1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 							  bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 								  uint64_t offset,
45 								  uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 						    unsigned alignment,
49 						    bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 				     struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 				struct drm_i915_gem_object *obj,
54 				struct drm_i915_gem_pwrite *args,
55 				struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57 
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 				    int nr_to_scan,
60 				    gfp_t gfp_mask);
61 
62 
63 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 				  size_t size)
66 {
67 	dev_priv->mm.object_count++;
68 	dev_priv->mm.object_memory += size;
69 }
70 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 				     size_t size)
73 {
74 	dev_priv->mm.object_count--;
75 	dev_priv->mm.object_memory -= size;
76 }
77 
78 static int
i915_gem_wait_for_error(struct drm_device * dev)79 i915_gem_wait_for_error(struct drm_device *dev)
80 {
81 	struct drm_i915_private *dev_priv = dev->dev_private;
82 	struct completion *x = &dev_priv->error_completion;
83 	unsigned long flags;
84 	int ret;
85 
86 	if (!atomic_read(&dev_priv->mm.wedged))
87 		return 0;
88 
89 	ret = wait_for_completion_interruptible(x);
90 	if (ret)
91 		return ret;
92 
93 	if (atomic_read(&dev_priv->mm.wedged)) {
94 		/* GPU is hung, bump the completion count to account for
95 		 * the token we just consumed so that we never hit zero and
96 		 * end up waiting upon a subsequent completion event that
97 		 * will never happen.
98 		 */
99 		spin_lock_irqsave(&x->wait.lock, flags);
100 		x->done++;
101 		spin_unlock_irqrestore(&x->wait.lock, flags);
102 	}
103 	return 0;
104 }
105 
i915_mutex_lock_interruptible(struct drm_device * dev)106 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 {
108 	int ret;
109 
110 	ret = i915_gem_wait_for_error(dev);
111 	if (ret)
112 		return ret;
113 
114 	ret = mutex_lock_interruptible(&dev->struct_mutex);
115 	if (ret)
116 		return ret;
117 
118 	WARN_ON(i915_verify_lists(dev));
119 	return 0;
120 }
121 
122 static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object * obj)123 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 {
125 	return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 }
127 
i915_gem_do_init(struct drm_device * dev,unsigned long start,unsigned long mappable_end,unsigned long end)128 void i915_gem_do_init(struct drm_device *dev,
129 		      unsigned long start,
130 		      unsigned long mappable_end,
131 		      unsigned long end)
132 {
133 	drm_i915_private_t *dev_priv = dev->dev_private;
134 
135 	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 
137 	dev_priv->mm.gtt_start = start;
138 	dev_priv->mm.gtt_mappable_end = mappable_end;
139 	dev_priv->mm.gtt_end = end;
140 	dev_priv->mm.gtt_total = end - start;
141 	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 
143 	/* Take over this portion of the GTT */
144 	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
145 }
146 
147 int
i915_gem_init_ioctl(struct drm_device * dev,void * data,struct drm_file * file)148 i915_gem_init_ioctl(struct drm_device *dev, void *data,
149 		    struct drm_file *file)
150 {
151 	struct drm_i915_gem_init *args = data;
152 
153 	if (args->gtt_start >= args->gtt_end ||
154 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 		return -EINVAL;
156 
157 	mutex_lock(&dev->struct_mutex);
158 	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 	mutex_unlock(&dev->struct_mutex);
160 
161 	return 0;
162 }
163 
164 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)165 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 			    struct drm_file *file)
167 {
168 	struct drm_i915_private *dev_priv = dev->dev_private;
169 	struct drm_i915_gem_get_aperture *args = data;
170 	struct drm_i915_gem_object *obj;
171 	size_t pinned;
172 
173 	if (!(dev->driver->driver_features & DRIVER_GEM))
174 		return -ENODEV;
175 
176 	pinned = 0;
177 	mutex_lock(&dev->struct_mutex);
178 	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 		pinned += obj->gtt_space->size;
180 	mutex_unlock(&dev->struct_mutex);
181 
182 	args->aper_size = dev_priv->mm.gtt_total;
183 	args->aper_available_size = args->aper_size -pinned;
184 
185 	return 0;
186 }
187 
188 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)189 i915_gem_create(struct drm_file *file,
190 		struct drm_device *dev,
191 		uint64_t size,
192 		uint32_t *handle_p)
193 {
194 	struct drm_i915_gem_object *obj;
195 	int ret;
196 	u32 handle;
197 
198 	size = roundup(size, PAGE_SIZE);
199 
200 	/* Allocate the new object */
201 	obj = i915_gem_alloc_object(dev, size);
202 	if (obj == NULL)
203 		return -ENOMEM;
204 
205 	ret = drm_gem_handle_create(file, &obj->base, &handle);
206 	if (ret) {
207 		drm_gem_object_release(&obj->base);
208 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209 		kfree(obj);
210 		return ret;
211 	}
212 
213 	/* drop reference from allocate - handle holds it now */
214 	drm_gem_object_unreference(&obj->base);
215 	trace_i915_gem_object_create(obj);
216 
217 	*handle_p = handle;
218 	return 0;
219 }
220 
221 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)222 i915_gem_dumb_create(struct drm_file *file,
223 		     struct drm_device *dev,
224 		     struct drm_mode_create_dumb *args)
225 {
226 	/* have to work out size/pitch and return them */
227 	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 	args->size = args->pitch * args->height;
229 	return i915_gem_create(file, dev,
230 			       args->size, &args->handle);
231 }
232 
i915_gem_dumb_destroy(struct drm_file * file,struct drm_device * dev,uint32_t handle)233 int i915_gem_dumb_destroy(struct drm_file *file,
234 			  struct drm_device *dev,
235 			  uint32_t handle)
236 {
237 	return drm_gem_handle_delete(file, handle);
238 }
239 
240 /**
241  * Creates a new mm object and returns a handle to it.
242  */
243 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 		      struct drm_file *file)
246 {
247 	struct drm_i915_gem_create *args = data;
248 	return i915_gem_create(file, dev,
249 			       args->size, &args->handle);
250 }
251 
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object * obj)252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 
256 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 		obj->tiling_mode != I915_TILING_NONE;
258 }
259 
260 static inline void
slow_shmem_copy(struct page * dst_page,int dst_offset,struct page * src_page,int src_offset,int length)261 slow_shmem_copy(struct page *dst_page,
262 		int dst_offset,
263 		struct page *src_page,
264 		int src_offset,
265 		int length)
266 {
267 	char *dst_vaddr, *src_vaddr;
268 
269 	dst_vaddr = kmap(dst_page);
270 	src_vaddr = kmap(src_page);
271 
272 	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273 
274 	kunmap(src_page);
275 	kunmap(dst_page);
276 }
277 
278 static inline void
slow_shmem_bit17_copy(struct page * gpu_page,int gpu_offset,struct page * cpu_page,int cpu_offset,int length,int is_read)279 slow_shmem_bit17_copy(struct page *gpu_page,
280 		      int gpu_offset,
281 		      struct page *cpu_page,
282 		      int cpu_offset,
283 		      int length,
284 		      int is_read)
285 {
286 	char *gpu_vaddr, *cpu_vaddr;
287 
288 	/* Use the unswizzled path if this page isn't affected. */
289 	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 		if (is_read)
291 			return slow_shmem_copy(cpu_page, cpu_offset,
292 					       gpu_page, gpu_offset, length);
293 		else
294 			return slow_shmem_copy(gpu_page, gpu_offset,
295 					       cpu_page, cpu_offset, length);
296 	}
297 
298 	gpu_vaddr = kmap(gpu_page);
299 	cpu_vaddr = kmap(cpu_page);
300 
301 	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 	 */
304 	while (length > 0) {
305 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 		int this_length = min(cacheline_end - gpu_offset, length);
307 		int swizzled_gpu_offset = gpu_offset ^ 64;
308 
309 		if (is_read) {
310 			memcpy(cpu_vaddr + cpu_offset,
311 			       gpu_vaddr + swizzled_gpu_offset,
312 			       this_length);
313 		} else {
314 			memcpy(gpu_vaddr + swizzled_gpu_offset,
315 			       cpu_vaddr + cpu_offset,
316 			       this_length);
317 		}
318 		cpu_offset += this_length;
319 		gpu_offset += this_length;
320 		length -= this_length;
321 	}
322 
323 	kunmap(cpu_page);
324 	kunmap(gpu_page);
325 }
326 
327 /**
328  * This is the fast shmem pread path, which attempts to copy_from_user directly
329  * from the backing pages of the object to the user's address space.  On a
330  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331  */
332 static int
i915_gem_shmem_pread_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)333 i915_gem_shmem_pread_fast(struct drm_device *dev,
334 			  struct drm_i915_gem_object *obj,
335 			  struct drm_i915_gem_pread *args,
336 			  struct drm_file *file)
337 {
338 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339 	ssize_t remain;
340 	loff_t offset;
341 	char __user *user_data;
342 	int page_offset, page_length;
343 
344 	user_data = (char __user *) (uintptr_t) args->data_ptr;
345 	remain = args->size;
346 
347 	offset = args->offset;
348 
349 	while (remain > 0) {
350 		struct page *page;
351 		char *vaddr;
352 		int ret;
353 
354 		/* Operation in this page
355 		 *
356 		 * page_offset = offset within page
357 		 * page_length = bytes to copy for this page
358 		 */
359 		page_offset = offset & (PAGE_SIZE-1);
360 		page_length = remain;
361 		if ((page_offset + remain) > PAGE_SIZE)
362 			page_length = PAGE_SIZE - page_offset;
363 
364 		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 		if (IS_ERR(page))
367 			return PTR_ERR(page);
368 
369 		vaddr = kmap_atomic(page);
370 		ret = __copy_to_user_inatomic(user_data,
371 					      vaddr + page_offset,
372 					      page_length);
373 		kunmap_atomic(vaddr);
374 
375 		mark_page_accessed(page);
376 		page_cache_release(page);
377 		if (ret)
378 			return -EFAULT;
379 
380 		remain -= page_length;
381 		user_data += page_length;
382 		offset += page_length;
383 	}
384 
385 	return 0;
386 }
387 
388 /**
389  * This is the fallback shmem pread path, which allocates temporary storage
390  * in kernel space to copy_to_user into outside of the struct_mutex, so we
391  * can copy out of the object's backing pages while holding the struct mutex
392  * and not take page faults.
