1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/mempolicy.h>
32 #include <linux/mm.h>
33 #include <linux/memory.h>
34 #include <linux/export.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/sched/deadline.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/task.h>
40 #include <linux/security.h>
41 #include <linux/spinlock.h>
42 #include <linux/oom.h>
43 #include <linux/sched/isolation.h>
44 #include <linux/cgroup.h>
45 #include <linux/wait.h>
46
47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
49
50 /*
51 * There could be abnormal cpuset configurations for cpu or memory
52 * node binding, add this key to provide a quick low-cost judgment
53 * of the situation.
54 */
55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
56
57 /* See "Frequency meter" comments, below. */
58
59 struct fmeter {
60 int cnt; /* unprocessed events count */
61 int val; /* most recent output value */
62 time64_t time; /* clock (secs) when val computed */
63 spinlock_t lock; /* guards read or write of above */
64 };
65
66 /*
67 * Invalid partition error code
68 */
69 enum prs_errcode {
70 PERR_NONE = 0,
71 PERR_INVCPUS,
72 PERR_INVPARENT,
73 PERR_NOTPART,
74 PERR_NOTEXCL,
75 PERR_NOCPUS,
76 PERR_HOTPLUG,
77 PERR_CPUSEMPTY,
78 };
79
80 static const char * const perr_strings[] = {
81 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus",
82 [PERR_INVPARENT] = "Parent is an invalid partition root",
83 [PERR_NOTPART] = "Parent is not a partition root",
84 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
85 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
86 [PERR_HOTPLUG] = "No cpu available due to hotplug",
87 [PERR_CPUSEMPTY] = "cpuset.cpus is empty",
88 };
89
90 struct cpuset {
91 struct cgroup_subsys_state css;
92
93 unsigned long flags; /* "unsigned long" so bitops work */
94
95 /*
96 * On default hierarchy:
97 *
98 * The user-configured masks can only be changed by writing to
99 * cpuset.cpus and cpuset.mems, and won't be limited by the
100 * parent masks.
101 *
102 * The effective masks is the real masks that apply to the tasks
103 * in the cpuset. They may be changed if the configured masks are
104 * changed or hotplug happens.
105 *
106 * effective_mask == configured_mask & parent's effective_mask,
107 * and if it ends up empty, it will inherit the parent's mask.
108 *
109 *
110 * On legacy hierarchy:
111 *
112 * The user-configured masks are always the same with effective masks.
113 */
114
115 /* user-configured CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t cpus_allowed;
117 nodemask_t mems_allowed;
118
119 /* effective CPUs and Memory Nodes allow to tasks */
120 cpumask_var_t effective_cpus;
121 nodemask_t effective_mems;
122
123 /*
124 * CPUs allocated to child sub-partitions (default hierarchy only)
125 * - CPUs granted by the parent = effective_cpus U subparts_cpus
126 * - effective_cpus and subparts_cpus are mutually exclusive.
127 *
128 * effective_cpus contains only onlined CPUs, but subparts_cpus
129 * may have offlined ones.
130 */
131 cpumask_var_t subparts_cpus;
132
133 /*
134 * This is old Memory Nodes tasks took on.
135 *
136 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
137 * - A new cpuset's old_mems_allowed is initialized when some
138 * task is moved into it.
139 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
140 * cpuset.mems_allowed and have tasks' nodemask updated, and
141 * then old_mems_allowed is updated to mems_allowed.
142 */
143 nodemask_t old_mems_allowed;
144
145 struct fmeter fmeter; /* memory_pressure filter */
146
147 /*
148 * Tasks are being attached to this cpuset. Used to prevent
149 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
150 */
151 int attach_in_progress;
152
153 /* partition number for rebuild_sched_domains() */
154 int pn;
155
156 /* for custom sched domain */
157 int relax_domain_level;
158
159 /* number of CPUs in subparts_cpus */
160 int nr_subparts_cpus;
161
162 /* partition root state */
163 int partition_root_state;
164
165 /*
166 * Default hierarchy only:
167 * use_parent_ecpus - set if using parent's effective_cpus
168 * child_ecpus_count - # of children with use_parent_ecpus set
169 */
170 int use_parent_ecpus;
171 int child_ecpus_count;
172
173 /*
174 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
175 * know when to rebuild associated root domain bandwidth information.
176 */
177 int nr_deadline_tasks;
178 int nr_migrate_dl_tasks;
179 u64 sum_migrate_dl_bw;
180
181 /* Invalid partition error code, not lock protected */
182 enum prs_errcode prs_err;
183
184 /* Handle for cpuset.cpus.partition */
185 struct cgroup_file partition_file;
186 };
187
188 /*
189 * Partition root states:
190 *
191 * 0 - member (not a partition root)
192 * 1 - partition root
193 * 2 - partition root without load balancing (isolated)
194 * -1 - invalid partition root
195 * -2 - invalid isolated partition root
196 */
197 #define PRS_MEMBER 0
198 #define PRS_ROOT 1
199 #define PRS_ISOLATED 2
200 #define PRS_INVALID_ROOT -1
201 #define PRS_INVALID_ISOLATED -2
202
is_prs_invalid(int prs_state)203 static inline bool is_prs_invalid(int prs_state)
204 {
205 return prs_state < 0;
206 }
207
208 /*
209 * Temporary cpumasks for working with partitions that are passed among
210 * functions to avoid memory allocation in inner functions.
211 */
212 struct tmpmasks {
213 cpumask_var_t addmask, delmask; /* For partition root */
214 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
215 };
216
css_cs(struct cgroup_subsys_state * css)217 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
218 {
219 return css ? container_of(css, struct cpuset, css) : NULL;
220 }
221
222 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)223 static inline struct cpuset *task_cs(struct task_struct *task)
224 {
225 return css_cs(task_css(task, cpuset_cgrp_id));
226 }
227
parent_cs(struct cpuset * cs)228 static inline struct cpuset *parent_cs(struct cpuset *cs)
229 {
230 return css_cs(cs->css.parent);
231 }
232
inc_dl_tasks_cs(struct task_struct * p)233 void inc_dl_tasks_cs(struct task_struct *p)
234 {
235 struct cpuset *cs = task_cs(p);
236
237 cs->nr_deadline_tasks++;
238 }
239
dec_dl_tasks_cs(struct task_struct * p)240 void dec_dl_tasks_cs(struct task_struct *p)
241 {
242 struct cpuset *cs = task_cs(p);
243
244 cs->nr_deadline_tasks--;
245 }
246
247 /* bits in struct cpuset flags field */
248 typedef enum {
249 CS_ONLINE,
250 CS_CPU_EXCLUSIVE,
251 CS_MEM_EXCLUSIVE,
252 CS_MEM_HARDWALL,
253 CS_MEMORY_MIGRATE,
254 CS_SCHED_LOAD_BALANCE,
255 CS_SPREAD_PAGE,
256 CS_SPREAD_SLAB,
257 } cpuset_flagbits_t;
258
259 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)260 static inline bool is_cpuset_online(struct cpuset *cs)
261 {
262 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
263 }
264
is_cpu_exclusive(const struct cpuset * cs)265 static inline int is_cpu_exclusive(const struct cpuset *cs)
266 {
267 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
268 }
269
is_mem_exclusive(const struct cpuset * cs)270 static inline int is_mem_exclusive(const struct cpuset *cs)
271 {
272 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
273 }
274
is_mem_hardwall(const struct cpuset * cs)275 static inline int is_mem_hardwall(const struct cpuset *cs)
276 {
277 return test_bit(CS_MEM_HARDWALL, &cs->flags);
278 }
279
is_sched_load_balance(const struct cpuset * cs)280 static inline int is_sched_load_balance(const struct cpuset *cs)
281 {
282 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
283 }
284
is_memory_migrate(const struct cpuset * cs)285 static inline int is_memory_migrate(const struct cpuset *cs)
286 {
287 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
288 }
289
is_spread_page(const struct cpuset * cs)290 static inline int is_spread_page(const struct cpuset *cs)
291 {
292 return test_bit(CS_SPREAD_PAGE, &cs->flags);
293 }
294
is_spread_slab(const struct cpuset * cs)295 static inline int is_spread_slab(const struct cpuset *cs)
296 {
297 return test_bit(CS_SPREAD_SLAB, &cs->flags);
298 }
299
is_partition_valid(const struct cpuset * cs)300 static inline int is_partition_valid(const struct cpuset *cs)
301 {
302 return cs->partition_root_state > 0;
303 }
304
is_partition_invalid(const struct cpuset * cs)305 static inline int is_partition_invalid(const struct cpuset *cs)
306 {
307 return cs->partition_root_state < 0;
308 }
309
310 /*
311 * Callers should hold callback_lock to modify partition_root_state.
312 */
make_partition_invalid(struct cpuset * cs)313 static inline void make_partition_invalid(struct cpuset *cs)
314 {
315 if (is_partition_valid(cs))
316 cs->partition_root_state = -cs->partition_root_state;
317 }
318
319 /*
320 * Send notification event of whenever partition_root_state changes.
321 */
notify_partition_change(struct cpuset * cs,int old_prs)322 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
323 {
324 if (old_prs == cs->partition_root_state)
325 return;
326 cgroup_file_notify(&cs->partition_file);
327
328 /* Reset prs_err if not invalid */
329 if (is_partition_valid(cs))
330 WRITE_ONCE(cs->prs_err, PERR_NONE);
331 }
332
333 static struct cpuset top_cpuset = {
334 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
335 (1 << CS_MEM_EXCLUSIVE)),
336 .partition_root_state = PRS_ROOT,
337 };
338
339 /**
340 * cpuset_for_each_child - traverse online children of a cpuset
341 * @child_cs: loop cursor pointing to the current child
342 * @pos_css: used for iteration
343 * @parent_cs: target cpuset to walk children of
344 *
345 * Walk @child_cs through the online children of @parent_cs. Must be used
346 * with RCU read locked.
347 */
348 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
349 css_for_each_child((pos_css), &(parent_cs)->css) \
350 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
351
352 /**
353 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
354 * @des_cs: loop cursor pointing to the current descendant
355 * @pos_css: used for iteration
356 * @root_cs: target cpuset to walk ancestor of
357 *
358 * Walk @des_cs through the online descendants of @root_cs. Must be used
359 * with RCU read locked. The caller may modify @pos_css by calling
360 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
361 * iteration and the first node to be visited.
362 */
363 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
364 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
365 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
366
367 /*
368 * There are two global locks guarding cpuset structures - cpuset_mutex and
369 * callback_lock. We also require taking task_lock() when dereferencing a
370 * task's cpuset pointer. See "The task_lock() exception", at the end of this
371 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
372 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
373 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
374 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
375 * correctness.
376 *
377 * A task must hold both locks to modify cpusets. If a task holds
378 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
379 * also acquire callback_lock and be able to modify cpusets. It can perform
380 * various checks on the cpuset structure first, knowing nothing will change.
381 * It can also allocate memory while just holding cpuset_mutex. While it is
382 * performing these checks, various callback routines can briefly acquire
383 * callback_lock to query cpusets. Once it is ready to make the changes, it
384 * takes callback_lock, blocking everyone else.
385 *
386 * Calls to the kernel memory allocator can not be made while holding
387 * callback_lock, as that would risk double tripping on callback_lock
388 * from one of the callbacks into the cpuset code from within
389 * __alloc_pages().
390 *
391 * If a task is only holding callback_lock, then it has read-only
392 * access to cpusets.
393 *
394 * Now, the task_struct fields mems_allowed and mempolicy may be changed
395 * by other task, we use alloc_lock in the task_struct fields to protect
396 * them.
397 *
398 * The cpuset_common_file_read() handlers only hold callback_lock across
399 * small pieces of code, such as when reading out possibly multi-word
400 * cpumasks and nodemasks.
401 *
402 * Accessing a task's cpuset should be done in accordance with the
403 * guidelines for accessing subsystem state in kernel/cgroup.c
404 */
405
406 static DEFINE_MUTEX(cpuset_mutex);
407
cpuset_lock(void)408 void cpuset_lock(void)
409 {
410 mutex_lock(&cpuset_mutex);
411 }
412
cpuset_unlock(void)413 void cpuset_unlock(void)
414 {
415 mutex_unlock(&cpuset_mutex);
416 }
417
418 static DEFINE_SPINLOCK(callback_lock);
419
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421
422 /*
423 * CPU / memory hotplug is handled asynchronously.
424 */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429
check_insane_mems_config(nodemask_t * nodes)430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 if (!cpusets_insane_config() &&
433 movable_only_nodes(nodes)) {
434 static_branch_enable(&cpusets_insane_config_key);
435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 "Cpuset allocations might fail even with a lot of memory available.\n",
437 nodemask_pr_args(nodes));
438 }
439 }
440
441 /*
442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445 * With v2 behavior, "cpus" and "mems" are always what the users have
446 * requested and won't be changed by hotplug events. Only the effective
447 * cpus or mems will be affected.
448 */
is_in_v2_mode(void)449 static inline bool is_in_v2_mode(void)
450 {
451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454
455 /**
456 * partition_is_populated - check if partition has tasks
457 * @cs: partition root to be checked
458 * @excluded_child: a child cpuset to be excluded in task checking
459 * Return: true if there are tasks, false otherwise
460 *
461 * It is assumed that @cs is a valid partition root. @excluded_child should
462 * be non-NULL when this cpuset is going to become a partition itself.
463 */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)464 static inline bool partition_is_populated(struct cpuset *cs,
465 struct cpuset *excluded_child)
466 {
467 struct cgroup_subsys_state *css;
468 struct cpuset *child;
469
470 if (cs->css.cgroup->nr_populated_csets)
471 return true;
472 if (!excluded_child && !cs->nr_subparts_cpus)
473 return cgroup_is_populated(cs->css.cgroup);
474
475 rcu_read_lock();
476 cpuset_for_each_child(child, css, cs) {
477 if (child == excluded_child)
478 continue;
479 if (is_partition_valid(child))
480 continue;
481 if (cgroup_is_populated(child->css.cgroup)) {
482 rcu_read_unlock();
483 return true;
484 }
485 }
486 rcu_read_unlock();
487 return false;
488 }
489
490 /*
491 * Return in pmask the portion of a task's cpusets's cpus_allowed that
492 * are online and are capable of running the task. If none are found,
493 * walk up the cpuset hierarchy until we find one that does have some
494 * appropriate cpus.
495 *
496 * One way or another, we guarantee to return some non-empty subset
497 * of cpu_online_mask.
498 *
499 * Call with callback_lock or cpuset_mutex held.
500 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)501 static void guarantee_online_cpus(struct task_struct *tsk,
502 struct cpumask *pmask)
503 {
504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 struct cpuset *cs;
506
507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 cpumask_copy(pmask, cpu_online_mask);
509
510 rcu_read_lock();
511 cs = task_cs(tsk);
512
513 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 cs = parent_cs(cs);
515 if (unlikely(!cs)) {
516 /*
517 * The top cpuset doesn't have any online cpu as a
518 * consequence of a race between cpuset_hotplug_work
519 * and cpu hotplug notifier. But we know the top
520 * cpuset's effective_cpus is on its way to be
521 * identical to cpu_online_mask.
522 */
523 goto out_unlock;
524 }
525 }
526 cpumask_and(pmask, pmask, cs->effective_cpus);
527
528 out_unlock:
529 rcu_read_unlock();
530 }
531
532 /*
533 * Return in *pmask the portion of a cpusets's mems_allowed that
534 * are online, with memory. If none are online with memory, walk
535 * up the cpuset hierarchy until we find one that does have some
536 * online mems. The top cpuset always has some mems online.
537 *
538 * One way or another, we guarantee to return some non-empty subset
539 * of node_states[N_MEMORY].
540 *
541 * Call with callback_lock or cpuset_mutex held.
542 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 cs = parent_cs(cs);
547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549
550 /*
551 * update task's spread flag if cpuset's page/slab spread flag is set
552 *
553 * Call with callback_lock or cpuset_mutex held. The check can be skipped
554 * if on default hierarchy.
555 */
cpuset_update_task_spread_flags(struct cpuset * cs,struct task_struct * tsk)556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 struct task_struct *tsk)
558 {
559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 return;
561
562 if (is_spread_page(cs))
563 task_set_spread_page(tsk);
564 else
565 task_clear_spread_page(tsk);
566
567 if (is_spread_slab(cs))
568 task_set_spread_slab(tsk);
569 else
570 task_clear_spread_slab(tsk);
571 }
572
573 /*
574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575 *
576 * One cpuset is a subset of another if all its allowed CPUs and
577 * Memory Nodes are a subset of the other, and its exclusive flags
578 * are only set if the other's are set. Call holding cpuset_mutex.
