1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56 
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 
63 /*
64  * Workqueue for cpuset related tasks.
65  *
66  * Using kevent workqueue may cause deadlock when memory_migrate
67  * is set. So we create a separate workqueue thread for cpuset.
68  */
69 static struct workqueue_struct *cpuset_wq;
70 
71 /*
72  * Tracks how many cpusets are currently defined in system.
73  * When there is only one cpuset (the root cpuset) we can
74  * short circuit some hooks.
75  */
76 int number_of_cpusets __read_mostly;
77 
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81 
82 /* See "Frequency meter" comments, below. */
83 
84 struct fmeter {
85 	int cnt;		/* unprocessed events count */
86 	int val;		/* most recent output value */
87 	time_t time;		/* clock (secs) when val computed */
88 	spinlock_t lock;	/* guards read or write of above */
89 };
90 
91 struct cpuset {
92 	struct cgroup_subsys_state css;
93 
94 	unsigned long flags;		/* "unsigned long" so bitops work */
95 	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
96 	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */
97 
98 	struct cpuset *parent;		/* my parent */
99 
100 	struct fmeter fmeter;		/* memory_pressure filter */
101 
102 	/* partition number for rebuild_sched_domains() */
103 	int pn;
104 
105 	/* for custom sched domain */
106 	int relax_domain_level;
107 
108 	/* used for walking a cpuset hierarchy */
109 	struct list_head stack_list;
110 };
111 
112 /* Retrieve the cpuset for a cgroup */
cgroup_cs(struct cgroup * cont)113 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114 {
115 	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 			    struct cpuset, css);
117 }
118 
119 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)120 static inline struct cpuset *task_cs(struct task_struct *task)
121 {
122 	return container_of(task_subsys_state(task, cpuset_subsys_id),
123 			    struct cpuset, css);
124 }
125 
126 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)127 static inline bool task_has_mempolicy(struct task_struct *task)
128 {
129 	return task->mempolicy;
130 }
131 #else
task_has_mempolicy(struct task_struct * task)132 static inline bool task_has_mempolicy(struct task_struct *task)
133 {
134 	return false;
135 }
136 #endif
137 
138 
139 /* bits in struct cpuset flags field */
140 typedef enum {
141 	CS_CPU_EXCLUSIVE,
142 	CS_MEM_EXCLUSIVE,
143 	CS_MEM_HARDWALL,
144 	CS_MEMORY_MIGRATE,
145 	CS_SCHED_LOAD_BALANCE,
146 	CS_SPREAD_PAGE,
147 	CS_SPREAD_SLAB,
148 } cpuset_flagbits_t;
149 
150 /* convenient tests for these bits */
is_cpu_exclusive(const struct cpuset * cs)151 static inline int is_cpu_exclusive(const struct cpuset *cs)
152 {
153 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
154 }
155 
is_mem_exclusive(const struct cpuset * cs)156 static inline int is_mem_exclusive(const struct cpuset *cs)
157 {
158 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
159 }
160 
is_mem_hardwall(const struct cpuset * cs)161 static inline int is_mem_hardwall(const struct cpuset *cs)
162 {
163 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
164 }
165 
is_sched_load_balance(const struct cpuset * cs)166 static inline int is_sched_load_balance(const struct cpuset *cs)
167 {
168 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
169 }
170 
is_memory_migrate(const struct cpuset * cs)171 static inline int is_memory_migrate(const struct cpuset *cs)
172 {
173 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
174 }
175 
is_spread_page(const struct cpuset * cs)176 static inline int is_spread_page(const struct cpuset *cs)
177 {
178 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
179 }
180 
is_spread_slab(const struct cpuset * cs)181 static inline int is_spread_slab(const struct cpuset *cs)
182 {
183 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
184 }
185 
186 static struct cpuset top_cpuset = {
187 	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
188 };
189 
190 /*
191  * There are two global mutexes guarding cpuset structures.  The first
192  * is the main control groups cgroup_mutex, accessed via
193  * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
194  * callback_mutex, below. They can nest.  It is ok to first take
195  * cgroup_mutex, then nest callback_mutex.  We also require taking
196  * task_lock() when dereferencing a task's cpuset pointer.  See "The
197  * task_lock() exception", at the end of this comment.
198  *
199  * A task must hold both mutexes to modify cpusets.  If a task
200  * holds cgroup_mutex, then it blocks others wanting that mutex,
201  * ensuring that it is the only task able to also acquire callback_mutex
202  * and be able to modify cpusets.  It can perform various checks on
203  * the cpuset structure first, knowing nothing will change.  It can
204  * also allocate memory while just holding cgroup_mutex.  While it is
205  * performing these checks, various callback routines can briefly
206  * acquire callback_mutex to query cpusets.  Once it is ready to make
207  * the changes, it takes callback_mutex, blocking everyone else.
208  *
209  * Calls to the kernel memory allocator can not be made while holding
210  * callback_mutex, as that would risk double tripping on callback_mutex
211  * from one of the callbacks into the cpuset code from within
212  * __alloc_pages().
213  *
214  * If a task is only holding callback_mutex, then it has read-only
215  * access to cpusets.
216  *
217  * Now, the task_struct fields mems_allowed and mempolicy may be changed
218  * by other task, we use alloc_lock in the task_struct fields to protect
219  * them.
220  *
221  * The cpuset_common_file_read() handlers only hold callback_mutex across
222  * small pieces of code, such as when reading out possibly multi-word
223  * cpumasks and nodemasks.
224  *
225  * Accessing a task's cpuset should be done in accordance with the
226  * guidelines for accessing subsystem state in kernel/cgroup.c
227  */
228 
229 static DEFINE_MUTEX(callback_mutex);
230 
231 /*
232  * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
233  * buffers.  They are statically allocated to prevent using excess stack
234  * when calling cpuset_print_task_mems_allowed().
235  */
236 #define CPUSET_NAME_LEN		(128)
237 #define	CPUSET_NODELIST_LEN	(256)
238 static char cpuset_name[CPUSET_NAME_LEN];
239 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
240 static DEFINE_SPINLOCK(cpuset_buffer_lock);
241 
242 /*
243  * This is ugly, but preserves the userspace API for existing cpuset
244  * users. If someone tries to mount the "cpuset" filesystem, we
245  * silently switch it to mount "cgroup" instead
246  */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)247 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
248 			 int flags, const char *unused_dev_name, void *data)
249 {
250 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
251 	struct dentry *ret = ERR_PTR(-ENODEV);
252 	if (cgroup_fs) {
253 		char mountopts[] =
254 			"cpuset,noprefix,"
255 			"release_agent=/sbin/cpuset_release_agent";
256 		ret = cgroup_fs->mount(cgroup_fs, flags,
257 					   unused_dev_name, mountopts);
258 		put_filesystem(cgroup_fs);
259 	}
260 	return ret;
261 }
262 
263 static struct file_system_type cpuset_fs_type = {
264 	.name = "cpuset",
265 	.mount = cpuset_mount,
266 };
267 
268 /*
269  * Return in pmask the portion of a cpusets's cpus_allowed that
270  * are online.  If none are online, walk up the cpuset hierarchy
271  * until we find one that does have some online cpus.  If we get
272  * all the way to the top and still haven't found any online cpus,
273  * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
274  * task, return cpu_online_mask.
275  *
276  * One way or another, we guarantee to return some non-empty subset
277  * of cpu_online_mask.
278  *
279  * Call with callback_mutex held.
280  */
281 
guarantee_online_cpus(const struct cpuset * cs,struct cpumask * pmask)282 static void guarantee_online_cpus(const struct cpuset *cs,
283 				  struct cpumask *pmask)
284 {
285 	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
286 		cs = cs->parent;
287 	if (cs)
288 		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
289 	else
290 		cpumask_copy(pmask, cpu_online_mask);
291 	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
292 }
293 
294 /*
295  * Return in *pmask the portion of a cpusets's mems_allowed that
296  * are online, with memory.  If none are online with memory, walk
297  * up the cpuset hierarchy until we find one that does have some
298  * online mems.  If we get all the way to the top and still haven't
299  * found any online mems, return node_states[N_HIGH_MEMORY].
300  *
301  * One way or another, we guarantee to return some non-empty subset
302  * of node_states[N_HIGH_MEMORY].
303  *
304  * Call with callback_mutex held.
305  */
306 
guarantee_online_mems(const struct cpuset * cs,nodemask_t * pmask)307 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
308 {
309 	while (cs && !nodes_intersects(cs->mems_allowed,
310 					node_states[N_HIGH_MEMORY]))
311 		cs = cs->parent;
312 	if (cs)
313 		nodes_and(*pmask, cs->mems_allowed,
314 					node_states[N_HIGH_MEMORY]);
315 	else
316 		*pmask = node_states[N_HIGH_MEMORY];
317 	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
318 }
319 
320 /*
321  * update task's spread flag if cpuset's page/slab spread flag is set
322  *
323  * Called with callback_mutex/cgroup_mutex held
324  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)325 static void cpuset_update_task_spread_flag(struct cpuset *cs,
326 					struct task_struct *tsk)
327 {
328 	if (is_spread_page(cs))
329 		tsk->flags |= PF_SPREAD_PAGE;
330 	else
331 		tsk->flags &= ~PF_SPREAD_PAGE;
332 	if (is_spread_slab(cs))
333 		tsk->flags |= PF_SPREAD_SLAB;
334 	else
335 		tsk->flags &= ~PF_SPREAD_SLAB;
336 }
337 
338 /*
339  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
340  *
341  * One cpuset is a subset of another if all its allowed CPUs and
342  * Memory Nodes are a subset of the other, and its exclusive flags
343  * are only set if the other's are set.  Call holding cgroup_mutex.
344  */
345 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)346 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
347 {
348 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
349 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
350 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
351 		is_mem_exclusive(p) <= is_mem_exclusive(q);
352 }
353 
354 /**
355  * alloc_trial_cpuset - allocate a trial cpuset
356  * @cs: the cpuset that the trial cpuset duplicates
357  */
alloc_trial_cpuset(const struct cpuset * cs)358 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
359 {
360 	struct cpuset *trial;
361 
362 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
363 	if (!trial)
364 		return NULL;
365 
366 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
367 		kfree(trial);
368 		return NULL;
369 	}
370 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
371 
372 	return trial;
373 }
374 
375 /**
376  * free_trial_cpuset - free the trial cpuset
377  * @trial: the trial cpuset to be freed
378  */
free_trial_cpuset(struct cpuset * trial)379 static void free_trial_cpuset(struct cpuset *trial)
380 {
381 	free_cpumask_var(trial->cpus_allowed);
382 	kfree(trial);
383 }
384 
385 /*
386  * validate_change() - Used to validate that any proposed cpuset change
387  *		       follows the structural rules for cpusets.