393  */
394 static int
i915_gem_shmem_pread_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)395 i915_gem_shmem_pread_slow(struct drm_device *dev,
396 			  struct drm_i915_gem_object *obj,
397 			  struct drm_i915_gem_pread *args,
398 			  struct drm_file *file)
399 {
400 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 	struct mm_struct *mm = current->mm;
402 	struct page **user_pages;
403 	ssize_t remain;
404 	loff_t offset, pinned_pages, i;
405 	loff_t first_data_page, last_data_page, num_pages;
406 	int shmem_page_offset;
407 	int data_page_index, data_page_offset;
408 	int page_length;
409 	int ret;
410 	uint64_t data_ptr = args->data_ptr;
411 	int do_bit17_swizzling;
412 
413 	remain = args->size;
414 
415 	/* Pin the user pages containing the data.  We can't fault while
416 	 * holding the struct mutex, yet we want to hold it while
417 	 * dereferencing the user data.
418 	 */
419 	first_data_page = data_ptr / PAGE_SIZE;
420 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 	num_pages = last_data_page - first_data_page + 1;
422 
423 	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 	if (user_pages == NULL)
425 		return -ENOMEM;
426 
427 	mutex_unlock(&dev->struct_mutex);
428 	down_read(&mm->mmap_sem);
429 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430 				      num_pages, 1, 0, user_pages, NULL);
431 	up_read(&mm->mmap_sem);
432 	mutex_lock(&dev->struct_mutex);
433 	if (pinned_pages < num_pages) {
434 		ret = -EFAULT;
435 		goto out;
436 	}
437 
438 	ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 							args->offset,
440 							args->size);
441 	if (ret)
442 		goto out;
443 
444 	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445 
446 	offset = args->offset;
447 
448 	while (remain > 0) {
449 		struct page *page;
450 
451 		/* Operation in this page
452 		 *
453 		 * shmem_page_offset = offset within page in shmem file
454 		 * data_page_index = page number in get_user_pages return
455 		 * data_page_offset = offset with data_page_index page.
456 		 * page_length = bytes to copy for this page
457 		 */
458 		shmem_page_offset = offset & ~PAGE_MASK;
459 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 		data_page_offset = data_ptr & ~PAGE_MASK;
461 
462 		page_length = remain;
463 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 			page_length = PAGE_SIZE - shmem_page_offset;
465 		if ((data_page_offset + page_length) > PAGE_SIZE)
466 			page_length = PAGE_SIZE - data_page_offset;
467 
468 		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 		if (IS_ERR(page))
471 			return PTR_ERR(page);
472 
473 		if (do_bit17_swizzling) {
474 			slow_shmem_bit17_copy(page,
475 					      shmem_page_offset,
476 					      user_pages[data_page_index],
477 					      data_page_offset,
478 					      page_length,
479 					      1);
480 		} else {
481 			slow_shmem_copy(user_pages[data_page_index],
482 					data_page_offset,
483 					page,
484 					shmem_page_offset,
485 					page_length);
486 		}
487 
488 		mark_page_accessed(page);
489 		page_cache_release(page);
490 
491 		remain -= page_length;
492 		data_ptr += page_length;
493 		offset += page_length;
494 	}
495 
496 out:
497 	for (i = 0; i < pinned_pages; i++) {
498 		SetPageDirty(user_pages[i]);
499 		mark_page_accessed(user_pages[i]);
500 		page_cache_release(user_pages[i]);
501 	}
502 	drm_free_large(user_pages);
503 
504 	return ret;
505 }
506 
507 /**
508  * Reads data from the object referenced by handle.
509  *
510  * On error, the contents of *data are undefined.
511  */
512 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)513 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514 		     struct drm_file *file)
515 {
516 	struct drm_i915_gem_pread *args = data;
517 	struct drm_i915_gem_object *obj;
518 	int ret = 0;
519 
520 	if (args->size == 0)
521 		return 0;
522 
523 	if (!access_ok(VERIFY_WRITE,
524 		       (char __user *)(uintptr_t)args->data_ptr,
525 		       args->size))
526 		return -EFAULT;
527 
528 	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 				       args->size);
530 	if (ret)
531 		return -EFAULT;
532 
533 	ret = i915_mutex_lock_interruptible(dev);
534 	if (ret)
535 		return ret;
536 
537 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 	if (&obj->base == NULL) {
539 		ret = -ENOENT;
540 		goto unlock;
541 	}
542 
543 	/* Bounds check source.  */
544 	if (args->offset > obj->base.size ||
545 	    args->size > obj->base.size - args->offset) {
546 		ret = -EINVAL;
547 		goto out;
548 	}
549 
550 	trace_i915_gem_object_pread(obj, args->offset, args->size);
551 
552 	ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 							args->offset,
554 							args->size);
555 	if (ret)
556 		goto out;
557 
558 	ret = -EFAULT;
559 	if (!i915_gem_object_needs_bit17_swizzle(obj))
560 		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561 	if (ret == -EFAULT)
562 		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563 
564 out:
565 	drm_gem_object_unreference(&obj->base);
566 unlock:
567 	mutex_unlock(&dev->struct_mutex);
568 	return ret;
569 }
570 
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574 
575 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)576 fast_user_write(struct io_mapping *mapping,
577 		loff_t page_base, int page_offset,
578 		char __user *user_data,
579 		int length)
580 {
581 	char *vaddr_atomic;
582 	unsigned long unwritten;
583 
584 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 						      user_data, length);
587 	io_mapping_unmap_atomic(vaddr_atomic);
588 	return unwritten;
589 }
590 
591 /* Here's the write path which can sleep for
592  * page faults
593  */
594 
595 static inline void
slow_kernel_write(struct io_mapping * mapping,loff_t gtt_base,int gtt_offset,struct page * user_page,int user_offset,int length)596 slow_kernel_write(struct io_mapping *mapping,
597 		  loff_t gtt_base, int gtt_offset,
598 		  struct page *user_page, int user_offset,
599 		  int length)
600 {
601 	char __iomem *dst_vaddr;
602 	char *src_vaddr;
603 
604 	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 	src_vaddr = kmap(user_page);
606 
607 	memcpy_toio(dst_vaddr + gtt_offset,
608 		    src_vaddr + user_offset,
609 		    length);
610 
611 	kunmap(user_page);
612 	io_mapping_unmap(dst_vaddr);
613 }
614 
615 /**
616  * This is the fast pwrite path, where we copy the data directly from the
617  * user into the GTT, uncached.
618  */
619 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 			 struct drm_i915_gem_object *obj,
622 			 struct drm_i915_gem_pwrite *args,
623 			 struct drm_file *file)
624 {
625 	drm_i915_private_t *dev_priv = dev->dev_private;
626 	ssize_t remain;
627 	loff_t offset, page_base;
628 	char __user *user_data;
629 	int page_offset, page_length;
630 
631 	user_data = (char __user *) (uintptr_t) args->data_ptr;
632 	remain = args->size;
633 
634 	offset = obj->gtt_offset + args->offset;
635 
636 	while (remain > 0) {
637 		/* Operation in this page
638 		 *
639 		 * page_base = page offset within aperture
640 		 * page_offset = offset within page
641 		 * page_length = bytes to copy for this page
642 		 */
643 		page_base = (offset & ~(PAGE_SIZE-1));
644 		page_offset = offset & (PAGE_SIZE-1);
645 		page_length = remain;
646 		if ((page_offset + remain) > PAGE_SIZE)
647 			page_length = PAGE_SIZE - page_offset;
648 
649 		/* If we get a fault while copying data, then (presumably) our
650 		 * source page isn't available.  Return the error and we'll
651 		 * retry in the slow path.
652 		 */
653 		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 				    page_offset, user_data, page_length))
655 
656 			return -EFAULT;
657 
658 		remain -= page_length;
659 		user_data += page_length;
660 		offset += page_length;
661 	}
662 
663 	return 0;
664 }
665 
666 /**
667  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668  * the memory and maps it using kmap_atomic for copying.
669  *
670  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672  */
673 static int
i915_gem_gtt_pwrite_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)674 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 			 struct drm_i915_gem_object *obj,
676 			 struct drm_i915_gem_pwrite *args,
677 			 struct drm_file *file)
678 {
679 	drm_i915_private_t *dev_priv = dev->dev_private;
680 	ssize_t remain;
681 	loff_t gtt_page_base, offset;
682 	loff_t first_data_page, last_data_page, num_pages;
683 	loff_t pinned_pages, i;
684 	struct page **user_pages;
685 	struct mm_struct *mm = current->mm;
686 	int gtt_page_offset, data_page_offset, data_page_index, page_length;
687 	int ret;
688 	uint64_t data_ptr = args->data_ptr;
689 
690 	remain = args->size;
691 
692 	/* Pin the user pages containing the data.  We can't fault while
693 	 * holding the struct mutex, and all of the pwrite implementations
694 	 * want to hold it while dereferencing the user data.