579 */
580
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588
589 /**
590 * alloc_cpumasks - allocate three cpumasks for cpuset
591 * @cs: the cpuset that have cpumasks to be allocated.
592 * @tmp: the tmpmasks structure pointer
593 * Return: 0 if successful, -ENOMEM otherwise.
594 *
595 * Only one of the two input arguments should be non-NULL.
596 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 cpumask_var_t *pmask1, *pmask2, *pmask3;
600
601 if (cs) {
602 pmask1 = &cs->cpus_allowed;
603 pmask2 = &cs->effective_cpus;
604 pmask3 = &cs->subparts_cpus;
605 } else {
606 pmask1 = &tmp->new_cpus;
607 pmask2 = &tmp->addmask;
608 pmask3 = &tmp->delmask;
609 }
610
611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 return -ENOMEM;
613
614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 goto free_one;
616
617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 goto free_two;
619
620 return 0;
621
622 free_two:
623 free_cpumask_var(*pmask2);
624 free_one:
625 free_cpumask_var(*pmask1);
626 return -ENOMEM;
627 }
628
629 /**
630 * free_cpumasks - free cpumasks in a tmpmasks structure
631 * @cs: the cpuset that have cpumasks to be free.
632 * @tmp: the tmpmasks structure pointer
633 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 if (cs) {
637 free_cpumask_var(cs->cpus_allowed);
638 free_cpumask_var(cs->effective_cpus);
639 free_cpumask_var(cs->subparts_cpus);
640 }
641 if (tmp) {
642 free_cpumask_var(tmp->new_cpus);
643 free_cpumask_var(tmp->addmask);
644 free_cpumask_var(tmp->delmask);
645 }
646 }
647
648 /**
649 * alloc_trial_cpuset - allocate a trial cpuset
650 * @cs: the cpuset that the trial cpuset duplicates
651 */
alloc_trial_cpuset(struct cpuset * cs)652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 struct cpuset *trial;
655
656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 if (!trial)
658 return NULL;
659
660 if (alloc_cpumasks(trial, NULL)) {
661 kfree(trial);
662 return NULL;
663 }
664
665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 return trial;
668 }
669
670 /**
671 * free_cpuset - free the cpuset
672 * @cs: the cpuset to be freed
673 */
free_cpuset(struct cpuset * cs)674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 free_cpumasks(cs, NULL);
677 kfree(cs);
678 }
679
680 /*
681 * validate_change_legacy() - Validate conditions specific to legacy (v1)
682 * behavior.
683 */
validate_change_legacy(struct cpuset * cur,struct cpuset * trial)684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 struct cgroup_subsys_state *css;
687 struct cpuset *c, *par;
688 int ret;
689
690 WARN_ON_ONCE(!rcu_read_lock_held());
691
692 /* Each of our child cpusets must be a subset of us */
693 ret = -EBUSY;
694 cpuset_for_each_child(c, css, cur)
695 if (!is_cpuset_subset(c, trial))
696 goto out;
697
698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 ret = -EACCES;
700 par = parent_cs(cur);
701 if (par && !is_cpuset_subset(trial, par))
702 goto out;
703
704 ret = 0;
705 out:
706 return ret;
707 }
708
709 /*
710 * validate_change() - Used to validate that any proposed cpuset change
711 * follows the structural rules for cpusets.
712 *
713 * If we replaced the flag and mask values of the current cpuset
714 * (cur) with those values in the trial cpuset (trial), would
715 * our various subset and exclusive rules still be valid? Presumes
716 * cpuset_mutex held.
717 *
718 * 'cur' is the address of an actual, in-use cpuset. Operations
719 * such as list traversal that depend on the actual address of the
720 * cpuset in the list must use cur below, not trial.
721 *
722 * 'trial' is the address of bulk structure copy of cur, with
723 * perhaps one or more of the fields cpus_allowed, mems_allowed,
724 * or flags changed to new, trial values.
725 *
726 * Return 0 if valid, -errno if not.
727 */
728
validate_change(struct cpuset * cur,struct cpuset * trial)729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 struct cgroup_subsys_state *css;
732 struct cpuset *c, *par;
733 int ret = 0;
734
735 rcu_read_lock();
736
737 if (!is_in_v2_mode())
738 ret = validate_change_legacy(cur, trial);
739 if (ret)
740 goto out;
741
742 /* Remaining checks don't apply to root cpuset */
743 if (cur == &top_cpuset)
744 goto out;
745
746 par = parent_cs(cur);
747
748 /*
749 * Cpusets with tasks - existing or newly being attached - can't
750 * be changed to have empty cpus_allowed or mems_allowed.
751 */
752 ret = -ENOSPC;
753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 if (!cpumask_empty(cur->cpus_allowed) &&
755 cpumask_empty(trial->cpus_allowed))
756 goto out;
757 if (!nodes_empty(cur->mems_allowed) &&
758 nodes_empty(trial->mems_allowed))
759 goto out;
760 }
761
762 /*
763 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 * tasks.
765 */
766 ret = -EBUSY;
767 if (is_cpu_exclusive(cur) &&
768 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 trial->cpus_allowed))
770 goto out;
771
772 /*
773 * If either I or some sibling (!= me) is exclusive, we can't
774 * overlap
775 */
776 ret = -EINVAL;
777 cpuset_for_each_child(c, css, par) {
778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 c != cur &&
780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 goto out;
782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 c != cur &&
784 nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 goto out;
786 }
787
788 ret = 0;
789 out:
790 rcu_read_unlock();
791 return ret;
792 }
793
794 #ifdef CONFIG_SMP
795 /*
796 * Helper routine for generate_sched_domains().
797 * Do cpusets a, b have overlapping effective cpus_allowed masks?
798 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803
804 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 if (dattr->relax_domain_level < c->relax_domain_level)
808 dattr->relax_domain_level = c->relax_domain_level;
809 return;
810 }
811
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 struct cpuset *root_cs)
814 {
815 struct cpuset *cp;
816 struct cgroup_subsys_state *pos_css;
817
818 rcu_read_lock();
819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 /* skip the whole subtree if @cp doesn't have any CPU */
821 if (cpumask_empty(cp->cpus_allowed)) {
822 pos_css = css_rightmost_descendant(pos_css);
823 continue;
824 }
825
826 if (is_sched_load_balance(cp))
827 update_domain_attr(dattr, cp);
828 }
829 rcu_read_unlock();
830 }
831
832 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)833 static inline int nr_cpusets(void)
834 {
835 /* jump label reference count + the top-level cpuset */
836 return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838
839 /*
840 * generate_sched_domains()
841 *
842 * This function builds a partial partition of the systems CPUs
843 * A 'partial partition' is a set of non-overlapping subsets whose
844 * union is a subset of that set.
845 * The output of this function needs to be passed to kernel/sched/core.c
846 * partition_sched_domains() routine, which will rebuild the scheduler's
847 * load balancing domains (sched domains) as specified by that partial
848 * partition.
849 *
850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851 * for a background explanation of this.
852 *
853 * Does not return errors, on the theory that the callers of this
854 * routine would rather not worry about failures to rebuild sched
855 * domains when operating in the severe memory shortage situations
856 * that could cause allocation failures below.
857 *
858 * Must be called with cpuset_mutex held.
859 *
860 * The three key local variables below are:
861 * cp - cpuset pointer, used (together with pos_css) to perform a
862 * top-down scan of all cpusets. For our purposes, rebuilding
863 * the schedulers sched domains, we can ignore !is_sched_load_
864 * balance cpusets.
865 * csa - (for CpuSet Array) Array of pointers to all the cpusets
866 * that need to be load balanced, for convenient iterative
867 * access by the subsequent code that finds the best partition,
868 * i.e the set of domains (subsets) of CPUs such that the
869 * cpus_allowed of every cpuset marked is_sched_load_balance
870 * is a subset of one of these domains, while there are as
871 * many such domains as possible, each as small as possible.
872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
873 * the kernel/sched/core.c routine partition_sched_domains() in a
874 * convenient format, that can be easily compared to the prior
875 * value to determine what partition elements (sched domains)
876 * were changed (added or removed.)
877 *
878 * Finding the best partition (set of domains):
879 * The triple nested loops below over i, j, k scan over the
880 * load balanced cpusets (using the array of cpuset pointers in
881 * csa[]) looking for pairs of cpusets that have overlapping
882 * cpus_allowed, but which don't have the same 'pn' partition
883 * number and gives them in the same partition number. It keeps
884 * looping on the 'restart' label until it can no longer find
885 * any such pairs.
886 *
887 * The union of the cpus_allowed masks from the set of
888 * all cpusets having the same 'pn' value then form the one
889 * element of the partition (one sched domain) to be passed to
890 * partition_sched_domains().
891 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)892 static int generate_sched_domains(cpumask_var_t **domains,
893 struct sched_domain_attr **attributes)
894 {
895 struct cpuset *cp; /* top-down scan of cpusets */
896 struct cpuset **csa; /* array of all cpuset ptrs */
897 int csn; /* how many cpuset ptrs in csa so far */
898 int i, j, k; /* indices for partition finding loops */
899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
900 struct sched_domain_attr *dattr; /* attributes for custom domains */
901 int ndoms = 0; /* number of sched domains in result */
902 int nslot; /* next empty doms[] struct cpumask slot */
903 struct cgroup_subsys_state *pos_css;
904 bool root_load_balance = is_sched_load_balance(&top_cpuset);
905
906 doms = NULL;
907 dattr = NULL;
908 csa = NULL;
909
910 /* Special case for the 99% of systems with one, full, sched domain */
911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 ndoms = 1;
913 doms = alloc_sched_domains(ndoms);
914 if (!doms)
915 goto done;
916
917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 if (dattr) {
919 *dattr = SD_ATTR_INIT;
920 update_domain_attr_tree(dattr, &top_cpuset);
921 }
922 cpumask_and(doms[0], top_cpuset.effective_cpus,
923 housekeeping_cpumask(HK_TYPE_DOMAIN));
924
925 goto done;
926 }
927
928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 if (!csa)
930 goto done;
931 csn = 0;
932
933 rcu_read_lock();
934 if (root_load_balance)
935 csa[csn++] = &top_cpuset;
936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 if (cp == &top_cpuset)
938 continue;
939 /*
940 * Continue traversing beyond @cp iff @cp has some CPUs and
941 * isn't load balancing. The former is obvious. The
942 * latter: All child cpusets contain a subset of the
943 * parent's cpus, so just skip them, and then we call
944 * update_domain_attr_tree() to calc relax_domain_level of
945 * the corresponding sched domain.
946 *
947 * If root is load-balancing, we can skip @cp if it
948 * is a subset of the root's effective_cpus.
949 */
950 if (!cpumask_empty(cp->cpus_allowed) &&
951 !(is_sched_load_balance(cp) &&
952 cpumask_intersects(cp->cpus_allowed,
953 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 continue;
955
956 if (root_load_balance &&
957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 continue;
959
960 if (is_sched_load_balance(cp) &&
961 !cpumask_empty(cp->effective_cpus))
962 csa[csn++] = cp;
963
964 /* skip @cp's subtree if not a partition root */
965 if (!is_partition_valid(cp))
966 pos_css = css_rightmost_descendant(pos_css);
967 }
968 rcu_read_unlock();
969
970 for (i = 0; i < csn; i++)
971 csa[i]->pn = i;
972 ndoms = csn;
973
974 restart:
975 /* Find the best partition (set of sched domains) */
976 for (i = 0; i < csn; i++) {
977 struct cpuset *a = csa[i];
978 int apn = a->pn;
979
980 for (j = 0; j < csn; j++) {
981 struct cpuset *b = csa[j];
982 int bpn = b->pn;
983
984 if (apn != bpn && cpusets_overlap(a, b)) {
985 for (k = 0; k < csn; k++) {
986 struct cpuset *c = csa[k];
987
988 if (c->pn == bpn)
989 c->pn = apn;
990 }
991 ndoms--; /* one less element */
992 goto restart;
993 }
994 }
995 }
996
997 /*
998 * Now we know how many domains to create.
999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 */
1001 doms = alloc_sched_domains(ndoms);
1002 if (!doms)
1003 goto done;
1004
1005 /*
1006 * The rest of the code, including the scheduler, can deal with
1007 * dattr==NULL case. No need to abort if alloc fails.
1008 */
1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 GFP_KERNEL);
1011
1012 for (nslot = 0, i = 0; i < csn; i++) {
1013 struct cpuset *a = csa[i];
1014 struct cpumask *dp;
1015 int apn = a->pn;
1016
1017 if (apn < 0) {
1018 /* Skip completed partitions */
1019 continue;
1020 }
1021
1022 dp = doms[nslot];
1023
1024 if (nslot == ndoms) {
1025 static int warnings = 10;
1026 if (warnings) {
1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 nslot, ndoms, csn, i, apn);
1029 warnings--;
1030 }
1031 continue;
1032 }
1033
1034 cpumask_clear(dp);
1035 if (dattr)
1036 *(dattr + nslot) = SD_ATTR_INIT;
1037 for (j = i; j < csn; j++) {
1038 struct cpuset *b = csa[j];
1039
1040 if (apn == b->pn) {
1041 cpumask_or(dp, dp, b->effective_cpus);
1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 if (dattr)
1044 update_domain_attr_tree(dattr + nslot, b);
1045
1046 /* Done with this partition */
1047 b->pn = -1;
1048 }
1049 }
1050 nslot++;
1051 }
1052 BUG_ON(nslot != ndoms);
1053
1054 done:
1055 kfree(csa);
1056
1057 /*
1058 * Fallback to the default domain if kmalloc() failed.
1059 * See comments in partition_sched_domains().
1060 */
1061 if (doms == NULL)
1062 ndoms = 1;
1063
1064 *domains = doms;
1065 *attributes = dattr;
1066 return ndoms;
1067 }
1068
dl_update_tasks_root_domain(struct cpuset * cs)1069 static void dl_update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 struct css_task_iter it;
1072 struct task_struct *task;
1073
1074 if (cs->nr_deadline_tasks == 0)
1075 return;
1076
1077 css_task_iter_start(&cs->css, 0, &it);
1078
1079 while ((task = css_task_iter_next(&it)))
1080 dl_add_task_root_domain(task);
1081
1082 css_task_iter_end(&it);
1083 }
1084
dl_rebuild_rd_accounting(void)1085 static void dl_rebuild_rd_accounting(void)
1086 {
1087 struct cpuset *cs = NULL;
1088 struct cgroup_subsys_state *pos_css;
1089
1090 lockdep_assert_held(&cpuset_mutex);
1091 lockdep_assert_cpus_held();
1092 lockdep_assert_held(&sched_domains_mutex);
1093
1094 rcu_read_lock();
1095
1096 /*
1097 * Clear default root domain DL accounting, it will be computed again
1098 * if a task belongs to it.
1099 */
1100 dl_clear_root_domain(&def_root_domain);
1101
1102 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1103
1104 if (cpumask_empty(cs->effective_cpus)) {
1105 pos_css = css_rightmost_descendant(pos_css);
1106 continue;
1107 }
1108
1109 css_get(&cs->css);
1110
1111 rcu_read_unlock();
1112
1113 dl_update_tasks_root_domain(cs);
1114
1115 rcu_read_lock();
1116 css_put(&cs->css);
1117 }
1118 rcu_read_unlock();
1119 }
1120
1121 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1122 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1123 struct sched_domain_attr *dattr_new)
1124 {
1125 mutex_lock(&sched_domains_mutex);
1126 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1127 dl_rebuild_rd_accounting();
1128 mutex_unlock(&sched_domains_mutex);
1129 }
1130
1131 /*
1132 * Rebuild scheduler domains.
1133 *
1134 * If the flag 'sched_load_balance' of any cpuset with non-empty
1135 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1136 * which has that flag enabled, or if any cpuset with a non-empty
1137 * 'cpus' is removed, then call this routine to rebuild the
1138 * scheduler's dynamic sched domains.
1139 *
1140 * Call with cpuset_mutex held. Takes cpus_read_lock().
1141 */
rebuild_sched_domains_locked(void)1142 static void rebuild_sched_domains_locked(void)
1143 {
1144 struct cgroup_subsys_state *pos_css;
1145 struct sched_domain_attr *attr;
1146 cpumask_var_t *doms;
1147 struct cpuset *cs;
1148 int ndoms;
1149
1150 lockdep_assert_cpus_held();
1151 lockdep_assert_held(&cpuset_mutex);
1152
1153 /*
1154 * If we have raced with CPU hotplug, return early to avoid
1155 * passing doms with offlined cpu to partition_sched_domains().
