1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Key setup facility for FS encryption support.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11 #include <crypto/skcipher.h>
12 #include <linux/random.h>
13
14 #include "fscrypt_private.h"
15
16 struct fscrypt_mode fscrypt_modes[] = {
17 [FSCRYPT_MODE_AES_256_XTS] = {
18 .friendly_name = "AES-256-XTS",
19 .cipher_str = "xts(aes)",
20 .keysize = 64,
21 .security_strength = 32,
22 .ivsize = 16,
23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24 },
25 [FSCRYPT_MODE_AES_256_CTS] = {
26 .friendly_name = "AES-256-CTS-CBC",
27 .cipher_str = "cts(cbc(aes))",
28 .keysize = 32,
29 .security_strength = 32,
30 .ivsize = 16,
31 },
32 [FSCRYPT_MODE_AES_128_CBC] = {
33 .friendly_name = "AES-128-CBC-ESSIV",
34 .cipher_str = "essiv(cbc(aes),sha256)",
35 .keysize = 16,
36 .security_strength = 16,
37 .ivsize = 16,
38 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
39 },
40 [FSCRYPT_MODE_AES_128_CTS] = {
41 .friendly_name = "AES-128-CTS-CBC",
42 .cipher_str = "cts(cbc(aes))",
43 .keysize = 16,
44 .security_strength = 16,
45 .ivsize = 16,
46 },
47 [FSCRYPT_MODE_ADIANTUM] = {
48 .friendly_name = "Adiantum",
49 .cipher_str = "adiantum(xchacha12,aes)",
50 .keysize = 32,
51 .security_strength = 32,
52 .ivsize = 32,
53 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
54 },
55 [FSCRYPT_MODE_AES_256_HCTR2] = {
56 .friendly_name = "AES-256-HCTR2",
57 .cipher_str = "hctr2(aes)",
58 .keysize = 32,
59 .security_strength = 32,
60 .ivsize = 32,
61 },
62 };
63
64 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
65
66 static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy * policy,const struct inode * inode)67 select_encryption_mode(const union fscrypt_policy *policy,
68 const struct inode *inode)
69 {
70 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
71
72 if (S_ISREG(inode->i_mode))
73 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
74
75 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
76 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
77
78 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
79 inode->i_ino, (inode->i_mode & S_IFMT));
80 return ERR_PTR(-EINVAL);
81 }
82
83 /* Create a symmetric cipher object for the given encryption mode and key */
84 static struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode * mode,const u8 * raw_key,const struct inode * inode)85 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
86 const struct inode *inode)
87 {
88 struct crypto_skcipher *tfm;
89 int err;
90
91 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
92 if (IS_ERR(tfm)) {
93 if (PTR_ERR(tfm) == -ENOENT) {
94 fscrypt_warn(inode,
95 "Missing crypto API support for %s (API name: \"%s\")",
96 mode->friendly_name, mode->cipher_str);
97 return ERR_PTR(-ENOPKG);
98 }
99 fscrypt_err(inode, "Error allocating '%s' transform: %ld",
100 mode->cipher_str, PTR_ERR(tfm));
101 return tfm;
102 }
103 if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
104 /*
105 * fscrypt performance can vary greatly depending on which
106 * crypto algorithm implementation is used. Help people debug
107 * performance problems by logging the ->cra_driver_name the
108 * first time a mode is used.
109 */
110 pr_info("fscrypt: %s using implementation \"%s\"\n",
111 mode->friendly_name, crypto_skcipher_driver_name(tfm));
112 }
113 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
114 err = -EINVAL;
115 goto err_free_tfm;
116 }
117 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
118 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
119 if (err)
120 goto err_free_tfm;
121
122 return tfm;
123
124 err_free_tfm:
125 crypto_free_skcipher(tfm);
126 return ERR_PTR(err);
127 }
128
129 /*
130 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
131 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
132 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
133 * and IV generation method (@ci->ci_policy.flags).