695 	 */
696 	first_data_page = data_ptr / PAGE_SIZE;
697 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 	num_pages = last_data_page - first_data_page + 1;
699 
700 	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 	if (user_pages == NULL)
702 		return -ENOMEM;
703 
704 	mutex_unlock(&dev->struct_mutex);
705 	down_read(&mm->mmap_sem);
706 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 				      num_pages, 0, 0, user_pages, NULL);
708 	up_read(&mm->mmap_sem);
709 	mutex_lock(&dev->struct_mutex);
710 	if (pinned_pages < num_pages) {
711 		ret = -EFAULT;
712 		goto out_unpin_pages;
713 	}
714 
715 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 	if (ret)
717 		goto out_unpin_pages;
718 
719 	ret = i915_gem_object_put_fence(obj);
720 	if (ret)
721 		goto out_unpin_pages;
722 
723 	offset = obj->gtt_offset + args->offset;
724 
725 	while (remain > 0) {
726 		/* Operation in this page
727 		 *
728 		 * gtt_page_base = page offset within aperture
729 		 * gtt_page_offset = offset within page in aperture
730 		 * data_page_index = page number in get_user_pages return
731 		 * data_page_offset = offset with data_page_index page.
732 		 * page_length = bytes to copy for this page
733 		 */
734 		gtt_page_base = offset & PAGE_MASK;
735 		gtt_page_offset = offset & ~PAGE_MASK;
736 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 		data_page_offset = data_ptr & ~PAGE_MASK;
738 
739 		page_length = remain;
740 		if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 			page_length = PAGE_SIZE - gtt_page_offset;
742 		if ((data_page_offset + page_length) > PAGE_SIZE)
743 			page_length = PAGE_SIZE - data_page_offset;
744 
745 		slow_kernel_write(dev_priv->mm.gtt_mapping,
746 				  gtt_page_base, gtt_page_offset,
747 				  user_pages[data_page_index],
748 				  data_page_offset,
749 				  page_length);
750 
751 		remain -= page_length;
752 		offset += page_length;
753 		data_ptr += page_length;
754 	}
755 
756 out_unpin_pages:
757 	for (i = 0; i < pinned_pages; i++)
758 		page_cache_release(user_pages[i]);
759 	drm_free_large(user_pages);
760 
761 	return ret;
762 }
763 
764 /**
765  * This is the fast shmem pwrite path, which attempts to directly
766  * copy_from_user into the kmapped pages backing the object.
767  */
768 static int
i915_gem_shmem_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)769 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 			   struct drm_i915_gem_object *obj,
771 			   struct drm_i915_gem_pwrite *args,
772 			   struct drm_file *file)
773 {
774 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775 	ssize_t remain;
776 	loff_t offset;
777 	char __user *user_data;
778 	int page_offset, page_length;
779 
780 	user_data = (char __user *) (uintptr_t) args->data_ptr;
781 	remain = args->size;
782 
783 	offset = args->offset;
784 	obj->dirty = 1;
785 
786 	while (remain > 0) {
787 		struct page *page;
788 		char *vaddr;
789 		int ret;
790 
791 		/* Operation in this page
792 		 *
793 		 * page_offset = offset within page
794 		 * page_length = bytes to copy for this page
795 		 */
796 		page_offset = offset & (PAGE_SIZE-1);
797 		page_length = remain;
798 		if ((page_offset + remain) > PAGE_SIZE)
799 			page_length = PAGE_SIZE - page_offset;
800 
801 		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 		if (IS_ERR(page))
804 			return PTR_ERR(page);
805 
806 		vaddr = kmap_atomic(page, KM_USER0);
807 		ret = __copy_from_user_inatomic(vaddr + page_offset,
808 						user_data,
809 						page_length);
810 		kunmap_atomic(vaddr, KM_USER0);
811 
812 		set_page_dirty(page);
813 		mark_page_accessed(page);
814 		page_cache_release(page);
815 
816 		/* If we get a fault while copying data, then (presumably) our
817 		 * source page isn't available.  Return the error and we'll
818 		 * retry in the slow path.
819 		 */
820 		if (ret)
821 			return -EFAULT;
822 
823 		remain -= page_length;
824 		user_data += page_length;
825 		offset += page_length;
826 	}
827 
828 	return 0;
829 }
830 
831 /**
832  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833  * the memory and maps it using kmap_atomic for copying.
834  *
835  * This avoids taking mmap_sem for faulting on the user's address while the
836  * struct_mutex is held.
837  */
838 static int
i915_gem_shmem_pwrite_slow(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)839 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 			   struct drm_i915_gem_object *obj,
841 			   struct drm_i915_gem_pwrite *args,
842 			   struct drm_file *file)
843 {
844 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845 	struct mm_struct *mm = current->mm;
846 	struct page **user_pages;
847 	ssize_t remain;
848 	loff_t offset, pinned_pages, i;
849 	loff_t first_data_page, last_data_page, num_pages;
850 	int shmem_page_offset;
851 	int data_page_index,  data_page_offset;
852 	int page_length;
853 	int ret;
854 	uint64_t data_ptr = args->data_ptr;
855 	int do_bit17_swizzling;
856 
857 	remain = args->size;
858 
859 	/* Pin the user pages containing the data.  We can't fault while
860 	 * holding the struct mutex, and all of the pwrite implementations
861 	 * want to hold it while dereferencing the user data.
862 	 */
863 	first_data_page = data_ptr / PAGE_SIZE;
864 	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 	num_pages = last_data_page - first_data_page + 1;
866 
867 	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868 	if (user_pages == NULL)
869 		return -ENOMEM;
870 
871 	mutex_unlock(&dev->struct_mutex);
872 	down_read(&mm->mmap_sem);
873 	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 				      num_pages, 0, 0, user_pages, NULL);
875 	up_read(&mm->mmap_sem);
876 	mutex_lock(&dev->struct_mutex);
877 	if (pinned_pages < num_pages) {
878 		ret = -EFAULT;
879 		goto out;
880 	}
881 
882 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883 	if (ret)
884 		goto out;
885 
886 	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887 
888 	offset = args->offset;
889 	obj->dirty = 1;
890 
891 	while (remain > 0) {
892 		struct page *page;
893 
894 		/* Operation in this page
895 		 *
896 		 * shmem_page_offset = offset within page in shmem file
897 		 * data_page_index = page number in get_user_pages return
898 		 * data_page_offset = offset with data_page_index page.
899 		 * page_length = bytes to copy for this page
900 		 */
901 		shmem_page_offset = offset & ~PAGE_MASK;
902 		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 		data_page_offset = data_ptr & ~PAGE_MASK;
904 
905 		page_length = remain;
906 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 			page_length = PAGE_SIZE - shmem_page_offset;
908 		if ((data_page_offset + page_length) > PAGE_SIZE)
909 			page_length = PAGE_SIZE - data_page_offset;
910 
911 		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 		if (IS_ERR(page)) {
914 			ret = PTR_ERR(page);
915 			goto out;
916 		}
917 
918 		if (do_bit17_swizzling) {
919 			slow_shmem_bit17_copy(page,
920 					      shmem_page_offset,
921 					      user_pages[data_page_index],
922 					      data_page_offset,
923 					      page_length,
924 					      0);
925 		} else {
926 			slow_shmem_copy(page,
927 					shmem_page_offset,
928 					user_pages[data_page_index],
929 					data_page_offset,
930 					page_length);
931 		}
932 
933 		set_page_dirty(page);
934 		mark_page_accessed(page);
935 		page_cache_release(page);
936 
937 		remain -= page_length;
938 		data_ptr += page_length;
939 		offset += page_length;
940 	}
941 
942 out:
943 	for (i = 0; i < pinned_pages; i++)
944 		page_cache_release(user_pages[i]);
945 	drm_free_large(user_pages);
946 
947 	return ret;
948 }
949 
950 /**
951  * Writes data to the object referenced by handle.
952  *
953  * On error, the contents of the buffer that were to be modified are undefined.
954  */
955 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)956 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957 		      struct drm_file *file)
958 {
959 	struct drm_i915_gem_pwrite *args = data;
960 	struct drm_i915_gem_object *obj;
961 	int ret;
962 
963 	if (args->size == 0)
964 		return 0;
965 
966 	if (!access_ok(VERIFY_READ,
967 		       (char __user *)(uintptr_t)args->data_ptr,
968 		       args->size))
969 		return -EFAULT;
970 
971 	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 				      args->size);
973 	if (ret)
974 		return -EFAULT;
975 
976 	ret = i915_mutex_lock_interruptible(dev);
977 	if (ret)
978 		return ret;
979 
980 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981 	if (&obj->base == NULL) {
982 		ret = -ENOENT;
983 		goto unlock;
984 	}
985 
986 	/* Bounds check destination. */
987 	if (args->offset > obj->base.size ||
988 	    args->size > obj->base.size - args->offset) {
989 		ret = -EINVAL;
990 		goto out;
991 	}
992 
993 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994 
995 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
996 	 * it would end up going through the fenced access, and we'll get
997 	 * different detiling behavior between reading and writing.
998 	 * pread/pwrite currently are reading and writing from the CPU
999 	 * perspective, requiring manual detiling by the client.
1000 	 */
1001 	if (obj->phys_obj)
1002 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003 	else if (obj->gtt_space &&
1004 		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005 		ret = i915_gem_object_pin(obj, 0, true);
1006 		if (ret)
1007 			goto out;
1008 
1009 		ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 		if (ret)
1011 			goto out_unpin;
1012 
1013 		ret = i915_gem_object_put_fence(obj);
1014 		if (ret)
1015 			goto out_unpin;
1016 
1017 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 		if (ret == -EFAULT)
1019 			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020 
1021 out_unpin:
1022 		i915_gem_object_unpin(obj);
1023 	} else {
1024 		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 		if (ret)
1026 			goto out;
1027 
1028 		ret = -EFAULT;
1029 		if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 		if (ret == -EFAULT)
1032 			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1033 	}
1034 
1035 out:
1036 	drm_gem_object_unreference(&obj->base);
1037 unlock:
1038 	mutex_unlock(&dev->struct_mutex);
1039 	return ret;
1040 }
1041 
1042 /**
1043  * Called when user space prepares to use an object with the CPU, either
1044  * through the mmap ioctl's mapping or a GTT mapping.
