_orig_addr,
304 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
305 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
306 								 sizeof(int)));
307 		free_pages((unsigned long)io_tlb_start,
308 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
309 	} else {
310 		free_bootmem_late(__pa(io_tlb_overflow_buffer),
311 				  PAGE_ALIGN(io_tlb_overflow));
312 		free_bootmem_late(__pa(io_tlb_orig_addr),
313 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
314 		free_bootmem_late(__pa(io_tlb_list),
315 				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
316 		free_bootmem_late(__pa(io_tlb_start),
317 				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
318 	}
319 }
320 
is_swiotlb_buffer(phys_addr_t paddr)321 static int is_swiotlb_buffer(phys_addr_t paddr)
322 {
323 	return paddr >= virt_to_phys(io_tlb_start) &&
324 		paddr < virt_to_phys(io_tlb_end);
325 }
326 
327 /*
328  * Bounce: copy the swiotlb buffer back to the original dma location
329  */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)330 void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
331 		    enum dma_data_direction dir)
332 {
333 	unsigned long pfn = PFN_DOWN(phys);
334 
335 	if (PageHighMem(pfn_to_page(pfn))) {
336 		/* The buffer does not have a mapping.  Map it in and copy */
337 		unsigned int offset = phys & ~PAGE_MASK;
338 		char *buffer;
339 		unsigned int sz = 0;
340 		unsigned long flags;
341 
342 		while (size) {
343 			sz = min_t(size_t, PAGE_SIZE - offset, size);
344 
345 			local_irq_save(flags);
346 			buffer = kmap_atomic(pfn_to_page(pfn),
347 					     KM_BOUNCE_READ);
348 			if (dir == DMA_TO_DEVICE)
349 				memcpy(dma_addr, buffer + offset, sz);
350 			else
351 				memcpy(buffer + offset, dma_addr, sz);
352 			kunmap_atomic(buffer, KM_BOUNCE_READ);
353 			local_irq_restore(flags);
354 
355 			size -= sz;
356 			pfn++;
357 			dma_addr += sz;
358 			offset = 0;
359 		}
360 	} else {
361 		if (dir == DMA_TO_DEVICE)
362 			memcpy(dma_addr, phys_to_virt(phys), size);
363 		else
364 			memcpy(phys_to_virt(phys), dma_addr, size);
365 	}
366 }
367 EXPORT_SYMBOL_GPL(swiotlb_bounce);
368 
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t phys,size_t size,enum dma_data_direction dir)369 void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
370 			     phys_addr_t phys, size_t size,
371 			     enum dma_data_direction dir)
372 {
373 	unsigned long flags;
374 	char *dma_addr;
375 	unsigned int nslots, stride, index, wrap;
376 	int i;
377 	unsigned long mask;
378 	unsigned long offset_slots;
379 	unsigned long max_slots;
380 
381 	mask = dma_get_seg_boundary(hwdev);
382 
383 	tbl_dma_addr &= mask;
384 
385 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
386 
387 	/*
388  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
389  	 */
390 	max_slots = mask + 1
391 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
392 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
393 
394 	/*
395 	 * For mappings greater than a page, we limit the stride (and
396 	 * hence alignment) to a page size.
397 	 */
398 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
399 	if (size > PAGE_SIZE)
400 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
401 	else
402 		stride = 1;
403 
404 	BUG_ON(!nslots);
405 
406 	/*
407 	 * Find suitable number of IO TLB entries size that will fit this
408 	 * request and allocate a buffer from that IO TLB pool.
409 	 */
410 	spin_lock_irqsave(&io_tlb_lock, flags);
411 	index = ALIGN(io_tlb_index, stride);
412 	if (index >= io_tlb_nslabs)
413 		index = 0;
414 	wrap = index;
415 
416 	do {
417 		while (iommu_is_span_boundary(index, nslots, offset_slots,
418 					      max_slots)) {
419 			index += stride;
420 			if (index >= io_tlb_nslabs)
421 				index = 0;
422 			if (index == wrap)
423 				goto not_found;
424 		}
425 
426 		/*
427 		 * If we find a slot that indicates we have 'nslots' number of
428 		 * contiguous buffers, we allocate the buffers from that slot
429 		 * and mark the entries as '0' indicating unavailable.
430 		 */
431 		if (io_tlb_list[index] >= nslots) {
432 			int count = 0;
433 
434 			for (i = index; i < (int) (index + nslots); i++)
435 				io_tlb_list[i] = 0;
436 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
437 				io_tlb_list[i] = ++count;
438 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
439 
440 			/*
441 			 * Update the indices to avoid searching in the next
442 			 * round.
