1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004	Initial version
12  */
13 
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/prio_tree.h>
17 
18 /*
19  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20  * which is useful for storing intervals, e.g, we can consider a vma as a closed
21  * interval of file pages [offset_begin, offset_end], and store all vmas that
22  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25  * time where 'log n' is the height of the PST, and 'm' is the number of stored
26  * intervals (vmas) that overlap (map) with the input interval X (the set of
27  * consecutive file pages).
28  *
29  * In our implementation, we store closed intervals of the form [radix_index,
30  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31  * is designed for storing intervals with unique radix indices, i.e., each
32  * interval have different radix_index. However, this limitation can be easily
33  * overcome by using the size, i.e., heap_index - radix_index, as part of the
34  * index, so we index the tree using [(radix_index,size), heap_index].
35  *
36  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37  * machine, the maximum height of a PST can be 64. We can use a balanced version
38  * of the priority search tree to optimize the tree height, but the balanced
39  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
40  */
41 
42 /*
43  * The following macros are used for implementing prio_tree for i_mmap
44  */
45 
46 #define RADIX_INDEX(vma)  ((vma)->vm_pgoff)
47 #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
48 /* avoid overflow */
49 #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
50 
51 
get_index(const struct prio_tree_root * root,const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)52 static void get_index(const struct prio_tree_root *root,
53     const struct prio_tree_node *node,
54     unsigned long *radix, unsigned long *heap)
55 {
56 	if (root->raw) {
57 		struct vm_area_struct *vma = prio_tree_entry(
58 		    node, struct vm_area_struct, shared.prio_tree_node);
59 
60 		*radix = RADIX_INDEX(vma);
61 		*heap = HEAP_INDEX(vma);
62 	}
63 	else {
64 		*radix = node->start;
65 		*heap = node->last;
66 	}
67 }
68 
69 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
70 
prio_tree_init(void)71 void __init prio_tree_init(void)
72 {
73 	unsigned int i;
74 
75 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
76 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
77 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
78 }
79 
80 /*
81  * Maximum heap_index that can be stored in a PST with index_bits bits
82  */
prio_tree_maxindex(unsigned int bits)83 static inline unsigned long prio_tree_maxindex(unsigned int bits)
84 {
85 	return index_bits_to_maxindex[bits - 1];
86 }
87 
prio_set_parent(struct prio_tree_node * parent,struct prio_tree_node * child,bool left)88 static void prio_set_parent(struct prio_tree_node *parent,
89 			    struct prio_tree_node *child, bool left)
90 {
91 	if (left)
92 		parent->left = child;
93 	else
94 		parent->right = child;
95 
96 	child->parent = parent;
97 }
98 
99 /*
100  * Extend a priority search tree so that it can store a node with heap_index
101  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
102  * However, this function is used rarely and the common case performance is
103  * not bad.
104  */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)105 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
106 		struct prio_tree_node *node, unsigned long max_heap_index)
107 {
108 	struct prio_tree_node *prev;
109 
110 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
111 		root->index_bits++;
112 
113 	prev = node;
114 	INIT_PRIO_TREE_NODE(node);
115 
116 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
117 		struct prio_tree_node *tmp = root->prio_tree_node;
118 
119 		root->index_bits++;
120 
121 		if (prio_tree_empty(root))
122 			continue;
123 
124 		prio_tree_remove(root, root->prio_tree_node);
125 		INIT_PRIO_TREE_NODE(tmp);
126 
127 		prio_set_parent(prev, tmp, true);
128 		prev = tmp;
129 	}
130 
131 	if (!prio_tree_empty(root))
132 		prio_set_parent(prev, root->prio_tree_node, true);
133 
134 	root->prio_tree_node = node;
135 	return node;
136 }
137 
138 /*
139  * Replace a prio_tree_node with a new node and return the old node
140  */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)141 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
142 		struct prio_tree_node *old, struct prio_tree_node *node)
143 {
144 	INIT_PRIO_TREE_NODE(node);
145 
146 	if (prio_tree_root(old)) {
147 		BUG_ON(root->prio_tree_node != old);
148 		/*
149 		 * We can reduce root->index_bits here. However, it is complex
150 		 * and does not help much to improve performance (IMO).
151 		 */
152 		root->prio_tree_node = node;
153 	} else
154 		prio_set_parent(old->parent, node, old->parent->left == old);
155 
156 	if (!prio_tree_left_empty(old))
157 		prio_set_parent(node, old->left, true);
158 
159 	if (!prio_tree_right_empty(old))
160 		prio_set_parent(node, old->right, false);
161 
162 	return old;
163 }
164 
165 /*
166  * Insert a prio_tree_node @node into a radix priority search tree @root. The
167  * algorithm typically takes O(log n) time where 'log n' is the number of bits
168  * required to represent the maximum heap_index. In the worst case, the algo
169  * can take O((log n)^2) - check prio_tree_expand.