1045  */
1046 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1047 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048 			  struct drm_file *file)
1049 {
1050 	struct drm_i915_gem_set_domain *args = data;
1051 	struct drm_i915_gem_object *obj;
1052 	uint32_t read_domains = args->read_domains;
1053 	uint32_t write_domain = args->write_domain;
1054 	int ret;
1055 
1056 	if (!(dev->driver->driver_features & DRIVER_GEM))
1057 		return -ENODEV;
1058 
1059 	/* Only handle setting domains to types used by the CPU. */
1060 	if (write_domain & I915_GEM_GPU_DOMAINS)
1061 		return -EINVAL;
1062 
1063 	if (read_domains & I915_GEM_GPU_DOMAINS)
1064 		return -EINVAL;
1065 
1066 	/* Having something in the write domain implies it's in the read
1067 	 * domain, and only that read domain.  Enforce that in the request.
1068 	 */
1069 	if (write_domain != 0 && read_domains != write_domain)
1070 		return -EINVAL;
1071 
1072 	ret = i915_mutex_lock_interruptible(dev);
1073 	if (ret)
1074 		return ret;
1075 
1076 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077 	if (&obj->base == NULL) {
1078 		ret = -ENOENT;
1079 		goto unlock;
1080 	}
1081 
1082 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1084 
1085 		/* Silently promote "you're not bound, there was nothing to do"
1086 		 * to success, since the client was just asking us to
1087 		 * make sure everything was done.
1088 		 */
1089 		if (ret == -EINVAL)
1090 			ret = 0;
1091 	} else {
1092 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 	}
1094 
1095 	drm_gem_object_unreference(&obj->base);
1096 unlock:
1097 	mutex_unlock(&dev->struct_mutex);
1098 	return ret;
1099 }
1100 
1101 /**
1102  * Called when user space has done writes to this buffer
1103  */
1104 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1105 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106 			 struct drm_file *file)
1107 {
1108 	struct drm_i915_gem_sw_finish *args = data;
1109 	struct drm_i915_gem_object *obj;
1110 	int ret = 0;
1111 
1112 	if (!(dev->driver->driver_features & DRIVER_GEM))
1113 		return -ENODEV;
1114 
1115 	ret = i915_mutex_lock_interruptible(dev);
1116 	if (ret)
1117 		return ret;
1118 
1119 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120 	if (&obj->base == NULL) {
1121 		ret = -ENOENT;
1122 		goto unlock;
1123 	}
1124 
1125 	/* Pinned buffers may be scanout, so flush the cache */
1126 	if (obj->pin_count)
1127 		i915_gem_object_flush_cpu_write_domain(obj);
1128 
1129 	drm_gem_object_unreference(&obj->base);
1130 unlock:
1131 	mutex_unlock(&dev->struct_mutex);
1132 	return ret;
1133 }
1134 
1135 /**
1136  * Maps the contents of an object, returning the address it is mapped
1137  * into.
1138  *
1139  * While the mapping holds a reference on the contents of the object, it doesn't
1140  * imply a ref on the object itself.
1141  */
1142 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1143 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144 		    struct drm_file *file)
1145 {
1146 	struct drm_i915_private *dev_priv = dev->dev_private;
1147 	struct drm_i915_gem_mmap *args = data;
1148 	struct drm_gem_object *obj;
1149 	unsigned long addr;
1150 
1151 	if (!(dev->driver->driver_features & DRIVER_GEM))
1152 		return -ENODEV;
1153 
1154 	obj = drm_gem_object_lookup(dev, file, args->handle);
1155 	if (obj == NULL)
1156 		return -ENOENT;
1157 
1158 	if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 		drm_gem_object_unreference_unlocked(obj);
1160 		return -E2BIG;
1161 	}
1162 
1163 	down_write(&current->mm->mmap_sem);
1164 	addr = do_mmap(obj->filp, 0, args->size,
1165 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1166 		       args->offset);
1167 	up_write(&current->mm->mmap_sem);
1168 	drm_gem_object_unreference_unlocked(obj);
1169 	if (IS_ERR((void *)addr))
1170 		return addr;
1171 
1172 	args->addr_ptr = (uint64_t) addr;
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * i915_gem_fault - fault a page into the GTT
1179  * vma: VMA in question
1180  * vmf: fault info
1181  *
1182  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183  * from userspace.  The fault handler takes care of binding the object to
1184  * the GTT (if needed), allocating and programming a fence register (again,
1185  * only if needed based on whether the old reg is still valid or the object
1186  * is tiled) and inserting a new PTE into the faulting process.
1187  *
1188  * Note that the faulting process may involve evicting existing objects
1189  * from the GTT and/or fence registers to make room.  So performance may
1190  * suffer if the GTT working set is large or there are few fence registers
1191  * left.
1192  */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1193 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194 {
1195 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 	struct drm_device *dev = obj->base.dev;
1197 	drm_i915_private_t *dev_priv = dev->dev_private;
1198 	pgoff_t page_offset;
1199 	unsigned long pfn;
1200 	int ret = 0;
1201 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1202 
1203 	/* We don't use vmf->pgoff since that has the fake offset */
1204 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 		PAGE_SHIFT;
1206 
1207 	ret = i915_mutex_lock_interruptible(dev);
1208 	if (ret)
1209 		goto out;
1210 
1211 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1212 
1213 	/* Now bind it into the GTT if needed */
1214 	if (!obj->map_and_fenceable) {
1215 		ret = i915_gem_object_unbind(obj);
1216 		if (ret)
1217 			goto unlock;
1218 	}
1219 	if (!obj->gtt_space) {
1220 		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221 		if (ret)
1222 			goto unlock;
1223 	}
1224 
1225 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 	if (ret)
1227 		goto unlock;
1228 
1229 	if (obj->tiling_mode == I915_TILING_NONE)
1230 		ret = i915_gem_object_put_fence(obj);
1231 	else
1232 		ret = i915_gem_object_get_fence(obj, NULL);
1233 	if (ret)
1234 		goto unlock;
1235 
1236 	if (i915_gem_object_is_inactive(obj))
1237 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1238 
1239 	obj->fault_mappable = true;
1240 
1241 	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 		page_offset;
1243 
1244 	/* Finally, remap it using the new GTT offset */
1245 	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246 unlock:
1247 	mutex_unlock(&dev->struct_mutex);
1248 out:
1249 	switch (ret) {
1250 	case -EIO:
1251 	case -EAGAIN:
1252 		/* Give the error handler a chance to run and move the
1253 		 * objects off the GPU active list. Next time we service the
1254 		 * fault, we should be able to transition the page into the
1255 		 * GTT without touching the GPU (and so avoid further
1256 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 		 * with coherency, just lost writes.
1258 		 */
1259 		set_need_resched();
1260 	case 0:
1261 	case -ERESTARTSYS:
1262 	case -EINTR:
1263 		return VM_FAULT_NOPAGE;
1264 	case -ENOMEM:
1265 		return VM_FAULT_OOM;
1266 	default:
1267 		return VM_FAULT_SIGBUS;
1268 	}
1269 }
1270 
1271 /**
1272  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273  * @obj: obj in question
1274  *
1275  * GEM memory mapping works by handing back to userspace a fake mmap offset
1276  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1277  * up the object based on the offset and sets up the various memory mapping
1278  * structures.
1279  *
1280  * This routine allocates and attaches a fake offset for @obj.
1281  */
1282 static int
i915_gem_create_mmap_offset(struct drm_i915_gem_object * obj)1283 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1284 {
1285 	struct drm_device *dev = obj->base.dev;
1286 	struct drm_gem_mm *mm = dev->mm_private;
1287 	struct drm_map_list *list;
1288 	struct drm_local_map *map;
1289 	int ret = 0;
1290 
1291 	/* Set the object up for mmap'ing */
1292 	list = &obj->base.map_list;
1293 	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294 	if (!list->map)
1295 		return -ENOMEM;
1296 
1297 	map = list->map;
1298 	map->type = _DRM_GEM;
1299 	map->size = obj->base.size;
1300 	map->handle = obj;
1301 
1302 	/* Get a DRM GEM mmap offset allocated... */
1303 	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304 						    obj->base.size / PAGE_SIZE,
1305 						    0, 0);
1306 	if (!list->file_offset_node) {
1307 		DRM_ERROR("failed to allocate offset for bo %d\n",
1308 			  obj->base.name);
1309 		ret = -ENOSPC;
1310 		goto out_free_list;
1311 	}
1312 
1313 	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 						  obj->base.size / PAGE_SIZE,
1315 						  0);
1316 	if (!list->file_offset_node) {
1317 		ret = -ENOMEM;
1318 		goto out_free_list;
1319 	}
1320 
1321 	list->hash.key = list->file_offset_node->start;
1322 	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 	if (ret) {
1324 		DRM_ERROR("failed to add to map hash\n");
1325 		goto out_free_mm;
1326 	}
1327 
1328 	return 0;
1329 
1330 out_free_mm:
1331 	drm_mm_put_block(list->file_offset_node);
1332 out_free_list:
1333 	kfree(list->map);
1334 	list->map = NULL;
1335 
1336 	return ret;
1337 }
1338 
1339 /**
1340  * i915_gem_release_mmap - remove physical page mappings
1341  * @obj: obj in question
1342  *
1343  * Preserve the reservation of the mmapping with the DRM core code, but
1344  * relinquish ownership of the pages back to the system.
1345  *
1346  * It is vital that we remove the page mapping if we have mapped a tiled
1347  * object through the GTT and then lose the fence register due to
1348  * resource pressure. Similarly if the object has been moved out of the
1349  * aperture, than pages mapped into userspace must be revoked. Removing the
1350  * mapping will then trigger a page fault on the next user access, allowing
1351  * fixup by i915_gem_fault().