388  *
389  * If we replaced the flag and mask values of the current cpuset
390  * (cur) with those values in the trial cpuset (trial), would
391  * our various subset and exclusive rules still be valid?  Presumes
392  * cgroup_mutex held.
393  *
394  * 'cur' is the address of an actual, in-use cpuset.  Operations
395  * such as list traversal that depend on the actual address of the
396  * cpuset in the list must use cur below, not trial.
397  *
398  * 'trial' is the address of bulk structure copy of cur, with
399  * perhaps one or more of the fields cpus_allowed, mems_allowed,
400  * or flags changed to new, trial values.
401  *
402  * Return 0 if valid, -errno if not.
403  */
404 
validate_change(const struct cpuset * cur,const struct cpuset * trial)405 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
406 {
407 	struct cgroup *cont;
408 	struct cpuset *c, *par;
409 
410 	/* Each of our child cpusets must be a subset of us */
411 	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
412 		if (!is_cpuset_subset(cgroup_cs(cont), trial))
413 			return -EBUSY;
414 	}
415 
416 	/* Remaining checks don't apply to root cpuset */
417 	if (cur == &top_cpuset)
418 		return 0;
419 
420 	par = cur->parent;
421 
422 	/* We must be a subset of our parent cpuset */
423 	if (!is_cpuset_subset(trial, par))
424 		return -EACCES;
425 
426 	/*
427 	 * If either I or some sibling (!= me) is exclusive, we can't
428 	 * overlap
429 	 */
430 	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
431 		c = cgroup_cs(cont);
432 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
433 		    c != cur &&
434 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
435 			return -EINVAL;
436 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
437 		    c != cur &&
438 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
439 			return -EINVAL;
440 	}
441 
442 	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
443 	if (cgroup_task_count(cur->css.cgroup)) {
444 		if (cpumask_empty(trial->cpus_allowed) ||
445 		    nodes_empty(trial->mems_allowed)) {
446 			return -ENOSPC;
447 		}
448 	}
449 
450 	return 0;
451 }
452 
453 #ifdef CONFIG_SMP
454 /*
455  * Helper routine for generate_sched_domains().
456  * Do cpusets a, b have overlapping cpus_allowed masks?
457  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)458 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
459 {
460 	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
461 }
462 
463 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)464 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
465 {
466 	if (dattr->relax_domain_level < c->relax_domain_level)
467 		dattr->relax_domain_level = c->relax_domain_level;
468 	return;
469 }
470 
471 static void
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * c)472 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
473 {
474 	LIST_HEAD(q);
475 
476 	list_add(&c->stack_list, &q);
477 	while (!list_empty(&q)) {
478 		struct cpuset *cp;
479 		struct cgroup *cont;
480 		struct cpuset *child;
481 
482 		cp = list_first_entry(&q, struct cpuset, stack_list);
483 		list_del(q.next);
484 
485 		if (cpumask_empty(cp->cpus_allowed))
486 			continue;
487 
488 		if (is_sched_load_balance(cp))
489 			update_domain_attr(dattr, cp);
490 
491 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
492 			child = cgroup_cs(cont);
493 			list_add_tail(&child->stack_list, &q);
494 		}
495 	}
496 }
497 
498 /*
499  * generate_sched_domains()
500  *
501  * This function builds a partial partition of the systems CPUs
502  * A 'partial partition' is a set of non-overlapping subsets whose
503  * union is a subset of that set.
504  * The output of this function needs to be passed to kernel/sched.c
505  * partition_sched_domains() routine, which will rebuild the scheduler's
506  * load balancing domains (sched domains) as specified by that partial
507  * partition.
508  *
509  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
510  * for a background explanation of this.
511  *
512  * Does not return errors, on the theory that the callers of this
513  * routine would rather not worry about failures to rebuild sched
514  * domains when operating in the severe memory shortage situations
515  * that could cause allocation failures below.
516  *
517  * Must be called with cgroup_lock held.
518  *
519  * The three key local variables below are:
520  *    q  - a linked-list queue of cpuset pointers, used to implement a
521  *	   top-down scan of all cpusets.  This scan loads a pointer
522  *	   to each cpuset marked is_sched_load_balance into the
523  *	   array 'csa'.  For our purposes, rebuilding the schedulers
524  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
525  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
526  *	   that need to be load balanced, for convenient iterative
527  *	   access by the subsequent code that finds the best partition,
528  *	   i.e the set of domains (subsets) of CPUs such that the
529  *	   cpus_allowed of every cpuset marked is_sched_load_balance
530  *	   is a subset of one of these domains, while there are as
531  *	   many such domains as possible, each as small as possible.
532  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
533  *	   the kernel/sched.c routine partition_sched_domains() in a
534  *	   convenient format, that can be easily compared to the prior
535  *	   value to determine what partition elements (sched domains)
536  *	   were changed (added or removed.)
537  *
538  * Finding the best partition (set of domains):
539  *	The triple nested loops below over i, j, k scan over the
540  *	load balanced cpusets (using the array of cpuset pointers in
541  *	csa[]) looking for pairs of cpusets that have overlapping
542  *	cpus_allowed, but which don't have the same 'pn' partition
543  *	number and gives them in the same partition number.  It keeps
544  *	looping on the 'restart' label until it can no longer find
545  *	any such pairs.
546  *
547  *	The union of the cpus_allowed masks from the set of
548  *	all cpusets having the same 'pn' value then form the one
549  *	element of the partition (one sched domain) to be passed to
550  *	partition_sched_domains().
551  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)552 static int generate_sched_domains(cpumask_var_t **domains,
553 			struct sched_domain_attr **attributes)
554 {
555 	LIST_HEAD(q);		/* queue of cpusets to be scanned */
556 	struct cpuset *cp;	/* scans q */
557 	struct cpuset **csa;	/* array of all cpuset ptrs */
558 	int csn;		/* how many cpuset ptrs in csa so far */
559 	int i, j, k;		/* indices for partition finding loops */
560 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
561 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
562 	int ndoms = 0;		/* number of sched domains in result */
563 	int nslot;		/* next empty doms[] struct cpumask slot */
564 
565 	doms = NULL;
566 	dattr = NULL;
567 	csa = NULL;
568 
569 	/* Special case for the 99% of systems with one, full, sched domain */
570 	if (is_sched_load_balance(&top_cpuset)) {
571 		ndoms = 1;
572 		doms = alloc_sched_domains(ndoms);
573 		if (!doms)
574 			goto done;
575 
576 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
577 		if (dattr) {
578 			*dattr = SD_ATTR_INIT;
579 			update_domain_attr_tree(dattr, &top_cpuset);
580 		}
581 		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
582 
583 		goto done;
584 	}
585 
586 	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
587 	if (!csa)
588 		goto done;
589 	csn = 0;
590 
591 	list_add(&top_cpuset.stack_list, &q);
592 	while (!list_empty(&q)) {
593 		struct cgroup *cont;
594 		struct cpuset *child;   /* scans child cpusets of cp */
595 
596 		cp = list_first_entry(&q, struct cpuset, stack_list);
597 		list_del(q.next);
598 
599 		if (cpumask_empty(cp->cpus_allowed))
600 			continue;
601 
602 		/*
603 		 * All child cpusets contain a subset of the parent's cpus, so
604 		 * just skip them, and then we call update_domain_attr_tree()
605 		 * to calc relax_domain_level of the corresponding sched
606 		 * domain.
607 		 */
608 		if (is_sched_load_balance(cp)) {
609 			csa[csn++] = cp;
610 			continue;
611 		}
612 
613 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
614 			child = cgroup_cs(cont);
615 			list_add_tail(&child->stack_list, &q);
616 		}
617   	}
618 
619 	for (i = 0; i < csn; i++)
620 		csa[i]->pn = i;
621 	ndoms = csn;
622 
623 restart:
624 	/* Find the best partition (set of sched domains) */
625 	for (i = 0; i < csn; i++) {
626 		struct cpuset *a = csa[i];
627 		int apn = a->pn;
628 
629 		for (j = 0; j < csn; j++) {
630 			struct cpuset *b = csa[j];
631 			int bpn = b->pn;
632 
633 			if (apn != bpn && cpusets_overlap(a, b)) {
634 				for (k = 0; k < csn; k++) {
635 					struct cpuset *c = csa[k];
636 
637 					if (c->pn == bpn)
638 						c->pn = apn;
639 				}
640 				ndoms--;	/* one less element */
641 				goto restart;
642 			}
643 		}
644 	}
645 
646 	/*
647 	 * Now we know how many domains to create.
648 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
649 	 */
650 	doms = alloc_sched_domains(ndoms);
651 	if (!doms)
652 		goto done;
653 
654 	/*
655 	 * The rest of the code, including the scheduler, can deal with
656 	 * dattr==NULL case. No need to abort if alloc fails.
657 	 */
658 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
659 
660 	for (nslot = 0, i = 0; i < csn; i++) {
661 		struct cpuset *a = csa[i];
662 		struct cpumask *dp;
663 		int apn = a->pn;
664 
665 		if (apn < 0) {
666 			/* Skip completed partitions */
667 			continue;
668 		}
669 
670 		dp = doms[nslot];
671 
672 		if (nslot == ndoms) {
673 			static int warnings = 10;
674 			if (warnings) {
675 				printk(KERN_WARNING
676 				 "rebuild_sched_domains confused:"
677 				  " nslot %d, ndoms %d, csn %d, i %d,"
678 				  " apn %d\n",
679 				  nslot, ndoms, csn, i, apn);
680 				warnings--;
681 			}
682 			continue;
683 		}
684 
685 		cpumask_clear(dp);
686 		if (dattr)
687 			*(dattr + nslot) = SD_ATTR_INIT;
688 		for (j = i; j < csn; j++) {
689 			struct cpuset *b = csa[j];
690 
691 			if (apn == b->pn) {
692 				cpumask_or(dp, dp, b->cpus_allowed);
693 				if (dattr)
694 					update_domain_attr_tree(dattr + nslot, b);
695 
696 				/* Done with this partition */
697 				b->pn = -1;
698 			}
699 		}
700 		nslot++;
701 	}
702 	BUG_ON(nslot != ndoms);
703 
704 done:
705 	kfree(csa);
706 
707 	/*
708 	 * Fallback to the default domain if kmalloc() failed.
709 	 * See comments in partition_sched_domains().