1156 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1157 *
1158 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1159 * should be the same as the active CPUs, so checking only top_cpuset
1160 * is enough to detect racing CPU offlines.
1161 */
1162 if (!top_cpuset.nr_subparts_cpus &&
1163 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1164 return;
1165
1166 /*
1167 * With subpartition CPUs, however, the effective CPUs of a partition
1168 * root should be only a subset of the active CPUs. Since a CPU in any
1169 * partition root could be offlined, all must be checked.
1170 */
1171 if (top_cpuset.nr_subparts_cpus) {
1172 rcu_read_lock();
1173 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1174 if (!is_partition_valid(cs)) {
1175 pos_css = css_rightmost_descendant(pos_css);
1176 continue;
1177 }
1178 if (!cpumask_subset(cs->effective_cpus,
1179 cpu_active_mask)) {
1180 rcu_read_unlock();
1181 return;
1182 }
1183 }
1184 rcu_read_unlock();
1185 }
1186
1187 /* Generate domain masks and attrs */
1188 ndoms = generate_sched_domains(&doms, &attr);
1189
1190 /* Have scheduler rebuild the domains */
1191 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1192 }
1193 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1194 static void rebuild_sched_domains_locked(void)
1195 {
1196 }
1197 #endif /* CONFIG_SMP */
1198
rebuild_sched_domains(void)1199 void rebuild_sched_domains(void)
1200 {
1201 cpus_read_lock();
1202 mutex_lock(&cpuset_mutex);
1203 rebuild_sched_domains_locked();
1204 mutex_unlock(&cpuset_mutex);
1205 cpus_read_unlock();
1206 }
1207
1208 /**
1209 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1210 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1211 * @new_cpus: the temp variable for the new effective_cpus mask
1212 *
1213 * Iterate through each task of @cs updating its cpus_allowed to the
1214 * effective cpuset's. As this function is called with cpuset_mutex held,
1215 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1216 * is used instead of effective_cpus to make sure all offline CPUs are also
1217 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1218 */
update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1219 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1220 {
1221 struct css_task_iter it;
1222 struct task_struct *task;
1223 bool top_cs = cs == &top_cpuset;
1224
1225 css_task_iter_start(&cs->css, 0, &it);
1226 while ((task = css_task_iter_next(&it))) {
1227 const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1228
1229 if (top_cs) {
1230 /*
1231 * Percpu kthreads in top_cpuset are ignored
1232 */
1233 if (kthread_is_per_cpu(task))
1234 continue;
1235 cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
1236 } else {
1237 cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1238 }
1239 set_cpus_allowed_ptr(task, new_cpus);
1240 }
1241 css_task_iter_end(&it);
1242 }
1243
1244 /**
1245 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1246 * @new_cpus: the temp variable for the new effective_cpus mask
1247 * @cs: the cpuset the need to recompute the new effective_cpus mask
1248 * @parent: the parent cpuset
1249 *
1250 * If the parent has subpartition CPUs, include them in the list of
1251 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1252 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1253 * to mask those out.
1254 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1255 static void compute_effective_cpumask(struct cpumask *new_cpus,
1256 struct cpuset *cs, struct cpuset *parent)
1257 {
1258 if (parent->nr_subparts_cpus && is_partition_valid(cs)) {
1259 cpumask_or(new_cpus, parent->effective_cpus,
1260 parent->subparts_cpus);
1261 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1262 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1263 } else {
1264 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1265 }
1266 }
1267
1268 /*
1269 * Commands for update_parent_subparts_cpumask
1270 */
1271 enum subparts_cmd {
1272 partcmd_enable, /* Enable partition root */
1273 partcmd_disable, /* Disable partition root */
1274 partcmd_update, /* Update parent's subparts_cpus */
1275 partcmd_invalidate, /* Make partition invalid */
1276 };
1277
1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1279 int turning_on);
1280 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1281 struct tmpmasks *tmp);
1282
1283 /*
1284 * Update partition exclusive flag
1285 *
1286 * Return: 0 if successful, an error code otherwise
1287 */
update_partition_exclusive(struct cpuset * cs,int new_prs)1288 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1289 {
1290 bool exclusive = (new_prs > 0);
1291
1292 if (exclusive && !is_cpu_exclusive(cs)) {
1293 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1294 return PERR_NOTEXCL;
1295 } else if (!exclusive && is_cpu_exclusive(cs)) {
1296 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1297 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1298 }
1299 return 0;
1300 }
1301
1302 /*
1303 * Update partition load balance flag and/or rebuild sched domain
1304 *
1305 * Changing load balance flag will automatically call
1306 * rebuild_sched_domains_locked().
1307 * This function is for cgroup v2 only.
1308 */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1309 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1310 {
1311 int new_prs = cs->partition_root_state;
1312 bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1313 bool new_lb;
1314
1315 /*
1316 * If cs is not a valid partition root, the load balance state
1317 * will follow its parent.
1318 */
1319 if (new_prs > 0) {
1320 new_lb = (new_prs != PRS_ISOLATED);
1321 } else {
1322 new_lb = is_sched_load_balance(parent_cs(cs));
1323 }
1324 if (new_lb != !!is_sched_load_balance(cs)) {
1325 rebuild_domains = true;
1326 if (new_lb)
1327 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1328 else
1329 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1330 }
1331
1332 if (rebuild_domains)
1333 rebuild_sched_domains_locked();
1334 }
1335
1336 /**
1337 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1338 * @cs: The cpuset that requests change in partition root state
1339 * @cmd: Partition root state change command
1340 * @newmask: Optional new cpumask for partcmd_update
1341 * @tmp: Temporary addmask and delmask
1342 * Return: 0 or a partition root state error code
1343 *
1344 * For partcmd_enable, the cpuset is being transformed from a non-partition
1345 * root to a partition root. The cpus_allowed mask of the given cpuset will
1346 * be put into parent's subparts_cpus and taken away from parent's
1347 * effective_cpus. The function will return 0 if all the CPUs listed in
1348 * cpus_allowed can be granted or an error code will be returned.
1349 *
1350 * For partcmd_disable, the cpuset is being transformed from a partition
1351 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1352 * parent's subparts_cpus will be taken away from that cpumask and put back
1353 * into parent's effective_cpus. 0 will always be returned.
1354 *
1355 * For partcmd_update, if the optional newmask is specified, the cpu list is
1356 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1357 * assumed to remain the same. The cpuset should either be a valid or invalid
1358 * partition root. The partition root state may change from valid to invalid
1359 * or vice versa. An error code will only be returned if transitioning from
1360 * invalid to valid violates the exclusivity rule.
1361 *
1362 * For partcmd_invalidate, the current partition will be made invalid.
1363 *
1364 * The partcmd_enable and partcmd_disable commands are used by
1365 * update_prstate(). An error code may be returned and the caller will check
1366 * for error.
1367 *
1368 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1369 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1370 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1371 * check for error and so partition_root_state and prs_error will be updated
1372 * directly.
1373 */
update_parent_subparts_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1374 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1375 struct cpumask *newmask,
1376 struct tmpmasks *tmp)
1377 {
1378 struct cpuset *parent = parent_cs(cs);
1379 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1380 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1381 int old_prs, new_prs;
1382 int part_error = PERR_NONE; /* Partition error? */
1383
1384 lockdep_assert_held(&cpuset_mutex);
1385
1386 /*
1387 * The parent must be a partition root.
1388 * The new cpumask, if present, or the current cpus_allowed must
1389 * not be empty.
1390 */
1391 if (!is_partition_valid(parent)) {
1392 return is_partition_invalid(parent)
1393 ? PERR_INVPARENT : PERR_NOTPART;
1394 }
1395 if (!newmask && cpumask_empty(cs->cpus_allowed))
1396 return PERR_CPUSEMPTY;
1397
1398 /*
1399 * new_prs will only be changed for the partcmd_update and
1400 * partcmd_invalidate commands.
1401 */
1402 adding = deleting = false;
1403 old_prs = new_prs = cs->partition_root_state;
1404 if (cmd == partcmd_enable) {
1405 /*
1406 * Enabling partition root is not allowed if cpus_allowed
1407 * doesn't overlap parent's cpus_allowed.
1408 */
1409 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1410 return PERR_INVCPUS;
1411
1412 /*
1413 * A parent can be left with no CPU as long as there is no
1414 * task directly associated with the parent partition.
1415 */
1416 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1417 partition_is_populated(parent, cs))
1418 return PERR_NOCPUS;
1419
1420 cpumask_copy(tmp->addmask, cs->cpus_allowed);
1421 adding = true;
1422 } else if (cmd == partcmd_disable) {
1423 /*
1424 * Need to remove cpus from parent's subparts_cpus for valid
1425 * partition root.
1426 */
1427 deleting = !is_prs_invalid(old_prs) &&
1428 cpumask_and(tmp->delmask, cs->cpus_allowed,
1429 parent->subparts_cpus);
1430 } else if (cmd == partcmd_invalidate) {
1431 if (is_prs_invalid(old_prs))
1432 return 0;
1433
1434 /*
1435 * Make the current partition invalid. It is assumed that
1436 * invalidation is caused by violating cpu exclusivity rule.
1437 */
1438 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1439 parent->subparts_cpus);
1440 if (old_prs > 0) {
1441 new_prs = -old_prs;
1442 part_error = PERR_NOTEXCL;
1443 }
1444 } else if (newmask) {
1445 /*
1446 * partcmd_update with newmask:
1447 *
1448 * Compute add/delete mask to/from subparts_cpus
1449 *
1450 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1451 * addmask = newmask & parent->cpus_allowed
1452 * & ~parent->subparts_cpus
1453 */
1454 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1455 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1456 parent->subparts_cpus);
1457
1458 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1459 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1460 parent->subparts_cpus);
1461 /*
1462 * Empty cpumask is not allowed
1463 */
1464 if (cpumask_empty(newmask)) {
1465 part_error = PERR_CPUSEMPTY;
1466 /*
1467 * Make partition invalid if parent's effective_cpus could
1468 * become empty and there are tasks in the parent.
1469 */
1470 } else if (adding &&
1471 cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1472 !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1473 partition_is_populated(parent, cs)) {
1474 part_error = PERR_NOCPUS;
1475 adding = false;
1476 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1477 parent->subparts_cpus);
1478 }
1479 } else {
1480 /*
1481 * partcmd_update w/o newmask:
1482 *
1483 * delmask = cpus_allowed & parent->subparts_cpus
1484 * addmask = cpus_allowed & parent->cpus_allowed
1485 * & ~parent->subparts_cpus
1486 *
1487 * This gets invoked either due to a hotplug event or from
1488 * update_cpumasks_hier(). This can cause the state of a
1489 * partition root to transition from valid to invalid or vice
1490 * versa. So we still need to compute the addmask and delmask.
1491
1492 * A partition error happens when:
1493 * 1) Cpuset is valid partition, but parent does not distribute
1494 * out any CPUs.
1495 * 2) Parent has tasks and all its effective CPUs will have
1496 * to be distributed out.
1497 */
1498 cpumask_and(tmp->addmask, cs->cpus_allowed,
1499 parent->cpus_allowed);
1500 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1501 parent->subparts_cpus);
1502
1503 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1504 (adding &&
1505 cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1506 partition_is_populated(parent, cs))) {
1507 part_error = PERR_NOCPUS;
1508 adding = false;
1509 }
1510
1511 if (part_error && is_partition_valid(cs) &&
1512 parent->nr_subparts_cpus)
1513 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1514 parent->subparts_cpus);
1515 }
1516 if (part_error)
1517 WRITE_ONCE(cs->prs_err, part_error);
1518
1519 if (cmd == partcmd_update) {
1520 /*
1521 * Check for possible transition between valid and invalid
1522 * partition root.
1523 */
1524 switch (cs->partition_root_state) {
1525 case PRS_ROOT:
1526 case PRS_ISOLATED:
1527 if (part_error)
1528 new_prs = -old_prs;
1529 break;
1530 case PRS_INVALID_ROOT:
1531 case PRS_INVALID_ISOLATED:
1532 if (!part_error)
1533 new_prs = -old_prs;
1534 break;
1535 }
1536 }
1537
1538 if (!adding && !deleting && (new_prs == old_prs))
1539 return 0;
1540
1541 /*
1542 * Transitioning between invalid to valid or vice versa may require
1543 * changing CS_CPU_EXCLUSIVE.
1544 */
1545 if (old_prs != new_prs) {
1546 int err = update_partition_exclusive(cs, new_prs);
1547
1548 if (err)
1549 return err;
1550 }
1551
1552 /*
1553 * Change the parent's subparts_cpus.
1554 * Newly added CPUs will be removed from effective_cpus and
1555 * newly deleted ones will be added back to effective_cpus.
1556 */
1557 spin_lock_irq(&callback_lock);
1558 if (adding) {
1559 cpumask_or(parent->subparts_cpus,
1560 parent->subparts_cpus, tmp->addmask);
1561 cpumask_andnot(parent->effective_cpus,
1562 parent->effective_cpus, tmp->addmask);
1563 }
1564 if (deleting) {
1565 cpumask_andnot(parent->subparts_cpus,
1566 parent->subparts_cpus, tmp->delmask);
1567 /*
1568 * Some of the CPUs in subparts_cpus might have been offlined.
1569 */
1570 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1571 cpumask_or(parent->effective_cpus,
1572 parent->effective_cpus, tmp->delmask);
1573 }
1574
1575 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1576
1577 if (old_prs != new_prs)
1578 cs->partition_root_state = new_prs;
1579
1580 spin_unlock_irq(&callback_lock);
1581
1582 if (adding || deleting) {
1583 update_tasks_cpumask(parent, tmp->addmask);
1584 if (parent->child_ecpus_count)
1585 update_sibling_cpumasks(parent, cs, tmp);
1586 }
1587
1588 /*
1589 * For partcmd_update without newmask, it is being called from
1590 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
1591 * Update the load balance flag and scheduling domain if
1592 * cpus_read_trylock() is successful.
1593 */
1594 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
1595 update_partition_sd_lb(cs, old_prs);
1596 cpus_read_unlock();
1597 }
1598
1599 notify_partition_change(cs, old_prs);
1600 return 0;
1601 }
1602
1603 /*
1604 * update_cpumasks_hier() flags
1605 */
1606 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
1607 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
1608
1609 /*
1610 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1611 * @cs: the cpuset to consider
1612 * @tmp: temp variables for calculating effective_cpus & partition setup
1613 * @force: don't skip any descendant cpusets if set
1614 *
1615 * When configured cpumask is changed, the effective cpumasks of this cpuset
1616 * and all its descendants need to be updated.
1617 *
1618 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1619 *
1620 * Called with cpuset_mutex held
1621 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,int flags)1622 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1623 int flags)
1624 {
1625 struct cpuset *cp;
1626 struct cgroup_subsys_state *pos_css;
1627 bool need_rebuild_sched_domains = false;
1628 int old_prs, new_prs;
1629
1630 rcu_read_lock();
1631 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1632 struct cpuset *parent = parent_cs(cp);
1633 bool update_parent = false;
1634
1635 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1636
1637 /*
1638 * If it becomes empty, inherit the effective mask of the
1639 * parent, which is guaranteed to have some CPUs unless
1640 * it is a partition root that has explicitly distributed
1641 * out all its CPUs.
1642 */
1643 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1644 if (is_partition_valid(cp) &&
1645 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1646 goto update_parent_subparts;
1647
1648 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1649 if (!cp->use_parent_ecpus) {
1650 cp->use_parent_ecpus = true;
1651 parent->child_ecpus_count++;
1652 }
1653 } else if (cp->use_parent_ecpus) {
1654 cp->use_parent_ecpus = false;
1655 WARN_ON_ONCE(!parent->child_ecpus_count);
1656 parent->child_ecpus_count--;
1657 }
1658
1659 /*
1660 * Skip the whole subtree if
1661 * 1) the cpumask remains the same,
1662 * 2) has no partition root state,
1663 * 3) HIER_CHECKALL flag not set, and
1664 * 4) for v2 load balance state same as its parent.
1665 */
1666 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
1667 cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
1668 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1669 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
1670 pos_css = css_rightmost_descendant(pos_css);
1671 continue;
1672 }
1673
1674 update_parent_subparts:
1675 /*
1676 * update_parent_subparts_cpumask() should have been called
1677 * for cs already in update_cpumask(). We should also call
1678 * update_tasks_cpumask() again for tasks in the parent
1679 * cpuset if the parent's subparts_cpus changes.
