1 /*
2  * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3  *
4  * (C) Copyright 2008-2010 Intel Corporation
5  * Author: Sreedhara DS (sreedhara.ds@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * SCU running in ARC processor communicates with other entity running in IA
13  * core through IPC mechanism which in turn messaging between IA core ad SCU.
14  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17  * along with other APIs.
18  */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/mrst.h>
29 #include <asm/intel_scu_ipc.h>
30 
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
37 
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W      0 /* Register write */
40 #define IPC_CMD_PCNTRL_R      1 /* Register read */
41 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
42 
43 /*
44  * IPC register summary
45  *
46  * IPC register blocks are memory mapped at fixed address of 0xFF11C000
47  * To read or write information to the SCU, driver writes to IPC-1 memory
48  * mapped registers (base address 0xFF11C000). The following is the IPC
49  * mechanism
50  *
51  * 1. IA core cDMI interface claims this transaction and converts it to a
52  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
53  *
54  * 2. South Complex cDMI block receives this message and writes it to
55  *    the IPC-1 register block, causing an interrupt to the SCU
56  *
57  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
58  *    message handler is called within firmware.
59  */
60 
61 #define IPC_BASE_ADDR     0xFF11C000	/* IPC1 base register address */
62 #define IPC_MAX_ADDR      0x100		/* Maximum IPC regisers */
63 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
64 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
65 #define IPC_I2C_BASE      0xFF12B000	/* I2C control register base address */
66 #define IPC_I2C_MAX_ADDR  0x10		/* Maximum I2C regisers */
67 
68 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
69 static void ipc_remove(struct pci_dev *pdev);
70 
71 struct intel_scu_ipc_dev {
72 	struct pci_dev *pdev;
73 	void __iomem *ipc_base;
74 	void __iomem *i2c_base;
75 };
76 
77 static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
78 
79 static int platform;		/* Platform type */
80 
81 /*
82  * IPC Read Buffer (Read Only):
83  * 16 byte buffer for receiving data from SCU, if IPC command
84  * processing results in response data
85  */
86 #define IPC_READ_BUFFER		0x90
87 
88 #define IPC_I2C_CNTRL_ADDR	0
89 #define I2C_DATA_ADDR		0x04
90 
91 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
92 
93 /*
94  * Command Register (Write Only):
95  * A write to this register results in an interrupt to the SCU core processor
96  * Format:
97  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
98  */
ipc_command(u32 cmd)99 static inline void ipc_command(u32 cmd) /* Send ipc command */
100 {
101 	writel(cmd, ipcdev.ipc_base);
102 }
103 
104 /*
105  * IPC Write Buffer (Write Only):
106  * 16-byte buffer for sending data associated with IPC command to
107  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
108  */
ipc_data_writel(u32 data,u32 offset)109 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
110 {
111 	writel(data, ipcdev.ipc_base + 0x80 + offset);
112 }
113 
114 /*
115  * Status Register (Read Only):
116  * Driver will read this register to get the ready/busy status of the IPC
117  * block and error status of the IPC command that was just processed by SCU
118  * Format:
119  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
120  */
121 
ipc_read_status(void)122 static inline u8 ipc_read_status(void)
123 {
124 	return __raw_readl(ipcdev.ipc_base + 0x04);
125 }
126 
ipc_data_readb(u32 offset)127 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
128 {
129 	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
130 }
131 
ipc_data_readl(u32 offset)132 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
133 {
134 	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
135 }
136 
busy_loop(void)137 static inline int busy_loop(void) /* Wait till scu status is busy */
138 {
139 	u32 status = 0;
140 	u32 loop_count = 0;
141 
142 	status = ipc_read_status();
143 	while (status & 1) {
144 		udelay(1); /* scu processing time is in few u secods */
145 		status = ipc_read_status();
146 		loop_count++;
147 		/* break if scu doesn't reset busy bit after huge retry */
148 		if (loop_count > 100000) {
149 			dev_err(&ipcdev.pdev->dev, "IPC timed out");
150 			return -ETIMEDOUT;
151 		}
152 	}
153 	if ((status >> 1) & 1)
154 		return -EIO;
155 
156 	return 0;
157 }
158 
159 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)160 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
161 {
162 	int nc;
163 	u32 offset = 0;
164 	int err;
165 	u8 cbuf[IPC_WWBUF_SIZE] = { };
166 	u32 *wbuf = (u32 *)&cbuf;
167 
168 	mutex_lock(&ipclock);
169 
170 	memset(cbuf, 0, sizeof(cbuf));
171 
172 	if (ipcdev.pdev == NULL) {
173 		mutex_unlock(&ipclock);
174 		return -ENODEV;
175 	}
176 