710 	 */
711 	if (doms == NULL)
712 		ndoms = 1;
713 
714 	*domains    = doms;
715 	*attributes = dattr;
716 	return ndoms;
717 }
718 
719 /*
720  * Rebuild scheduler domains.
721  *
722  * Call with neither cgroup_mutex held nor within get_online_cpus().
723  * Takes both cgroup_mutex and get_online_cpus().
724  *
725  * Cannot be directly called from cpuset code handling changes
726  * to the cpuset pseudo-filesystem, because it cannot be called
727  * from code that already holds cgroup_mutex.
728  */
do_rebuild_sched_domains(struct work_struct * unused)729 static void do_rebuild_sched_domains(struct work_struct *unused)
730 {
731 	struct sched_domain_attr *attr;
732 	cpumask_var_t *doms;
733 	int ndoms;
734 
735 	get_online_cpus();
736 
737 	/* Generate domain masks and attrs */
738 	cgroup_lock();
739 	ndoms = generate_sched_domains(&doms, &attr);
740 	cgroup_unlock();
741 
742 	/* Have scheduler rebuild the domains */
743 	partition_sched_domains(ndoms, doms, attr);
744 
745 	put_online_cpus();
746 }
747 #else /* !CONFIG_SMP */
do_rebuild_sched_domains(struct work_struct * unused)748 static void do_rebuild_sched_domains(struct work_struct *unused)
749 {
750 }
751 
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)752 static int generate_sched_domains(cpumask_var_t **domains,
753 			struct sched_domain_attr **attributes)
754 {
755 	*domains = NULL;
756 	return 1;
757 }
758 #endif /* CONFIG_SMP */
759 
760 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
761 
762 /*
763  * Rebuild scheduler domains, asynchronously via workqueue.
764  *
765  * If the flag 'sched_load_balance' of any cpuset with non-empty
766  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
767  * which has that flag enabled, or if any cpuset with a non-empty
768  * 'cpus' is removed, then call this routine to rebuild the
769  * scheduler's dynamic sched domains.
770  *
771  * The rebuild_sched_domains() and partition_sched_domains()
772  * routines must nest cgroup_lock() inside get_online_cpus(),
773  * but such cpuset changes as these must nest that locking the
774  * other way, holding cgroup_lock() for much of the code.
775  *
776  * So in order to avoid an ABBA deadlock, the cpuset code handling
777  * these user changes delegates the actual sched domain rebuilding
778  * to a separate workqueue thread, which ends up processing the
779  * above do_rebuild_sched_domains() function.
780  */
async_rebuild_sched_domains(void)781 static void async_rebuild_sched_domains(void)
782 {
783 	queue_work(cpuset_wq, &rebuild_sched_domains_work);
784 }
785 
786 /*
787  * Accomplishes the same scheduler domain rebuild as the above
788  * async_rebuild_sched_domains(), however it directly calls the
789  * rebuild routine synchronously rather than calling it via an
790  * asynchronous work thread.
791  *
792  * This can only be called from code that is not holding
793  * cgroup_mutex (not nested in a cgroup_lock() call.)
794  */
rebuild_sched_domains(void)795 void rebuild_sched_domains(void)
796 {
797 	do_rebuild_sched_domains(NULL);
798 }
799 
800 /**
801  * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
802  * @tsk: task to test
803  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
804  *
805  * Call with cgroup_mutex held.  May take callback_mutex during call.
806  * Called for each task in a cgroup by cgroup_scan_tasks().
807  * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
808  * words, if its mask is not equal to its cpuset's mask).
809  */
cpuset_test_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)810 static int cpuset_test_cpumask(struct task_struct *tsk,
811 			       struct cgroup_scanner *scan)
812 {
813 	return !cpumask_equal(&tsk->cpus_allowed,
814 			(cgroup_cs(scan->cg))->cpus_allowed);
815 }
816 
817 /**
818  * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
819  * @tsk: task to test
820  * @scan: struct cgroup_scanner containing the cgroup of the task
821  *
822  * Called by cgroup_scan_tasks() for each task in a cgroup whose
823  * cpus_allowed mask needs to be changed.
824  *
825  * We don't need to re-check for the cgroup/cpuset membership, since we're
826  * holding cgroup_lock() at this point.
827  */
cpuset_change_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)828 static void cpuset_change_cpumask(struct task_struct *tsk,
829 				  struct cgroup_scanner *scan)
830 {
831 	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
832 }
833 
834 /**
835  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
836  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
837  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
838  *
839  * Called with cgroup_mutex held
840  *
841  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
842  * calling callback functions for each.
843  *
844  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
845  * if @heap != NULL.
846  */
update_tasks_cpumask(struct cpuset * cs,struct ptr_heap * heap)847 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
848 {
849 	struct cgroup_scanner scan;
850 
851 	scan.cg = cs->css.cgroup;
852 	scan.test_task = cpuset_test_cpumask;
853 	scan.process_task = cpuset_change_cpumask;
854 	scan.heap = heap;
855 	cgroup_scan_tasks(&scan);
856 }
857 
858 /**
859  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
860  * @cs: the cpuset to consider
861  * @buf: buffer of cpu numbers written to this cpuset
862  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)863 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
864 			  const char *buf)
865 {
866 	struct ptr_heap heap;
867 	int retval;
868 	int is_load_balanced;
869 
870 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
871 	if (cs == &top_cpuset)
872 		return -EACCES;
873 
874 	/*
875 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
876 	 * Since cpulist_parse() fails on an empty mask, we special case
877 	 * that parsing.  The validate_change() call ensures that cpusets
878 	 * with tasks have cpus.
879 	 */
880 	if (!*buf) {
881 		cpumask_clear(trialcs->cpus_allowed);
882 	} else {
883 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
884 		if (retval < 0)
885 			return retval;
886 
887 		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
888 			return -EINVAL;
889 	}
890 	retval = validate_change(cs, trialcs);
891 	if (retval < 0)
892 		return retval;
893 
894 	/* Nothing to do if the cpus didn't change */
895 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
896 		return 0;
897 
898 	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
899 	if (retval)
900 		return retval;
901 
902 	is_load_balanced = is_sched_load_balance(trialcs);
903 
904 	mutex_lock(&callback_mutex);
905 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
906 	mutex_unlock(&callback_mutex);
907 
908 	/*
909 	 * Scan tasks in the cpuset, and update the cpumasks of any
910 	 * that need an update.
911 	 */
912 	update_tasks_cpumask(cs, &heap);
913 
914 	heap_free(&heap);
915 
916 	if (is_load_balanced)
917 		async_rebuild_sched_domains();
918 	return 0;
919 }
920 
921 /*
922  * cpuset_migrate_mm
923  *
924  *    Migrate memory region from one set of nodes to another.
925  *
926  *    Temporarilly set tasks mems_allowed to target nodes of migration,
927  *    so that the migration code can allocate pages on these nodes.
928  *
929  *    Call holding cgroup_mutex, so current's cpuset won't change
930  *    during this call, as manage_mutex holds off any cpuset_attach()
931  *    calls.  Therefore we don't need to take task_lock around the
932  *    call to guarantee_online_mems(), as we know no one is changing
933  *    our task's cpuset.
934  *
935  *    While the mm_struct we are migrating is typically from some
936  *    other task, the task_struct mems_allowed that we are hacking
937  *    is for our current task, which must allocate new pages for that
938  *    migrating memory region.
939  */
940 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)941 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
942 							const nodemask_t *to)
943 {
944 	struct task_struct *tsk = current;
945 
946 	tsk->mems_allowed = *to;
947 
948 	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
949 
950 	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
951 }
952 
953 /*
954  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
955  * @tsk: the task to change
956  * @newmems: new nodes that the task will be set
957  *
958  * In order to avoid seeing no nodes if the old and new nodes are disjoint,
959  * we structure updates as setting all new allowed nodes, then clearing newly
960  * disallowed ones.
961  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)962 static void cpuset_change_task_nodemask(struct task_struct *tsk,
963 					nodemask_t *newmems)
964 {
965 	bool need_loop;
966 
967 	/*
968 	 * Allow tasks that have access to memory reserves because they have
969 	 * been OOM killed to get memory anywhere.
970 	 */
971 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
972 		return;
973 	if (current->flags & PF_EXITING) /* Let dying task have memory */
974 		return;
975 
976 	task_lock(tsk);
977 	/*
978 	 * Determine if a loop is necessary if another thread is doing
979 	 * get_mems_allowed().  If at least one node remains unchanged and
980 	 * tsk does not have a mempolicy, then an empty nodemask will not be
981 	 * possible when mems_allowed is larger than a word.
982 	 */
983 	need_loop = task_has_mempolicy(tsk) ||
984 			!nodes_intersects(*newmems, tsk->mems_allowed);
985 
986 	if (need_loop) {
987 		local_irq_disable();
988 		write_seqcount_begin(&tsk->mems_allowed_seq);
989 	}
990 
991 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
992 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
993 
994 	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
995 	tsk->mems_allowed = *newmems;
996 
997 	if (need_loop) {
998 		write_seqcount_end(&tsk->mems_allowed_seq);
999 		local_irq_enable();
1000 	}
1001 
1002 	task_unlock(tsk);
1003 }
1004 
1005 /*
1006  * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1007  * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1008  * memory_migrate flag is set. Called with cgroup_mutex held.
1009  */
cpuset_change_nodemask(struct task_struct * p,struct cgroup_scanner * scan)1010 static void cpuset_change_nodemask(struct task_struct *p,
1011 				   struct cgroup_scanner *scan)
1012 {
1013 	struct mm_struct *mm;
1014 	struct cpuset *cs;
1015 	int migrate;
1016 	const nodemask_t *oldmem = scan->data;
1017 	static nodemask_t newmems;	/* protected by cgroup_mutex */
1018 
1019 	cs = cgroup_cs(scan->cg);
1020 	guarantee_online_mems(cs, &newmems);
1021 
1022 	cpuset_change_task_nodemask(p, &newmems);
1023 
1024 	mm = get_task_mm(p);
1025 	if (!mm)
1026 		return;
1027 
1028 	migrate = is_memory_migrate(cs);
1029 
1030 	mpol_rebind_mm(mm, &cs->mems_allowed);
1031 	if (migrate)
1032 		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1033 	mmput(mm);
1034 }
1035 
1036 static void *cpuset_being_rebound;
1037 
1038 /**
1039  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1040  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1041  * @oldmem: old mems_allowed of cpuset cs
1042  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1043  *
1044  * Called with cgroup_mutex held
1045  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1046  * if @heap != NULL.