1680 */
1681 old_prs = new_prs = cp->partition_root_state;
1682 if ((cp != cs) && old_prs) {
1683 switch (parent->partition_root_state) {
1684 case PRS_ROOT:
1685 case PRS_ISOLATED:
1686 update_parent = true;
1687 break;
1688
1689 default:
1690 /*
1691 * When parent is not a partition root or is
1692 * invalid, child partition roots become
1693 * invalid too.
1694 */
1695 if (is_partition_valid(cp))
1696 new_prs = -cp->partition_root_state;
1697 WRITE_ONCE(cp->prs_err,
1698 is_partition_invalid(parent)
1699 ? PERR_INVPARENT : PERR_NOTPART);
1700 break;
1701 }
1702 }
1703
1704 if (!css_tryget_online(&cp->css))
1705 continue;
1706 rcu_read_unlock();
1707
1708 if (update_parent) {
1709 update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1710 tmp);
1711 /*
1712 * The cpuset partition_root_state may become
1713 * invalid. Capture it.
1714 */
1715 new_prs = cp->partition_root_state;
1716 }
1717
1718 spin_lock_irq(&callback_lock);
1719
1720 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1721 /*
1722 * Put all active subparts_cpus back to effective_cpus.
1723 */
1724 cpumask_or(tmp->new_cpus, tmp->new_cpus,
1725 cp->subparts_cpus);
1726 cpumask_and(tmp->new_cpus, tmp->new_cpus,
1727 cpu_active_mask);
1728 cp->nr_subparts_cpus = 0;
1729 cpumask_clear(cp->subparts_cpus);
1730 }
1731
1732 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1733 if (cp->nr_subparts_cpus) {
1734 /*
1735 * Make sure that effective_cpus & subparts_cpus
1736 * are mutually exclusive.
1737 */
1738 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1739 cp->subparts_cpus);
1740 }
1741
1742 cp->partition_root_state = new_prs;
1743 spin_unlock_irq(&callback_lock);
1744
1745 notify_partition_change(cp, old_prs);
1746
1747 WARN_ON(!is_in_v2_mode() &&
1748 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1749
1750 update_tasks_cpumask(cp, tmp->new_cpus);
1751
1752 /*
1753 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
1754 * from parent if current cpuset isn't a valid partition root
1755 * and their load balance states differ.
1756 */
1757 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1758 !is_partition_valid(cp) &&
1759 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
1760 if (is_sched_load_balance(parent))
1761 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1762 else
1763 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1764 }
1765
1766 /*
1767 * On legacy hierarchy, if the effective cpumask of any non-
1768 * empty cpuset is changed, we need to rebuild sched domains.
1769 * On default hierarchy, the cpuset needs to be a partition
1770 * root as well.
1771 */
1772 if (!cpumask_empty(cp->cpus_allowed) &&
1773 is_sched_load_balance(cp) &&
1774 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1775 is_partition_valid(cp)))
1776 need_rebuild_sched_domains = true;
1777
1778 rcu_read_lock();
1779 css_put(&cp->css);
1780 }
1781 rcu_read_unlock();
1782
1783 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
1784 rebuild_sched_domains_locked();
1785 }
1786
1787 /**
1788 * update_sibling_cpumasks - Update siblings cpumasks
1789 * @parent: Parent cpuset
1790 * @cs: Current cpuset
1791 * @tmp: Temp variables
1792 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1793 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1794 struct tmpmasks *tmp)
1795 {
1796 struct cpuset *sibling;
1797 struct cgroup_subsys_state *pos_css;
1798
1799 lockdep_assert_held(&cpuset_mutex);
1800
1801 /*
1802 * Check all its siblings and call update_cpumasks_hier()
1803 * if their use_parent_ecpus flag is set in order for them
1804 * to use the right effective_cpus value.
1805 *
1806 * The update_cpumasks_hier() function may sleep. So we have to
1807 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
1808 * flag is used to suppress rebuild of sched domains as the callers
1809 * will take care of that.
1810 */
1811 rcu_read_lock();
1812 cpuset_for_each_child(sibling, pos_css, parent) {
1813 if (sibling == cs)
1814 continue;
1815 if (!sibling->use_parent_ecpus)
1816 continue;
1817 if (!css_tryget_online(&sibling->css))
1818 continue;
1819
1820 rcu_read_unlock();
1821 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
1822 rcu_read_lock();
1823 css_put(&sibling->css);
1824 }
1825 rcu_read_unlock();
1826 }
1827
1828 /**
1829 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1830 * @cs: the cpuset to consider
1831 * @trialcs: trial cpuset
1832 * @buf: buffer of cpu numbers written to this cpuset
1833 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1834 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1835 const char *buf)
1836 {
1837 int retval;
1838 struct tmpmasks tmp;
1839 bool invalidate = false;
1840 int old_prs = cs->partition_root_state;
1841
1842 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1843 if (cs == &top_cpuset)
1844 return -EACCES;
1845
1846 /*
1847 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1848 * Since cpulist_parse() fails on an empty mask, we special case
1849 * that parsing. The validate_change() call ensures that cpusets
1850 * with tasks have cpus.
1851 */
1852 if (!*buf) {
1853 cpumask_clear(trialcs->cpus_allowed);
1854 } else {
1855 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1856 if (retval < 0)
1857 return retval;
1858
1859 if (!cpumask_subset(trialcs->cpus_allowed,
1860 top_cpuset.cpus_allowed))
1861 return -EINVAL;
1862 }
1863
1864 /* Nothing to do if the cpus didn't change */
1865 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1866 return 0;
1867
1868 if (alloc_cpumasks(NULL, &tmp))
1869 return -ENOMEM;
1870
1871 retval = validate_change(cs, trialcs);
1872
1873 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1874 struct cpuset *cp, *parent;
1875 struct cgroup_subsys_state *css;
1876
1877 /*
1878 * The -EINVAL error code indicates that partition sibling
1879 * CPU exclusivity rule has been violated. We still allow
1880 * the cpumask change to proceed while invalidating the
1881 * partition. However, any conflicting sibling partitions
1882 * have to be marked as invalid too.
1883 */
1884 invalidate = true;
1885 rcu_read_lock();
1886 parent = parent_cs(cs);
1887 cpuset_for_each_child(cp, css, parent)
1888 if (is_partition_valid(cp) &&
1889 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1890 rcu_read_unlock();
1891 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1892 rcu_read_lock();
1893 }
1894 rcu_read_unlock();
1895 retval = 0;
1896 }
1897 if (retval < 0)
1898 goto out_free;
1899
1900 if (cs->partition_root_state) {
1901 if (invalidate)
1902 update_parent_subparts_cpumask(cs, partcmd_invalidate,
1903 NULL, &tmp);
1904 else
1905 update_parent_subparts_cpumask(cs, partcmd_update,
1906 trialcs->cpus_allowed, &tmp);
1907 }
1908
1909 compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1910 parent_cs(cs));
1911 spin_lock_irq(&callback_lock);
1912 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1913
1914 /*
1915 * Make sure that subparts_cpus, if not empty, is a subset of
1916 * cpus_allowed. Clear subparts_cpus if partition not valid or
1917 * empty effective cpus with tasks.
1918 */
1919 if (cs->nr_subparts_cpus) {
1920 if (!is_partition_valid(cs) ||
1921 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1922 partition_is_populated(cs, NULL))) {
1923 cs->nr_subparts_cpus = 0;
1924 cpumask_clear(cs->subparts_cpus);
1925 } else {
1926 cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1927 cs->cpus_allowed);
1928 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1929 }
1930 }
1931 spin_unlock_irq(&callback_lock);
1932
1933 /* effective_cpus will be updated here */
1934 update_cpumasks_hier(cs, &tmp, 0);
1935
1936 if (cs->partition_root_state) {
1937 struct cpuset *parent = parent_cs(cs);
1938
1939 /*
1940 * For partition root, update the cpumasks of sibling
1941 * cpusets if they use parent's effective_cpus.
1942 */
1943 if (parent->child_ecpus_count)
1944 update_sibling_cpumasks(parent, cs, &tmp);
1945
1946 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */
1947 update_partition_sd_lb(cs, old_prs);
1948 }
1949 out_free:
1950 free_cpumasks(NULL, &tmp);
1951 return 0;
1952 }
1953
1954 /*
1955 * Migrate memory region from one set of nodes to another. This is
1956 * performed asynchronously as it can be called from process migration path
1957 * holding locks involved in process management. All mm migrations are
1958 * performed in the queued order and can be waited for by flushing
1959 * cpuset_migrate_mm_wq.
1960 */
1961
1962 struct cpuset_migrate_mm_work {
1963 struct work_struct work;
1964 struct mm_struct *mm;
1965 nodemask_t from;
1966 nodemask_t to;
1967 };
1968
cpuset_migrate_mm_workfn(struct work_struct * work)1969 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1970 {
1971 struct cpuset_migrate_mm_work *mwork =
1972 container_of(work, struct cpuset_migrate_mm_work, work);
1973
1974 /* on a wq worker, no need to worry about %current's mems_allowed */
1975 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1976 mmput(mwork->mm);
1977 kfree(mwork);
1978 }
1979
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1980 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1981 const nodemask_t *to)
1982 {
1983 struct cpuset_migrate_mm_work *mwork;
1984
1985 if (nodes_equal(*from, *to)) {
1986 mmput(mm);
1987 return;
1988 }
1989
1990 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1991 if (mwork) {
1992 mwork->mm = mm;
1993 mwork->from = *from;
1994 mwork->to = *to;
1995 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1996 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1997 } else {
1998 mmput(mm);
1999 }
2000 }
2001
cpuset_post_attach(void)2002 static void cpuset_post_attach(void)
2003 {
2004 flush_workqueue(cpuset_migrate_mm_wq);
2005 }
2006
2007 /*
2008 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2009 * @tsk: the task to change
2010 * @newmems: new nodes that the task will be set
2011 *
2012 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2013 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2014 * parallel, it might temporarily see an empty intersection, which results in
2015 * a seqlock check and retry before OOM or allocation failure.
2016 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2017 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2018 nodemask_t *newmems)
2019 {
2020 task_lock(tsk);
2021
2022 local_irq_disable();
2023 write_seqcount_begin(&tsk->mems_allowed_seq);
2024
2025 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2026 mpol_rebind_task(tsk, newmems);
2027 tsk->mems_allowed = *newmems;
2028
2029 write_seqcount_end(&tsk->mems_allowed_seq);
2030 local_irq_enable();
2031
2032 task_unlock(tsk);
2033 }
2034
2035 static void *cpuset_being_rebound;
2036
2037 /**
2038 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2039 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2040 *
2041 * Iterate through each task of @cs updating its mems_allowed to the
2042 * effective cpuset's. As this function is called with cpuset_mutex held,
2043 * cpuset membership stays stable.
2044 */
update_tasks_nodemask(struct cpuset * cs)2045 static void update_tasks_nodemask(struct cpuset *cs)
2046 {
2047 static nodemask_t newmems; /* protected by cpuset_mutex */
2048 struct css_task_iter it;
2049 struct task_struct *task;
2050
2051 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2052
2053 guarantee_online_mems(cs, &newmems);
2054
2055 /*
2056 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2057 * take while holding tasklist_lock. Forks can happen - the
2058 * mpol_dup() cpuset_being_rebound check will catch such forks,
2059 * and rebind their vma mempolicies too. Because we still hold
2060 * the global cpuset_mutex, we know that no other rebind effort
2061 * will be contending for the global variable cpuset_being_rebound.
2062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2063 * is idempotent. Also migrate pages in each mm to new nodes.
2064 */
2065 css_task_iter_start(&cs->css, 0, &it);
2066 while ((task = css_task_iter_next(&it))) {
2067 struct mm_struct *mm;
2068 bool migrate;
2069
2070 cpuset_change_task_nodemask(task, &newmems);
2071
2072 mm = get_task_mm(task);
2073 if (!mm)
2074 continue;
2075
2076 migrate = is_memory_migrate(cs);
2077
2078 mpol_rebind_mm(mm, &cs->mems_allowed);
2079 if (migrate)
2080 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2081 else
2082 mmput(mm);
2083 }
2084 css_task_iter_end(&it);
2085
2086 /*
2087 * All the tasks' nodemasks have been updated, update
2088 * cs->old_mems_allowed.
2089 */
2090 cs->old_mems_allowed = newmems;
2091
2092 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
2093 cpuset_being_rebound = NULL;
2094 }
2095
2096 /*
2097 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2098 * @cs: the cpuset to consider
2099 * @new_mems: a temp variable for calculating new effective_mems
2100 *
2101 * When configured nodemask is changed, the effective nodemasks of this cpuset
2102 * and all its descendants need to be updated.
2103 *
2104 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2105 *
2106 * Called with cpuset_mutex held
2107 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2108 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2109 {
2110 struct cpuset *cp;
2111 struct cgroup_subsys_state *pos_css;
2112
2113 rcu_read_lock();
2114 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2115 struct cpuset *parent = parent_cs(cp);
2116
2117 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2118
2119 /*
2120 * If it becomes empty, inherit the effective mask of the
2121 * parent, which is guaranteed to have some MEMs.
2122 */
2123 if (is_in_v2_mode() && nodes_empty(*new_mems))
2124 *new_mems = parent->effective_mems;
2125
2126 /* Skip the whole subtree if the nodemask remains the same. */
2127 if (nodes_equal(*new_mems, cp->effective_mems)) {
2128 pos_css = css_rightmost_descendant(pos_css);
2129 continue;
2130 }
2131
2132 if (!css_tryget_online(&cp->css))
2133 continue;
2134 rcu_read_unlock();
2135
2136 spin_lock_irq(&callback_lock);
2137 cp->effective_mems = *new_mems;
2138 spin_unlock_irq(&callback_lock);
2139
2140 WARN_ON(!is_in_v2_mode() &&
2141 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2142
2143 update_tasks_nodemask(cp);
2144
2145 rcu_read_lock();
2146 css_put(&cp->css);
2147 }
2148 rcu_read_unlock();
2149 }
2150
2151 /*
2152 * Handle user request to change the 'mems' memory placement
2153 * of a cpuset. Needs to validate the request, update the
2154 * cpusets mems_allowed, and for each task in the cpuset,
2155 * update mems_allowed and rebind task's mempolicy and any vma
2156 * mempolicies and if the cpuset is marked 'memory_migrate',
2157 * migrate the tasks pages to the new memory.
2158 *
2159 * Call with cpuset_mutex held. May take callback_lock during call.
2160 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2161 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2162 * their mempolicies to the cpusets new mems_allowed.
2163 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2164 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2165 const char *buf)
2166 {
2167 int retval;
2168
2169 /*
2170 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2171 * it's read-only
2172 */
2173 if (cs == &top_cpuset) {
2174 retval = -EACCES;
2175 goto done;
2176 }
2177
2178 /*
2179 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2180 * Since nodelist_parse() fails on an empty mask, we special case
2181 * that parsing. The validate_change() call ensures that cpusets
2182 * with tasks have memory.
2183 */
2184 if (!*buf) {
2185 nodes_clear(trialcs->mems_allowed);
2186 } else {
2187 retval = nodelist_parse(buf, trialcs->mems_allowed);
2188 if (retval < 0)
2189 goto done;
2190
2191 if (!nodes_subset(trialcs->mems_allowed,
2192 top_cpuset.mems_allowed)) {
2193 retval = -EINVAL;
2194 goto done;
2195 }
2196 }
2197
2198 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2199 retval = 0; /* Too easy - nothing to do */
2200 goto done;
2201 }
2202 retval = validate_change(cs, trialcs);
2203 if (retval < 0)
2204 goto done;
2205
2206 check_insane_mems_config(&trialcs->mems_allowed);
2207
2208 spin_lock_irq(&callback_lock);
2209 cs->mems_allowed = trialcs->mems_allowed;
2210 spin_unlock_irq(&callback_lock);
2211
2212 /* use trialcs->mems_allowed as a temp variable */
2213 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2214 done:
2215 return retval;
2216 }
2217
current_cpuset_is_being_rebound(void)2218 bool current_cpuset_is_being_rebound(void)
2219 {
2220 bool ret;
2221
2222 rcu_read_lock();
2223 ret = task_cs(current) == cpuset_being_rebound;
2224 rcu_read_unlock();
2225
2226 return ret;
2227 }
2228
update_relax_domain_level(struct cpuset * cs,s64 val)2229 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2230 {
2231 #ifdef CONFIG_SMP
2232 if (val < -1 || val >= sched_domain_level_max)
2233 return -EINVAL;
2234 #endif
2235
2236 if (val != cs->relax_domain_level) {
2237 cs->relax_domain_level = val;
2238 if (!cpumask_empty(cs->cpus_allowed) &&
2239 is_sched_load_balance(cs))
2240 rebuild_sched_domains_locked();
2241 }
2242
2243 return 0;
2244 }
2245
2246 /**
2247 * update_tasks_flags - update the spread flags of tasks in the cpuset.