443 			 */
444 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
445 					? (index + nslots) : 0);
446 
447 			goto found;
448 		}
449 		index += stride;
450 		if (index >= io_tlb_nslabs)
451 			index = 0;
452 	} while (index != wrap);
453 
454 not_found:
455 	spin_unlock_irqrestore(&io_tlb_lock, flags);
456 	return NULL;
457 found:
458 	spin_unlock_irqrestore(&io_tlb_lock, flags);
459 
460 	/*
461 	 * Save away the mapping from the original address to the DMA address.
462 	 * This is needed when we sync the memory.  Then we sync the buffer if
463 	 * needed.
464 	 */
465 	for (i = 0; i < nslots; i++)
466 		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
467 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
468 		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
469 
470 	return dma_addr;
471 }
472 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
473 
474 /*
475  * Allocates bounce buffer and returns its kernel virtual address.
476  */
477 
478 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir)479 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
480 	   enum dma_data_direction dir)
481 {
482 	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
483 
484 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
485 }
486 
487 /*
488  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
489  */
490 void
swiotlb_tbl_unmap_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir)491 swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
492 			enum dma_data_direction dir)
493 {
494 	unsigned long flags;
495 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
496 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
497 	phys_addr_t phys = io_tlb_orig_addr[index];
498 
499 	/*
500 	 * First, sync the memory before unmapping the entry
501 	 */
502 	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
503 		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
504 
505 	/*
506 	 * Return the buffer to the free list by setting the corresponding
507 	 * entries to indicate the number of contiguous entries available.
508 	 * While returning the entries to the free list, we merge the entries
509 	 * with slots below and above the pool being returned.
510 	 */
511 	spin_lock_irqsave(&io_tlb_lock, flags);
512 	{
513 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
514 			 io_tlb_list[index + nslots] : 0);
515 		/*
516 		 * Step 1: return the slots to the free list, merging the
517 		 * slots with superceeding slots
518 		 */
519 		for (i = index + nslots - 1; i >= index; i--)
520 			io_tlb_list[i] = ++count;
521 		/*
522 		 * Step 2: merge the returned slots with the preceding slots,
523 		 * if available (non zero)
524 		 */
525 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
526 			io_tlb_list[i] = ++count;
527 	}
528 	spin_unlock_irqrestore(&io_tlb_lock, flags);
529 }
530 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
531 
532 void
swiotlb_tbl_sync_single(struct device * hwdev,char * dma_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)533 swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
534 			enum dma_data_direction dir,
535 			enum dma_sync_target target)
536 {
537 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
538 	phys_addr_t phys = io_tlb_orig_addr[index];
539 
540 	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
541 
542 	switch (target) {
543 	case SYNC_FOR_CPU:
544 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
545 			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
546 		else
547 			BUG_ON(dir != DMA_TO_DEVICE);
548 		break;
549 	case SYNC_FOR_DEVICE:
550 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
551 			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
552 		else
553 			BUG_ON(dir != DMA_FROM_DEVICE);
554 		break;
555 	default:
556 		BUG();
557 	}
558 }
559 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
560 
561 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)562 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
563 		       dma_addr_t *dma_handle, gfp_t flags)
564 {
565 	dma_addr_t dev_addr;
566 	void *ret;
567 	int order = get_order(size);
568 	u64 dma_mask = DMA_BIT_MASK(32);
569 
570 	if (hwdev && hwdev->coherent_dma_mask)
571 		dma_mask = hwdev->coherent_dma_mask;
572 
573 	ret = (void *)__get_free_pages(flags, order);
574 	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
575 		/*
576 		 * The allocated memory isn't reachable by the device.
577 		 */
578 		free_pages((unsigned long) ret, order);
579 		ret = NULL;
580 	}
581 	if (!ret) {
582 		/*
583 		 * We are either out of memory or the device can't DMA to
584 		 * GFP_DMA memory; fall back on map_single(), which
585 		 * will grab memory from the lowest available address range.