177 	for (nc = 0; nc < count; nc++, offset += 2) {
178 		cbuf[offset] = addr[nc];
179 		cbuf[offset + 1] = addr[nc] >> 8;
180 	}
181 
182 	if (id == IPC_CMD_PCNTRL_R) {
183 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
184 			ipc_data_writel(wbuf[nc], offset);
185 		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
186 	} else if (id == IPC_CMD_PCNTRL_W) {
187 		for (nc = 0; nc < count; nc++, offset += 1)
188 			cbuf[offset] = data[nc];
189 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
190 			ipc_data_writel(wbuf[nc], offset);
191 		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
192 	} else if (id == IPC_CMD_PCNTRL_M) {
193 		cbuf[offset] = data[0];
194 		cbuf[offset + 1] = data[1];
195 		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
196 		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
197 	}
198 
199 	err = busy_loop();
200 	if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
201 		/* Workaround: values are read as 0 without memcpy_fromio */
202 		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
203 		for (nc = 0; nc < count; nc++)
204 			data[nc] = ipc_data_readb(nc);
205 	}
206 	mutex_unlock(&ipclock);
207 	return err;
208 }
209 
210 /**
211  *	intel_scu_ipc_ioread8		-	read a word via the SCU
212  *	@addr: register on SCU
213  *	@data: return pointer for read byte
214  *
215  *	Read a single register. Returns 0 on success or an error code. All
216  *	locking between SCU accesses is handled for the caller.
217  *
218  *	This function may sleep.
219  */
intel_scu_ipc_ioread8(u16 addr,u8 * data)220 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
221 {
222 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
223 }
224 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
225 
226 /**
227  *	intel_scu_ipc_ioread16		-	read a word via the SCU
228  *	@addr: register on SCU
229  *	@data: return pointer for read word
230  *
231  *	Read a register pair. Returns 0 on success or an error code. All
232  *	locking between SCU accesses is handled for the caller.
233  *
234  *	This function may sleep.
235  */
intel_scu_ipc_ioread16(u16 addr,u16 * data)236 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
237 {
238 	u16 x[2] = {addr, addr + 1 };
239 	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
240 }
241 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
242 
243 /**
244  *	intel_scu_ipc_ioread32		-	read a dword via the SCU
245  *	@addr: register on SCU
246  *	@data: return pointer for read dword
247  *
248  *	Read four registers. Returns 0 on success or an error code. All
249  *	locking between SCU accesses is handled for the caller.
250  *
251  *	This function may sleep.
252  */
intel_scu_ipc_ioread32(u16 addr,u32 * data)253 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
254 {
255 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
256 	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
257 }
258 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
259 
260 /**
261  *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
262  *	@addr: register on SCU
263  *	@data: byte to write
264  *
265  *	Write a single register. Returns 0 on success or an error code. All
266  *	locking between SCU accesses is handled for the caller.
267  *
268  *	This function may sleep.
269  */
intel_scu_ipc_iowrite8(u16 addr,u8 data)270 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
271 {
272 	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
273 }
274 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
275 
276 /**
277  *	intel_scu_ipc_iowrite16		-	write a word via the SCU
278  *	@addr: register on SCU
279  *	@data: word to write
280  *
281  *	Write two registers. Returns 0 on success or an error code. All
282  *	locking between SCU accesses is handled for the caller.
283  *
284  *	This function may sleep.
285  */
intel_scu_ipc_iowrite16(u16 addr,u16 data)286 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
287 {
288 	u16 x[2] = {addr, addr + 1 };
289 	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
290 }
291 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
292 
293 /**
294  *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
295  *	@addr: register on SCU
296  *	@data: dword to write
297  *
298  *	Write four registers. Returns 0 on success or an error code. All
299  *	locking between SCU accesses is handled for the caller.
300  *
301  *	This function may sleep.
302  */
intel_scu_ipc_iowrite32(u16 addr,u32 data)303 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
304 {
305 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306 	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
307 }
308 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
309 
310 /**
311  *	intel_scu_ipc_readvv		-	read a set of registers
312  *	@addr: register list
313  *	@data: bytes to return
314  *	@len: length of array
315  *
316  *	Read registers. Returns 0 on success or an error code. All
317  *	locking between SCU accesses is handled for the caller.
