1 /*
2  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
4  * Code was from the public domain, copyright abandoned.  Code was
5  * subsequently included in the kernel, thus was re-licensed under the
6  * GNU GPL v2.
7  *
8  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9  * Same crc32 function was used in 5 other places in the kernel.
10  * I made one version, and deleted the others.
11  * There are various incantations of crc32().  Some use a seed of 0 or ~0.
12  * Some xor at the end with ~0.  The generic crc32() function takes
13  * seed as an argument, and doesn't xor at the end.  Then individual
14  * users can do whatever they need.
15  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16  *   fs/jffs2 uses seed 0, doesn't xor with ~0.
17  *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
18  *
19  * This source code is licensed under the GNU General Public License,
20  * Version 2.  See the file COPYING for more details.
21  */
22 
23 #include <linux/crc32.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/compiler.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <asm/atomic.h>
30 #include "crc32defs.h"
31 #if CRC_LE_BITS == 8
32 # define tole(x) __constant_cpu_to_le32(x)
33 #else
34 # define tole(x) (x)
35 #endif
36 
37 #if CRC_BE_BITS == 8
38 # define tobe(x) __constant_cpu_to_be32(x)
39 #else
40 # define tobe(x) (x)
41 #endif
42 #include "crc32table.h"
43 
44 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
45 MODULE_DESCRIPTION("Ethernet CRC32 calculations");
46 MODULE_LICENSE("GPL");
47 
48 #if CRC_LE_BITS == 8 || CRC_BE_BITS == 8
49 
50 static inline u32
crc32_body(u32 crc,unsigned char const * buf,size_t len,const u32 (* tab)[256])51 crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
52 {
53 # ifdef __LITTLE_ENDIAN
54 #  define DO_CRC(x) crc = tab[0][(crc ^ (x)) & 255] ^ (crc >> 8)
55 #  define DO_CRC4 crc = tab[3][(crc) & 255] ^ \
56 		tab[2][(crc >> 8) & 255] ^ \
57 		tab[1][(crc >> 16) & 255] ^ \
58 		tab[0][(crc >> 24) & 255]
59 # else
60 #  define DO_CRC(x) crc = tab[0][((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
61 #  define DO_CRC4 crc = tab[0][(crc) & 255] ^ \
62 		tab[1][(crc >> 8) & 255] ^ \
63 		tab[2][(crc >> 16) & 255] ^ \
64 		tab[3][(crc >> 24) & 255]
65 # endif
66 	const u32 *b;
67 	size_t    rem_len;
68 
69 	/* Align it */
70 	if (unlikely((long)buf & 3 && len)) {
71 		do {
72 			DO_CRC(*buf++);
73 		} while ((--len) && ((long)buf)&3);
74 	}
75 	rem_len = len & 3;
76 	/* load data 32 bits wide, xor data 32 bits wide. */
77 	len = len >> 2;
78 	b = (const u32 *)buf;
79 	for (--b; len; --len) {
80 		crc ^= *++b; /* use pre increment for speed */
81 		DO_CRC4;
82 	}
83 	len = rem_len;
84 	/* And the last few bytes */
85 	if (len) {
86 		u8 *p = (u8 *)(b + 1) - 1;
87 		do {
88 			DO_CRC(*++p); /* use pre increment for speed */
89 		} while (--len);
90 	}
91 	return crc;
92 #undef DO_CRC
93 #undef DO_CRC4
94 }
95 #endif
96 /**
97  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
98  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
99  *	other uses, or the previous crc32 value if computing incrementally.
100  * @p: pointer to buffer over which CRC is run
101  * @len: length of buffer @p
102  */
103 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
104 
105 #if CRC_LE_BITS == 1
106 /*
107  * In fact, the table-based code will work in this case, but it can be
108  * simplified by inlining the table in ?: form.