170  *
171  * If a prior node with same radix_index and heap_index is already found in
172  * the tree, then returns the address of the prior node. Otherwise, inserts
173  * @node into the tree and returns @node.
174  */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)175 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
176 		struct prio_tree_node *node)
177 {
178 	struct prio_tree_node *cur, *res = node;
179 	unsigned long radix_index, heap_index;
180 	unsigned long r_index, h_index, index, mask;
181 	int size_flag = 0;
182 
183 	get_index(root, node, &radix_index, &heap_index);
184 
185 	if (prio_tree_empty(root) ||
186 			heap_index > prio_tree_maxindex(root->index_bits))
187 		return prio_tree_expand(root, node, heap_index);
188 
189 	cur = root->prio_tree_node;
190 	mask = 1UL << (root->index_bits - 1);
191 
192 	while (mask) {
193 		get_index(root, cur, &r_index, &h_index);
194 
195 		if (r_index == radix_index && h_index == heap_index)
196 			return cur;
197 
198                 if (h_index < heap_index ||
199 		    (h_index == heap_index && r_index > radix_index)) {
200 			struct prio_tree_node *tmp = node;
201 			node = prio_tree_replace(root, cur, node);
202 			cur = tmp;
203 			/* swap indices */
204 			index = r_index;
205 			r_index = radix_index;
206 			radix_index = index;
207 			index = h_index;
208 			h_index = heap_index;
209 			heap_index = index;
210 		}
211 
212 		if (size_flag)
213 			index = heap_index - radix_index;
214 		else
215 			index = radix_index;
216 
217 		if (index & mask) {
218 			if (prio_tree_right_empty(cur)) {
219 				INIT_PRIO_TREE_NODE(node);
220 				prio_set_parent(cur, node, false);
221 				return res;
222 			} else
223 				cur = cur->right;
224 		} else {
225 			if (prio_tree_left_empty(cur)) {
226 				INIT_PRIO_TREE_NODE(node);
227 				prio_set_parent(cur, node, true);
228 				return res;
229 			} else
230 				cur = cur->left;
231 		}
232 
233 		mask >>= 1;
234 
235 		if (!mask) {
236 			mask = 1UL << (BITS_PER_LONG - 1);
237 			size_flag = 1;
238 		}
239 	}
240 	/* Should not reach here */
241 	BUG();
242 	return NULL;
243 }
244 
245 /*
246  * Remove a prio_tree_node @node from a radix priority search tree @root. The
247  * algorithm takes O(log n) time where 'log n' is the number of bits required
248  * to represent the maximum heap_index.
249  */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)250 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
251 {
252 	struct prio_tree_node *cur;
253 	unsigned long r_index, h_index_right, h_index_left;
254 
255 	cur = node;
256 
257 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
258 		if (!prio_tree_left_empty(cur))
259 			get_index(root, cur->left, &r_index, &h_index_left);
260 		else {
261 			cur = cur->right;
262 			continue;
263 		}
264 
265 		if (!prio_tree_right_empty(cur))
266 			get_index(root, cur->right, &r_index, &h_index_right);
267 		else {
268 			cur = cur->left;
269 			continue;
270 		}
271 
272 		/* both h_index_left and h_index_right cannot be 0 */
273 		if (h_index_left >= h_index_right)
274 			cur = cur->left;
275 		else
276 			cur = cur->right;
277 	}
278 
279 	if (prio_tree_root(cur)) {
280 		BUG_ON(root->prio_tree_node != cur);
281 		__INIT_PRIO_TREE_ROOT(root, root->raw);
282 		return;
283 	}
284 
285 	if (cur->parent->right == cur)
286 		cur->parent->right = cur->parent;
287 	else
288 		cur->parent->left = cur->parent;
289 
290 	while (cur != node)
291 		cur = prio_tree_replace(root, cur->parent, cur);
292 }
293 
iter_walk_down(struct prio_tree_iter * iter)294 static void iter_walk_down(struct prio_tree_iter *iter)
295 {
296 	iter->mask >>= 1;
297 	if (iter->mask) {
298 		if (iter->size_level)
299 			iter->size_level++;
300 		return;
301 	}
302 
303 	if (iter->size_level) {
304 		BUG_ON(!prio_tree_left_empty(iter->cur));
305 		BUG_ON(!prio_tree_right_empty(iter->cur));
306 		iter->size_level++;
307 		iter->mask = ULONG_MAX;
308 	} else {
309 		iter->size_level = 1;
310 		iter->mask = 1UL << (BITS_PER_LONG - 1);
311 	}
312 }
313 
iter_walk_up(struct prio_tree_iter * iter)314 static void iter_walk_up(struct prio_tree_iter *iter)
315 {
316 	if (iter->mask == ULONG_MAX)
317 		iter->mask = 1UL;
318 	else if (iter->size_level == 1)
319 		iter->mask = 1UL;
320 	else
321 		iter->mask <<= 1;
322 	if (iter->size_level)
323 		iter->size_level--;
324 	if (!iter->size_level && (iter->value & iter->mask))
325 		iter->value ^= iter->mask;
326 }
327 
328 /*
329  * Following functions help to enumerate all prio_tree_nodes in the tree that
330  * overlap with the input interval X [radix_index, heap_index]. The enumeration
331  * takes O(log n + m) time where 'log n' is the height of the tree (which is
332  * proportional to # of bits required to represent the maximum heap_index) and
333  * 'm' is the number of prio_tree_nodes that overlap the interval X.