134 */
fscrypt_prepare_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,const struct fscrypt_info * ci)135 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
136 const u8 *raw_key, const struct fscrypt_info *ci)
137 {
138 struct crypto_skcipher *tfm;
139
140 if (fscrypt_using_inline_encryption(ci))
141 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
142
143 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
144 if (IS_ERR(tfm))
145 return PTR_ERR(tfm);
146 /*
147 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
148 * I.e., here we publish ->tfm with a RELEASE barrier so that
149 * concurrent tasks can ACQUIRE it. Note that this concurrency is only
150 * possible for per-mode keys, not for per-file keys.
151 */
152 smp_store_release(&prep_key->tfm, tfm);
153 return 0;
154 }
155
156 /* Destroy a crypto transform object and/or blk-crypto key. */
fscrypt_destroy_prepared_key(struct super_block * sb,struct fscrypt_prepared_key * prep_key)157 void fscrypt_destroy_prepared_key(struct super_block *sb,
158 struct fscrypt_prepared_key *prep_key)
159 {
160 crypto_free_skcipher(prep_key->tfm);
161 fscrypt_destroy_inline_crypt_key(sb, prep_key);
162 memzero_explicit(prep_key, sizeof(*prep_key));
163 }
164
165 /* Given a per-file encryption key, set up the file's crypto transform object */
fscrypt_set_per_file_enc_key(struct fscrypt_info * ci,const u8 * raw_key)166 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
167 {
168 ci->ci_owns_key = true;
169 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
170 }
171
setup_per_mode_enc_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,struct fscrypt_prepared_key * keys,u8 hkdf_context,bool include_fs_uuid)172 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
173 struct fscrypt_master_key *mk,
174 struct fscrypt_prepared_key *keys,
175 u8 hkdf_context, bool include_fs_uuid)
176 {
177 const struct inode *inode = ci->ci_inode;
178 const struct super_block *sb = inode->i_sb;
179 struct fscrypt_mode *mode = ci->ci_mode;
180 const u8 mode_num = mode - fscrypt_modes;
181 struct fscrypt_prepared_key *prep_key;
182 u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
183 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
184 unsigned int hkdf_infolen = 0;
185 int err;
186
187 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
188 return -EINVAL;
189
190 prep_key = &keys[mode_num];
191 if (fscrypt_is_key_prepared(prep_key, ci)) {
192 ci->ci_enc_key = *prep_key;
193 return 0;
194 }
195
196 mutex_lock(&fscrypt_mode_key_setup_mutex);
197
198 if (fscrypt_is_key_prepared(prep_key, ci))
199 goto done_unlock;
200
201 BUILD_BUG_ON(sizeof(mode_num) != 1);
202 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
203 BUILD_BUG_ON(sizeof(hkdf_info) != 17);
204 hkdf_info[hkdf_infolen++] = mode_num;
205 if (include_fs_uuid) {
206 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
207 sizeof(sb->s_uuid));
208 hkdf_infolen += sizeof(sb->s_uuid);
209 }
210 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
211 hkdf_context, hkdf_info, hkdf_infolen,
212 mode_key, mode->keysize);
213 if (err)
214 goto out_unlock;
215 err = fscrypt_prepare_key(prep_key, mode_key, ci);
216 memzero_explicit(mode_key, mode->keysize);
217 if (err)
218 goto out_unlock;
219 done_unlock:
220 ci->ci_enc_key = *prep_key;
221 err = 0;
222 out_unlock:
223 mutex_unlock(&fscrypt_mode_key_setup_mutex);
224 return err;
225 }
226
227 /*
228 * Derive a SipHash key from the given fscrypt master key and the given
229 * application-specific information string.
230 *
231 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
232 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
233 * endianness swap in order to get the same results as on little endian CPUs.