1047  */
update_tasks_nodemask(struct cpuset * cs,const nodemask_t * oldmem,struct ptr_heap * heap)1048 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1049 				 struct ptr_heap *heap)
1050 {
1051 	struct cgroup_scanner scan;
1052 
1053 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1054 
1055 	scan.cg = cs->css.cgroup;
1056 	scan.test_task = NULL;
1057 	scan.process_task = cpuset_change_nodemask;
1058 	scan.heap = heap;
1059 	scan.data = (nodemask_t *)oldmem;
1060 
1061 	/*
1062 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1063 	 * take while holding tasklist_lock.  Forks can happen - the
1064 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1065 	 * and rebind their vma mempolicies too.  Because we still hold
1066 	 * the global cgroup_mutex, we know that no other rebind effort
1067 	 * will be contending for the global variable cpuset_being_rebound.
1068 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1069 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1070 	 */
1071 	cgroup_scan_tasks(&scan);
1072 
1073 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1074 	cpuset_being_rebound = NULL;
1075 }
1076 
1077 /*
1078  * Handle user request to change the 'mems' memory placement
1079  * of a cpuset.  Needs to validate the request, update the
1080  * cpusets mems_allowed, and for each task in the cpuset,
1081  * update mems_allowed and rebind task's mempolicy and any vma
1082  * mempolicies and if the cpuset is marked 'memory_migrate',
1083  * migrate the tasks pages to the new memory.
1084  *
1085  * Call with cgroup_mutex held.  May take callback_mutex during call.
1086  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1087  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1088  * their mempolicies to the cpusets new mems_allowed.
1089  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1090 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1091 			   const char *buf)
1092 {
1093 	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1094 	int retval;
1095 	struct ptr_heap heap;
1096 
1097 	if (!oldmem)
1098 		return -ENOMEM;
1099 
1100 	/*
1101 	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1102 	 * it's read-only
1103 	 */
1104 	if (cs == &top_cpuset) {
1105 		retval = -EACCES;
1106 		goto done;
1107 	}
1108 
1109 	/*
1110 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1111 	 * Since nodelist_parse() fails on an empty mask, we special case
1112 	 * that parsing.  The validate_change() call ensures that cpusets
1113 	 * with tasks have memory.
1114 	 */
1115 	if (!*buf) {
1116 		nodes_clear(trialcs->mems_allowed);
1117 	} else {
1118 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1119 		if (retval < 0)
1120 			goto done;
1121 
1122 		if (!nodes_subset(trialcs->mems_allowed,
1123 				node_states[N_HIGH_MEMORY])) {
1124 			retval =  -EINVAL;
1125 			goto done;
1126 		}
1127 	}
1128 	*oldmem = cs->mems_allowed;
1129 	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1130 		retval = 0;		/* Too easy - nothing to do */
1131 		goto done;
1132 	}
1133 	retval = validate_change(cs, trialcs);
1134 	if (retval < 0)
1135 		goto done;
1136 
1137 	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1138 	if (retval < 0)
1139 		goto done;
1140 
1141 	mutex_lock(&callback_mutex);
1142 	cs->mems_allowed = trialcs->mems_allowed;
1143 	mutex_unlock(&callback_mutex);
1144 
1145 	update_tasks_nodemask(cs, oldmem, &heap);
1146 
1147 	heap_free(&heap);
1148 done:
1149 	NODEMASK_FREE(oldmem);
1150 	return retval;
1151 }
1152 
current_cpuset_is_being_rebound(void)1153 int current_cpuset_is_being_rebound(void)
1154 {
1155 	int ret;
1156 
1157 	rcu_read_lock();
1158 	ret = task_cs(current) == cpuset_being_rebound;
1159 	rcu_read_unlock();
1160 
1161 	return ret;
1162 }
1163 
update_relax_domain_level(struct cpuset * cs,s64 val)1164 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1165 {
1166 #ifdef CONFIG_SMP
1167 	if (val < -1 || val >= sched_domain_level_max)
1168 		return -EINVAL;
1169 #endif
1170 
1171 	if (val != cs->relax_domain_level) {
1172 		cs->relax_domain_level = val;
1173 		if (!cpumask_empty(cs->cpus_allowed) &&
1174 		    is_sched_load_balance(cs))
1175 			async_rebuild_sched_domains();
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1183  * @tsk: task to be updated
1184  * @scan: struct cgroup_scanner containing the cgroup of the task
1185  *
1186  * Called by cgroup_scan_tasks() for each task in a cgroup.
1187  *
1188  * We don't need to re-check for the cgroup/cpuset membership, since we're
1189  * holding cgroup_lock() at this point.
1190  */
cpuset_change_flag(struct task_struct * tsk,struct cgroup_scanner * scan)1191 static void cpuset_change_flag(struct task_struct *tsk,
1192 				struct cgroup_scanner *scan)
1193 {
1194 	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1195 }
1196 
1197 /*
1198  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1199  * @cs: the cpuset in which each task's spread flags needs to be changed
1200  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1201  *
1202  * Called with cgroup_mutex held
1203  *
1204  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1205  * calling callback functions for each.
1206  *
1207  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1208  * if @heap != NULL.
1209  */
update_tasks_flags(struct cpuset * cs,struct ptr_heap * heap)1210 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1211 {
1212 	struct cgroup_scanner scan;
1213 
1214 	scan.cg = cs->css.cgroup;
1215 	scan.test_task = NULL;
1216 	scan.process_task = cpuset_change_flag;
1217 	scan.heap = heap;
1218 	cgroup_scan_tasks(&scan);
1219 }
1220 
1221 /*
1222  * update_flag - read a 0 or a 1 in a file and update associated flag
1223  * bit:		the bit to update (see cpuset_flagbits_t)
1224  * cs:		the cpuset to update
1225  * turning_on: 	whether the flag is being set or cleared
1226  *
1227  * Call with cgroup_mutex held.
1228  */
1229 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1230 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1231 		       int turning_on)
1232 {
1233 	struct cpuset *trialcs;
1234 	int balance_flag_changed;
1235 	int spread_flag_changed;
1236 	struct ptr_heap heap;
1237 	int err;
1238 
1239 	trialcs = alloc_trial_cpuset(cs);
1240 	if (!trialcs)
1241 		return -ENOMEM;
1242 
1243 	if (turning_on)
1244 		set_bit(bit, &trialcs->flags);
1245 	else
1246 		clear_bit(bit, &trialcs->flags);
1247 
1248 	err = validate_change(cs, trialcs);
1249 	if (err < 0)
1250 		goto out;
1251 
1252 	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1253 	if (err < 0)
1254 		goto out;
1255 
1256 	balance_flag_changed = (is_sched_load_balance(cs) !=
1257 				is_sched_load_balance(trialcs));
1258 
1259 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1260 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1261 
1262 	mutex_lock(&callback_mutex);
1263 	cs->flags = trialcs->flags;
1264 	mutex_unlock(&callback_mutex);
1265 
1266 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1267 		async_rebuild_sched_domains();
1268 
1269 	if (spread_flag_changed)
1270 		update_tasks_flags(cs, &heap);
1271 	heap_free(&heap);
1272 out:
1273 	free_trial_cpuset(trialcs);
1274 	return err;
1275 }
1276 
1277 /*
1278  * Frequency meter - How fast is some event occurring?
1279  *
1280  * These routines manage a digitally filtered, constant time based,
1281  * event frequency meter.  There are four routines:
1282  *   fmeter_init() - initialize a frequency meter.
1283  *   fmeter_markevent() - called each time the event happens.
1284  *   fmeter_getrate() - returns the recent rate of such events.
1285  *   fmeter_update() - internal routine used to update fmeter.
1286  *
1287  * A common data structure is passed to each of these routines,
1288  * which is used to keep track of the state required to manage the
1289  * frequency meter and its digital filter.
1290  *
1291  * The filter works on the number of events marked per unit time.
1292  * The filter is single-pole low-pass recursive (IIR).  The time unit
1293  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1294  * simulate 3 decimal digits of precision (multiplied by 1000).
1295  *
1296  * With an FM_COEF of 933, and a time base of 1 second, the filter
1297  * has a half-life of 10 seconds, meaning that if the events quit
1298  * happening, then the rate returned from the fmeter_getrate()
1299  * will be cut in half each 10 seconds, until it converges to zero.
1300  *
1301  * It is not worth doing a real infinitely recursive filter.  If more
1302  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1303  * just compute FM_MAXTICKS ticks worth, by which point the level
1304  * will be stable.
1305  *
1306  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1307  * arithmetic overflow in the fmeter_update() routine.
1308  *
1309  * Given the simple 32 bit integer arithmetic used, this meter works
1310  * best for reporting rates between one per millisecond (msec) and
1311  * one per 32 (approx) seconds.  At constant rates faster than one
1312  * per msec it maxes out at values just under 1,000,000.  At constant
1313  * rates between one per msec, and one per second it will stabilize
1314  * to a value N*1000, where N is the rate of events per second.
1315  * At constant rates between one per second and one per 32 seconds,
1316  * it will be choppy, moving up on the seconds that have an event,
1317  * and then decaying until the next event.  At rates slower than
1318  * about one in 32 seconds, it decays all the way back to zero between
1319  * each event.
1320  */
1321 
1322 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1323 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1324 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1325 #define FM_SCALE 1000		/* faux fixed point scale */
1326 
1327 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1328 static void fmeter_init(struct fmeter *fmp)
1329 {
1330 	fmp->cnt = 0;
1331 	fmp->val = 0;
1332 	fmp->time = 0;
1333 	spin_lock_init(&fmp->lock);
1334 }
1335 
1336 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1337 static void fmeter_update(struct fmeter *fmp)
1338 {
1339 	time_t now = get_seconds();
1340 	time_t ticks = now - fmp->time;
1341 
1342 	if (ticks == 0)
1343 		return;
1344 
1345 	ticks = min(FM_MAXTICKS, ticks);
1346 	while (ticks-- > 0)
1347 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1348 	fmp->time = now;
1349 
1350 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1351 	fmp->cnt = 0;
1352 }
1353 
1354 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1355 static void fmeter_markevent(struct fmeter *fmp)
1356 {
1357 	spin_lock(&fmp->lock);
1358 	fmeter_update(fmp);
1359 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1360 	spin_unlock(&fmp->lock);
1361 }
1362 
1363 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1364 static int fmeter_getrate(struct fmeter *fmp)
1365 {
1366 	int val;
1367 
1368 	spin_lock(&fmp->lock);
1369 	fmeter_update(fmp);
1370 	val = fmp->val;
1371 	spin_unlock(&fmp->lock);
1372 	return val;
1373 }
1374 
1375 /*
1376  * Protected by cgroup_lock. The nodemasks must be stored globally because
1377  * dynamically allocating them is not allowed in can_attach, and they must
1378  * persist until attach.