1352  */
1353 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1354 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355 {
1356 	if (!obj->fault_mappable)
1357 		return;
1358 
1359 	if (obj->base.dev->dev_mapping)
1360 		unmap_mapping_range(obj->base.dev->dev_mapping,
1361 				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1362 				    obj->base.size, 1);
1363 
1364 	obj->fault_mappable = false;
1365 }
1366 
1367 static void
i915_gem_free_mmap_offset(struct drm_i915_gem_object * obj)1368 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1369 {
1370 	struct drm_device *dev = obj->base.dev;
1371 	struct drm_gem_mm *mm = dev->mm_private;
1372 	struct drm_map_list *list = &obj->base.map_list;
1373 
1374 	drm_ht_remove_item(&mm->offset_hash, &list->hash);
1375 	drm_mm_put_block(list->file_offset_node);
1376 	kfree(list->map);
1377 	list->map = NULL;
1378 }
1379 
1380 static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object * obj)1381 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1382 {
1383 	struct drm_device *dev = obj->base.dev;
1384 	uint32_t size;
1385 
1386 	if (INTEL_INFO(dev)->gen >= 4 ||
1387 	    obj->tiling_mode == I915_TILING_NONE)
1388 		return obj->base.size;
1389 
1390 	/* Previous chips need a power-of-two fence region when tiling */
1391 	if (INTEL_INFO(dev)->gen == 3)
1392 		size = 1024*1024;
1393 	else
1394 		size = 512*1024;
1395 
1396 	while (size < obj->base.size)
1397 		size <<= 1;
1398 
1399 	return size;
1400 }
1401 
1402 /**
1403  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1404  * @obj: object to check
1405  *
1406  * Return the required GTT alignment for an object, taking into account
1407  * potential fence register mapping.
1408  */
1409 static uint32_t
i915_gem_get_gtt_alignment(struct drm_i915_gem_object * obj)1410 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1411 {
1412 	struct drm_device *dev = obj->base.dev;
1413 
1414 	/*
1415 	 * Minimum alignment is 4k (GTT page size), but might be greater
1416 	 * if a fence register is needed for the object.
1417 	 */
1418 	if (INTEL_INFO(dev)->gen >= 4 ||
1419 	    obj->tiling_mode == I915_TILING_NONE)
1420 		return 4096;
1421 
1422 	/*
1423 	 * Previous chips need to be aligned to the size of the smallest
1424 	 * fence register that can contain the object.
1425 	 */
1426 	return i915_gem_get_gtt_size(obj);
1427 }
1428 
1429 /**
1430  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1431  *					 unfenced object
1432  * @obj: object to check
1433  *
1434  * Return the required GTT alignment for an object, only taking into account
1435  * unfenced tiled surface requirements.
1436  */
1437 uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object * obj)1438 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1439 {
1440 	struct drm_device *dev = obj->base.dev;
1441 	int tile_height;
1442 
1443 	/*
1444 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1445 	 */
1446 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1447 	    obj->tiling_mode == I915_TILING_NONE)
1448 		return 4096;
1449 
1450 	/*
1451 	 * Older chips need unfenced tiled buffers to be aligned to the left
1452 	 * edge of an even tile row (where tile rows are counted as if the bo is
1453 	 * placed in a fenced gtt region).
1454 	 */
1455 	if (IS_GEN2(dev) ||
1456 	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1457 		tile_height = 32;
1458 	else
1459 		tile_height = 8;
1460 
1461 	return tile_height * obj->stride * 2;
1462 }
1463 
1464 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)1465 i915_gem_mmap_gtt(struct drm_file *file,
1466 		  struct drm_device *dev,
1467 		  uint32_t handle,
1468 		  uint64_t *offset)
1469 {
1470 	struct drm_i915_private *dev_priv = dev->dev_private;
1471 	struct drm_i915_gem_object *obj;
1472 	int ret;
1473 
1474 	if (!(dev->driver->driver_features & DRIVER_GEM))
1475 		return -ENODEV;
1476 
1477 	ret = i915_mutex_lock_interruptible(dev);
1478 	if (ret)
1479 		return ret;
1480 
1481 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1482 	if (&obj->base == NULL) {
1483 		ret = -ENOENT;
1484 		goto unlock;
1485 	}
1486 
1487 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1488 		ret = -E2BIG;
1489 		goto unlock;
1490 	}
1491 
1492 	if (obj->madv != I915_MADV_WILLNEED) {
1493 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1494 		ret = -EINVAL;
1495 		goto out;
1496 	}
1497 
1498 	if (!obj->base.map_list.map) {
1499 		ret = i915_gem_create_mmap_offset(obj);
1500 		if (ret)
1501 			goto out;
1502 	}
1503 
1504 	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1505 
1506 out:
1507 	drm_gem_object_unreference(&obj->base);
1508 unlock:
1509 	mutex_unlock(&dev->struct_mutex);
1510 	return ret;
1511 }
1512 
1513 /**
1514  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1515  * @dev: DRM device
1516  * @data: GTT mapping ioctl data
1517  * @file: GEM object info
1518  *
1519  * Simply returns the fake offset to userspace so it can mmap it.
1520  * The mmap call will end up in drm_gem_mmap(), which will set things
1521  * up so we can get faults in the handler above.
1522  *
1523  * The fault handler will take care of binding the object into the GTT
1524  * (since it may have been evicted to make room for something), allocating
1525  * a fence register, and mapping the appropriate aperture address into
1526  * userspace.
1527  */
1528 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1529 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1530 			struct drm_file *file)
1531 {
1532 	struct drm_i915_gem_mmap_gtt *args = data;
1533 
1534 	if (!(dev->driver->driver_features & DRIVER_GEM))
1535 		return -ENODEV;
1536 
1537 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538 }
1539 
1540 
1541 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj,gfp_t gfpmask)1542 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1543 			      gfp_t gfpmask)
1544 {
1545 	int page_count, i;
1546 	struct address_space *mapping;
1547 	struct inode *inode;
1548 	struct page *page;
1549 
1550 	/* Get the list of pages out of our struct file.  They'll be pinned
1551 	 * at this point until we release them.
1552 	 */
1553 	page_count = obj->base.size / PAGE_SIZE;
1554 	BUG_ON(obj->pages != NULL);
1555 	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1556 	if (obj->pages == NULL)
1557 		return -ENOMEM;
1558 
1559 	inode = obj->base.filp->f_path.dentry->d_inode;
1560 	mapping = inode->i_mapping;
1561 	for (i = 0; i < page_count; i++) {
1562 		page = read_cache_page_gfp(mapping, i,
1563 					   GFP_HIGHUSER |
1564 					   __GFP_COLD |
1565 					   __GFP_RECLAIMABLE |
1566 					   gfpmask);
1567 		if (IS_ERR(page))
1568 			goto err_pages;
1569 
1570 		obj->pages[i] = page;
1571 	}
1572 
1573 	if (obj->tiling_mode != I915_TILING_NONE)
1574 		i915_gem_object_do_bit_17_swizzle(obj);
1575 
1576 	return 0;
1577 
1578 err_pages:
1579 	while (i--)
1580 		page_cache_release(obj->pages[i]);
1581 
1582 	drm_free_large(obj->pages);
1583 	obj->pages = NULL;
1584 	return PTR_ERR(page);
1585 }
1586 
1587 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)1588 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1589 {
1590 	int page_count = obj->base.size / PAGE_SIZE;
1591 	int i;
1592 
1593 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1594 
1595 	if (obj->tiling_mode != I915_TILING_NONE)
1596 		i915_gem_object_save_bit_17_swizzle(obj);
1597 
1598 	if (obj->madv == I915_MADV_DONTNEED)
1599 		obj->dirty = 0;
1600 
1601 	for (i = 0; i < page_count; i++) {
1602 		if (obj->dirty)
1603 			set_page_dirty(obj->pages[i]);
1604 
1605 		if (obj->madv == I915_MADV_WILLNEED)
1606 			mark_page_accessed(obj->pages[i]);
1607 
1608 		page_cache_release(obj->pages[i]);
1609 	}
1610 	obj->dirty = 0;
1611 
1612 	drm_free_large(obj->pages);
1613 	obj->pages = NULL;
1614 }
1615 
1616 void
i915_gem_object_move_to_active(struct drm_i915_gem_object * obj,struct intel_ring_buffer * ring,u32 seqno)1617 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1618 			       struct intel_ring_buffer *ring,
1619 			       u32 seqno)
1620 {
1621 	struct drm_device *dev = obj->base.dev;
1622 	struct drm_i915_private *dev_priv = dev->dev_private;
1623 
1624 	BUG_ON(ring == NULL);
1625 	obj->ring = ring;
1626 
1627 	/* Add a reference if we're newly entering the active list. */
1628 	if (!obj->active) {
1629 		drm_gem_object_reference(&obj->base);
1630 		obj->active = 1;
1631 	}
1632 
1633 	/* Move from whatever list we were on to the tail of execution. */
1634 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1635 	list_move_tail(&obj->ring_list, &ring->active_list);
1636 
1637 	obj->last_rendering_seqno = seqno;
1638 	if (obj->fenced_gpu_access) {
1639 		struct drm_i915_fence_reg *reg;
1640 
1641 		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1642 
1643 		obj->last_fenced_seqno = seqno;
1644 		obj->last_fenced_ring = ring;
1645 
1646 		reg = &dev_priv->fence_regs[obj->fence_reg];
1647 		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1648 	}
1649 }
1650 
1651 static void
i915_gem_object_move_off_active(struct drm_i915_gem_object * obj)1652 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1653 {
1654 	list_del_init(&obj->ring_list);
1655 	obj->last_rendering_seqno = 0;
1656 }
1657 
1658 static void
i915_gem_object_move_to_flushing(struct drm_i915_gem_object * obj)1659 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1660 {
1661 	struct drm_device *dev = obj->base.dev;
1662 	drm_i915_private_t *dev_priv = dev->dev_private;
1663 
1664 	BUG_ON(!obj->active);
1665 	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1666 
1667 	i915_gem_object_move_off_active(obj);
1668 }
1669 
1670 static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object * obj)1671 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1672 {
1673 	struct drm_device *dev = obj->base.dev;
1674 	struct drm_i915_private *dev_priv = dev->dev_private;
1675 
1676 	if (obj->pin_count != 0)
1677 		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1678 	else
1679 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1680 
1681 	BUG_ON(!list_empty(&obj->gpu_write_list));
1682 	BUG_ON(!obj->active);
1683 	obj->ring = NULL;
1684 
1685 	i915_gem_object_move_off_active(obj);
1686 	obj->fenced_gpu_access = false;
1687 
1688 	obj->active = 0;
1689 	obj->pending_gpu_write = false;
1690 	drm_gem_object_unreference(&obj->base);
1691 
1692 	WARN_ON(i915_verify_lists(dev));
1693 }
1694 
1695 /* Immediately discard the backing storage */
1696 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)1697 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1698 {
1699 	struct inode *inode;
1700 
1701 	/* Our goal here is to return as much of the memory as
1702 	 * is possible back to the system as we are called from OOM.