234 */
fscrypt_derive_siphash_key(const struct fscrypt_master_key * mk,u8 context,const u8 * info,unsigned int infolen,siphash_key_t * key)235 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
236 u8 context, const u8 *info,
237 unsigned int infolen, siphash_key_t *key)
238 {
239 int err;
240
241 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
242 (u8 *)key, sizeof(*key));
243 if (err)
244 return err;
245
246 BUILD_BUG_ON(sizeof(*key) != 16);
247 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
248 le64_to_cpus(&key->key[0]);
249 le64_to_cpus(&key->key[1]);
250 return 0;
251 }
252
fscrypt_derive_dirhash_key(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)253 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
254 const struct fscrypt_master_key *mk)
255 {
256 int err;
257
258 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
259 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
260 &ci->ci_dirhash_key);
261 if (err)
262 return err;
263 ci->ci_dirhash_key_initialized = true;
264 return 0;
265 }
266
fscrypt_hash_inode_number(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)267 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
268 const struct fscrypt_master_key *mk)
269 {
270 WARN_ON(ci->ci_inode->i_ino == 0);
271 WARN_ON(!mk->mk_ino_hash_key_initialized);
272
273 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
274 &mk->mk_ino_hash_key);
275 }
276
fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk)277 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
278 struct fscrypt_master_key *mk)
279 {
280 int err;
281
282 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
283 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
284 if (err)
285 return err;
286
287 /* pairs with smp_store_release() below */
288 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
289
290 mutex_lock(&fscrypt_mode_key_setup_mutex);
291
292 if (mk->mk_ino_hash_key_initialized)
293 goto unlock;
294
295 err = fscrypt_derive_siphash_key(mk,
296 HKDF_CONTEXT_INODE_HASH_KEY,
297 NULL, 0, &mk->mk_ino_hash_key);
298 if (err)
299 goto unlock;
300 /* pairs with smp_load_acquire() above */
301 smp_store_release(&mk->mk_ino_hash_key_initialized, true);
302 unlock:
303 mutex_unlock(&fscrypt_mode_key_setup_mutex);
304 if (err)
305 return err;
306 }
307
308 /*
309 * New inodes may not have an inode number assigned yet.
310 * Hashing their inode number is delayed until later.
311 */
312 if (ci->ci_inode->i_ino)
313 fscrypt_hash_inode_number(ci, mk);
314 return 0;
315 }
316
fscrypt_setup_v2_file_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,bool need_dirhash_key)317 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
318 struct fscrypt_master_key *mk,
319 bool need_dirhash_key)
320 {
321 int err;
322
323 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
324 /*
325 * DIRECT_KEY: instead of deriving per-file encryption keys, the
326 * per-file nonce will be included in all the IVs. But unlike
327 * v1 policies, for v2 policies in this case we don't encrypt
328 * with the master key directly but rather derive a per-mode
329 * encryption key. This ensures that the master key is
330 * consistently used only for HKDF, avoiding key reuse issues.
331 */
332 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
333 HKDF_CONTEXT_DIRECT_KEY, false);
334 } else if (ci->ci_policy.v2.flags &
335 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
336 /*
337 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
338 * mode_num, filesystem_uuid), and inode number is included in
339 * the IVs. This format is optimized for use with inline
340 * encryption hardware compliant with the UFS standard.
341 */
342 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
343 HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
344 true);
345 } else if (ci->ci_policy.v2.flags &
346 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
347 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
348 } else {
349 u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
350
351 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
352 HKDF_CONTEXT_PER_FILE_ENC_KEY,
353 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
354 derived_key, ci->ci_mode->keysize);
355 if (err)
356 return err;
357
358 err = fscrypt_set_per_file_enc_key(ci, derived_key);
359 memzero_explicit(derived_key, ci->ci_mode->keysize);
360 }
361 if (err)
362 return err;
363
364 /* Derive a secret dirhash key for directories that need it. */
365 if (need_dirhash_key) {
366 err = fscrypt_derive_dirhash_key(ci, mk);
367 if (err)
368 return err;
369 }
370
371 return 0;
372 }
373
374 /*
375 * Check whether the size of the given master key (@mk) is appropriate for the
376 * encryption settings which a particular file will use (@ci).
377 *
378 * If the file uses a v1 encryption policy, then the master key must be at least
379 * as long as the derived key, as this is a requirement of the v1 KDF.
380 *
381 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
382 * requirement: we require that the size of the master key be at least the
383 * maximum security strength of any algorithm whose key will be derived from it
384 * (but in practice we only need to consider @ci->ci_mode, since any other
385 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
386 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be
387 * derived from a 256-bit master key, which is cryptographically sufficient,
388 * rather than requiring a 512-bit master key which is unnecessarily long. (We
389 * still allow 512-bit master keys if the user chooses to use them, though.)