586 		 */
587 		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
588 		if (!ret)
589 			return NULL;
590 	}
591 
592 	memset(ret, 0, size);
593 	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
594 
595 	/* Confirm address can be DMA'd by device */
596 	if (dev_addr + size - 1 > dma_mask) {
597 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
598 		       (unsigned long long)dma_mask,
599 		       (unsigned long long)dev_addr);
600 
601 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
602 		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
603 		return NULL;
604 	}
605 	*dma_handle = dev_addr;
606 	return ret;
607 }
608 EXPORT_SYMBOL(swiotlb_alloc_coherent);
609 
610 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dev_addr)611 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
612 		      dma_addr_t dev_addr)
613 {
614 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
615 
616 	WARN_ON(irqs_disabled());
617 	if (!is_swiotlb_buffer(paddr))
618 		free_pages((unsigned long)vaddr, get_order(size));
619 	else
620 		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
621 		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
622 }
623 EXPORT_SYMBOL(swiotlb_free_coherent);
624 
625 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)626 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
627 	     int do_panic)
628 {
629 	/*
630 	 * Ran out of IOMMU space for this operation. This is very bad.
631 	 * Unfortunately the drivers cannot handle this operation properly.
632 	 * unless they check for dma_mapping_error (most don't)
633 	 * When the mapping is small enough return a static buffer to limit
634 	 * the damage, or panic when the transfer is too big.
635 	 */
636 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
637 	       "device %s\n", size, dev ? dev_name(dev) : "?");
638 
639 	if (size <= io_tlb_overflow || !do_panic)
640 		return;
641 
642 	if (dir == DMA_BIDIRECTIONAL)
643 		panic("DMA: Random memory could be DMA accessed\n");
644 	if (dir == DMA_FROM_DEVICE)
645 		panic("DMA: Random memory could be DMA written\n");
646 	if (dir == DMA_TO_DEVICE)
647 		panic("DMA: Random memory could be DMA read\n");
648 }
649 
650 /*
651  * Map a single buffer of the indicated size for DMA in streaming mode.  The
652  * physical address to use is returned.
653  *
654  * Once the device is given the dma address, the device owns this memory until
655  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
656  */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)657 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
658 			    unsigned long offset, size_t size,
659 			    enum dma_data_direction dir,
660 			    struct dma_attrs *attrs)
661 {
662 	phys_addr_t phys = page_to_phys(page) + offset;
663 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
664 	void *map;
665 
666 	BUG_ON(dir == DMA_NONE);
667 	/*
668 	 * If the address happens to be in the device's DMA window,
669 	 * we can safely return the device addr and not worry about bounce
670 	 * buffering it.
671 	 */
672 	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
673 		return dev_addr;
674 
675 	/*
676 	 * Oh well, have to allocate and map a bounce buffer.
677 	 */
678 	map = map_single(dev, phys, size, dir);
679 	if (!map) {
680 		swiotlb_full(dev, size, dir, 1);
681 		map = io_tlb_overflow_buffer;
682 	}
683 
684 	dev_addr = swiotlb_virt_to_bus(dev, map);
685 
686 	/*
687 	 * Ensure that the address returned is DMA'ble
688 	 */
689 	if (!dma_capable(dev, dev_addr, size)) {
690 		swiotlb_tbl_unmap_single(dev, map, size, dir);
691 		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
692 	}
693 
694 	return dev_addr;
695 }
696 EXPORT_SYMBOL_GPL(swiotlb_map_page);
697 
698 /*
699  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
700  * match what was provided for in a previous swiotlb_map_page call.  All
701  * other usages are undefined.
702  *
703  * After this call, reads by the cpu to the buffer are guaranteed to see
704  * whatever the device wrote there.
705  */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)706 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
707 			 size_t size, enum dma_data_direction dir)
708 {
709 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
710 
711 	BUG_ON(dir == DMA_NONE);
712 
713 	if (is_swiotlb_buffer(paddr)) {
714 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
715 		return;
716 	}
717 
718 	if (dir != DMA_FROM_DEVICE)
719 		return;
720 
721 	/*
722 	 * phys_to_virt doesn't work with hihgmem page but we could
723 	 * call dma_mark_clean() with hihgmem page here. However, we
724 	 * are fine since dma_mark_clean() is null on POWERPC. We can
725 	 * make dma_mark_clean() take a physical address if necessary.
726 	 */
727 	dma_mark_clean(phys_to_virt(paddr), size);
728 }
729 
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)730 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
731 			size_t size, enum dma_data_direction dir,
732 			struct dma_attrs *attrs)
733 {
734 	unmap_single(hwdev, dev_addr, size, dir);
735 }
736 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
737 
738 /*
739  * Make physical memory consistent for a single streaming mode DMA translation
740  * after a transfer.