1703 	 * To do this we must instruct the shmfs to drop all of its
1704 	 * backing pages, *now*. Here we mirror the actions taken
1705 	 * when by shmem_delete_inode() to release the backing store.
1706 	 */
1707 	inode = obj->base.filp->f_path.dentry->d_inode;
1708 	truncate_inode_pages(inode->i_mapping, 0);
1709 	if (inode->i_op->truncate_range)
1710 		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1711 
1712 	obj->madv = __I915_MADV_PURGED;
1713 }
1714 
1715 static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object * obj)1716 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1717 {
1718 	return obj->madv == I915_MADV_DONTNEED;
1719 }
1720 
1721 static void
i915_gem_process_flushing_list(struct intel_ring_buffer * ring,uint32_t flush_domains)1722 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1723 			       uint32_t flush_domains)
1724 {
1725 	struct drm_i915_gem_object *obj, *next;
1726 
1727 	list_for_each_entry_safe(obj, next,
1728 				 &ring->gpu_write_list,
1729 				 gpu_write_list) {
1730 		if (obj->base.write_domain & flush_domains) {
1731 			uint32_t old_write_domain = obj->base.write_domain;
1732 
1733 			obj->base.write_domain = 0;
1734 			list_del_init(&obj->gpu_write_list);
1735 			i915_gem_object_move_to_active(obj, ring,
1736 						       i915_gem_next_request_seqno(ring));
1737 
1738 			trace_i915_gem_object_change_domain(obj,
1739 							    obj->base.read_domains,
1740 							    old_write_domain);
1741 		}
1742 	}
1743 }
1744 
1745 int
i915_add_request(struct intel_ring_buffer * ring,struct drm_file * file,struct drm_i915_gem_request * request)1746 i915_add_request(struct intel_ring_buffer *ring,
1747 		 struct drm_file *file,
1748 		 struct drm_i915_gem_request *request)
1749 {
1750 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1751 	uint32_t seqno;
1752 	int was_empty;
1753 	int ret;
1754 
1755 	BUG_ON(request == NULL);
1756 
1757 	ret = ring->add_request(ring, &seqno);
1758 	if (ret)
1759 	    return ret;
1760 
1761 	trace_i915_gem_request_add(ring, seqno);
1762 
1763 	request->seqno = seqno;
1764 	request->ring = ring;
1765 	request->emitted_jiffies = jiffies;
1766 	was_empty = list_empty(&ring->request_list);
1767 	list_add_tail(&request->list, &ring->request_list);
1768 
1769 	if (file) {
1770 		struct drm_i915_file_private *file_priv = file->driver_priv;
1771 
1772 		spin_lock(&file_priv->mm.lock);
1773 		request->file_priv = file_priv;
1774 		list_add_tail(&request->client_list,
1775 			      &file_priv->mm.request_list);
1776 		spin_unlock(&file_priv->mm.lock);
1777 	}
1778 
1779 	ring->outstanding_lazy_request = false;
1780 
1781 	if (!dev_priv->mm.suspended) {
1782 		mod_timer(&dev_priv->hangcheck_timer,
1783 			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1784 		if (was_empty)
1785 			queue_delayed_work(dev_priv->wq,
1786 					   &dev_priv->mm.retire_work, HZ);
1787 	}
1788 	return 0;
1789 }
1790 
1791 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)1792 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1793 {
1794 	struct drm_i915_file_private *file_priv = request->file_priv;
1795 
1796 	if (!file_priv)
1797 		return;
1798 
1799 	spin_lock(&file_priv->mm.lock);
1800 	if (request->file_priv) {
1801 		list_del(&request->client_list);
1802 		request->file_priv = NULL;
1803 	}
1804 	spin_unlock(&file_priv->mm.lock);
1805 }
1806 
i915_gem_reset_ring_lists(struct drm_i915_private * dev_priv,struct intel_ring_buffer * ring)1807 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1808 				      struct intel_ring_buffer *ring)
1809 {
1810 	while (!list_empty(&ring->request_list)) {
1811 		struct drm_i915_gem_request *request;
1812 
1813 		request = list_first_entry(&ring->request_list,
1814 					   struct drm_i915_gem_request,
1815 					   list);
1816 
1817 		list_del(&request->list);
1818 		i915_gem_request_remove_from_client(request);
1819 		kfree(request);
1820 	}
1821 
1822 	while (!list_empty(&ring->active_list)) {
1823 		struct drm_i915_gem_object *obj;
1824 
1825 		obj = list_first_entry(&ring->active_list,
1826 				       struct drm_i915_gem_object,
1827 				       ring_list);
1828 
1829 		obj->base.write_domain = 0;
1830 		list_del_init(&obj->gpu_write_list);
1831 		i915_gem_object_move_to_inactive(obj);
1832 	}
1833 }
1834 
i915_gem_reset_fences(struct drm_device * dev)1835 static void i915_gem_reset_fences(struct drm_device *dev)
1836 {
1837 	struct drm_i915_private *dev_priv = dev->dev_private;
1838 	int i;
1839 
1840 	for (i = 0; i < 16; i++) {
1841 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1842 		struct drm_i915_gem_object *obj = reg->obj;
1843 
1844 		if (!obj)
1845 			continue;
1846 
1847 		if (obj->tiling_mode)
1848 			i915_gem_release_mmap(obj);
1849 
1850 		reg->obj->fence_reg = I915_FENCE_REG_NONE;
1851 		reg->obj->fenced_gpu_access = false;
1852 		reg->obj->last_fenced_seqno = 0;
1853 		reg->obj->last_fenced_ring = NULL;
1854 		i915_gem_clear_fence_reg(dev, reg);
1855 	}
1856 }
1857 
i915_gem_reset(struct drm_device * dev)1858 void i915_gem_reset(struct drm_device *dev)
1859 {
1860 	struct drm_i915_private *dev_priv = dev->dev_private;
1861 	struct drm_i915_gem_object *obj;
1862 	int i;
1863 
1864 	for (i = 0; i < I915_NUM_RINGS; i++)
1865 		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1866 
1867 	/* Remove anything from the flushing lists. The GPU cache is likely
1868 	 * to be lost on reset along with the data, so simply move the
1869 	 * lost bo to the inactive list.
1870 	 */
1871 	while (!list_empty(&dev_priv->mm.flushing_list)) {
1872 		obj= list_first_entry(&dev_priv->mm.flushing_list,
1873 				      struct drm_i915_gem_object,
1874 				      mm_list);
1875 
1876 		obj->base.write_domain = 0;
1877 		list_del_init(&obj->gpu_write_list);
1878 		i915_gem_object_move_to_inactive(obj);
1879 	}
1880 
1881 	/* Move everything out of the GPU domains to ensure we do any
1882 	 * necessary invalidation upon reuse.
1883 	 */
1884 	list_for_each_entry(obj,
1885 			    &dev_priv->mm.inactive_list,
1886 			    mm_list)
1887 	{
1888 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1889 	}
1890 
1891 	/* The fence registers are invalidated so clear them out */
1892 	i915_gem_reset_fences(dev);
1893 }
1894 
1895 /**
1896  * This function clears the request list as sequence numbers are passed.
1897  */
1898 static void
i915_gem_retire_requests_ring(struct intel_ring_buffer * ring)1899 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1900 {
1901 	uint32_t seqno;
1902 	int i;
1903 
1904 	if (list_empty(&ring->request_list))
1905 		return;
1906 
1907 	WARN_ON(i915_verify_lists(ring->dev));
1908 
1909 	seqno = ring->get_seqno(ring);
1910 
1911 	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1912 		if (seqno >= ring->sync_seqno[i])
1913 			ring->sync_seqno[i] = 0;
1914 
1915 	while (!list_empty(&ring->request_list)) {
1916 		struct drm_i915_gem_request *request;
1917 
1918 		request = list_first_entry(&ring->request_list,
1919 					   struct drm_i915_gem_request,
1920 					   list);
1921 
1922 		if (!i915_seqno_passed(seqno, request->seqno))
1923 			break;
1924 
1925 		trace_i915_gem_request_retire(ring, request->seqno);
1926 
1927 		list_del(&request->list);
1928 		i915_gem_request_remove_from_client(request);
1929 		kfree(request);
1930 	}
1931 
1932 	/* Move any buffers on the active list that are no longer referenced
1933 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1934 	 */
1935 	while (!list_empty(&ring->active_list)) {
1936 		struct drm_i915_gem_object *obj;
1937 
1938 		obj= list_first_entry(&ring->active_list,
1939 				      struct drm_i915_gem_object,
1940 				      ring_list);
1941 
1942 		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1943 			break;
1944 
1945 		if (obj->base.write_domain != 0)
1946 			i915_gem_object_move_to_flushing(obj);
1947 		else
1948 			i915_gem_object_move_to_inactive(obj);
1949 	}
1950 
1951 	if (unlikely(ring->trace_irq_seqno &&
1952 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1953 		ring->irq_put(ring);
1954 		ring->trace_irq_seqno = 0;
1955 	}
1956 
1957 	WARN_ON(i915_verify_lists(ring->dev));
1958 }
1959 
1960 void
i915_gem_retire_requests(struct drm_device * dev)1961 i915_gem_retire_requests(struct drm_device *dev)
1962 {
1963 	drm_i915_private_t *dev_priv = dev->dev_private;
1964 	int i;
1965 
1966 	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1967 	    struct drm_i915_gem_object *obj, *next;
1968 
1969 	    /* We must be careful that during unbind() we do not
1970 	     * accidentally infinitely recurse into retire requests.