109  */
110 
crc32_le(u32 crc,unsigned char const * p,size_t len)111 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
112 {
113 	int i;
114 	while (len--) {
115 		crc ^= *p++;
116 		for (i = 0; i < 8; i++)
117 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
118 	}
119 	return crc;
120 }
121 #else				/* Table-based approach */
122 
crc32_le(u32 crc,unsigned char const * p,size_t len)123 u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
124 {
125 # if CRC_LE_BITS == 8
126 	const u32      (*tab)[] = crc32table_le;
127 
128 	crc = __cpu_to_le32(crc);
129 	crc = crc32_body(crc, p, len, tab);
130 	return __le32_to_cpu(crc);
131 # elif CRC_LE_BITS == 4
132 	while (len--) {
133 		crc ^= *p++;
134 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
135 		crc = (crc >> 4) ^ crc32table_le[crc & 15];
136 	}
137 	return crc;
138 # elif CRC_LE_BITS == 2
139 	while (len--) {
140 		crc ^= *p++;
141 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
142 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
143 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
144 		crc = (crc >> 2) ^ crc32table_le[crc & 3];
145 	}
146 	return crc;
147 # endif
148 }
149 #endif
150 
151 /**
152  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
153  * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
154  *	other uses, or the previous crc32 value if computing incrementally.
155  * @p: pointer to buffer over which CRC is run
156  * @len: length of buffer @p
157  */
158 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
159 
160 #if CRC_BE_BITS == 1
161 /*
162  * In fact, the table-based code will work in this case, but it can be
163  * simplified by inlining the table in ?: form.
164  */
165 
crc32_be(u32 crc,unsigned char const * p,size_t len)166 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
167 {
168 	int i;
169 	while (len--) {
170 		crc ^= *p++ << 24;
171 		for (i = 0; i < 8; i++)
172 			crc =
173 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
174 					  0);
175 	}
176 	return crc;
177 }
178 
179 #else				/* Table-based approach */
crc32_be(u32 crc,unsigned char const * p,size_t len)180 u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
181 {
182 # if CRC_BE_BITS == 8
183 	const u32      (*tab)[] = crc32table_be;
184 
185 	crc = __cpu_to_be32(crc);
186 	crc = crc32_body(crc, p, len, tab);
187 	return __be32_to_cpu(crc);
188 # elif CRC_BE_BITS == 4
189 	while (len--) {
190 		crc ^= *p++ << 24;
191 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
192 		crc = (crc << 4) ^ crc32table_be[crc >> 28];
193 	}
194 	return crc;
195 # elif CRC_BE_BITS == 2
196 	while (len--) {
197 		crc ^= *p++ << 24;
198 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
199 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
200 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
201 		crc = (crc << 2) ^ crc32table_be[crc >> 30];
202 	}
203 	return crc;
204 # endif
205 }
206 #endif
207 
208 EXPORT_SYMBOL(crc32_le);
209 EXPORT_SYMBOL(crc32_be);
210 
211 /*
212  * A brief CRC tutorial.
213  *
214  * A CRC is a long-division remainder.  You add the CRC to the message,
215  * and the whole thing (message+CRC) is a multiple of the given
216  * CRC polynomial.  To check the CRC, you can either check that the
217  * CRC matches the recomputed value, *or* you can check that the
218  * remainder computed on the message+CRC is 0.  This latter approach
219  * is used by a lot of hardware implementations, and is why so many
220  * protocols put the end-of-frame flag after the CRC.
221  *
222  * It's actually the same long division you learned in school, except that
223  * - We're working in binary, so the digits are only 0 and 1, and
224  * - When dividing polynomials, there are no carries.  Rather than add and
225  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
226  *   the difference between adding and subtracting.
227  *
228  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
229  * 33 bits long, bit 32 is always going to be set, so usually the CRC
230  * is written in hex with the most significant bit omitted.  (If you're
231  * familiar with the IEEE 754 floating-point format, it's the same idea.)
232  *
233  * Note that a CRC is computed over a string of *bits*, so you have
234  * to decide on the endianness of the bits within each byte.  To get
235  * the best error-detecting properties, this should correspond to the
236  * order they're actually sent.  For example, standard RS-232 serial is
237  * little-endian; the most significant bit (sometimes used for parity)
238  * is sent last.  And when appending a CRC word to a message, you should
239  * do it in the right order, matching the endianness.
240  *
241  * Just like with ordinary division, the remainder is always smaller than
242  * the divisor (the CRC polynomial) you're dividing by.  Each step of the
243  * division, you take one more digit (bit) of the dividend and append it
244  * to the current remainder.  Then you figure out the appropriate multiple
245  * of the divisor to subtract to being the remainder back into range.
246  * In binary, it's easy - it has to be either 0 or 1, and to make the
247  * XOR cancel, it's just a copy of bit 32 of the remainder.