2248 * @cs: the cpuset in which each task's spread flags needs to be changed
2249 *
2250 * Iterate through each task of @cs updating its spread flags. As this
2251 * function is called with cpuset_mutex held, cpuset membership stays
2252 * stable.
2253 */
update_tasks_flags(struct cpuset * cs)2254 static void update_tasks_flags(struct cpuset *cs)
2255 {
2256 struct css_task_iter it;
2257 struct task_struct *task;
2258
2259 css_task_iter_start(&cs->css, 0, &it);
2260 while ((task = css_task_iter_next(&it)))
2261 cpuset_update_task_spread_flags(cs, task);
2262 css_task_iter_end(&it);
2263 }
2264
2265 /*
2266 * update_flag - read a 0 or a 1 in a file and update associated flag
2267 * bit: the bit to update (see cpuset_flagbits_t)
2268 * cs: the cpuset to update
2269 * turning_on: whether the flag is being set or cleared
2270 *
2271 * Call with cpuset_mutex held.
2272 */
2273
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2274 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2275 int turning_on)
2276 {
2277 struct cpuset *trialcs;
2278 int balance_flag_changed;
2279 int spread_flag_changed;
2280 int err;
2281
2282 trialcs = alloc_trial_cpuset(cs);
2283 if (!trialcs)
2284 return -ENOMEM;
2285
2286 if (turning_on)
2287 set_bit(bit, &trialcs->flags);
2288 else
2289 clear_bit(bit, &trialcs->flags);
2290
2291 err = validate_change(cs, trialcs);
2292 if (err < 0)
2293 goto out;
2294
2295 balance_flag_changed = (is_sched_load_balance(cs) !=
2296 is_sched_load_balance(trialcs));
2297
2298 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2299 || (is_spread_page(cs) != is_spread_page(trialcs)));
2300
2301 spin_lock_irq(&callback_lock);
2302 cs->flags = trialcs->flags;
2303 spin_unlock_irq(&callback_lock);
2304
2305 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2306 rebuild_sched_domains_locked();
2307
2308 if (spread_flag_changed)
2309 update_tasks_flags(cs);
2310 out:
2311 free_cpuset(trialcs);
2312 return err;
2313 }
2314
2315 /**
2316 * update_prstate - update partition_root_state
2317 * @cs: the cpuset to update
2318 * @new_prs: new partition root state
2319 * Return: 0 if successful, != 0 if error
2320 *
2321 * Call with cpuset_mutex held.
2322 */
update_prstate(struct cpuset * cs,int new_prs)2323 static int update_prstate(struct cpuset *cs, int new_prs)
2324 {
2325 int err = PERR_NONE, old_prs = cs->partition_root_state;
2326 struct cpuset *parent = parent_cs(cs);
2327 struct tmpmasks tmpmask;
2328
2329 if (old_prs == new_prs)
2330 return 0;
2331
2332 /*
2333 * For a previously invalid partition root, leave it at being
2334 * invalid if new_prs is not "member".
2335 */
2336 if (new_prs && is_prs_invalid(old_prs)) {
2337 cs->partition_root_state = -new_prs;
2338 return 0;
2339 }
2340
2341 if (alloc_cpumasks(NULL, &tmpmask))
2342 return -ENOMEM;
2343
2344 err = update_partition_exclusive(cs, new_prs);
2345 if (err)
2346 goto out;
2347
2348 if (!old_prs) {
2349 /*
2350 * cpus_allowed cannot be empty.
2351 */
2352 if (cpumask_empty(cs->cpus_allowed)) {
2353 err = PERR_CPUSEMPTY;
2354 goto out;
2355 }
2356
2357 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2358 NULL, &tmpmask);
2359 } else if (old_prs && new_prs) {
2360 /*
2361 * A change in load balance state only, no change in cpumasks.
2362 */
2363 ;
2364 } else {
2365 /*
2366 * Switching back to member is always allowed even if it
2367 * disables child partitions.
2368 */
2369 update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2370 &tmpmask);
2371
2372 /*
2373 * If there are child partitions, they will all become invalid.
2374 */
2375 if (unlikely(cs->nr_subparts_cpus)) {
2376 spin_lock_irq(&callback_lock);
2377 cs->nr_subparts_cpus = 0;
2378 cpumask_clear(cs->subparts_cpus);
2379 compute_effective_cpumask(cs->effective_cpus, cs, parent);
2380 spin_unlock_irq(&callback_lock);
2381 }
2382 }
2383 out:
2384 /*
2385 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2386 * happens.
2387 */
2388 if (err) {
2389 new_prs = -new_prs;
2390 update_partition_exclusive(cs, new_prs);
2391 }
2392
2393 spin_lock_irq(&callback_lock);
2394 cs->partition_root_state = new_prs;
2395 WRITE_ONCE(cs->prs_err, err);
2396 spin_unlock_irq(&callback_lock);
2397
2398 /*
2399 * Update child cpusets, if present.
2400 * Force update if switching back to member.
2401 */
2402 if (!list_empty(&cs->css.children))
2403 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
2404
2405 /* Update sched domains and load balance flag */
2406 update_partition_sd_lb(cs, old_prs);
2407
2408 notify_partition_change(cs, old_prs);
2409 free_cpumasks(NULL, &tmpmask);
2410 return 0;
2411 }
2412
2413 /*
2414 * Frequency meter - How fast is some event occurring?
2415 *
2416 * These routines manage a digitally filtered, constant time based,
2417 * event frequency meter. There are four routines:
2418 * fmeter_init() - initialize a frequency meter.
2419 * fmeter_markevent() - called each time the event happens.
2420 * fmeter_getrate() - returns the recent rate of such events.
2421 * fmeter_update() - internal routine used to update fmeter.
2422 *
2423 * A common data structure is passed to each of these routines,
2424 * which is used to keep track of the state required to manage the
2425 * frequency meter and its digital filter.
2426 *
2427 * The filter works on the number of events marked per unit time.
2428 * The filter is single-pole low-pass recursive (IIR). The time unit
2429 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2430 * simulate 3 decimal digits of precision (multiplied by 1000).
2431 *
2432 * With an FM_COEF of 933, and a time base of 1 second, the filter
2433 * has a half-life of 10 seconds, meaning that if the events quit
2434 * happening, then the rate returned from the fmeter_getrate()
2435 * will be cut in half each 10 seconds, until it converges to zero.
2436 *
2437 * It is not worth doing a real infinitely recursive filter. If more
2438 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2439 * just compute FM_MAXTICKS ticks worth, by which point the level
2440 * will be stable.
2441 *
2442 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2443 * arithmetic overflow in the fmeter_update() routine.
2444 *
2445 * Given the simple 32 bit integer arithmetic used, this meter works
2446 * best for reporting rates between one per millisecond (msec) and
2447 * one per 32 (approx) seconds. At constant rates faster than one
2448 * per msec it maxes out at values just under 1,000,000. At constant
2449 * rates between one per msec, and one per second it will stabilize
2450 * to a value N*1000, where N is the rate of events per second.
2451 * At constant rates between one per second and one per 32 seconds,
2452 * it will be choppy, moving up on the seconds that have an event,
2453 * and then decaying until the next event. At rates slower than
2454 * about one in 32 seconds, it decays all the way back to zero between
2455 * each event.
2456 */
2457
2458 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2459 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2460 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2461 #define FM_SCALE 1000 /* faux fixed point scale */
2462
2463 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2464 static void fmeter_init(struct fmeter *fmp)
2465 {
2466 fmp->cnt = 0;
2467 fmp->val = 0;
2468 fmp->time = 0;
2469 spin_lock_init(&fmp->lock);
2470 }
2471
2472 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2473 static void fmeter_update(struct fmeter *fmp)
2474 {
2475 time64_t now;
2476 u32 ticks;
2477
2478 now = ktime_get_seconds();
2479 ticks = now - fmp->time;
2480
2481 if (ticks == 0)
2482 return;
2483
2484 ticks = min(FM_MAXTICKS, ticks);
2485 while (ticks-- > 0)
2486 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2487 fmp->time = now;
2488
2489 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2490 fmp->cnt = 0;
2491 }
2492
2493 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2494 static void fmeter_markevent(struct fmeter *fmp)
2495 {
2496 spin_lock(&fmp->lock);
2497 fmeter_update(fmp);
2498 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2499 spin_unlock(&fmp->lock);
2500 }
2501
2502 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2503 static int fmeter_getrate(struct fmeter *fmp)
2504 {
2505 int val;
2506
2507 spin_lock(&fmp->lock);
2508 fmeter_update(fmp);
2509 val = fmp->val;
2510 spin_unlock(&fmp->lock);
2511 return val;
2512 }
2513
2514 static struct cpuset *cpuset_attach_old_cs;
2515
2516 /*
2517 * Check to see if a cpuset can accept a new task
2518 * For v1, cpus_allowed and mems_allowed can't be empty.
2519 * For v2, effective_cpus can't be empty.
2520 * Note that in v1, effective_cpus = cpus_allowed.
2521 */
cpuset_can_attach_check(struct cpuset * cs)2522 static int cpuset_can_attach_check(struct cpuset *cs)
2523 {
2524 if (cpumask_empty(cs->effective_cpus) ||
2525 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2526 return -ENOSPC;
2527 return 0;
2528 }
2529
reset_migrate_dl_data(struct cpuset * cs)2530 static void reset_migrate_dl_data(struct cpuset *cs)
2531 {
2532 cs->nr_migrate_dl_tasks = 0;
2533 cs->sum_migrate_dl_bw = 0;
2534 }
2535
2536 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2537 static int cpuset_can_attach(struct cgroup_taskset *tset)
2538 {
2539 struct cgroup_subsys_state *css;
2540 struct cpuset *cs, *oldcs;
2541 struct task_struct *task;
2542 bool cpus_updated, mems_updated;
2543 int ret;
2544
2545 /* used later by cpuset_attach() */
2546 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2547 oldcs = cpuset_attach_old_cs;
2548 cs = css_cs(css);
2549
2550 mutex_lock(&cpuset_mutex);
2551
2552 /* Check to see if task is allowed in the cpuset */
2553 ret = cpuset_can_attach_check(cs);
2554 if (ret)
2555 goto out_unlock;
2556
2557 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2558 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2559
2560 cgroup_taskset_for_each(task, css, tset) {
2561 ret = task_can_attach(task);
2562 if (ret)
2563 goto out_unlock;
2564
2565 /*
2566 * Skip rights over task check in v2 when nothing changes,
2567 * migration permission derives from hierarchy ownership in
2568 * cgroup_procs_write_permission()).
2569 */
2570 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2571 (cpus_updated || mems_updated)) {
2572 ret = security_task_setscheduler(task);
2573 if (ret)
2574 goto out_unlock;
2575 }
2576
2577 if (dl_task(task)) {
2578 cs->nr_migrate_dl_tasks++;
2579 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2580 }
2581 }
2582
2583 if (!cs->nr_migrate_dl_tasks)
2584 goto out_success;
2585
2586 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2587 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2588
2589 if (unlikely(cpu >= nr_cpu_ids)) {
2590 reset_migrate_dl_data(cs);
2591 ret = -EINVAL;
2592 goto out_unlock;
2593 }
2594
2595 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2596 if (ret) {
2597 reset_migrate_dl_data(cs);
2598 goto out_unlock;
2599 }
2600 }
2601
2602 out_success:
2603 /*
2604 * Mark attach is in progress. This makes validate_change() fail
2605 * changes which zero cpus/mems_allowed.
2606 */
2607 cs->attach_in_progress++;
2608 out_unlock:
2609 mutex_unlock(&cpuset_mutex);
2610 return ret;
2611 }
2612
cpuset_cancel_attach(struct cgroup_taskset * tset)2613 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2614 {
2615 struct cgroup_subsys_state *css;
2616 struct cpuset *cs;
2617
2618 cgroup_taskset_first(tset, &css);
2619 cs = css_cs(css);
2620
2621 mutex_lock(&cpuset_mutex);
2622 cs->attach_in_progress--;
2623 if (!cs->attach_in_progress)
2624 wake_up(&cpuset_attach_wq);
2625
2626 if (cs->nr_migrate_dl_tasks) {
2627 int cpu = cpumask_any(cs->effective_cpus);
2628
2629 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2630 reset_migrate_dl_data(cs);
2631 }
2632
2633 mutex_unlock(&cpuset_mutex);
2634 }
2635
2636 /*
2637 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
2638 * but we can't allocate it dynamically there. Define it global and
2639 * allocate from cpuset_init().
2640 */
2641 static cpumask_var_t cpus_attach;
2642 static nodemask_t cpuset_attach_nodemask_to;
2643
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)2644 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2645 {
2646 lockdep_assert_held(&cpuset_mutex);
2647
2648 if (cs != &top_cpuset)
2649 guarantee_online_cpus(task, cpus_attach);
2650 else
2651 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2652 cs->subparts_cpus);
2653 /*
2654 * can_attach beforehand should guarantee that this doesn't
2655 * fail. TODO: have a better way to handle failure here
2656 */
2657 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2658
2659 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2660 cpuset_update_task_spread_flags(cs, task);
2661 }
2662
cpuset_attach(struct cgroup_taskset * tset)2663 static void cpuset_attach(struct cgroup_taskset *tset)
2664 {
2665 struct task_struct *task;
2666 struct task_struct *leader;
2667 struct cgroup_subsys_state *css;
2668 struct cpuset *cs;
2669 struct cpuset *oldcs = cpuset_attach_old_cs;
2670 bool cpus_updated, mems_updated;
2671
2672 cgroup_taskset_first(tset, &css);
2673 cs = css_cs(css);
2674
2675 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2676 mutex_lock(&cpuset_mutex);
2677 cpus_updated = !cpumask_equal(cs->effective_cpus,
2678 oldcs->effective_cpus);
2679 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2680
2681 /*
2682 * In the default hierarchy, enabling cpuset in the child cgroups
2683 * will trigger a number of cpuset_attach() calls with no change
2684 * in effective cpus and mems. In that case, we can optimize out
2685 * by skipping the task iteration and update.
2686 */
2687 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2688 !cpus_updated && !mems_updated) {
2689 cpuset_attach_nodemask_to = cs->effective_mems;
2690 goto out;
2691 }
2692
2693 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2694
2695 cgroup_taskset_for_each(task, css, tset)
2696 cpuset_attach_task(cs, task);
2697
2698 /*
2699 * Change mm for all threadgroup leaders. This is expensive and may
2700 * sleep and should be moved outside migration path proper. Skip it
2701 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2702 * not set.
2703 */
2704 cpuset_attach_nodemask_to = cs->effective_mems;
2705 if (!is_memory_migrate(cs) && !mems_updated)
2706 goto out;
2707
2708 cgroup_taskset_for_each_leader(leader, css, tset) {
2709 struct mm_struct *mm = get_task_mm(leader);
2710
2711 if (mm) {
2712 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2713
2714 /*
2715 * old_mems_allowed is the same with mems_allowed
2716 * here, except if this task is being moved
2717 * automatically due to hotplug. In that case
2718 * @mems_allowed has been updated and is empty, so
2719 * @old_mems_allowed is the right nodesets that we
2720 * migrate mm from.