1971 	     * Currently:
1972 	     *   retire -> free -> unbind -> wait -> retire_ring
1973 	     */
1974 	    list_for_each_entry_safe(obj, next,
1975 				     &dev_priv->mm.deferred_free_list,
1976 				     mm_list)
1977 		    i915_gem_free_object_tail(obj);
1978 	}
1979 
1980 	for (i = 0; i < I915_NUM_RINGS; i++)
1981 		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1982 }
1983 
1984 static void
i915_gem_retire_work_handler(struct work_struct * work)1985 i915_gem_retire_work_handler(struct work_struct *work)
1986 {
1987 	drm_i915_private_t *dev_priv;
1988 	struct drm_device *dev;
1989 	bool idle;
1990 	int i;
1991 
1992 	dev_priv = container_of(work, drm_i915_private_t,
1993 				mm.retire_work.work);
1994 	dev = dev_priv->dev;
1995 
1996 	/* Come back later if the device is busy... */
1997 	if (!mutex_trylock(&dev->struct_mutex)) {
1998 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1999 		return;
2000 	}
2001 
2002 	i915_gem_retire_requests(dev);
2003 
2004 	/* Send a periodic flush down the ring so we don't hold onto GEM
2005 	 * objects indefinitely.
2006 	 */
2007 	idle = true;
2008 	for (i = 0; i < I915_NUM_RINGS; i++) {
2009 		struct intel_ring_buffer *ring = &dev_priv->ring[i];
2010 
2011 		if (!list_empty(&ring->gpu_write_list)) {
2012 			struct drm_i915_gem_request *request;
2013 			int ret;
2014 
2015 			ret = i915_gem_flush_ring(ring,
2016 						  0, I915_GEM_GPU_DOMAINS);
2017 			request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 			if (ret || request == NULL ||
2019 			    i915_add_request(ring, NULL, request))
2020 			    kfree(request);
2021 		}
2022 
2023 		idle &= list_empty(&ring->request_list);
2024 	}
2025 
2026 	if (!dev_priv->mm.suspended && !idle)
2027 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2028 
2029 	mutex_unlock(&dev->struct_mutex);
2030 }
2031 
2032 /**
2033  * Waits for a sequence number to be signaled, and cleans up the
2034  * request and object lists appropriately for that event.
2035  */
2036 int
i915_wait_request(struct intel_ring_buffer * ring,uint32_t seqno)2037 i915_wait_request(struct intel_ring_buffer *ring,
2038 		  uint32_t seqno)
2039 {
2040 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2041 	u32 ier;
2042 	int ret = 0;
2043 
2044 	BUG_ON(seqno == 0);
2045 
2046 	if (atomic_read(&dev_priv->mm.wedged)) {
2047 		struct completion *x = &dev_priv->error_completion;
2048 		bool recovery_complete;
2049 		unsigned long flags;
2050 
2051 		/* Give the error handler a chance to run. */
2052 		spin_lock_irqsave(&x->wait.lock, flags);
2053 		recovery_complete = x->done > 0;
2054 		spin_unlock_irqrestore(&x->wait.lock, flags);
2055 
2056 		return recovery_complete ? -EIO : -EAGAIN;
2057 	}
2058 
2059 	if (seqno == ring->outstanding_lazy_request) {
2060 		struct drm_i915_gem_request *request;
2061 
2062 		request = kzalloc(sizeof(*request), GFP_KERNEL);
2063 		if (request == NULL)
2064 			return -ENOMEM;
2065 
2066 		ret = i915_add_request(ring, NULL, request);
2067 		if (ret) {
2068 			kfree(request);
2069 			return ret;
2070 		}
2071 
2072 		seqno = request->seqno;
2073 	}
2074 
2075 	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2076 		if (HAS_PCH_SPLIT(ring->dev))
2077 			ier = I915_READ(DEIER) | I915_READ(GTIER);
2078 		else
2079 			ier = I915_READ(IER);
2080 		if (!ier) {
2081 			DRM_ERROR("something (likely vbetool) disabled "
2082 				  "interrupts, re-enabling\n");
2083 			i915_driver_irq_preinstall(ring->dev);
2084 			i915_driver_irq_postinstall(ring->dev);
2085 		}
2086 
2087 		trace_i915_gem_request_wait_begin(ring, seqno);
2088 
2089 		ring->waiting_seqno = seqno;
2090 		if (ring->irq_get(ring)) {
2091 			if (dev_priv->mm.interruptible)
2092 				ret = wait_event_interruptible(ring->irq_queue,
2093 							       i915_seqno_passed(ring->get_seqno(ring), seqno)
2094 							       || atomic_read(&dev_priv->mm.wedged));
2095 			else
2096 				wait_event(ring->irq_queue,
2097 					   i915_seqno_passed(ring->get_seqno(ring), seqno)
2098 					   || atomic_read(&dev_priv->mm.wedged));
2099 
2100 			ring->irq_put(ring);
2101 		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2102 						      seqno) ||
2103 				    atomic_read(&dev_priv->mm.wedged), 3000))
2104 			ret = -EBUSY;
2105 		ring->waiting_seqno = 0;
2106 
2107 		trace_i915_gem_request_wait_end(ring, seqno);
2108 	}
2109 	if (atomic_read(&dev_priv->mm.wedged))
2110 		ret = -EAGAIN;
2111 
2112 	if (ret && ret != -ERESTARTSYS)
2113 		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2114 			  __func__, ret, seqno, ring->get_seqno(ring),
2115 			  dev_priv->next_seqno);
2116 
2117 	/* Directly dispatch request retiring.  While we have the work queue
2118 	 * to handle this, the waiter on a request often wants an associated
2119 	 * buffer to have made it to the inactive list, and we would need
2120 	 * a separate wait queue to handle that.
2121 	 */
2122 	if (ret == 0)
2123 		i915_gem_retire_requests_ring(ring);
2124 
2125 	return ret;
2126 }
2127 
2128 /**
2129  * Ensures that all rendering to the object has completed and the object is
2130  * safe to unbind from the GTT or access from the CPU.
2131  */
2132 int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj)2133 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2134 {
2135 	int ret;
2136 
2137 	/* This function only exists to support waiting for existing rendering,
2138 	 * not for emitting required flushes.
2139 	 */
2140 	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2141 
2142 	/* If there is rendering queued on the buffer being evicted, wait for
2143 	 * it.
2144 	 */
2145 	if (obj->active) {
2146 		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2147 		if (ret)
2148 			return ret;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * Unbinds an object from the GTT aperture.
2156  */
2157 int
i915_gem_object_unbind(struct drm_i915_gem_object * obj)2158 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2159 {
2160 	int ret = 0;
2161 
2162 	if (obj->gtt_space == NULL)
2163 		return 0;
2164 
2165 	if (obj->pin_count != 0) {
2166 		DRM_ERROR("Attempting to unbind pinned buffer\n");
2167 		return -EINVAL;
2168 	}
2169 
2170 	/* blow away mappings if mapped through GTT */
2171 	i915_gem_release_mmap(obj);
2172 
2173 	/* Move the object to the CPU domain to ensure that
2174 	 * any possible CPU writes while it's not in the GTT
2175 	 * are flushed when we go to remap it. This will
2176 	 * also ensure that all pending GPU writes are finished
2177 	 * before we unbind.
2178 	 */
2179 	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2180 	if (ret == -ERESTARTSYS)
2181 		return ret;
2182 	/* Continue on if we fail due to EIO, the GPU is hung so we
2183 	 * should be safe and we need to cleanup or else we might
2184 	 * cause memory corruption through use-after-free.