318  *
319  *	The largest array length permitted by the hardware is 5 items.
320  *
321  *	This function may sleep.
322  */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)323 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
324 {
325 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
326 }
327 EXPORT_SYMBOL(intel_scu_ipc_readv);
328 
329 /**
330  *	intel_scu_ipc_writev		-	write a set of registers
331  *	@addr: register list
332  *	@data: bytes to write
333  *	@len: length of array
334  *
335  *	Write registers. Returns 0 on success or an error code. All
336  *	locking between SCU accesses is handled for the caller.
337  *
338  *	The largest array length permitted by the hardware is 5 items.
339  *
340  *	This function may sleep.
341  *
342  */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)343 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
344 {
345 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
346 }
347 EXPORT_SYMBOL(intel_scu_ipc_writev);
348 
349 
350 /**
351  *	intel_scu_ipc_update_register	-	r/m/w a register
352  *	@addr: register address
353  *	@bits: bits to update
354  *	@mask: mask of bits to update
355  *
356  *	Read-modify-write power control unit register. The first data argument
357  *	must be register value and second is mask value
358  *	mask is a bitmap that indicates which bits to update.
359  *	0 = masked. Don't modify this bit, 1 = modify this bit.
360  *	returns 0 on success or an error code.
361  *
362  *	This function may sleep. Locking between SCU accesses is handled
363  *	for the caller.
364  */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)365 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
366 {
367 	u8 data[2] = { bits, mask };
368 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
369 }
370 EXPORT_SYMBOL(intel_scu_ipc_update_register);
371 
372 /**
373  *	intel_scu_ipc_simple_command	-	send a simple command
374  *	@cmd: command
375  *	@sub: sub type
376  *
377  *	Issue a simple command to the SCU. Do not use this interface if
378  *	you must then access data as any data values may be overwritten
379  *	by another SCU access by the time this function returns.
380  *
381  *	This function may sleep. Locking for SCU accesses is handled for
382  *	the caller.
383  */
intel_scu_ipc_simple_command(int cmd,int sub)384 int intel_scu_ipc_simple_command(int cmd, int sub)
385 {
386 	int err;
387 
388 	mutex_lock(&ipclock);
389 	if (ipcdev.pdev == NULL) {
390 		mutex_unlock(&ipclock);
391 		return -ENODEV;
392 	}
393 	ipc_command(sub << 12 | cmd);
394 	err = busy_loop();
395 	mutex_unlock(&ipclock);
396 	return err;
397 }
398 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
399 
400 /**
401  *	intel_scu_ipc_command	-	command with data
402  *	@cmd: command
403  *	@sub: sub type
404  *	@in: input data
405  *	@inlen: input length in dwords
406  *	@out: output data
407  *	@outlein: output length in dwords
408  *
409  *	Issue a command to the SCU which involves data transfers. Do the
410  *	data copies under the lock but leave it for the caller to interpret
411  */
412 
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)413 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
414 							u32 *out, int outlen)
415 {
416 	int i, err;
417 
418 	mutex_lock(&ipclock);
419 	if (ipcdev.pdev == NULL) {
420 		mutex_unlock(&ipclock);
421 		return -ENODEV;
422 	}
423 
424 	for (i = 0; i < inlen; i++)
425 		ipc_data_writel(*in++, 4 * i);
426 
427 	ipc_command((inlen << 16) | (sub << 12) | cmd);
428 	err = busy_loop();
429 
430 	for (i = 0; i < outlen; i++)
431 		*out++ = ipc_data_readl(4 * i);
432 
433 	mutex_unlock(&ipclock);
434 	return err;
435 }
436 EXPORT_SYMBOL(intel_scu_ipc_command);
437 
438 /*I2C commands */
439 #define IPC_I2C_WRITE 1 /* I2C Write command */
440 #define IPC_I2C_READ  2 /* I2C Read command */
441 
442 /**
443  *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
444  *	@addr: I2C address + command bits
445  *	@data: data to read/write
446  *
447  *	Perform an an I2C read/write operation via the SCU. All locking is
448  *	handled for the caller. This function may sleep.
449  *
450  *	Returns an error code or 0 on success.
451  *
452  *	This has to be in the IPC driver for the locking.