248  *
249  * When computing a CRC, we don't care about the quotient, so we can
250  * throw the quotient bit away, but subtract the appropriate multiple of
251  * the polynomial from the remainder and we're back to where we started,
252  * ready to process the next bit.
253  *
254  * A big-endian CRC written this way would be coded like:
255  * for (i = 0; i < input_bits; i++) {
256  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0;
257  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple;
258  * }
259  * Notice how, to get at bit 32 of the shifted remainder, we look
260  * at bit 31 of the remainder *before* shifting it.
261  *
262  * But also notice how the next_input_bit() bits we're shifting into
263  * the remainder don't actually affect any decision-making until
264  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
265  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
266  * the end, so we have to add 32 extra cycles shifting in zeros at the
267  * end of every message,
268  *
269  * So the standard trick is to rearrage merging in the next_input_bit()
270  * until the moment it's needed.  Then the first 32 cycles can be precomputed,
271  * and merging in the final 32 zero bits to make room for the CRC can be
272  * skipped entirely.
273  * This changes the code to:
274  * for (i = 0; i < input_bits; i++) {
275  *      remainder ^= next_input_bit() << 31;
276  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
277  * 	remainder = (remainder << 1) ^ multiple;
278  * }
279  * With this optimization, the little-endian code is simpler:
280  * for (i = 0; i < input_bits; i++) {
281  *      remainder ^= next_input_bit();
282  * 	multiple = (remainder & 1) ? CRCPOLY : 0;
283  * 	remainder = (remainder >> 1) ^ multiple;
284  * }
285  *
286  * Note that the other details of endianness have been hidden in CRCPOLY
287  * (which must be bit-reversed) and next_input_bit().
288  *
289  * However, as long as next_input_bit is returning the bits in a sensible
290  * order, we can actually do the merging 8 or more bits at a time rather
291  * than one bit at a time:
292  * for (i = 0; i < input_bytes; i++) {
293  * 	remainder ^= next_input_byte() << 24;
294  * 	for (j = 0; j < 8; j++) {
295  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
296  * 		remainder = (remainder << 1) ^ multiple;
297  * 	}
298  * }
299  * Or in little-endian:
300  * for (i = 0; i < input_bytes; i++) {
301  * 	remainder ^= next_input_byte();
302  * 	for (j = 0; j < 8; j++) {
303  * 		multiple = (remainder & 1) ? CRCPOLY : 0;
304  * 		remainder = (remainder << 1) ^ multiple;
305  * 	}
306  * }
307  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
308  * word at a time and increase the inner loop count to 32.
309  *
310  * You can also mix and match the two loop styles, for example doing the
311  * bulk of a message byte-at-a-time and adding bit-at-a-time processing
312  * for any fractional bytes at the end.
313  *
314  * The only remaining optimization is to the byte-at-a-time table method.
315  * Here, rather than just shifting one bit of the remainder to decide
316  * in the correct multiple to subtract, we can shift a byte at a time.
317  * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
318  * but again the multiple of the polynomial to subtract depends only on
319  * the high bits, the high 8 bits in this case.
320  *
321  * The multiple we need in that case is the low 32 bits of a 40-bit
322  * value whose high 8 bits are given, and which is a multiple of the
323  * generator polynomial.  This is simply the CRC-32 of the given
324  * one-byte message.
325  *
326  * Two more details: normally, appending zero bits to a message which
327  * is already a multiple of a polynomial produces a larger multiple of that
328  * polynomial.  To enable a CRC to detect this condition, it's common to
329  * invert the CRC before appending it.  This makes the remainder of the
330  * message+crc come out not as zero, but some fixed non-zero value.
331  *
332  * The same problem applies to zero bits prepended to the message, and
333  * a similar solution is used.  Instead of starting with a remainder of
334  * 0, an initial remainder of all ones is used.  As long as you start
335  * the same way on decoding, it doesn't make a difference.