2721 */
2722 if (is_memory_migrate(cs))
2723 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2724 &cpuset_attach_nodemask_to);
2725 else
2726 mmput(mm);
2727 }
2728 }
2729
2730 out:
2731 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2732
2733 if (cs->nr_migrate_dl_tasks) {
2734 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2735 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2736 reset_migrate_dl_data(cs);
2737 }
2738
2739 cs->attach_in_progress--;
2740 if (!cs->attach_in_progress)
2741 wake_up(&cpuset_attach_wq);
2742
2743 mutex_unlock(&cpuset_mutex);
2744 }
2745
2746 /* The various types of files and directories in a cpuset file system */
2747
2748 typedef enum {
2749 FILE_MEMORY_MIGRATE,
2750 FILE_CPULIST,
2751 FILE_MEMLIST,
2752 FILE_EFFECTIVE_CPULIST,
2753 FILE_EFFECTIVE_MEMLIST,
2754 FILE_SUBPARTS_CPULIST,
2755 FILE_CPU_EXCLUSIVE,
2756 FILE_MEM_EXCLUSIVE,
2757 FILE_MEM_HARDWALL,
2758 FILE_SCHED_LOAD_BALANCE,
2759 FILE_PARTITION_ROOT,
2760 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2761 FILE_MEMORY_PRESSURE_ENABLED,
2762 FILE_MEMORY_PRESSURE,
2763 FILE_SPREAD_PAGE,
2764 FILE_SPREAD_SLAB,
2765 } cpuset_filetype_t;
2766
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2767 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2768 u64 val)
2769 {
2770 struct cpuset *cs = css_cs(css);
2771 cpuset_filetype_t type = cft->private;
2772 int retval = 0;
2773
2774 cpus_read_lock();
2775 mutex_lock(&cpuset_mutex);
2776 if (!is_cpuset_online(cs)) {
2777 retval = -ENODEV;
2778 goto out_unlock;
2779 }
2780
2781 switch (type) {
2782 case FILE_CPU_EXCLUSIVE:
2783 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2784 break;
2785 case FILE_MEM_EXCLUSIVE:
2786 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2787 break;
2788 case FILE_MEM_HARDWALL:
2789 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2790 break;
2791 case FILE_SCHED_LOAD_BALANCE:
2792 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2793 break;
2794 case FILE_MEMORY_MIGRATE:
2795 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2796 break;
2797 case FILE_MEMORY_PRESSURE_ENABLED:
2798 cpuset_memory_pressure_enabled = !!val;
2799 break;
2800 case FILE_SPREAD_PAGE:
2801 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2802 break;
2803 case FILE_SPREAD_SLAB:
2804 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2805 break;
2806 default:
2807 retval = -EINVAL;
2808 break;
2809 }
2810 out_unlock:
2811 mutex_unlock(&cpuset_mutex);
2812 cpus_read_unlock();
2813 return retval;
2814 }
2815
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2816 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2817 s64 val)
2818 {
2819 struct cpuset *cs = css_cs(css);
2820 cpuset_filetype_t type = cft->private;
2821 int retval = -ENODEV;
2822
2823 cpus_read_lock();
2824 mutex_lock(&cpuset_mutex);
2825 if (!is_cpuset_online(cs))
2826 goto out_unlock;
2827
2828 switch (type) {
2829 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2830 retval = update_relax_domain_level(cs, val);
2831 break;
2832 default:
2833 retval = -EINVAL;
2834 break;
2835 }
2836 out_unlock:
2837 mutex_unlock(&cpuset_mutex);
2838 cpus_read_unlock();
2839 return retval;
2840 }
2841
2842 /*
2843 * Common handling for a write to a "cpus" or "mems" file.
2844 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2845 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2846 char *buf, size_t nbytes, loff_t off)
2847 {
2848 struct cpuset *cs = css_cs(of_css(of));
2849 struct cpuset *trialcs;
2850 int retval = -ENODEV;
2851
2852 buf = strstrip(buf);
2853
2854 /*
2855 * CPU or memory hotunplug may leave @cs w/o any execution
2856 * resources, in which case the hotplug code asynchronously updates
2857 * configuration and transfers all tasks to the nearest ancestor
2858 * which can execute.
2859 *
2860 * As writes to "cpus" or "mems" may restore @cs's execution
2861 * resources, wait for the previously scheduled operations before
2862 * proceeding, so that we don't end up keep removing tasks added
2863 * after execution capability is restored.
2864 *
2865 * cpuset_hotplug_work calls back into cgroup core via
2866 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2867 * operation like this one can lead to a deadlock through kernfs
2868 * active_ref protection. Let's break the protection. Losing the
2869 * protection is okay as we check whether @cs is online after
2870 * grabbing cpuset_mutex anyway. This only happens on the legacy
2871 * hierarchies.
2872 */
2873 css_get(&cs->css);
2874 kernfs_break_active_protection(of->kn);
2875 flush_work(&cpuset_hotplug_work);
2876
2877 cpus_read_lock();
2878 mutex_lock(&cpuset_mutex);
2879 if (!is_cpuset_online(cs))
2880 goto out_unlock;
2881
2882 trialcs = alloc_trial_cpuset(cs);
2883 if (!trialcs) {
2884 retval = -ENOMEM;
2885 goto out_unlock;
2886 }
2887
2888 switch (of_cft(of)->private) {
2889 case FILE_CPULIST:
2890 retval = update_cpumask(cs, trialcs, buf);
2891 break;
2892 case FILE_MEMLIST:
2893 retval = update_nodemask(cs, trialcs, buf);
2894 break;
2895 default:
2896 retval = -EINVAL;
2897 break;
2898 }
2899
2900 free_cpuset(trialcs);
2901 out_unlock:
2902 mutex_unlock(&cpuset_mutex);
2903 cpus_read_unlock();
2904 kernfs_unbreak_active_protection(of->kn);
2905 css_put(&cs->css);
2906 flush_workqueue(cpuset_migrate_mm_wq);
2907 return retval ?: nbytes;
2908 }
2909
2910 /*
2911 * These ascii lists should be read in a single call, by using a user
2912 * buffer large enough to hold the entire map. If read in smaller
2913 * chunks, there is no guarantee of atomicity. Since the display format
2914 * used, list of ranges of sequential numbers, is variable length,
2915 * and since these maps can change value dynamically, one could read
2916 * gibberish by doing partial reads while a list was changing.
2917 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2918 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2919 {
2920 struct cpuset *cs = css_cs(seq_css(sf));
2921 cpuset_filetype_t type = seq_cft(sf)->private;
2922 int ret = 0;
2923
2924 spin_lock_irq(&callback_lock);
2925
2926 switch (type) {
2927 case FILE_CPULIST:
2928 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2929 break;
2930 case FILE_MEMLIST:
2931 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2932 break;
2933 case FILE_EFFECTIVE_CPULIST:
2934 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2935 break;
2936 case FILE_EFFECTIVE_MEMLIST:
2937 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2938 break;
2939 case FILE_SUBPARTS_CPULIST:
2940 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2941 break;
2942 default:
2943 ret = -EINVAL;
2944 }
2945
2946 spin_unlock_irq(&callback_lock);
2947 return ret;
2948 }
2949
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2950 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2951 {
2952 struct cpuset *cs = css_cs(css);
2953 cpuset_filetype_t type = cft->private;
2954 switch (type) {
2955 case FILE_CPU_EXCLUSIVE:
2956 return is_cpu_exclusive(cs);
2957 case FILE_MEM_EXCLUSIVE:
2958 return is_mem_exclusive(cs);
2959 case FILE_MEM_HARDWALL:
2960 return is_mem_hardwall(cs);
2961 case FILE_SCHED_LOAD_BALANCE:
2962 return is_sched_load_balance(cs);
2963 case FILE_MEMORY_MIGRATE:
2964 return is_memory_migrate(cs);
2965 case FILE_MEMORY_PRESSURE_ENABLED:
2966 return cpuset_memory_pressure_enabled;
2967 case FILE_MEMORY_PRESSURE:
2968 return fmeter_getrate(&cs->fmeter);
2969 case FILE_SPREAD_PAGE:
2970 return is_spread_page(cs);
2971 case FILE_SPREAD_SLAB:
2972 return is_spread_slab(cs);
2973 default:
2974 BUG();
2975 }
2976
2977 /* Unreachable but makes gcc happy */
2978 return 0;
2979 }
2980
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2981 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2982 {
2983 struct cpuset *cs = css_cs(css);
2984 cpuset_filetype_t type = cft->private;
2985 switch (type) {
2986 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2987 return cs->relax_domain_level;
2988 default:
2989 BUG();
2990 }
2991
2992 /* Unreachable but makes gcc happy */
2993 return 0;
2994 }
2995
sched_partition_show(struct seq_file * seq,void * v)2996 static int sched_partition_show(struct seq_file *seq, void *v)
2997 {
2998 struct cpuset *cs = css_cs(seq_css(seq));
2999 const char *err, *type = NULL;
3000
3001 switch (cs->partition_root_state) {
3002 case PRS_ROOT:
3003 seq_puts(seq, "root\n");
3004 break;
3005 case PRS_ISOLATED:
3006 seq_puts(seq, "isolated\n");
3007 break;
3008 case PRS_MEMBER:
3009 seq_puts(seq, "member\n");
3010 break;
3011 case PRS_INVALID_ROOT:
3012 type = "root";
3013 fallthrough;
3014 case PRS_INVALID_ISOLATED:
3015 if (!type)
3016 type = "isolated";
3017 err = perr_strings[READ_ONCE(cs->prs_err)];
3018 if (err)
3019 seq_printf(seq, "%s invalid (%s)\n", type, err);
3020 else
3021 seq_printf(seq, "%s invalid\n", type);
3022 break;
3023 }
3024 return 0;
3025 }
3026
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3027 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3028 size_t nbytes, loff_t off)
3029 {
3030 struct cpuset *cs = css_cs(of_css(of));
3031 int val;
3032 int retval = -ENODEV;
3033
3034 buf = strstrip(buf);
3035
3036 /*
3037 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3038 */
3039 if (!strcmp(buf, "root"))
3040 val = PRS_ROOT;
3041 else if (!strcmp(buf, "member"))
3042 val = PRS_MEMBER;
3043 else if (!strcmp(buf, "isolated"))
3044 val = PRS_ISOLATED;
3045 else
3046 return -EINVAL;
3047
3048 css_get(&cs->css);
3049 cpus_read_lock();
3050 mutex_lock(&cpuset_mutex);
3051 if (!is_cpuset_online(cs))
3052 goto out_unlock;
3053
3054 retval = update_prstate(cs, val);
3055 out_unlock:
3056 mutex_unlock(&cpuset_mutex);
3057 cpus_read_unlock();
3058 css_put(&cs->css);
3059 return retval ?: nbytes;
3060 }
3061
3062 /*
3063 * for the common functions, 'private' gives the type of file
3064 */
3065
3066 static struct cftype legacy_files[] = {
3067 {
3068 .name = "cpus",
3069 .seq_show = cpuset_common_seq_show,
3070 .write = cpuset_write_resmask,
3071 .max_write_len = (100U + 6 * NR_CPUS),
3072 .private = FILE_CPULIST,
3073 },
3074
3075 {
3076 .name = "mems",
3077 .seq_show = cpuset_common_seq_show,
3078 .write = cpuset_write_resmask,
3079 .max_write_len = (100U + 6 * MAX_NUMNODES),
3080 .private = FILE_MEMLIST,
3081 },
3082
3083 {
3084 .name = "effective_cpus",
3085 .seq_show = cpuset_common_seq_show,
3086 .private = FILE_EFFECTIVE_CPULIST,
3087 },
3088
3089 {
3090 .name = "effective_mems",
3091 .seq_show = cpuset_common_seq_show,
3092 .private = FILE_EFFECTIVE_MEMLIST,
3093 },
3094
3095 {
3096 .name = "cpu_exclusive",
3097 .read_u64 = cpuset_read_u64,
3098 .write_u64 = cpuset_write_u64,
3099 .private = FILE_CPU_EXCLUSIVE,
3100 },
3101
3102 {
3103 .name = "mem_exclusive",
3104 .read_u64 = cpuset_read_u64,
3105 .write_u64 = cpuset_write_u64,
3106 .private = FILE_MEM_EXCLUSIVE,
3107 },
3108
3109 {
3110 .name = "mem_hardwall",
3111 .read_u64 = cpuset_read_u64,
3112 .write_u64 = cpuset_write_u64,
3113 .private = FILE_MEM_HARDWALL,
3114 },
3115
3116 {
3117 .name = "sched_load_balance",
3118 .read_u64 = cpuset_read_u64,
3119 .write_u64 = cpuset_write_u64,
3120 .private = FILE_SCHED_LOAD_BALANCE,
3121 },
3122
3123 {
3124 .name = "sched_relax_domain_level",
3125 .read_s64 = cpuset_read_s64,
3126 .write_s64 = cpuset_write_s64,
3127 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3128 },
3129
3130 {
3131 .name = "memory_migrate",
3132 .read_u64 = cpuset_read_u64,
3133 .write_u64 = cpuset_write_u64,
3134 .private = FILE_MEMORY_MIGRATE,
3135 },
3136
3137 {
3138 .name = "memory_pressure",
3139 .read_u64 = cpuset_read_u64,
3140 .private = FILE_MEMORY_PRESSURE,
3141 },
3142
3143 {
3144 .name = "memory_spread_page",
3145 .read_u64 = cpuset_read_u64,
3146 .write_u64 = cpuset_write_u64,
3147 .private = FILE_SPREAD_PAGE,
3148 },
3149
3150 {
3151 .name = "memory_spread_slab",
3152 .read_u64 = cpuset_read_u64,
3153 .write_u64 = cpuset_write_u64,
3154 .private = FILE_SPREAD_SLAB,
3155 },
3156
3157 {
3158 .name = "memory_pressure_enabled",
3159 .flags = CFTYPE_ONLY_ON_ROOT,
3160 .read_u64 = cpuset_read_u64,
3161 .write_u64 = cpuset_write_u64,
3162 .private = FILE_MEMORY_PRESSURE_ENABLED,
3163 },
3164
3165 { } /* terminate */
3166 };
3167
3168 /*
3169 * This is currently a minimal set for the default hierarchy. It can be
3170 * expanded later on by migrating more features and control files from v1.
3171 */
3172 static struct cftype dfl_files[] = {
3173 {
3174 .name = "cpus",
3175 .seq_show = cpuset_common_seq_show,
3176 .write = cpuset_write_resmask,
3177 .max_write_len = (100U + 6 * NR_CPUS),
3178 .private = FILE_CPULIST,
3179 .flags = CFTYPE_NOT_ON_ROOT,
3180 },
3181
3182 {
3183 .name = "mems",
3184 .seq_show = cpuset_common_seq_show,
3185 .write = cpuset_write_resmask,
3186 .max_write_len = (100U + 6 * MAX_NUMNODES),
3187 .private = FILE_MEMLIST,
3188 .flags = CFTYPE_NOT_ON_ROOT,
3189 },
3190
3191 {
3192 .name = "cpus.effective",
3193 .seq_show = cpuset_common_seq_show,
3194 .private = FILE_EFFECTIVE_CPULIST,
3195 },
3196
3197 {
3198 .name = "mems.effective",
3199 .seq_show = cpuset_common_seq_show,
3200 .private = FILE_EFFECTIVE_MEMLIST,
3201 },
3202
3203 {
3204 .name = "cpus.partition",
3205 .seq_show = sched_partition_show,
3206 .write = sched_partition_write,
3207 .private = FILE_PARTITION_ROOT,
3208 .flags = CFTYPE_NOT_ON_ROOT,
3209 .file_offset = offsetof(struct cpuset, partition_file),
3210 },
3211
3212 {
3213 .name = "cpus.subpartitions",
3214 .seq_show = cpuset_common_seq_show,
3215 .private = FILE_SUBPARTS_CPULIST,
3216 .flags = CFTYPE_DEBUG,
3217 },
3218
3219 { } /* terminate */
3220 };
3221
3222
3223 /**
3224 * cpuset_css_alloc - Allocate a cpuset css
3225 * @parent_css: Parent css of the control group that the new cpuset will be
3226 * part of
3227 * Return: cpuset css on success, -ENOMEM on failure.
3228 *
3229 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3230 * top cpuset css otherwise.
3231 */
3232 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3233 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3234 {
3235 struct cpuset *cs;
3236
3237 if (!parent_css)
3238 return &top_cpuset.css;
3239
3240 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3241 if (!cs)
3242 return ERR_PTR(-ENOMEM);
3243
3244 if (alloc_cpumasks(cs, NULL)) {
3245 kfree(cs);
3246 return ERR_PTR(-ENOMEM);
3247 }
3248
3249 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3250 nodes_clear(cs->mems_allowed);
3251 nodes_clear(cs->effective_mems);
3252 fmeter_init(&cs->fmeter);
3253 cs->relax_domain_level = -1;
3254
3255 /* Set CS_MEMORY_MIGRATE for default hierarchy */
3256 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3257 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3258
3259 return &cs->css;
3260 }
3261
cpuset_css_online(struct cgroup_subsys_state * css)3262 static int cpuset_css_online(struct cgroup_subsys_state *css)
3263 {
3264 struct cpuset *cs = css_cs(css);
3265 struct cpuset *parent = parent_cs(cs);
3266 struct cpuset *tmp_cs;
3267 struct cgroup_subsys_state *pos_css;
3268
3269 if (!parent)
3270 return 0;
3271
3272 cpus_read_lock();
3273 mutex_lock(&cpuset_mutex);
3274
3275 set_bit(CS_ONLINE, &cs->flags);
3276 if (is_spread_page(parent))
3277 set_bit(CS_SPREAD_PAGE, &cs->flags);
3278 if (is_spread_slab(parent))
3279 set_bit(CS_SPREAD_SLAB, &cs->flags);
3280
3281 cpuset_inc();
3282
3283 spin_lock_irq(&callback_lock);
3284 if (is_in_v2_mode()) {
3285 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3286 cs->effective_mems = parent->effective_mems;
3287 cs->use_parent_ecpus = true;
3288 parent->child_ecpus_count++;
3289 }
3290
3291 /*
3292 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3293 */
3294 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3295 !is_sched_load_balance(parent))
3296 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3297
3298 spin_unlock_irq(&callback_lock);
3299
3300 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3301 goto out_unlock;
3302
3303 /*
3304 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3305 * set. This flag handling is implemented in cgroup core for
3306 * historical reasons - the flag may be specified during mount.