1379  */
1380 static cpumask_var_t cpus_attach;
1381 static nodemask_t cpuset_attach_nodemask_from;
1382 static nodemask_t cpuset_attach_nodemask_to;
1383 
1384 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
cpuset_can_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)1385 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1386 {
1387 	struct cpuset *cs = cgroup_cs(cgrp);
1388 	struct task_struct *task;
1389 	int ret;
1390 
1391 	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1392 		return -ENOSPC;
1393 
1394 	cgroup_taskset_for_each(task, cgrp, tset) {
1395 		/*
1396 		 * Kthreads bound to specific cpus cannot be moved to a new
1397 		 * cpuset; we cannot change their cpu affinity and
1398 		 * isolating such threads by their set of allowed nodes is
1399 		 * unnecessary.  Thus, cpusets are not applicable for such
1400 		 * threads.  This prevents checking for success of
1401 		 * set_cpus_allowed_ptr() on all attached tasks before
1402 		 * cpus_allowed may be changed.
1403 		 */
1404 		if (task->flags & PF_THREAD_BOUND)
1405 			return -EINVAL;
1406 		if ((ret = security_task_setscheduler(task)))
1407 			return ret;
1408 	}
1409 
1410 	/* prepare for attach */
1411 	if (cs == &top_cpuset)
1412 		cpumask_copy(cpus_attach, cpu_possible_mask);
1413 	else
1414 		guarantee_online_cpus(cs, cpus_attach);
1415 
1416 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1417 
1418 	return 0;
1419 }
1420 
cpuset_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)1421 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1422 {
1423 	struct mm_struct *mm;
1424 	struct task_struct *task;
1425 	struct task_struct *leader = cgroup_taskset_first(tset);
1426 	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1427 	struct cpuset *cs = cgroup_cs(cgrp);
1428 	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1429 
1430 	cgroup_taskset_for_each(task, cgrp, tset) {
1431 		/*
1432 		 * can_attach beforehand should guarantee that this doesn't
1433 		 * fail.  TODO: have a better way to handle failure here
1434 		 */
1435 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1436 
1437 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1438 		cpuset_update_task_spread_flag(cs, task);
1439 	}
1440 
1441 	/*
1442 	 * Change mm, possibly for multiple threads in a threadgroup. This is
1443 	 * expensive and may sleep.
1444 	 */
1445 	cpuset_attach_nodemask_from = oldcs->mems_allowed;
1446 	cpuset_attach_nodemask_to = cs->mems_allowed;
1447 	mm = get_task_mm(leader);
1448 	if (mm) {
1449 		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1450 		if (is_memory_migrate(cs))
1451 			cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1452 					  &cpuset_attach_nodemask_to);
1453 		mmput(mm);
1454 	}
1455 }
1456 
1457 /* The various types of files and directories in a cpuset file system */
1458 
1459 typedef enum {
1460 	FILE_MEMORY_MIGRATE,
1461 	FILE_CPULIST,
1462 	FILE_MEMLIST,
1463 	FILE_CPU_EXCLUSIVE,
1464 	FILE_MEM_EXCLUSIVE,
1465 	FILE_MEM_HARDWALL,
1466 	FILE_SCHED_LOAD_BALANCE,
1467 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1468 	FILE_MEMORY_PRESSURE_ENABLED,
1469 	FILE_MEMORY_PRESSURE,
1470 	FILE_SPREAD_PAGE,
1471 	FILE_SPREAD_SLAB,
1472 } cpuset_filetype_t;
1473 
cpuset_write_u64(struct cgroup * cgrp,struct cftype * cft,u64 val)1474 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1475 {
1476 	int retval = 0;
1477 	struct cpuset *cs = cgroup_cs(cgrp);
1478 	cpuset_filetype_t type = cft->private;
1479 
1480 	if (!cgroup_lock_live_group(cgrp))
1481 		return -ENODEV;
1482 
1483 	switch (type) {
1484 	case FILE_CPU_EXCLUSIVE:
1485 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1486 		break;
1487 	case FILE_MEM_EXCLUSIVE:
1488 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1489 		break;
1490 	case FILE_MEM_HARDWALL:
1491 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1492 		break;
1493 	case FILE_SCHED_LOAD_BALANCE:
1494 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1495 		break;
1496 	case FILE_MEMORY_MIGRATE:
1497 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1498 		break;
1499 	case FILE_MEMORY_PRESSURE_ENABLED:
1500 		cpuset_memory_pressure_enabled = !!val;
1501 		break;
1502 	case FILE_MEMORY_PRESSURE:
1503 		retval = -EACCES;
1504 		break;
1505 	case FILE_SPREAD_PAGE:
1506 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1507 		break;
1508 	case FILE_SPREAD_SLAB:
1509 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1510 		break;
1511 	default:
1512 		retval = -EINVAL;
1513 		break;
1514 	}
1515 	cgroup_unlock();
1516 	return retval;
1517 }
1518 
cpuset_write_s64(struct cgroup * cgrp,struct cftype * cft,s64 val)1519 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1520 {
1521 	int retval = 0;
1522 	struct cpuset *cs = cgroup_cs(cgrp);
1523 	cpuset_filetype_t type = cft->private;
1524 
1525 	if (!cgroup_lock_live_group(cgrp))
1526 		return -ENODEV;
1527 
1528 	switch (type) {
1529 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1530 		retval = update_relax_domain_level(cs, val);
1531 		break;
1532 	default:
1533 		retval = -EINVAL;
1534 		break;
1535 	}
1536 	cgroup_unlock();
1537 	return retval;
1538 }
1539 
1540 /*
1541  * Common handling for a write to a "cpus" or "mems" file.
1542  */
cpuset_write_resmask(struct cgroup * cgrp,struct cftype * cft,const char * buf)1543 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1544 				const char *buf)
1545 {
1546 	int retval = 0;
1547 	struct cpuset *cs = cgroup_cs(cgrp);
1548 	struct cpuset *trialcs;
1549 
1550 	if (!cgroup_lock_live_group(cgrp))
1551 		return -ENODEV;
1552 
1553 	trialcs = alloc_trial_cpuset(cs);
1554 	if (!trialcs) {
1555 		retval = -ENOMEM;
1556 		goto out;
1557 	}
1558 
1559 	switch (cft->private) {
1560 	case FILE_CPULIST:
1561 		retval = update_cpumask(cs, trialcs, buf);
1562 		break;
1563 	case FILE_MEMLIST:
1564 		retval = update_nodemask(cs, trialcs, buf);
1565 		break;
1566 	default:
1567 		retval = -EINVAL;
1568 		break;
1569 	}
1570 
1571 	free_trial_cpuset(trialcs);
1572 out:
1573 	cgroup_unlock();
1574 	return retval;
1575 }
1576 
1577 /*
1578  * These ascii lists should be read in a single call, by using a user
1579  * buffer large enough to hold the entire map.  If read in smaller
1580  * chunks, there is no guarantee of atomicity.  Since the display format
1581  * used, list of ranges of sequential numbers, is variable length,
1582  * and since these maps can change value dynamically, one could read
1583  * gibberish by doing partial reads while a list was changing.
1584  * A single large read to a buffer that crosses a page boundary is
1585  * ok, because the result being copied to user land is not recomputed
1586  * across a page fault.