336  */
337 
338 #ifdef UNITTEST
339 
340 #include <stdlib.h>
341 #include <stdio.h>
342 
343 #if 0				/*Not used at present */
344 static void
345 buf_dump(char const *prefix, unsigned char const *buf, size_t len)
346 {
347 	fputs(prefix, stdout);
348 	while (len--)
349 		printf(" %02x", *buf++);
350 	putchar('\n');
351 
352 }
353 #endif
354 
bytereverse(unsigned char * buf,size_t len)355 static void bytereverse(unsigned char *buf, size_t len)
356 {
357 	while (len--) {
358 		unsigned char x = bitrev8(*buf);
359 		*buf++ = x;
360 	}
361 }
362 
random_garbage(unsigned char * buf,size_t len)363 static void random_garbage(unsigned char *buf, size_t len)
364 {
365 	while (len--)
366 		*buf++ = (unsigned char) random();
367 }
368 
369 #if 0				/* Not used at present */
370 static void store_le(u32 x, unsigned char *buf)
371 {
372 	buf[0] = (unsigned char) x;
373 	buf[1] = (unsigned char) (x >> 8);
374 	buf[2] = (unsigned char) (x >> 16);
375 	buf[3] = (unsigned char) (x >> 24);
376 }
377 #endif
378 
store_be(u32 x,unsigned char * buf)379 static void store_be(u32 x, unsigned char *buf)
380 {
381 	buf[0] = (unsigned char) (x >> 24);
382 	buf[1] = (unsigned char) (x >> 16);
383 	buf[2] = (unsigned char) (x >> 8);
384 	buf[3] = (unsigned char) x;
385 }
386 
387 /*
388  * This checks that CRC(buf + CRC(buf)) = 0, and that
389  * CRC commutes with bit-reversal.  This has the side effect
390  * of bytewise bit-reversing the input buffer, and returns
391  * the CRC of the reversed buffer.
392  */
test_step(u32 init,unsigned char * buf,size_t len)393 static u32 test_step(u32 init, unsigned char *buf, size_t len)
394 {
395 	u32 crc1, crc2;
396 	size_t i;
397 
398 	crc1 = crc32_be(init, buf, len);
399 	store_be(crc1, buf + len);
400 	crc2 = crc32_be(init, buf, len + 4);
401 	if (crc2)
402 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
403 		       crc2);
404 
405 	for (i = 0; i <= len + 4; i++) {
406 		crc2 = crc32_be(init, buf, i);
407 		crc2 = crc32_be(crc2, buf + i, len + 4 - i);
408 		if (crc2)
409 			printf("\nCRC split fail: 0x%08x\n", crc2);
410 	}
411 
412 	/* Now swap it around for the other test */
413 
414 	bytereverse(buf, len + 4);
415 	init = bitrev32(init);
416 	crc2 = bitrev32(crc1);
417 	if (crc1 != bitrev32(crc2))
418 		printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
419 		       crc1, crc2, bitrev32(crc2));
420 	crc1 = crc32_le(init, buf, len);
421 	if (crc1 != crc2)
422 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
423 		       crc2);
424 	crc2 = crc32_le(init, buf, len + 4);
425 	if (crc2)
426 		printf("\nCRC cancellation fail: 0x%08x should be 0\n",
427 		       crc2);
428 
429 	for (i = 0; i <= len + 4; i++) {
430 		crc2 = crc32_le(init, buf, i);
431 		crc2 = crc32_le(crc2, buf + i, len + 4 - i);
432 		if (crc2)
433 			printf("\nCRC split fail: 0x%08x\n", crc2);
434 	}
435 
436 	return crc1;
437 }
438 
439 #define SIZE 64
440 #define INIT1 0
441 #define INIT2 0
442 
main(void)443 int main(void)
444 {
445 	unsigned char buf1[SIZE + 4];
446 	unsigned char buf2[SIZE + 4];
447 	unsigned char buf3[SIZE + 4];
448 	int i, j;
449 	u32 crc1, crc2, crc3;
450 
451 	for (i = 0; i <= SIZE; i++) {
452 		printf("\rTesting length %d...", i);
453 		fflush(stdout);
454 		random_garbage(buf1, i);
455 		random_garbage(buf2, i);
456 		for (j = 0; j < i; j++)
457 			buf3[j] = buf1[j] ^ buf2[j];
458 
459 		crc1 = test_step(INIT1, buf1, i);
460 		crc2 = test_step(INIT2, buf2, i);
461 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
462 		crc3 = test_step(INIT1 ^ INIT2, buf3, i);
463 		if (crc3 != (crc1 ^ crc2))
464 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
465 			       crc3, crc1, crc2);
466 	}
467 	printf("\nAll test complete.  No failures expected.\n");
468 	return 0;
469 }
470 
471 #endif				/* UNITTEST */
472