3307 *
3308 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3309 * refuse to clone the configuration - thereby refusing the task to
3310 * be entered, and as a result refusing the sys_unshare() or
3311 * clone() which initiated it. If this becomes a problem for some
3312 * users who wish to allow that scenario, then this could be
3313 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3314 * (and likewise for mems) to the new cgroup.
3315 */
3316 rcu_read_lock();
3317 cpuset_for_each_child(tmp_cs, pos_css, parent) {
3318 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3319 rcu_read_unlock();
3320 goto out_unlock;
3321 }
3322 }
3323 rcu_read_unlock();
3324
3325 spin_lock_irq(&callback_lock);
3326 cs->mems_allowed = parent->mems_allowed;
3327 cs->effective_mems = parent->mems_allowed;
3328 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3329 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3330 spin_unlock_irq(&callback_lock);
3331 out_unlock:
3332 mutex_unlock(&cpuset_mutex);
3333 cpus_read_unlock();
3334 return 0;
3335 }
3336
3337 /*
3338 * If the cpuset being removed has its flag 'sched_load_balance'
3339 * enabled, then simulate turning sched_load_balance off, which
3340 * will call rebuild_sched_domains_locked(). That is not needed
3341 * in the default hierarchy where only changes in partition
3342 * will cause repartitioning.
3343 *
3344 * If the cpuset has the 'sched.partition' flag enabled, simulate
3345 * turning 'sched.partition" off.
3346 */
3347
cpuset_css_offline(struct cgroup_subsys_state * css)3348 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3349 {
3350 struct cpuset *cs = css_cs(css);
3351
3352 cpus_read_lock();
3353 mutex_lock(&cpuset_mutex);
3354
3355 if (is_partition_valid(cs))
3356 update_prstate(cs, 0);
3357
3358 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3359 is_sched_load_balance(cs))
3360 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3361
3362 if (cs->use_parent_ecpus) {
3363 struct cpuset *parent = parent_cs(cs);
3364
3365 cs->use_parent_ecpus = false;
3366 parent->child_ecpus_count--;
3367 }
3368
3369 cpuset_dec();
3370 clear_bit(CS_ONLINE, &cs->flags);
3371
3372 mutex_unlock(&cpuset_mutex);
3373 cpus_read_unlock();
3374 }
3375
cpuset_css_free(struct cgroup_subsys_state * css)3376 static void cpuset_css_free(struct cgroup_subsys_state *css)
3377 {
3378 struct cpuset *cs = css_cs(css);
3379
3380 free_cpuset(cs);
3381 }
3382
cpuset_bind(struct cgroup_subsys_state * root_css)3383 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3384 {
3385 mutex_lock(&cpuset_mutex);
3386 spin_lock_irq(&callback_lock);
3387
3388 if (is_in_v2_mode()) {
3389 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3390 top_cpuset.mems_allowed = node_possible_map;
3391 } else {
3392 cpumask_copy(top_cpuset.cpus_allowed,
3393 top_cpuset.effective_cpus);
3394 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3395 }
3396
3397 spin_unlock_irq(&callback_lock);
3398 mutex_unlock(&cpuset_mutex);
3399 }
3400
3401 /*
3402 * In case the child is cloned into a cpuset different from its parent,
3403 * additional checks are done to see if the move is allowed.
3404 */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3405 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3406 {
3407 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3408 bool same_cs;
3409 int ret;
3410
3411 rcu_read_lock();
3412 same_cs = (cs == task_cs(current));
3413 rcu_read_unlock();
3414
3415 if (same_cs)
3416 return 0;
3417
3418 lockdep_assert_held(&cgroup_mutex);
3419 mutex_lock(&cpuset_mutex);
3420
3421 /* Check to see if task is allowed in the cpuset */
3422 ret = cpuset_can_attach_check(cs);
3423 if (ret)
3424 goto out_unlock;
3425
3426 ret = task_can_attach(task);
3427 if (ret)
3428 goto out_unlock;
3429
3430 ret = security_task_setscheduler(task);
3431 if (ret)
3432 goto out_unlock;
3433
3434 /*
3435 * Mark attach is in progress. This makes validate_change() fail
3436 * changes which zero cpus/mems_allowed.
3437 */
3438 cs->attach_in_progress++;
3439 out_unlock:
3440 mutex_unlock(&cpuset_mutex);
3441 return ret;
3442 }
3443
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3444 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3445 {
3446 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3447 bool same_cs;
3448
3449 rcu_read_lock();
3450 same_cs = (cs == task_cs(current));
3451 rcu_read_unlock();
3452
3453 if (same_cs)
3454 return;
3455
3456 mutex_lock(&cpuset_mutex);
3457 cs->attach_in_progress--;
3458 if (!cs->attach_in_progress)
3459 wake_up(&cpuset_attach_wq);
3460 mutex_unlock(&cpuset_mutex);
3461 }
3462
3463 /*
3464 * Make sure the new task conform to the current state of its parent,
3465 * which could have been changed by cpuset just after it inherits the
3466 * state from the parent and before it sits on the cgroup's task list.
3467 */
cpuset_fork(struct task_struct * task)3468 static void cpuset_fork(struct task_struct *task)
3469 {
3470 struct cpuset *cs;
3471 bool same_cs;
3472
3473 rcu_read_lock();
3474 cs = task_cs(task);
3475 same_cs = (cs == task_cs(current));
3476 rcu_read_unlock();
3477
3478 if (same_cs) {
3479 if (cs == &top_cpuset)
3480 return;
3481
3482 set_cpus_allowed_ptr(task, current->cpus_ptr);
3483 task->mems_allowed = current->mems_allowed;
3484 return;
3485 }
3486
3487 /* CLONE_INTO_CGROUP */
3488 mutex_lock(&cpuset_mutex);
3489 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3490 cpuset_attach_task(cs, task);
3491
3492 cs->attach_in_progress--;
3493 if (!cs->attach_in_progress)
3494 wake_up(&cpuset_attach_wq);
3495
3496 mutex_unlock(&cpuset_mutex);
3497 }
3498
3499 struct cgroup_subsys cpuset_cgrp_subsys = {
3500 .css_alloc = cpuset_css_alloc,
3501 .css_online = cpuset_css_online,
3502 .css_offline = cpuset_css_offline,
3503 .css_free = cpuset_css_free,
3504 .can_attach = cpuset_can_attach,
3505 .cancel_attach = cpuset_cancel_attach,
3506 .attach = cpuset_attach,
3507 .post_attach = cpuset_post_attach,
3508 .bind = cpuset_bind,
3509 .can_fork = cpuset_can_fork,
3510 .cancel_fork = cpuset_cancel_fork,
3511 .fork = cpuset_fork,
3512 .legacy_cftypes = legacy_files,
3513 .dfl_cftypes = dfl_files,
3514 .early_init = true,
3515 .threaded = true,
3516 };
3517
3518 /**
3519 * cpuset_init - initialize cpusets at system boot
3520 *
3521 * Description: Initialize top_cpuset
3522 **/
3523
cpuset_init(void)3524 int __init cpuset_init(void)
3525 {
3526 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3527 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3528 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3529
3530 cpumask_setall(top_cpuset.cpus_allowed);
3531 nodes_setall(top_cpuset.mems_allowed);
3532 cpumask_setall(top_cpuset.effective_cpus);
3533 nodes_setall(top_cpuset.effective_mems);
3534
3535 fmeter_init(&top_cpuset.fmeter);
3536 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3537 top_cpuset.relax_domain_level = -1;
3538
3539 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3546 * or memory nodes, we need to walk over the cpuset hierarchy,
3547 * removing that CPU or node from all cpusets. If this removes the
3548 * last CPU or node from a cpuset, then move the tasks in the empty
3549 * cpuset to its next-highest non-empty parent.
3550 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3551 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3552 {
3553 struct cpuset *parent;
3554
3555 /*
3556 * Find its next-highest non-empty parent, (top cpuset
3557 * has online cpus, so can't be empty).
3558 */
3559 parent = parent_cs(cs);
3560 while (cpumask_empty(parent->cpus_allowed) ||
3561 nodes_empty(parent->mems_allowed))
3562 parent = parent_cs(parent);
3563
3564 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3565 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3566 pr_cont_cgroup_name(cs->css.cgroup);
3567 pr_cont("\n");
3568 }
3569 }
3570
3571 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3572 hotplug_update_tasks_legacy(struct cpuset *cs,
3573 struct cpumask *new_cpus, nodemask_t *new_mems,
3574 bool cpus_updated, bool mems_updated)
3575 {
3576 bool is_empty;
3577
3578 spin_lock_irq(&callback_lock);
3579 cpumask_copy(cs->cpus_allowed, new_cpus);
3580 cpumask_copy(cs->effective_cpus, new_cpus);
3581 cs->mems_allowed = *new_mems;
3582 cs->effective_mems = *new_mems;
3583 spin_unlock_irq(&callback_lock);
3584
3585 /*
3586 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3587 * as the tasks will be migrated to an ancestor.
3588 */
3589 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3590 update_tasks_cpumask(cs, new_cpus);
3591 if (mems_updated && !nodes_empty(cs->mems_allowed))
3592 update_tasks_nodemask(cs);
3593
3594 is_empty = cpumask_empty(cs->cpus_allowed) ||
3595 nodes_empty(cs->mems_allowed);
3596
3597 /*
3598 * Move tasks to the nearest ancestor with execution resources,
3599 * This is full cgroup operation which will also call back into
3600 * cpuset. Should be done outside any lock.
3601 */
3602 if (is_empty) {
3603 mutex_unlock(&cpuset_mutex);
3604 remove_tasks_in_empty_cpuset(cs);
3605 mutex_lock(&cpuset_mutex);
3606 }
3607 }
3608
3609 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3610 hotplug_update_tasks(struct cpuset *cs,
3611 struct cpumask *new_cpus, nodemask_t *new_mems,
3612 bool cpus_updated, bool mems_updated)
3613 {
3614 /* A partition root is allowed to have empty effective cpus */
3615 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3616 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3617 if (nodes_empty(*new_mems))
3618 *new_mems = parent_cs(cs)->effective_mems;
3619
3620 spin_lock_irq(&callback_lock);
3621 cpumask_copy(cs->effective_cpus, new_cpus);
3622 cs->effective_mems = *new_mems;
3623 spin_unlock_irq(&callback_lock);
3624
3625 if (cpus_updated)
3626 update_tasks_cpumask(cs, new_cpus);
3627 if (mems_updated)
3628 update_tasks_nodemask(cs);
3629 }
3630
3631 static bool force_rebuild;
3632
cpuset_force_rebuild(void)3633 void cpuset_force_rebuild(void)
3634 {
3635 force_rebuild = true;
3636 }
3637
3638 /**
3639 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3640 * @cs: cpuset in interest
3641 * @tmp: the tmpmasks structure pointer
3642 *
3643 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3644 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3645 * all its tasks are moved to the nearest ancestor with both resources.
3646 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3647 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3648 {
3649 static cpumask_t new_cpus;
3650 static nodemask_t new_mems;
3651 bool cpus_updated;
3652 bool mems_updated;
3653 struct cpuset *parent;
3654 retry:
3655 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3656
3657 mutex_lock(&cpuset_mutex);
3658
3659 /*
3660 * We have raced with task attaching. We wait until attaching
3661 * is finished, so we won't attach a task to an empty cpuset.
3662 */
3663 if (cs->attach_in_progress) {
3664 mutex_unlock(&cpuset_mutex);
3665 goto retry;
3666 }
3667
3668 parent = parent_cs(cs);
3669 compute_effective_cpumask(&new_cpus, cs, parent);
3670 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3671
3672 if (cs->nr_subparts_cpus)
3673 /*
3674 * Make sure that CPUs allocated to child partitions
3675 * do not show up in effective_cpus.
3676 */
3677 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3678
3679 if (!tmp || !cs->partition_root_state)
3680 goto update_tasks;
3681
3682 /*
3683 * In the unlikely event that a partition root has empty
3684 * effective_cpus with tasks, we will have to invalidate child
3685 * partitions, if present, by setting nr_subparts_cpus to 0 to
3686 * reclaim their cpus.
3687 */
3688 if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3689 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3690 spin_lock_irq(&callback_lock);
3691 cs->nr_subparts_cpus = 0;
3692 cpumask_clear(cs->subparts_cpus);
3693 spin_unlock_irq(&callback_lock);
3694 compute_effective_cpumask(&new_cpus, cs, parent);
3695 }
3696
3697 /*
3698 * Force the partition to become invalid if either one of
3699 * the following conditions hold:
3700 * 1) empty effective cpus but not valid empty partition.
3701 * 2) parent is invalid or doesn't grant any cpus to child
3702 * partitions.
3703 */
3704 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3705 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3706 int old_prs, parent_prs;
3707
3708 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3709 if (cs->nr_subparts_cpus) {
3710 spin_lock_irq(&callback_lock);
3711 cs->nr_subparts_cpus = 0;
3712 cpumask_clear(cs->subparts_cpus);
3713 spin_unlock_irq(&callback_lock);
3714 compute_effective_cpumask(&new_cpus, cs, parent);
3715 }
3716
3717 old_prs = cs->partition_root_state;
3718 parent_prs = parent->partition_root_state;
3719 if (is_partition_valid(cs)) {
3720 spin_lock_irq(&callback_lock);
3721 make_partition_invalid(cs);
3722 spin_unlock_irq(&callback_lock);
3723 if (is_prs_invalid(parent_prs))
3724 WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3725 else if (!parent_prs)
3726 WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3727 else
3728 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3729 notify_partition_change(cs, old_prs);
3730 }
3731 cpuset_force_rebuild();
3732 }
3733
3734 /*
3735 * On the other hand, an invalid partition root may be transitioned
3736 * back to a regular one.
3737 */
3738 else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3739 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3740 if (is_partition_valid(cs))
3741 cpuset_force_rebuild();
3742 }
3743
3744 update_tasks:
3745 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3746 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3747 if (!cpus_updated && !mems_updated)
3748 goto unlock; /* Hotplug doesn't affect this cpuset */
3749
3750 if (mems_updated)
3751 check_insane_mems_config(&new_mems);
3752
3753 if (is_in_v2_mode())
3754 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3755 cpus_updated, mems_updated);
3756 else
3757 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3758 cpus_updated, mems_updated);
3759
3760 unlock:
3761 mutex_unlock(&cpuset_mutex);
3762 }
3763
3764 /**
3765 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3766 * @work: unused
3767 *
3768 * This function is called after either CPU or memory configuration has
3769 * changed and updates cpuset accordingly. The top_cpuset is always
3770 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3771 * order to make cpusets transparent (of no affect) on systems that are
3772 * actively using CPU hotplug but making no active use of cpusets.
3773 *
3774 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3775 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3776 * all descendants.
3777 *
3778 * Note that CPU offlining during suspend is ignored. We don't modify
3779 * cpusets across suspend/resume cycles at all.
3780 */
cpuset_hotplug_workfn(struct work_struct * work)3781 static void cpuset_hotplug_workfn(struct work_struct *work)
3782 {
3783 static cpumask_t new_cpus;
3784 static nodemask_t new_mems;
3785 bool cpus_updated, mems_updated;
3786 bool on_dfl = is_in_v2_mode();
3787 struct tmpmasks tmp, *ptmp = NULL;
3788
3789 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3790 ptmp = &tmp;
3791
3792 mutex_lock(&cpuset_mutex);
3793
3794 /* fetch the available cpus/mems and find out which changed how */
3795 cpumask_copy(&new_cpus, cpu_active_mask);
3796 new_mems = node_states[N_MEMORY];
3797
3798 /*
3799 * If subparts_cpus is populated, it is likely that the check below
3800 * will produce a false positive on cpus_updated when the cpu list
3801 * isn't changed. It is extra work, but it is better to be safe.
3802 */
3803 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3804 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3805
3806 /*
3807 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3808 * we assumed that cpus are updated.