390 */
fscrypt_valid_master_key_size(const struct fscrypt_master_key * mk,const struct fscrypt_info * ci)391 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
392 const struct fscrypt_info *ci)
393 {
394 unsigned int min_keysize;
395
396 if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
397 min_keysize = ci->ci_mode->keysize;
398 else
399 min_keysize = ci->ci_mode->security_strength;
400
401 if (mk->mk_secret.size < min_keysize) {
402 fscrypt_warn(NULL,
403 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
404 master_key_spec_type(&mk->mk_spec),
405 master_key_spec_len(&mk->mk_spec),
406 (u8 *)&mk->mk_spec.u,
407 mk->mk_secret.size, min_keysize);
408 return false;
409 }
410 return true;
411 }
412
413 /*
414 * Find the master key, then set up the inode's actual encryption key.
415 *
416 * If the master key is found in the filesystem-level keyring, then it is
417 * returned in *mk_ret with its semaphore read-locked. This is needed to ensure
418 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
419 * multiple tasks may race to create an fscrypt_info for the same inode), and to
420 * synchronize the master key being removed with a new inode starting to use it.
421 */
setup_file_encryption_key(struct fscrypt_info * ci,bool need_dirhash_key,struct fscrypt_master_key ** mk_ret)422 static int setup_file_encryption_key(struct fscrypt_info *ci,
423 bool need_dirhash_key,
424 struct fscrypt_master_key **mk_ret)
425 {
426 struct fscrypt_key_specifier mk_spec;
427 struct fscrypt_master_key *mk;
428 int err;
429
430 err = fscrypt_select_encryption_impl(ci);
431 if (err)
432 return err;
433
434 err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
435 if (err)
436 return err;
437
438 mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
439 if (!mk) {
440 if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
441 return -ENOKEY;
442
443 /*
444 * As a legacy fallback for v1 policies, search for the key in
445 * the current task's subscribed keyrings too. Don't move this
446 * to before the search of ->s_master_keys, since users
447 * shouldn't be able to override filesystem-level keys.
448 */
449 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
450 }
451 down_read(&mk->mk_sem);
452
453 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
454 if (!is_master_key_secret_present(&mk->mk_secret)) {
455 err = -ENOKEY;
456 goto out_release_key;
457 }
458
459 if (!fscrypt_valid_master_key_size(mk, ci)) {
460 err = -ENOKEY;
461 goto out_release_key;
462 }
463
464 switch (ci->ci_policy.version) {
465 case FSCRYPT_POLICY_V1:
466 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
467 break;
468 case FSCRYPT_POLICY_V2:
469 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
470 break;
471 default:
472 WARN_ON(1);
473 err = -EINVAL;
474 break;
475 }
476 if (err)
477 goto out_release_key;
478
479 *mk_ret = mk;
480 return 0;
481
482 out_release_key:
483 up_read(&mk->mk_sem);
484 fscrypt_put_master_key(mk);
485 return err;
486 }
487
put_crypt_info(struct fscrypt_info * ci)488 static void put_crypt_info(struct fscrypt_info *ci)
489 {
490 struct fscrypt_master_key *mk;
491
492 if (!ci)
493 return;
494
495 if (ci->ci_direct_key)
496 fscrypt_put_direct_key(ci->ci_direct_key);
497 else if (ci->ci_owns_key)
498 fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
499 &ci->ci_enc_key);
500
501 mk = ci->ci_master_key;
502 if (mk) {
503 /*
504 * Remove this inode from the list of inodes that were unlocked
505 * with the master key. In addition, if we're removing the last
506 * inode from a master key struct that already had its secret
507 * removed, then complete the full removal of the struct.