741  *
742  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
743  * using the cpu, yet do not wish to teardown the dma mapping, you must
744  * call this function before doing so.  At the next point you give the dma
745  * address back to the card, you must first perform a
746  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
747  */
748 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)749 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
750 		    size_t size, enum dma_data_direction dir,
751 		    enum dma_sync_target target)
752 {
753 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
754 
755 	BUG_ON(dir == DMA_NONE);
756 
757 	if (is_swiotlb_buffer(paddr)) {
758 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
759 				       target);
760 		return;
761 	}
762 
763 	if (dir != DMA_FROM_DEVICE)
764 		return;
765 
766 	dma_mark_clean(phys_to_virt(paddr), size);
767 }
768 
769 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)770 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
771 			    size_t size, enum dma_data_direction dir)
772 {
773 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
774 }
775 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
776 
777 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)778 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
779 			       size_t size, enum dma_data_direction dir)
780 {
781 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
782 }
783 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
784 
785 /*
786  * Map a set of buffers described by scatterlist in streaming mode for DMA.
787  * This is the scatter-gather version of the above swiotlb_map_page
788  * interface.  Here the scatter gather list elements are each tagged with the
789  * appropriate dma address and length.  They are obtained via
790  * sg_dma_{address,length}(SG).
791  *
792  * NOTE: An implementation may be able to use a smaller number of
793  *       DMA address/length pairs than there are SG table elements.
794  *       (for example via virtual mapping capabilities)
795  *       The routine returns the number of addr/length pairs actually
796  *       used, at most nents.
797  *
798  * Device ownership issues as mentioned above for swiotlb_map_page are the
799  * same here.
800  */
801 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)802 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
803 		     enum dma_data_direction dir, struct dma_attrs *attrs)
804 {
805 	struct scatterlist *sg;
806 	int i;
807 
808 	BUG_ON(dir == DMA_NONE);
809 
810 	for_each_sg(sgl, sg, nelems, i) {
811 		phys_addr_t paddr = sg_phys(sg);
812 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
813 
814 		if (swiotlb_force ||
815 		    !dma_capable(hwdev, dev_addr, sg->length)) {
816 			void *map = map_single(hwdev, sg_phys(sg),
817 					       sg->length, dir);
818 			if (!map) {
819 				/* Don't panic here, we expect map_sg users
820 				   to do proper error handling. */
821 				swiotlb_full(hwdev, sg->length, dir, 0);
822 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
823 						       attrs);
824 				sgl[0].dma_length = 0;
825 				return 0;
826 			}
827 			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
828 		} else
829 			sg->dma_address = dev_addr;
830 		sg->dma_length = sg->length;
831 	}
832 	return nelems;
833 }
834 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
835 
836 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)837 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
838 	       enum dma_data_direction dir)
839 {
840 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
841 }
842 EXPORT_SYMBOL(swiotlb_map_sg);
843 
844 /*
845  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
846  * concerning calls here are the same as for swiotlb_unmap_page() above.
847  */
848 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)849 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
850 		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
851 {
852 	struct scatterlist *sg;
853 	int i;
854 
855 	BUG_ON(dir == DMA_NONE);
856 
857 	for_each_sg(sgl, sg, nelems, i)
858 		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
859 
860 }
861 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
862 
863 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)864 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
865 		 enum dma_data_direction dir)
866 {
867 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
868 }
869 EXPORT_SYMBOL(swiotlb_unmap_sg);
870 
871 /*
872  * Make physical memory consistent for a set of streaming mode DMA translations
873  * after a transfer.
874  *
875  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
876  * and usage.
877  */
878 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)879 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
880 		int nelems, enum dma_data_direction dir,
881 		enum dma_sync_target target)
882 {
883 	struct scatterlist *sg;
884 	int i;
885 
886 	for_each_sg(sgl, sg, nelems, i)
887 		swiotlb_sync_single(hwdev, sg->dma_address,
888 				    sg->dma_length, dir, target);
889 }
890 
891 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)892 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
893 			int nelems, enum dma_data_direction dir)
894 {
895 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
896 }
897 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
898 
899 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)900 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
901 			   int nelems, enum dma_data_direction dir)
902 {
903 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
904 }
905 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
906 
907 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)908 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
909 {
910 	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
911 }
912 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
913 
914 /*
915  * Return whether the given device DMA address mask can be supported
916  * properly.  For example, if your device can only drive the low 24-bits
917  * during bus mastering, then you would pass 0x00ffffff as the mask to
918  * this function.
919  */
920 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)921 swiotlb_dma_supported(struct device *hwdev, u64 mask)
922 {
923 	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
924 }
925 EXPORT_SYMBOL(swiotlb_dma_supported);
926