3809 */
3810 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3811 cpus_updated = true;
3812
3813 /* synchronize cpus_allowed to cpu_active_mask */
3814 if (cpus_updated) {
3815 spin_lock_irq(&callback_lock);
3816 if (!on_dfl)
3817 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3818 /*
3819 * Make sure that CPUs allocated to child partitions
3820 * do not show up in effective_cpus. If no CPU is left,
3821 * we clear the subparts_cpus & let the child partitions
3822 * fight for the CPUs again.
3823 */
3824 if (top_cpuset.nr_subparts_cpus) {
3825 if (cpumask_subset(&new_cpus,
3826 top_cpuset.subparts_cpus)) {
3827 top_cpuset.nr_subparts_cpus = 0;
3828 cpumask_clear(top_cpuset.subparts_cpus);
3829 } else {
3830 cpumask_andnot(&new_cpus, &new_cpus,
3831 top_cpuset.subparts_cpus);
3832 }
3833 }
3834 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3835 spin_unlock_irq(&callback_lock);
3836 /* we don't mess with cpumasks of tasks in top_cpuset */
3837 }
3838
3839 /* synchronize mems_allowed to N_MEMORY */
3840 if (mems_updated) {
3841 spin_lock_irq(&callback_lock);
3842 if (!on_dfl)
3843 top_cpuset.mems_allowed = new_mems;
3844 top_cpuset.effective_mems = new_mems;
3845 spin_unlock_irq(&callback_lock);
3846 update_tasks_nodemask(&top_cpuset);
3847 }
3848
3849 mutex_unlock(&cpuset_mutex);
3850
3851 /* if cpus or mems changed, we need to propagate to descendants */
3852 if (cpus_updated || mems_updated) {
3853 struct cpuset *cs;
3854 struct cgroup_subsys_state *pos_css;
3855
3856 rcu_read_lock();
3857 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3858 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3859 continue;
3860 rcu_read_unlock();
3861
3862 cpuset_hotplug_update_tasks(cs, ptmp);
3863
3864 rcu_read_lock();
3865 css_put(&cs->css);
3866 }
3867 rcu_read_unlock();
3868 }
3869
3870 /* rebuild sched domains if cpus_allowed has changed */
3871 if (cpus_updated || force_rebuild) {
3872 force_rebuild = false;
3873 rebuild_sched_domains();
3874 }
3875
3876 free_cpumasks(NULL, ptmp);
3877 }
3878
cpuset_update_active_cpus(void)3879 void cpuset_update_active_cpus(void)
3880 {
3881 /*
3882 * We're inside cpu hotplug critical region which usually nests
3883 * inside cgroup synchronization. Bounce actual hotplug processing
3884 * to a work item to avoid reverse locking order.
3885 */
3886 schedule_work(&cpuset_hotplug_work);
3887 }
3888
cpuset_wait_for_hotplug(void)3889 void cpuset_wait_for_hotplug(void)
3890 {
3891 flush_work(&cpuset_hotplug_work);
3892 }
3893
3894 /*
3895 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3896 * Call this routine anytime after node_states[N_MEMORY] changes.
3897 * See cpuset_update_active_cpus() for CPU hotplug handling.
3898 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3899 static int cpuset_track_online_nodes(struct notifier_block *self,
3900 unsigned long action, void *arg)
3901 {
3902 schedule_work(&cpuset_hotplug_work);
3903 return NOTIFY_OK;
3904 }
3905
3906 /**
3907 * cpuset_init_smp - initialize cpus_allowed
3908 *
3909 * Description: Finish top cpuset after cpu, node maps are initialized
3910 */
cpuset_init_smp(void)3911 void __init cpuset_init_smp(void)
3912 {
3913 /*
3914 * cpus_allowd/mems_allowed set to v2 values in the initial
3915 * cpuset_bind() call will be reset to v1 values in another
3916 * cpuset_bind() call when v1 cpuset is mounted.
3917 */
3918 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3919
3920 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3921 top_cpuset.effective_mems = node_states[N_MEMORY];
3922
3923 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3924
3925 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3926 BUG_ON(!cpuset_migrate_mm_wq);
3927 }
3928
3929 /**
3930 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3931 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3932 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3933 *
3934 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3935 * attached to the specified @tsk. Guaranteed to return some non-empty
3936 * subset of cpu_online_mask, even if this means going outside the
3937 * tasks cpuset, except when the task is in the top cpuset.
3938 **/
3939
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3940 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3941 {
3942 unsigned long flags;
3943 struct cpuset *cs;
3944
3945 spin_lock_irqsave(&callback_lock, flags);
3946 rcu_read_lock();
3947
3948 cs = task_cs(tsk);
3949 if (cs != &top_cpuset)
3950 guarantee_online_cpus(tsk, pmask);
3951 /*
3952 * Tasks in the top cpuset won't get update to their cpumasks
3953 * when a hotplug online/offline event happens. So we include all
3954 * offline cpus in the allowed cpu list.
3955 */
3956 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3957 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3958
3959 /*
3960 * We first exclude cpus allocated to partitions. If there is no
3961 * allowable online cpu left, we fall back to all possible cpus.
3962 */
3963 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3964 if (!cpumask_intersects(pmask, cpu_online_mask))
3965 cpumask_copy(pmask, possible_mask);
3966 }
3967
3968 rcu_read_unlock();
3969 spin_unlock_irqrestore(&callback_lock, flags);
3970 }
3971
3972 /**
3973 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3974 * @tsk: pointer to task_struct with which the scheduler is struggling
3975 *
3976 * Description: In the case that the scheduler cannot find an allowed cpu in
3977 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3978 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3979 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3980 * This is the absolute last resort for the scheduler and it is only used if
3981 * _every_ other avenue has been traveled.
3982 *
3983 * Returns true if the affinity of @tsk was changed, false otherwise.
3984 **/
3985
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3986 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3987 {
3988 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3989 const struct cpumask *cs_mask;
3990 bool changed = false;
3991
3992 rcu_read_lock();
3993 cs_mask = task_cs(tsk)->cpus_allowed;
3994 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3995 do_set_cpus_allowed(tsk, cs_mask);
3996 changed = true;
3997 }
3998 rcu_read_unlock();
3999
4000 /*
4001 * We own tsk->cpus_allowed, nobody can change it under us.
4002 *
4003 * But we used cs && cs->cpus_allowed lockless and thus can
4004 * race with cgroup_attach_task() or update_cpumask() and get
4005 * the wrong tsk->cpus_allowed. However, both cases imply the
4006 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4007 * which takes task_rq_lock().
4008 *
4009 * If we are called after it dropped the lock we must see all
4010 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4011 * set any mask even if it is not right from task_cs() pov,
4012 * the pending set_cpus_allowed_ptr() will fix things.
4013 *
4014 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4015 * if required.
4016 */
4017 return changed;
4018 }
4019
cpuset_init_current_mems_allowed(void)4020 void __init cpuset_init_current_mems_allowed(void)
4021 {
4022 nodes_setall(current->mems_allowed);
4023 }
4024
4025 /**
4026 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4027 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4028 *
4029 * Description: Returns the nodemask_t mems_allowed of the cpuset
4030 * attached to the specified @tsk. Guaranteed to return some non-empty
4031 * subset of node_states[N_MEMORY], even if this means going outside the
4032 * tasks cpuset.
4033 **/
4034
cpuset_mems_allowed(struct task_struct * tsk)4035 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4036 {
4037 nodemask_t mask;
4038 unsigned long flags;
4039
4040 spin_lock_irqsave(&callback_lock, flags);
4041 rcu_read_lock();
4042 guarantee_online_mems(task_cs(tsk), &mask);
4043 rcu_read_unlock();
4044 spin_unlock_irqrestore(&callback_lock, flags);
4045
4046 return mask;
4047 }
4048
4049 /**
4050 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4051 * @nodemask: the nodemask to be checked
4052 *
4053 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4054 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4055 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4056 {
4057 return nodes_intersects(*nodemask, current->mems_allowed);
4058 }
4059
4060 /*
4061 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4062 * mem_hardwall ancestor to the specified cpuset. Call holding
4063 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4064 * (an unusual configuration), then returns the root cpuset.
4065 */
nearest_hardwall_ancestor(struct cpuset * cs)4066 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4067 {
4068 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4069 cs = parent_cs(cs);
4070 return cs;
4071 }
4072
4073 /*
4074 * cpuset_node_allowed - Can we allocate on a memory node?
4075 * @node: is this an allowed node?
4076 * @gfp_mask: memory allocation flags
4077 *
4078 * If we're in interrupt, yes, we can always allocate. If @node is set in
4079 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4080 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4081 * yes. If current has access to memory reserves as an oom victim, yes.
4082 * Otherwise, no.
4083 *
4084 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4085 * and do not allow allocations outside the current tasks cpuset
4086 * unless the task has been OOM killed.
4087 * GFP_KERNEL allocations are not so marked, so can escape to the
4088 * nearest enclosing hardwalled ancestor cpuset.
4089 *
4090 * Scanning up parent cpusets requires callback_lock. The
4091 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4092 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4093 * current tasks mems_allowed came up empty on the first pass over
4094 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4095 * cpuset are short of memory, might require taking the callback_lock.
4096 *
4097 * The first call here from mm/page_alloc:get_page_from_freelist()
4098 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4099 * so no allocation on a node outside the cpuset is allowed (unless
4100 * in interrupt, of course).
4101 *
4102 * The second pass through get_page_from_freelist() doesn't even call
4103 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4104 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4105 * in alloc_flags. That logic and the checks below have the combined
4106 * affect that:
4107 * in_interrupt - any node ok (current task context irrelevant)
4108 * GFP_ATOMIC - any node ok
4109 * tsk_is_oom_victim - any node ok
4110 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4111 * GFP_USER - only nodes in current tasks mems allowed ok.
4112 */
cpuset_node_allowed(int node,gfp_t gfp_mask)4113 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4114 {
4115 struct cpuset *cs; /* current cpuset ancestors */
4116 bool allowed; /* is allocation in zone z allowed? */
4117 unsigned long flags;
4118
4119 if (in_interrupt())
4120 return true;
4121 if (node_isset(node, current->mems_allowed))
4122 return true;
4123 /*
4124 * Allow tasks that have access to memory reserves because they have
4125 * been OOM killed to get memory anywhere.
4126 */
4127 if (unlikely(tsk_is_oom_victim(current)))
4128 return true;
4129 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4130 return false;
4131
4132 if (current->flags & PF_EXITING) /* Let dying task have memory */
4133 return true;
4134
4135 /* Not hardwall and node outside mems_allowed: scan up cpusets */
4136 spin_lock_irqsave(&callback_lock, flags);
4137
4138 rcu_read_lock();
4139 cs = nearest_hardwall_ancestor(task_cs(current));
4140 allowed = node_isset(node, cs->mems_allowed);
4141 rcu_read_unlock();
4142
4143 spin_unlock_irqrestore(&callback_lock, flags);
4144 return allowed;
4145 }
4146
4147 /**
4148 * cpuset_spread_node() - On which node to begin search for a page
4149 * @rotor: round robin rotor
4150 *
4151 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4152 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4153 * and if the memory allocation used cpuset_mem_spread_node()
4154 * to determine on which node to start looking, as it will for
4155 * certain page cache or slab cache pages such as used for file
4156 * system buffers and inode caches, then instead of starting on the
4157 * local node to look for a free page, rather spread the starting
4158 * node around the tasks mems_allowed nodes.
4159 *
4160 * We don't have to worry about the returned node being offline
4161 * because "it can't happen", and even if it did, it would be ok.
4162 *
4163 * The routines calling guarantee_online_mems() are careful to
4164 * only set nodes in task->mems_allowed that are online. So it
4165 * should not be possible for the following code to return an
4166 * offline node. But if it did, that would be ok, as this routine
4167 * is not returning the node where the allocation must be, only
4168 * the node where the search should start. The zonelist passed to
4169 * __alloc_pages() will include all nodes. If the slab allocator
4170 * is passed an offline node, it will fall back to the local node.
4171 * See kmem_cache_alloc_node().
4172 */
cpuset_spread_node(int * rotor)4173 static int cpuset_spread_node(int *rotor)
4174 {
4175 return *rotor = next_node_in(*rotor, current->mems_allowed);
4176 }
4177
4178 /**
4179 * cpuset_mem_spread_node() - On which node to begin search for a file page
4180 */
cpuset_mem_spread_node(void)4181 int cpuset_mem_spread_node(void)
4182 {
4183 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4184 current->cpuset_mem_spread_rotor =
4185 node_random(¤t->mems_allowed);
4186
4187 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
4188 }
4189
4190 /**
4191 * cpuset_slab_spread_node() - On which node to begin search for a slab page
4192 */
cpuset_slab_spread_node(void)4193 int cpuset_slab_spread_node(void)
4194 {
4195 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4196 current->cpuset_slab_spread_rotor =
4197 node_random(¤t->mems_allowed);
4198
4199 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
4200 }
4201 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4202
4203 /**
4204 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4205 * @tsk1: pointer to task_struct of some task.
4206 * @tsk2: pointer to task_struct of some other task.
4207 *
4208 * Description: Return true if @tsk1's mems_allowed intersects the
4209 * mems_allowed of @tsk2. Used by the OOM killer to determine if
4210 * one of the task's memory usage might impact the memory available
4211 * to the other.
4212 **/
4213
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4214 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4215 const struct task_struct *tsk2)
4216 {
4217 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4218 }
4219
4220 /**
4221 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4222 *
4223 * Description: Prints current's name, cpuset name, and cached copy of its
4224 * mems_allowed to the kernel log.
4225 */
cpuset_print_current_mems_allowed(void)4226 void cpuset_print_current_mems_allowed(void)
4227 {
4228 struct cgroup *cgrp;
4229
4230 rcu_read_lock();
4231
4232 cgrp = task_cs(current)->css.cgroup;
4233 pr_cont(",cpuset=");
4234 pr_cont_cgroup_name(cgrp);
4235 pr_cont(",mems_allowed=%*pbl",
4236 nodemask_pr_args(¤t->mems_allowed));
4237
4238 rcu_read_unlock();
4239 }
4240
4241 /*
4242 * Collection of memory_pressure is suppressed unless
4243 * this flag is enabled by writing "1" to the special
4244 * cpuset file 'memory_pressure_enabled' in the root cpuset.
4245 */
4246
4247 int cpuset_memory_pressure_enabled __read_mostly;
4248
4249 /*
4250 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4251 *
4252 * Keep a running average of the rate of synchronous (direct)
4253 * page reclaim efforts initiated by tasks in each cpuset.
4254 *
4255 * This represents the rate at which some task in the cpuset
4256 * ran low on memory on all nodes it was allowed to use, and
4257 * had to enter the kernels page reclaim code in an effort to
4258 * create more free memory by tossing clean pages or swapping
4259 * or writing dirty pages.
4260 *
4261 * Display to user space in the per-cpuset read-only file
4262 * "memory_pressure". Value displayed is an integer
4263 * representing the recent rate of entry into the synchronous
4264 * (direct) page reclaim by any task attached to the cpuset.
4265 */
4266
__cpuset_memory_pressure_bump(void)4267 void __cpuset_memory_pressure_bump(void)
4268 {
4269 rcu_read_lock();
4270 fmeter_markevent(&task_cs(current)->fmeter);
4271 rcu_read_unlock();
4272 }
4273
4274 #ifdef CONFIG_PROC_PID_CPUSET
4275 /*
4276 * proc_cpuset_show()
4277 * - Print tasks cpuset path into seq_file.
4278 * - Used for /proc/<pid>/cpuset.
4279 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4280 * doesn't really matter if tsk->cpuset changes after we read it,
4281 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
4282 * anyway.
4283 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)4284 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4285 struct pid *pid, struct task_struct *tsk)
4286 {
4287 char *buf;
4288 struct cgroup_subsys_state *css;
4289 int retval;
4290
4291 retval = -ENOMEM;
4292 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4293 if (!buf)
4294 goto out;
4295
4296 css = task_get_css(tsk, cpuset_cgrp_id);
4297 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4298 current->nsproxy->cgroup_ns);
4299 css_put(css);
4300 if (retval >= PATH_MAX)
4301 retval = -ENAMETOOLONG;
4302 if (retval < 0)
4303 goto out_free;
4304 seq_puts(m, buf);
4305 seq_putc(m, '\n');
4306 retval = 0;
4307 out_free:
4308 kfree(buf);
4309 out:
4310 return retval;
4311 }
4312 #endif /* CONFIG_PROC_PID_CPUSET */
4313
4314 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4315 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4316 {
4317 seq_printf(m, "Mems_allowed:\t%*pb\n",
4318 nodemask_pr_args(&task->mems_allowed));
4319 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4320 nodemask_pr_args(&task->mems_allowed));
4321 }
4322