453  */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)454 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
455 {
456 	u32 cmd = 0;
457 
458 	mutex_lock(&ipclock);
459 	if (ipcdev.pdev == NULL) {
460 		mutex_unlock(&ipclock);
461 		return -ENODEV;
462 	}
463 	cmd = (addr >> 24) & 0xFF;
464 	if (cmd == IPC_I2C_READ) {
465 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
466 		/* Write not getting updated without delay */
467 		mdelay(1);
468 		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
469 	} else if (cmd == IPC_I2C_WRITE) {
470 		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
471 		mdelay(1);
472 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
473 	} else {
474 		dev_err(&ipcdev.pdev->dev,
475 			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
476 
477 		mutex_unlock(&ipclock);
478 		return -EIO;
479 	}
480 	mutex_unlock(&ipclock);
481 	return 0;
482 }
483 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
484 
485 /*
486  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
487  * When ioc bit is set to 1, caller api must wait for interrupt handler called
488  * which in turn unlocks the caller api. Currently this is not used
489  *
490  * This is edge triggered so we need take no action to clear anything
491  */
ioc(int irq,void * dev_id)492 static irqreturn_t ioc(int irq, void *dev_id)
493 {
494 	return IRQ_HANDLED;
495 }
496 
497 /**
498  *	ipc_probe	-	probe an Intel SCU IPC
499  *	@dev: the PCI device matching
500  *	@id: entry in the match table
501  *
502  *	Enable and install an intel SCU IPC. This appears in the PCI space
503  *	but uses some hard coded addresses as well.
504  */
ipc_probe(struct pci_dev * dev,const struct pci_device_id * id)505 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
506 {
507 	int err;
508 	resource_size_t pci_resource;
509 
510 	if (ipcdev.pdev)		/* We support only one SCU */
511 		return -EBUSY;
512 
513 	ipcdev.pdev = pci_dev_get(dev);
514 
515 	err = pci_enable_device(dev);
516 	if (err)
517 		return err;
518 
519 	err = pci_request_regions(dev, "intel_scu_ipc");
520 	if (err)
521 		return err;
522 
523 	pci_resource = pci_resource_start(dev, 0);
524 	if (!pci_resource)
525 		return -ENOMEM;
526 
527 	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
528 		return -EBUSY;
529 
530 	ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
531 	if (!ipcdev.ipc_base)
532 		return -ENOMEM;
533 
534 	ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
535 	if (!ipcdev.i2c_base) {
536 		iounmap(ipcdev.ipc_base);
537 		return -ENOMEM;
538 	}
539 
540 	intel_scu_devices_create();
541 
542 	return 0;
543 }
544 
545 /**
546  *	ipc_remove	-	remove a bound IPC device
547  *	@pdev: PCI device
548  *
549  *	In practice the SCU is not removable but this function is also
550  *	called for each device on a module unload or cleanup which is the
551  *	path that will get used.
552  *
553  *	Free up the mappings and release the PCI resources
554  */
ipc_remove(struct pci_dev * pdev)555 static void ipc_remove(struct pci_dev *pdev)
556 {
557 	free_irq(pdev->irq, &ipcdev);
558 	pci_release_regions(pdev);
559 	pci_dev_put(ipcdev.pdev);
560 	iounmap(ipcdev.ipc_base);
561 	iounmap(ipcdev.i2c_base);
562 	ipcdev.pdev = NULL;
563 	intel_scu_devices_destroy();
564 }
565 
566 static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
567 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
568 	{ 0,}
569 };
570 MODULE_DEVICE_TABLE(pci, pci_ids);
571 
572 static struct pci_driver ipc_driver = {
573 	.name = "intel_scu_ipc",
574 	.id_table = pci_ids,
575 	.probe = ipc_probe,
576 	.remove = ipc_remove,
577 };
578 
579 
intel_scu_ipc_init(void)580 static int __init intel_scu_ipc_init(void)
581 {
582 	platform = mrst_identify_cpu();
583 	if (platform == 0)
584 		return -ENODEV;
585 	return  pci_register_driver(&ipc_driver);
586 }
587 
intel_scu_ipc_exit(void)588 static void __exit intel_scu_ipc_exit(void)
589 {
590 	pci_unregister_driver(&ipc_driver);
591 }
592 
593 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
594 MODULE_DESCRIPTION("Intel SCU IPC driver");
595 MODULE_LICENSE("GPL");
596 
597 module_init(intel_scu_ipc_init);
598 module_exit(intel_scu_ipc_exit);
599