334  */
335 
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)336 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
337 		unsigned long *r_index, unsigned long *h_index)
338 {
339 	if (prio_tree_left_empty(iter->cur))
340 		return NULL;
341 
342 	get_index(iter->root, iter->cur->left, r_index, h_index);
343 
344 	if (iter->r_index <= *h_index) {
345 		iter->cur = iter->cur->left;
346 		iter_walk_down(iter);
347 		return iter->cur;
348 	}
349 
350 	return NULL;
351 }
352 
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)353 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
354 		unsigned long *r_index, unsigned long *h_index)
355 {
356 	unsigned long value;
357 
358 	if (prio_tree_right_empty(iter->cur))
359 		return NULL;
360 
361 	if (iter->size_level)
362 		value = iter->value;
363 	else
364 		value = iter->value | iter->mask;
365 
366 	if (iter->h_index < value)
367 		return NULL;
368 
369 	get_index(iter->root, iter->cur->right, r_index, h_index);
370 
371 	if (iter->r_index <= *h_index) {
372 		iter->cur = iter->cur->right;
373 		iter_walk_down(iter);
374 		return iter->cur;
375 	}
376 
377 	return NULL;
378 }
379 
prio_tree_parent(struct prio_tree_iter * iter)380 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
381 {
382 	iter->cur = iter->cur->parent;
383 	iter_walk_up(iter);
384 	return iter->cur;
385 }
386 
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)387 static inline int overlap(struct prio_tree_iter *iter,
388 		unsigned long r_index, unsigned long h_index)
389 {
390 	return iter->h_index >= r_index && iter->r_index <= h_index;
391 }
392 
393 /*
394  * prio_tree_first:
395  *
396  * Get the first prio_tree_node that overlaps with the interval [radix_index,
397  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
398  * traversal of the tree.
399  */
prio_tree_first(struct prio_tree_iter * iter)400 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
401 {
402 	struct prio_tree_root *root;
403 	unsigned long r_index, h_index;
404 
405 	INIT_PRIO_TREE_ITER(iter);
406 
407 	root = iter->root;
408 	if (prio_tree_empty(root))
409 		return NULL;
410 
411 	get_index(root, root->prio_tree_node, &r_index, &h_index);
412 
413 	if (iter->r_index > h_index)
414 		return NULL;
415 
416 	iter->mask = 1UL << (root->index_bits - 1);
417 	iter->cur = root->prio_tree_node;
418 
419 	while (1) {
420 		if (overlap(iter, r_index, h_index))
421 			return iter->cur;
422 
423 		if (prio_tree_left(iter, &r_index, &h_index))
424 			continue;
425 
426 		if (prio_tree_right(iter, &r_index, &h_index))
427 			continue;
428 
429 		break;
430 	}
431 	return NULL;
432 }
433 
434 /*
435  * prio_tree_next:
436  *
437  * Get the next prio_tree_node that overlaps with the input interval in iter
438  */
prio_tree_next(struct prio_tree_iter * iter)439 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
440 {
441 	unsigned long r_index, h_index;
442 
443 	if (iter->cur == NULL)
444 		return prio_tree_first(iter);
445 
446 repeat:
447 	while (prio_tree_left(iter, &r_index, &h_index))
448 		if (overlap(iter, r_index, h_index))
449 			return iter->cur;
450 
451 	while (!prio_tree_right(iter, &r_index, &h_index)) {
452 	    	while (!prio_tree_root(iter->cur) &&
453 				iter->cur->parent->right == iter->cur)
454 			prio_tree_parent(iter);
455 
456 		if (prio_tree_root(iter->cur))
457 			return NULL;
458 
459 		prio_tree_parent(iter);
460 	}
461 
462 	if (overlap(iter, r_index, h_index))
463 		return iter->cur;
464 
465 	goto repeat;
466 }
467