508 */
509 spin_lock(&mk->mk_decrypted_inodes_lock);
510 list_del(&ci->ci_master_key_link);
511 spin_unlock(&mk->mk_decrypted_inodes_lock);
512 fscrypt_put_master_key_activeref(mk);
513 }
514 memzero_explicit(ci, sizeof(*ci));
515 kmem_cache_free(fscrypt_info_cachep, ci);
516 }
517
518 static int
fscrypt_setup_encryption_info(struct inode * inode,const union fscrypt_policy * policy,const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],bool need_dirhash_key)519 fscrypt_setup_encryption_info(struct inode *inode,
520 const union fscrypt_policy *policy,
521 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
522 bool need_dirhash_key)
523 {
524 struct fscrypt_info *crypt_info;
525 struct fscrypt_mode *mode;
526 struct fscrypt_master_key *mk = NULL;
527 int res;
528
529 res = fscrypt_initialize(inode->i_sb->s_cop->flags);
530 if (res)
531 return res;
532
533 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
534 if (!crypt_info)
535 return -ENOMEM;
536
537 crypt_info->ci_inode = inode;
538 crypt_info->ci_policy = *policy;
539 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
540
541 mode = select_encryption_mode(&crypt_info->ci_policy, inode);
542 if (IS_ERR(mode)) {
543 res = PTR_ERR(mode);
544 goto out;
545 }
546 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
547 crypt_info->ci_mode = mode;
548
549 res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
550 if (res)
551 goto out;
552
553 /*
554 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
555 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in
556 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a
557 * RELEASE barrier so that other tasks can ACQUIRE it.
558 */
559 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
560 /*
561 * We won the race and set ->i_crypt_info to our crypt_info.
562 * Now link it into the master key's inode list.
563 */
564 if (mk) {
565 crypt_info->ci_master_key = mk;
566 refcount_inc(&mk->mk_active_refs);
567 spin_lock(&mk->mk_decrypted_inodes_lock);
568 list_add(&crypt_info->ci_master_key_link,
569 &mk->mk_decrypted_inodes);
570 spin_unlock(&mk->mk_decrypted_inodes_lock);
571 }
572 crypt_info = NULL;
573 }
574 res = 0;
575 out:
576 if (mk) {
577 up_read(&mk->mk_sem);
578 fscrypt_put_master_key(mk);
579 }
580 put_crypt_info(crypt_info);
581 return res;
582 }
583
584 /**
585 * fscrypt_get_encryption_info() - set up an inode's encryption key
586 * @inode: the inode to set up the key for. Must be encrypted.
587 * @allow_unsupported: if %true, treat an unsupported encryption policy (or
588 * unrecognized encryption context) the same way as the key
589 * being unavailable, instead of returning an error. Use
590 * %false unless the operation being performed is needed in
591 * order for files (or directories) to be deleted.
592 *
593 * Set up ->i_crypt_info, if it hasn't already been done.
594 *
595 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So
596 * generally this shouldn't be called from within a filesystem transaction.
597 *
598 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
599 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to
600 * distinguish these cases.) Also can return another -errno code.
601 */
fscrypt_get_encryption_info(struct inode * inode,bool allow_unsupported)602 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
603 {
604 int res;
605 union fscrypt_context ctx;
606 union fscrypt_policy policy;
607
608 if (fscrypt_has_encryption_key(inode))
609 return 0;
610
611 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
612 if (res < 0) {
613 if (res == -ERANGE && allow_unsupported)
614 return 0;
615 fscrypt_warn(inode, "Error %d getting encryption context", res);
616 return res;
617 }
618
619 res = fscrypt_policy_from_context(&policy, &ctx, res);
620 if (res) {
621 if (allow_unsupported)
622 return 0;
623 fscrypt_warn(inode,
624 "Unrecognized or corrupt encryption context");
625 return res;
626 }
627
628 if (!fscrypt_supported_policy(&policy, inode)) {
629 if (allow_unsupported)
630 return 0;
631 return -EINVAL;
632 }
633
634 res = fscrypt_setup_encryption_info(inode, &policy,
635 fscrypt_context_nonce(&ctx),
636 IS_CASEFOLDED(inode) &&
637 S_ISDIR(inode->i_mode));
638
639 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
640 res = 0;
641 if (res == -ENOKEY)
642 res = 0;
643 return res;
644 }
645
646 /**
647 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
648 * @dir: a possibly-encrypted directory
649 * @inode: the new inode. ->i_mode must be set already.
650 * ->i_ino doesn't need to be set yet.