1587  */
1588 
cpuset_sprintf_cpulist(char * page,struct cpuset * cs)1589 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1590 {
1591 	size_t count;
1592 
1593 	mutex_lock(&callback_mutex);
1594 	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1595 	mutex_unlock(&callback_mutex);
1596 
1597 	return count;
1598 }
1599 
cpuset_sprintf_memlist(char * page,struct cpuset * cs)1600 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1601 {
1602 	size_t count;
1603 
1604 	mutex_lock(&callback_mutex);
1605 	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1606 	mutex_unlock(&callback_mutex);
1607 
1608 	return count;
1609 }
1610 
cpuset_common_file_read(struct cgroup * cont,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1611 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1612 				       struct cftype *cft,
1613 				       struct file *file,
1614 				       char __user *buf,
1615 				       size_t nbytes, loff_t *ppos)
1616 {
1617 	struct cpuset *cs = cgroup_cs(cont);
1618 	cpuset_filetype_t type = cft->private;
1619 	char *page;
1620 	ssize_t retval = 0;
1621 	char *s;
1622 
1623 	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1624 		return -ENOMEM;
1625 
1626 	s = page;
1627 
1628 	switch (type) {
1629 	case FILE_CPULIST:
1630 		s += cpuset_sprintf_cpulist(s, cs);
1631 		break;
1632 	case FILE_MEMLIST:
1633 		s += cpuset_sprintf_memlist(s, cs);
1634 		break;
1635 	default:
1636 		retval = -EINVAL;
1637 		goto out;
1638 	}
1639 	*s++ = '\n';
1640 
1641 	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1642 out:
1643 	free_page((unsigned long)page);
1644 	return retval;
1645 }
1646 
cpuset_read_u64(struct cgroup * cont,struct cftype * cft)1647 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1648 {
1649 	struct cpuset *cs = cgroup_cs(cont);
1650 	cpuset_filetype_t type = cft->private;
1651 	switch (type) {
1652 	case FILE_CPU_EXCLUSIVE:
1653 		return is_cpu_exclusive(cs);
1654 	case FILE_MEM_EXCLUSIVE:
1655 		return is_mem_exclusive(cs);
1656 	case FILE_MEM_HARDWALL:
1657 		return is_mem_hardwall(cs);
1658 	case FILE_SCHED_LOAD_BALANCE:
1659 		return is_sched_load_balance(cs);
1660 	case FILE_MEMORY_MIGRATE:
1661 		return is_memory_migrate(cs);
1662 	case FILE_MEMORY_PRESSURE_ENABLED:
1663 		return cpuset_memory_pressure_enabled;
1664 	case FILE_MEMORY_PRESSURE:
1665 		return fmeter_getrate(&cs->fmeter);
1666 	case FILE_SPREAD_PAGE:
1667 		return is_spread_page(cs);
1668 	case FILE_SPREAD_SLAB:
1669 		return is_spread_slab(cs);
1670 	default:
1671 		BUG();
1672 	}
1673 
1674 	/* Unreachable but makes gcc happy */
1675 	return 0;
1676 }
1677 
cpuset_read_s64(struct cgroup * cont,struct cftype * cft)1678 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1679 {
1680 	struct cpuset *cs = cgroup_cs(cont);
1681 	cpuset_filetype_t type = cft->private;
1682 	switch (type) {
1683 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1684 		return cs->relax_domain_level;
1685 	default:
1686 		BUG();
1687 	}
1688 
1689 	/* Unrechable but makes gcc happy */
1690 	return 0;
1691 }
1692 
1693 
1694 /*
1695  * for the common functions, 'private' gives the type of file
1696  */
1697 
1698 static struct cftype files[] = {
1699 	{
1700 		.name = "cpus",
1701 		.read = cpuset_common_file_read,
1702 		.write_string = cpuset_write_resmask,
1703 		.max_write_len = (100U + 6 * NR_CPUS),
1704 		.private = FILE_CPULIST,
1705 	},
1706 
1707 	{
1708 		.name = "mems",
1709 		.read = cpuset_common_file_read,
1710 		.write_string = cpuset_write_resmask,
1711 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1712 		.private = FILE_MEMLIST,
1713 	},
1714 
1715 	{
1716 		.name = "cpu_exclusive",
1717 		.read_u64 = cpuset_read_u64,
1718 		.write_u64 = cpuset_write_u64,
1719 		.private = FILE_CPU_EXCLUSIVE,
1720 	},
1721 
1722 	{
1723 		.name = "mem_exclusive",
1724 		.read_u64 = cpuset_read_u64,
1725 		.write_u64 = cpuset_write_u64,
1726 		.private = FILE_MEM_EXCLUSIVE,
1727 	},
1728 
1729 	{
1730 		.name = "mem_hardwall",
1731 		.read_u64 = cpuset_read_u64,
1732 		.write_u64 = cpuset_write_u64,
1733 		.private = FILE_MEM_HARDWALL,
1734 	},
1735 
1736 	{
1737 		.name = "sched_load_balance",
1738 		.read_u64 = cpuset_read_u64,
1739 		.write_u64 = cpuset_write_u64,
1740 		.private = FILE_SCHED_LOAD_BALANCE,
1741 	},
1742 
1743 	{
1744 		.name = "sched_relax_domain_level",
1745 		.read_s64 = cpuset_read_s64,
1746 		.write_s64 = cpuset_write_s64,
1747 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1748 	},
1749 
1750 	{
1751 		.name = "memory_migrate",
1752 		.read_u64 = cpuset_read_u64,
1753 		.write_u64 = cpuset_write_u64,
1754 		.private = FILE_MEMORY_MIGRATE,
1755 	},
1756 
1757 	{
1758 		.name = "memory_pressure",
1759 		.read_u64 = cpuset_read_u64,
1760 		.write_u64 = cpuset_write_u64,
1761 		.private = FILE_MEMORY_PRESSURE,
1762 		.mode = S_IRUGO,
1763 	},
1764 
1765 	{
1766 		.name = "memory_spread_page",
1767 		.read_u64 = cpuset_read_u64,
1768 		.write_u64 = cpuset_write_u64,
1769 		.private = FILE_SPREAD_PAGE,
1770 	},
1771 
1772 	{
1773 		.name = "memory_spread_slab",
1774 		.read_u64 = cpuset_read_u64,
1775 		.write_u64 = cpuset_write_u64,
1776 		.private = FILE_SPREAD_SLAB,
1777 	},
1778 };
1779 
1780 static struct cftype cft_memory_pressure_enabled = {
1781 	.name = "memory_pressure_enabled",
1782 	.read_u64 = cpuset_read_u64,
1783 	.write_u64 = cpuset_write_u64,
1784 	.private = FILE_MEMORY_PRESSURE_ENABLED,
1785 };
1786 
cpuset_populate(struct cgroup_subsys * ss,struct cgroup * cont)1787 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1788 {
1789 	int err;
1790 
1791 	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1792 	if (err)
1793 		return err;
1794 	/* memory_pressure_enabled is in root cpuset only */
1795 	if (!cont->parent)
1796 		err = cgroup_add_file(cont, ss,
1797 				      &cft_memory_pressure_enabled);
1798 	return err;
1799 }
1800 
1801 /*
1802  * post_clone() is called during cgroup_create() when the
1803  * clone_children mount argument was specified.  The cgroup
1804  * can not yet have any tasks.
1805  *
1806  * Currently we refuse to set up the cgroup - thereby
1807  * refusing the task to be entered, and as a result refusing
1808  * the sys_unshare() or clone() which initiated it - if any
1809  * sibling cpusets have exclusive cpus or mem.
1810  *
1811  * If this becomes a problem for some users who wish to
1812  * allow that scenario, then cpuset_post_clone() could be
1813  * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1814  * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1815  * held.
1816  */
cpuset_post_clone(struct cgroup * cgroup)1817 static void cpuset_post_clone(struct cgroup *cgroup)
1818 {
1819 	struct cgroup *parent, *child;
1820 	struct cpuset *cs, *parent_cs;
1821 
1822 	parent = cgroup->parent;
1823 	list_for_each_entry(child, &parent->children, sibling) {
1824 		cs = cgroup_cs(child);
1825 		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1826 			return;
1827 	}
1828 	cs = cgroup_cs(cgroup);
1829 	parent_cs = cgroup_cs(parent);
1830 
1831 	mutex_lock(&callback_mutex);
1832 	cs->mems_allowed = parent_cs->mems_allowed;
1833 	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1834 	mutex_unlock(&callback_mutex);
1835 	return;
1836 }
1837 
1838 /*
1839  *	cpuset_create - create a cpuset
1840  *	cont:	control group that the new cpuset will be part of
1841  */
1842 
cpuset_create(struct cgroup * cont)1843 static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
1844 {
1845 	struct cpuset *cs;
1846 	struct cpuset *parent;
1847 
1848 	if (!cont->parent) {
1849 		return &top_cpuset.css;
1850 	}
1851 	parent = cgroup_cs(cont->parent);
1852 	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1853 	if (!cs)
1854 		return ERR_PTR(-ENOMEM);
1855 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1856 		kfree(cs);
1857 		return ERR_PTR(-ENOMEM);
1858 	}
1859 
1860 	cs->flags = 0;
1861 	if (is_spread_page(parent))
1862 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1863 	if (is_spread_slab(parent))
1864 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1865 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1866 	cpumask_clear(cs->cpus_allowed);
1867 	nodes_clear(cs->mems_allowed);
1868 	fmeter_init(&cs->fmeter);
1869 	cs->relax_domain_level = -1;
1870 
1871 	cs->parent = parent;
1872 	number_of_cpusets++;
1873 	return &cs->css ;
1874 }
1875 
1876 /*
1877  * If the cpuset being removed has its flag 'sched_load_balance'
1878  * enabled, then simulate turning sched_load_balance off, which
1879  * will call async_rebuild_sched_domains().
1880  */
1881 
cpuset_destroy(struct cgroup * cont)1882 static void cpuset_destroy(struct cgroup *cont)
1883 {
1884 	struct cpuset *cs = cgroup_cs(cont);
1885 
1886 	if (is_sched_load_balance(cs))
1887 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1888 
1889 	number_of_cpusets--;
1890 	free_cpumask_var(cs->cpus_allowed);
1891 	kfree(cs);
1892 }
1893 
1894 struct cgroup_subsys cpuset_subsys = {
1895 	.name = "cpuset",
1896 	.create = cpuset_create,
1897 	.destroy = cpuset_destroy,
1898 	.can_attach = cpuset_can_attach,
1899 	.attach = cpuset_attach,
1900 	.populate = cpuset_populate,
1901 	.post_clone = cpuset_post_clone,
1902 	.subsys_id = cpuset_subsys_id,
1903 	.early_init = 1,
1904 };
1905 
1906 /**
1907  * cpuset_init - initialize cpusets at system boot
1908  *
1909  * Description: Initialize top_cpuset and the cpuset internal file system,
1910  **/
1911 
cpuset_init(void)1912 int __init cpuset_init(void)
1913 {
1914 	int err = 0;
1915 
1916 	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1917 		BUG();
1918 
1919 	cpumask_setall(top_cpuset.cpus_allowed);
1920 	nodes_setall(top_cpuset.mems_allowed);
1921 
1922 	fmeter_init(&top_cpuset.fmeter);
1923 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1924 	top_cpuset.relax_domain_level = -1;
1925 
1926 	err = register_filesystem(&cpuset_fs_type);
1927 	if (err < 0)
1928 		return err;
1929 
1930 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1931 		BUG();
1932 
1933 	number_of_cpusets = 1;
1934 	return 0;
1935 }
1936 
1937 /**
1938  * cpuset_do_move_task - move a given task to another cpuset
1939  * @tsk: pointer to task_struct the task to move
1940  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1941  *
1942  * Called by cgroup_scan_tasks() for each task in a cgroup.
1943  * Return nonzero to stop the walk through the tasks.
1944  */
cpuset_do_move_task(struct task_struct * tsk,struct cgroup_scanner * scan)1945 static void cpuset_do_move_task(struct task_struct *tsk,
1946 				struct cgroup_scanner *scan)
1947 {
1948 	struct cgroup *new_cgroup = scan->data;
1949 
1950 	cgroup_attach_task(new_cgroup, tsk);
1951 }
1952 
1953 /**
1954  * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1955  * @from: cpuset in which the tasks currently reside
1956  * @to: cpuset to which the tasks will be moved
1957  *
1958  * Called with cgroup_mutex held
1959  * callback_mutex must not be held, as cpuset_attach() will take it.
1960  *
1961  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1962  * calling callback functions for each.
1963  */
move_member_tasks_to_cpuset(struct cpuset * from,struct cpuset * to)1964 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1965 {
1966 	struct cgroup_scanner scan;
1967 
1968 	scan.cg = from->css.cgroup;
1969 	scan.test_task = NULL; /* select all tasks in cgroup */
1970 	scan.process_task = cpuset_do_move_task;
1971 	scan.heap = NULL;
1972 	scan.data = to->css.cgroup;
1973 
1974 	if (cgroup_scan_tasks(&scan))
1975 		printk(KERN_ERR "move_member_tasks_to_cpuset: "
1976 				"cgroup_scan_tasks failed\n");
1977 }
1978 
1979 /*
1980  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1981  * or memory nodes, we need to walk over the cpuset hierarchy,
1982  * removing that CPU or node from all cpusets.  If this removes the
1983  * last CPU or node from a cpuset, then move the tasks in the empty
1984  * cpuset to its next-highest non-empty parent.