651 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
652 *
653 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
654 * encrypting the name of the new file. Also, if the new inode will be
655 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
656 *
657 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
658 * any filesystem transaction to create the inode. For this reason, ->i_ino
659 * isn't required to be set yet, as the filesystem may not have set it yet.
660 *
661 * This doesn't persist the new inode's encryption context. That still needs to
662 * be done later by calling fscrypt_set_context().
663 *
664 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
665 * -errno code
666 */
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)667 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
668 bool *encrypt_ret)
669 {
670 const union fscrypt_policy *policy;
671 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
672
673 policy = fscrypt_policy_to_inherit(dir);
674 if (policy == NULL)
675 return 0;
676 if (IS_ERR(policy))
677 return PTR_ERR(policy);
678
679 if (WARN_ON_ONCE(inode->i_mode == 0))
680 return -EINVAL;
681
682 /*
683 * Only regular files, directories, and symlinks are encrypted.
684 * Special files like device nodes and named pipes aren't.
685 */
686 if (!S_ISREG(inode->i_mode) &&
687 !S_ISDIR(inode->i_mode) &&
688 !S_ISLNK(inode->i_mode))
689 return 0;
690
691 *encrypt_ret = true;
692
693 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
694 return fscrypt_setup_encryption_info(inode, policy, nonce,
695 IS_CASEFOLDED(dir) &&
696 S_ISDIR(inode->i_mode));
697 }
698 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
699
700 /**
701 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
702 * @inode: an inode being evicted
703 *
704 * Free the inode's fscrypt_info. Filesystems must call this when the inode is
705 * being evicted. An RCU grace period need not have elapsed yet.
706 */
fscrypt_put_encryption_info(struct inode * inode)707 void fscrypt_put_encryption_info(struct inode *inode)
708 {
709 put_crypt_info(inode->i_crypt_info);
710 inode->i_crypt_info = NULL;
711 }
712 EXPORT_SYMBOL(fscrypt_put_encryption_info);
713
714 /**
715 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
716 * @inode: an inode being freed
717 *
718 * Free the inode's cached decrypted symlink target, if any. Filesystems must
719 * call this after an RCU grace period, just before they free the inode.
720 */
fscrypt_free_inode(struct inode * inode)721 void fscrypt_free_inode(struct inode *inode)
722 {
723 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
724 kfree(inode->i_link);
725 inode->i_link = NULL;
726 }
727 }
728 EXPORT_SYMBOL(fscrypt_free_inode);
729
730 /**
731 * fscrypt_drop_inode() - check whether the inode's master key has been removed
732 * @inode: an inode being considered for eviction
733 *
734 * Filesystems supporting fscrypt must call this from their ->drop_inode()
735 * method so that encrypted inodes are evicted as soon as they're no longer in
736 * use and their master key has been removed.
737 *
738 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
739 */
fscrypt_drop_inode(struct inode * inode)740 int fscrypt_drop_inode(struct inode *inode)
741 {
742 const struct fscrypt_info *ci = fscrypt_get_info(inode);
743
744 /*
745 * If ci is NULL, then the inode doesn't have an encryption key set up
746 * so it's irrelevant. If ci_master_key is NULL, then the master key
747 * was provided via the legacy mechanism of the process-subscribed
748 * keyrings, so we don't know whether it's been removed or not.
749 */
750 if (!ci || !ci->ci_master_key)
751 return 0;
752
753 /*
754 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
755 * protected by the key were cleaned by sync_filesystem(). But if
756 * userspace is still using the files, inodes can be dirtied between
757 * then and now. We mustn't lose any writes, so skip dirty inodes here.
758 */
759 if (inode->i_state & I_DIRTY_ALL)
760 return 0;
761
762 /*
763 * Note: since we aren't holding the key semaphore, the result here can
764 * immediately become outdated. But there's no correctness problem with
765 * unnecessarily evicting. Nor is there a correctness problem with not
766 * evicting while iput() is racing with the key being removed, since
767 * then the thread removing the key will either evict the inode itself
768 * or will correctly detect that it wasn't evicted due to the race.
769 */
770 return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
771 }
772 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
773