1985  *
1986  * Called with cgroup_mutex held
1987  * callback_mutex must not be held, as cpuset_attach() will take it.
1988  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)1989 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1990 {
1991 	struct cpuset *parent;
1992 
1993 	/*
1994 	 * The cgroup's css_sets list is in use if there are tasks
1995 	 * in the cpuset; the list is empty if there are none;
1996 	 * the cs->css.refcnt seems always 0.
1997 	 */
1998 	if (list_empty(&cs->css.cgroup->css_sets))
1999 		return;
2000 
2001 	/*
2002 	 * Find its next-highest non-empty parent, (top cpuset
2003 	 * has online cpus, so can't be empty).
2004 	 */
2005 	parent = cs->parent;
2006 	while (cpumask_empty(parent->cpus_allowed) ||
2007 			nodes_empty(parent->mems_allowed))
2008 		parent = parent->parent;
2009 
2010 	move_member_tasks_to_cpuset(cs, parent);
2011 }
2012 
2013 /*
2014  * Walk the specified cpuset subtree and look for empty cpusets.
2015  * The tasks of such cpuset must be moved to a parent cpuset.
2016  *
2017  * Called with cgroup_mutex held.  We take callback_mutex to modify
2018  * cpus_allowed and mems_allowed.
2019  *
2020  * This walk processes the tree from top to bottom, completing one layer
2021  * before dropping down to the next.  It always processes a node before
2022  * any of its children.
2023  *
2024  * For now, since we lack memory hot unplug, we'll never see a cpuset
2025  * that has tasks along with an empty 'mems'.  But if we did see such
2026  * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2027  */
scan_for_empty_cpusets(struct cpuset * root)2028 static void scan_for_empty_cpusets(struct cpuset *root)
2029 {
2030 	LIST_HEAD(queue);
2031 	struct cpuset *cp;	/* scans cpusets being updated */
2032 	struct cpuset *child;	/* scans child cpusets of cp */
2033 	struct cgroup *cont;
2034 	static nodemask_t oldmems;	/* protected by cgroup_mutex */
2035 
2036 	list_add_tail((struct list_head *)&root->stack_list, &queue);
2037 
2038 	while (!list_empty(&queue)) {
2039 		cp = list_first_entry(&queue, struct cpuset, stack_list);
2040 		list_del(queue.next);
2041 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2042 			child = cgroup_cs(cont);
2043 			list_add_tail(&child->stack_list, &queue);
2044 		}
2045 
2046 		/* Continue past cpusets with all cpus, mems online */
2047 		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2048 		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2049 			continue;
2050 
2051 		oldmems = cp->mems_allowed;
2052 
2053 		/* Remove offline cpus and mems from this cpuset. */
2054 		mutex_lock(&callback_mutex);
2055 		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2056 			    cpu_active_mask);
2057 		nodes_and(cp->mems_allowed, cp->mems_allowed,
2058 						node_states[N_HIGH_MEMORY]);
2059 		mutex_unlock(&callback_mutex);
2060 
2061 		/* Move tasks from the empty cpuset to a parent */
2062 		if (cpumask_empty(cp->cpus_allowed) ||
2063 		     nodes_empty(cp->mems_allowed))
2064 			remove_tasks_in_empty_cpuset(cp);
2065 		else {
2066 			update_tasks_cpumask(cp, NULL);
2067 			update_tasks_nodemask(cp, &oldmems, NULL);
2068 		}
2069 	}
2070 }
2071 
2072 /*
2073  * The top_cpuset tracks what CPUs and Memory Nodes are online,
2074  * period.  This is necessary in order to make cpusets transparent
2075  * (of no affect) on systems that are actively using CPU hotplug
2076  * but making no active use of cpusets.
2077  *
2078  * The only exception to this is suspend/resume, where we don't
2079  * modify cpusets at all.
2080  *
2081  * This routine ensures that top_cpuset.cpus_allowed tracks
2082  * cpu_active_mask on each CPU hotplug (cpuhp) event.
2083  *
2084  * Called within get_online_cpus().  Needs to call cgroup_lock()
2085  * before calling generate_sched_domains().
2086  */
cpuset_update_active_cpus(void)2087 void cpuset_update_active_cpus(void)
2088 {
2089 	struct sched_domain_attr *attr;
2090 	cpumask_var_t *doms;
2091 	int ndoms;
2092 
2093 	cgroup_lock();
2094 	mutex_lock(&callback_mutex);
2095 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2096 	mutex_unlock(&callback_mutex);
2097 	scan_for_empty_cpusets(&top_cpuset);
2098 	ndoms = generate_sched_domains(&doms, &attr);
2099 	cgroup_unlock();
2100 
2101 	/* Have scheduler rebuild the domains */
2102 	partition_sched_domains(ndoms, doms, attr);
2103 }
2104 
2105 #ifdef CONFIG_MEMORY_HOTPLUG
2106 /*
2107  * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2108  * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2109  * See also the previous routine cpuset_track_online_cpus().
2110  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2111 static int cpuset_track_online_nodes(struct notifier_block *self,
2112 				unsigned long action, void *arg)
2113 {
2114 	static nodemask_t oldmems;	/* protected by cgroup_mutex */
2115 
2116 	cgroup_lock();
2117 	switch (action) {
2118 	case MEM_ONLINE:
2119 		oldmems = top_cpuset.mems_allowed;
2120 		mutex_lock(&callback_mutex);
2121 		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2122 		mutex_unlock(&callback_mutex);
2123 		update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2124 		break;
2125 	case MEM_OFFLINE:
2126 		/*
2127 		 * needn't update top_cpuset.mems_allowed explicitly because
2128 		 * scan_for_empty_cpusets() will update it.
2129 		 */
2130 		scan_for_empty_cpusets(&top_cpuset);
2131 		break;
2132 	default:
2133 		break;
2134 	}
2135 	cgroup_unlock();
2136 
2137 	return NOTIFY_OK;
2138 }
2139 #endif
2140 
2141 /**
2142  * cpuset_init_smp - initialize cpus_allowed
2143  *
2144  * Description: Finish top cpuset after cpu, node maps are initialized
2145  **/
2146 
cpuset_init_smp(void)2147 void __init cpuset_init_smp(void)
2148 {
2149 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2150 	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2151 
2152 	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2153 
2154 	cpuset_wq = create_singlethread_workqueue("cpuset");
2155 	BUG_ON(!cpuset_wq);
2156 }
2157 
2158 /**
2159  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2160  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2161  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2162  *
2163  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2164  * attached to the specified @tsk.  Guaranteed to return some non-empty
2165  * subset of cpu_online_mask, even if this means going outside the
2166  * tasks cpuset.
2167  **/
2168 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2169 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2170 {
2171 	mutex_lock(&callback_mutex);
2172 	task_lock(tsk);
2173 	guarantee_online_cpus(task_cs(tsk), pmask);
2174 	task_unlock(tsk);
2175 	mutex_unlock(&callback_mutex);
2176 }
2177 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2178 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2179 {
2180 	const struct cpuset *cs;
2181 
2182 	rcu_read_lock();
2183 	cs = task_cs(tsk);
2184 	if (cs)
2185 		do_set_cpus_allowed(tsk, cs->cpus_allowed);
2186 	rcu_read_unlock();
2187 
2188 	/*
2189 	 * We own tsk->cpus_allowed, nobody can change it under us.
2190 	 *
2191 	 * But we used cs && cs->cpus_allowed lockless and thus can
2192 	 * race with cgroup_attach_task() or update_cpumask() and get
2193 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2194 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2195 	 * which takes task_rq_lock().
2196 	 *
2197 	 * If we are called after it dropped the lock we must see all
2198 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2199 	 * set any mask even if it is not right from task_cs() pov,
2200 	 * the pending set_cpus_allowed_ptr() will fix things.
2201 	 *
2202 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2203 	 * if required.
2204 	 */
2205 }
2206 
cpuset_init_current_mems_allowed(void)2207 void cpuset_init_current_mems_allowed(void)
2208 {
2209 	nodes_setall(current->mems_allowed);
2210 }
2211 
2212 /**
2213  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2214  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2215  *
2216  * Description: Returns the nodemask_t mems_allowed of the cpuset
2217  * attached to the specified @tsk.  Guaranteed to return some non-empty
2218  * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2219  * tasks cpuset.
2220  **/
2221 
cpuset_mems_allowed(struct task_struct * tsk)2222 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2223 {
2224 	nodemask_t mask;
2225 
2226 	mutex_lock(&callback_mutex);
2227 	task_lock(tsk);
2228 	guarantee_online_mems(task_cs(tsk), &mask);
2229 	task_unlock(tsk);
2230 	mutex_unlock(&callback_mutex);
2231 
2232 	return mask;
2233 }
2234 
2235 /**
2236  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2237  * @nodemask: the nodemask to be checked
2238  *
2239  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2240  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2241 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2242 {
2243 	return nodes_intersects(*nodemask, current->mems_allowed);
2244 }
2245 
2246 /*
2247  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2248  * mem_hardwall ancestor to the specified cpuset.  Call holding
2249  * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2250  * (an unusual configuration), then returns the root cpuset.
2251  */
nearest_hardwall_ancestor(const struct cpuset * cs)2252 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2253 {
2254 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2255 		cs = cs->parent;
2256 	return cs;
2257 }
2258 
2259 /**
2260  * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2261  * @node: is this an allowed node?
2262  * @gfp_mask: memory allocation flags
2263  *
2264  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2265  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2266  * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2267  * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2268  * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2269  * flag, yes.
2270  * Otherwise, no.
2271  *
2272  * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2273  * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2274  * might sleep, and might allow a node from an enclosing cpuset.
2275  *
2276  * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2277  * cpusets, and never sleeps.
2278  *
2279  * The __GFP_THISNODE placement logic is really handled elsewhere,
2280  * by forcibly using a zonelist starting at a specified node, and by
2281  * (in get_page_from_freelist()) refusing to consider the zones for
2282  * any node on the zonelist except the first.  By the time any such
2283  * calls get to this routine, we should just shut up and say 'yes'.
2284  *
2285  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2286  * and do not allow allocations outside the current tasks cpuset
2287  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2288  * GFP_KERNEL allocations are not so marked, so can escape to the
2289  * nearest enclosing hardwalled ancestor cpuset.
2290  *
2291  * Scanning up parent cpusets requires callback_mutex.  The
2292  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2293  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2294  * current tasks mems_allowed came up empty on the first pass over
2295  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2296  * cpuset are short of memory, might require taking the callback_mutex
2297  * mutex.
2298  *
2299  * The first call here from mm/page_alloc:get_page_from_freelist()
2300  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2301  * so no allocation on a node outside the cpuset is allowed (unless
2302  * in interrupt, of course).
2303  *
2304  * The second pass through get_page_from_freelist() doesn't even call
2305  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2306  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2307  * in alloc_flags.  That logic and the checks below have the combined
2308  * affect that:
2309  *	in_interrupt - any node ok (current task context irrelevant)
2310  *	GFP_ATOMIC   - any node ok
2311  *	TIF_MEMDIE   - any node ok
2312  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2313  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2314  *
2315  * Rule:
2316  *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2317  *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2318  *    the code that might scan up ancestor cpusets and sleep.
2319  */
__cpuset_node_allowed_softwall(int node,gfp_t gfp_mask)2320 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2321 {
2322 	const struct cpuset *cs;	/* current cpuset ancestors */
2323 	int allowed;			/* is allocation in zone z allowed? */
2324 
2325 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2326 		return 1;
2327 	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2328 	if (node_isset(node, current->mems_allowed))
2329 		return 1;
2330 	/*
2331 	 * Allow tasks that have access to memory reserves because they have
2332 	 * been OOM killed to get memory anywhere.
2333 	 */
2334 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2335 		return 1;
2336 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2337 		return 0;
2338 
2339 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2340 		return 1;
2341 
2342 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2343 	mutex_lock(&callback_mutex);
2344 
2345 	task_lock(current);
2346 	cs = nearest_hardwall_ancestor(task_cs(current));
2347 	allowed = node_isset(node, cs->mems_allowed);
2348 	task_unlock(current);
2349 
2350 	mutex_unlock(&callback_mutex);
2351 	return allowed;
2352 }
2353 
2354 /*
2355  * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2356  * @node: is this an allowed node?
2357  * @gfp_mask: memory allocation flags
2358  *
2359  * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2360  * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2361  * yes.  If the task has been OOM killed and has access to memory reserves as
2362  * specified by the TIF_MEMDIE flag, yes.
2363  * Otherwise, no.
2364  *
2365  * The __GFP_THISNODE placement logic is really handled elsewhere,
2366  * by forcibly using a zonelist starting at a specified node, and by
2367  * (in get_page_from_freelist()) refusing to consider the zones for
2368  * any node on the zonelist except the first.  By the time any such
2369  * calls get to this routine, we should just shut up and say 'yes'.
2370  *
2371  * Unlike the cpuset_node_allowed_softwall() variant, above,
2372  * this variant requires that the node be in the current task's
2373  * mems_allowed or that we're in interrupt.  It does not scan up the
2374  * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2375  * It never sleeps.
2376  */
__cpuset_node_allowed_hardwall(int node,gfp_t gfp_mask)2377 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2378 {
2379 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2380 		return 1;
2381 	if (node_isset(node, current->mems_allowed))
2382 		return 1;
2383 	/*
2384 	 * Allow tasks that have access to memory reserves because they have
2385 	 * been OOM killed to get memory anywhere.
2386 	 */
2387 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2388 		return 1;
2389 	return 0;
2390 }
2391 
2392 /**
2393  * cpuset_unlock - release lock on cpuset changes
2394  *
2395  * Undo the lock taken in a previous cpuset_lock() call.
2396  */
2397 
cpuset_unlock(void)2398 void cpuset_unlock(void)
2399 {
2400 	mutex_unlock(&callback_mutex);
2401 }
2402 
2403 /**
2404  * cpuset_mem_spread_node() - On which node to begin search for a file page
2405  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2406  *
2407  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2408  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2409  * and if the memory allocation used cpuset_mem_spread_node()
2410  * to determine on which node to start looking, as it will for
2411  * certain page cache or slab cache pages such as used for file
2412  * system buffers and inode caches, then instead of starting on the
2413  * local node to look for a free page, rather spread the starting
2414  * node around the tasks mems_allowed nodes.
2415  *
2416  * We don't have to worry about the returned node being offline
2417  * because "it can't happen", and even if it did, it would be ok.
2418  *
2419  * The routines calling guarantee_online_mems() are careful to
2420  * only set nodes in task->mems_allowed that are online.  So it
2421  * should not be possible for the following code to return an
2422  * offline node.  But if it did, that would be ok, as this routine
2423  * is not returning the node where the allocation must be, only
2424  * the node where the search should start.  The zonelist passed to
2425  * __alloc_pages() will include all nodes.  If the slab allocator
2426  * is passed an offline node, it will fall back to the local node.
2427  * See kmem_cache_alloc_node().
2428  */
2429 
cpuset_spread_node(int * rotor)2430 static int cpuset_spread_node(int *rotor)
2431 {
2432 	int node;
2433 
2434 	node = next_node(*rotor, current->mems_allowed);
2435 	if (node == MAX_NUMNODES)
2436 		node = first_node(current->mems_allowed);
2437 	*rotor = node;
2438 	return node;
2439 }
2440 
cpuset_mem_spread_node(void)2441 int cpuset_mem_spread_node(void)
2442 {
2443 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2444 		current->cpuset_mem_spread_rotor =
2445 			node_random(&current->mems_allowed);
2446 
2447 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2448 }
2449 
cpuset_slab_spread_node(void)2450 int cpuset_slab_spread_node(void)
2451 {
2452 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2453 		current->cpuset_slab_spread_rotor =
2454 			node_random(&current->mems_allowed);
2455 
2456 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2457 }
2458 
2459 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2460 
2461 /**
2462  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2463  * @tsk1: pointer to task_struct of some task.
2464  * @tsk2: pointer to task_struct of some other task.
2465  *
2466  * Description: Return true if @tsk1's mems_allowed intersects the
2467  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2468  * one of the task's memory usage might impact the memory available
2469  * to the other.
2470  **/
2471 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2472 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2473 				   const struct task_struct *tsk2)
2474 {
2475 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2476 }
2477 
2478 /**
2479  * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2480  * @task: pointer to task_struct of some task.
2481  *
2482  * Description: Prints @task's name, cpuset name, and cached copy of its
2483  * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2484  * dereferencing task_cs(task).
2485  */
cpuset_print_task_mems_allowed(struct task_struct * tsk)2486 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2487 {
2488 	struct dentry *dentry;
2489 
2490 	dentry = task_cs(tsk)->css.cgroup->dentry;
2491 	spin_lock(&cpuset_buffer_lock);
2492 
2493 	if (!dentry) {
2494 		strcpy(cpuset_name, "/");
2495 	} else {
2496 		spin_lock(&dentry->d_lock);
2497 		strlcpy(cpuset_name, (const char *)dentry->d_name.name,
2498 			CPUSET_NAME_LEN);
2499 		spin_unlock(&dentry->d_lock);
2500 	}
2501 
2502 	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2503 			   tsk->mems_allowed);
2504 	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2505 	       tsk->comm, cpuset_name, cpuset_nodelist);
2506 	spin_unlock(&cpuset_buffer_lock);
2507 }
2508 
2509 /*
2510  * Collection of memory_pressure is suppressed unless
2511  * this flag is enabled by writing "1" to the special
2512  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2513  */
2514 
2515 int cpuset_memory_pressure_enabled __read_mostly;
2516 
2517 /**
2518  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2519  *
2520  * Keep a running average of the rate of synchronous (direct)
2521  * page reclaim efforts initiated by tasks in each cpuset.
2522  *
2523  * This represents the rate at which some task in the cpuset
2524  * ran low on memory on all nodes it was allowed to use, and
2525  * had to enter the kernels page reclaim code in an effort to
2526  * create more free memory by tossing clean pages or swapping
2527  * or writing dirty pages.
2528  *
2529  * Display to user space in the per-cpuset read-only file
2530  * "memory_pressure".  Value displayed is an integer
2531  * representing the recent rate of entry into the synchronous
2532  * (direct) page reclaim by any task attached to the cpuset.
2533  **/
2534 
__cpuset_memory_pressure_bump(void)2535 void __cpuset_memory_pressure_bump(void)
2536 {
2537 	task_lock(current);
2538 	fmeter_markevent(&task_cs(current)->fmeter);
2539 	task_unlock(current);
2540 }
2541 
2542 #ifdef CONFIG_PROC_PID_CPUSET
2543 /*
2544  * proc_cpuset_show()
2545  *  - Print tasks cpuset path into seq_file.
2546  *  - Used for /proc/<pid>/cpuset.
2547  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2548  *    doesn't really matter if tsk->cpuset changes after we read it,
2549  *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2550  *    anyway.
2551  */
proc_cpuset_show(struct seq_file * m,void * unused_v)2552 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2553 {
2554 	struct pid *pid;
2555 	struct task_struct *tsk;
2556 	char *buf;
2557 	struct cgroup_subsys_state *css;
2558 	int retval;
2559 
2560 	retval = -ENOMEM;
2561 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2562 	if (!buf)
2563 		goto out;
2564 
2565 	retval = -ESRCH;
2566 	pid = m->private;
2567 	tsk = get_pid_task(pid, PIDTYPE_PID);
2568 	if (!tsk)
2569 		goto out_free;
2570 
2571 	retval = -EINVAL;
2572 	cgroup_lock();
2573 	css = task_subsys_state(tsk, cpuset_subsys_id);
2574 	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2575 	if (retval < 0)
2576 		goto out_unlock;
2577 	seq_puts(m, buf);
2578 	seq_putc(m, '\n');
2579 out_unlock:
2580 	cgroup_unlock();
2581 	put_task_struct(tsk);
2582 out_free:
2583 	kfree(buf);
2584 out:
2585 	return retval;
2586 }
2587 
cpuset_open(struct inode * inode,struct file * file)2588 static int cpuset_open(struct inode *inode, struct file *file)
2589 {
2590 	struct pid *pid = PROC_I(inode)->pid;
2591 	return single_open(file, proc_cpuset_show, pid);
2592 }
2593 
2594 const struct file_operations proc_cpuset_operations = {
2595 	.open		= cpuset_open,
2596 	.read		= seq_read,
2597 	.llseek		= seq_lseek,
2598 	.release	= single_release,
2599 };
2600 #endif /* CONFIG_PROC_PID_CPUSET */
2601 
2602 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2603 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2604 {
2605 	seq_printf(m, "Mems_allowed:\t");
2606 	seq_nodemask(m, &task->mems_allowed);
2607 	seq_printf(m, "\n");
2608 	seq_printf(m, "Mems_allowed_list:\t");
2609 	seq_nodemask_list(m, &task->mems_allowed);
2610 	seq_printf(m, "\n");
2611 }
2612