2185 	 */
2186 	if (ret) {
2187 		i915_gem_clflush_object(obj);
2188 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2189 	}
2190 
2191 	/* release the fence reg _after_ flushing */
2192 	ret = i915_gem_object_put_fence(obj);
2193 	if (ret == -ERESTARTSYS)
2194 		return ret;
2195 
2196 	trace_i915_gem_object_unbind(obj);
2197 
2198 	i915_gem_gtt_unbind_object(obj);
2199 	i915_gem_object_put_pages_gtt(obj);
2200 
2201 	list_del_init(&obj->gtt_list);
2202 	list_del_init(&obj->mm_list);
2203 	/* Avoid an unnecessary call to unbind on rebind. */
2204 	obj->map_and_fenceable = true;
2205 
2206 	drm_mm_put_block(obj->gtt_space);
2207 	obj->gtt_space = NULL;
2208 	obj->gtt_offset = 0;
2209 
2210 	if (i915_gem_object_is_purgeable(obj))
2211 		i915_gem_object_truncate(obj);
2212 
2213 	return ret;
2214 }
2215 
2216 int
i915_gem_flush_ring(struct intel_ring_buffer * ring,uint32_t invalidate_domains,uint32_t flush_domains)2217 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2218 		    uint32_t invalidate_domains,
2219 		    uint32_t flush_domains)
2220 {
2221 	int ret;
2222 
2223 	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2224 		return 0;
2225 
2226 	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2227 
2228 	ret = ring->flush(ring, invalidate_domains, flush_domains);
2229 	if (ret)
2230 		return ret;
2231 
2232 	if (flush_domains & I915_GEM_GPU_DOMAINS)
2233 		i915_gem_process_flushing_list(ring, flush_domains);
2234 
2235 	return 0;
2236 }
2237 
i915_ring_idle(struct intel_ring_buffer * ring)2238 static int i915_ring_idle(struct intel_ring_buffer *ring)
2239 {
2240 	int ret;
2241 
2242 	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2243 		return 0;
2244 
2245 	if (!list_empty(&ring->gpu_write_list)) {
2246 		ret = i915_gem_flush_ring(ring,
2247 				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2248 		if (ret)
2249 			return ret;
2250 	}
2251 
2252 	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2253 }
2254 
2255 int
i915_gpu_idle(struct drm_device * dev)2256 i915_gpu_idle(struct drm_device *dev)
2257 {
2258 	drm_i915_private_t *dev_priv = dev->dev_private;
2259 	bool lists_empty;
2260 	int ret, i;
2261 
2262 	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2263 		       list_empty(&dev_priv->mm.active_list));
2264 	if (lists_empty)
2265 		return 0;
2266 
2267 	/* Flush everything onto the inactive list. */
2268 	for (i = 0; i < I915_NUM_RINGS; i++) {
2269 		ret = i915_ring_idle(&dev_priv->ring[i]);
2270 		if (ret)
2271 			return ret;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
sandybridge_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2277 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2278 				       struct intel_ring_buffer *pipelined)
2279 {
2280 	struct drm_device *dev = obj->base.dev;
2281 	drm_i915_private_t *dev_priv = dev->dev_private;
2282 	u32 size = obj->gtt_space->size;
2283 	int regnum = obj->fence_reg;
2284 	uint64_t val;
2285 
2286 	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2287 			 0xfffff000) << 32;
2288 	val |= obj->gtt_offset & 0xfffff000;
2289 	val |= (uint64_t)((obj->stride / 128) - 1) <<
2290 		SANDYBRIDGE_FENCE_PITCH_SHIFT;
2291 
2292 	if (obj->tiling_mode == I915_TILING_Y)
2293 		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 	val |= I965_FENCE_REG_VALID;
2295 
2296 	if (pipelined) {
2297 		int ret = intel_ring_begin(pipelined, 6);
2298 		if (ret)
2299 			return ret;
2300 
2301 		intel_ring_emit(pipelined, MI_NOOP);
2302 		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2303 		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2304 		intel_ring_emit(pipelined, (u32)val);
2305 		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2306 		intel_ring_emit(pipelined, (u32)(val >> 32));
2307 		intel_ring_advance(pipelined);
2308 	} else
2309 		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2310 
2311 	return 0;
2312 }
2313 
i965_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2314 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2315 				struct intel_ring_buffer *pipelined)
2316 {
2317 	struct drm_device *dev = obj->base.dev;
2318 	drm_i915_private_t *dev_priv = dev->dev_private;
2319 	u32 size = obj->gtt_space->size;
2320 	int regnum = obj->fence_reg;
2321 	uint64_t val;
2322 
2323 	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2324 		    0xfffff000) << 32;
2325 	val |= obj->gtt_offset & 0xfffff000;
2326 	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2327 	if (obj->tiling_mode == I915_TILING_Y)
2328 		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2329 	val |= I965_FENCE_REG_VALID;
2330 
2331 	if (pipelined) {
2332 		int ret = intel_ring_begin(pipelined, 6);
2333 		if (ret)
2334 			return ret;
2335 
2336 		intel_ring_emit(pipelined, MI_NOOP);
2337 		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2338 		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2339 		intel_ring_emit(pipelined, (u32)val);
2340 		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2341 		intel_ring_emit(pipelined, (u32)(val >> 32));
2342 		intel_ring_advance(pipelined);
2343 	} else
2344 		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2345 
2346 	return 0;
2347 }
2348 
i915_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2349 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2350 				struct intel_ring_buffer *pipelined)
2351 {
2352 	struct drm_device *dev = obj->base.dev;
2353 	drm_i915_private_t *dev_priv = dev->dev_private;
2354 	u32 size = obj->gtt_space->size;
2355 	u32 fence_reg, val, pitch_val;
2356 	int tile_width;
2357 
2358 	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2359 		 (size & -size) != size ||
2360 		 (obj->gtt_offset & (size - 1)),
2361 		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2362 		 obj->gtt_offset, obj->map_and_fenceable, size))
2363 		return -EINVAL;
2364 
2365 	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2366 		tile_width = 128;
2367 	else
2368 		tile_width = 512;
2369 
2370 	/* Note: pitch better be a power of two tile widths */
2371 	pitch_val = obj->stride / tile_width;
2372 	pitch_val = ffs(pitch_val) - 1;
2373 
2374 	val = obj->gtt_offset;
2375 	if (obj->tiling_mode == I915_TILING_Y)
2376 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2377 	val |= I915_FENCE_SIZE_BITS(size);
2378 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2379 	val |= I830_FENCE_REG_VALID;
2380 
2381 	fence_reg = obj->fence_reg;
2382 	if (fence_reg < 8)
2383 		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2384 	else
2385 		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2386 
2387 	if (pipelined) {
2388 		int ret = intel_ring_begin(pipelined, 4);
2389 		if (ret)
2390 			return ret;
2391 
2392 		intel_ring_emit(pipelined, MI_NOOP);
2393 		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2394 		intel_ring_emit(pipelined, fence_reg);
2395 		intel_ring_emit(pipelined, val);
2396 		intel_ring_advance(pipelined);
2397 	} else
2398 		I915_WRITE(fence_reg, val);
2399 
2400 	return 0;
2401 }
2402 
i830_write_fence_reg(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2403 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2404 				struct intel_ring_buffer *pipelined)
2405 {
2406 	struct drm_device *dev = obj->base.dev;
2407 	drm_i915_private_t *dev_priv = dev->dev_private;
2408 	u32 size = obj->gtt_space->size;
2409 	int regnum = obj->fence_reg;
2410 	uint32_t val;
2411 	uint32_t pitch_val;
2412 
2413 	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2414 		 (size & -size) != size ||
2415 		 (obj->gtt_offset & (size - 1)),
2416 		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2417 		 obj->gtt_offset, size))
2418 		return -EINVAL;
2419 
2420 	pitch_val = obj->stride / 128;
2421 	pitch_val = ffs(pitch_val) - 1;
2422 
2423 	val = obj->gtt_offset;
2424 	if (obj->tiling_mode == I915_TILING_Y)
2425 		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2426 	val |= I830_FENCE_SIZE_BITS(size);
2427 	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2428 	val |= I830_FENCE_REG_VALID;
2429 
2430 	if (pipelined) {
2431 		int ret = intel_ring_begin(pipelined, 4);
2432 		if (ret)
2433 			return ret;
2434 
2435 		intel_ring_emit(pipelined, MI_NOOP);
2436 		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2437 		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2438 		intel_ring_emit(pipelined, val);
2439 		intel_ring_advance(pipelined);
2440 	} else
2441 		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2442 
2443 	return 0;
2444 }
2445 
ring_passed_seqno(struct intel_ring_buffer * ring,u32 seqno)2446 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2447 {
2448 	return i915_seqno_passed(ring->get_seqno(ring), seqno);
2449 }
2450 
2451 static int
i915_gem_object_flush_fence(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2452 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2453 			    struct intel_ring_buffer *pipelined)
2454 {
2455 	int ret;
2456 
2457 	if (obj->fenced_gpu_access) {
2458 		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2459 			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2460 						  0, obj->base.write_domain);
2461 			if (ret)
2462 				return ret;
2463 		}
2464 
2465 		obj->fenced_gpu_access = false;
2466 	}
2467 
2468 	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2469 		if (!ring_passed_seqno(obj->last_fenced_ring,
2470 				       obj->last_fenced_seqno)) {
2471 			ret = i915_wait_request(obj->last_fenced_ring,
2472 						obj->last_fenced_seqno);
2473 			if (ret)
2474 				return ret;
2475 		}
2476 
2477 		obj->last_fenced_seqno = 0;
2478 		obj->last_fenced_ring = NULL;
2479 	}
2480 
2481 	/* Ensure that all CPU reads are completed before installing a fence
2482 	 * and all writes before removing the fence.
2483 	 */
2484 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2485 		mb();
2486 
2487 	return 0;
2488 }
2489 
2490 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)2491 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2492 {
2493 	int ret;
2494 
2495 	if (obj->tiling_mode)
2496 		i915_gem_release_mmap(obj);
2497 
2498 	ret = i915_gem_object_flush_fence(obj, NULL);
2499 	if (ret)
2500 		return ret;
2501 
2502 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2503 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2504 		i915_gem_clear_fence_reg(obj->base.dev,
2505 					 &dev_priv->fence_regs[obj->fence_reg]);
2506 
2507 		obj->fence_reg = I915_FENCE_REG_NONE;
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev,struct intel_ring_buffer * pipelined)2514 i915_find_fence_reg(struct drm_device *dev,
2515 		    struct intel_ring_buffer *pipelined)
2516 {
2517 	struct drm_i915_private *dev_priv = dev->dev_private;
2518 	struct drm_i915_fence_reg *reg, *first, *avail;
2519 	int i;
2520 
2521 	/* First try to find a free reg */
2522 	avail = NULL;
2523 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2524 		reg = &dev_priv->fence_regs[i];
2525 		if (!reg->obj)
2526 			return reg;
2527 
2528 		if (!reg->obj->pin_count)
2529 			avail = reg;
2530 	}
2531 
2532 	if (avail == NULL)
2533 		return NULL;
2534 
2535 	/* None available, try to steal one or wait for a user to finish */
2536 	avail = first = NULL;
2537 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2538 		if (reg->obj->pin_count)
2539 			continue;
2540 
2541 		if (first == NULL)
2542 			first = reg;
2543 
2544 		if (!pipelined ||
2545 		    !reg->obj->last_fenced_ring ||
2546 		    reg->obj->last_fenced_ring == pipelined) {
2547 			avail = reg;
2548 			break;
2549 		}
2550 	}
2551 
2552 	if (avail == NULL)
2553 		avail = first;
2554 
2555 	return avail;
2556 }
2557 
2558 /**
2559  * i915_gem_object_get_fence - set up a fence reg for an object
2560  * @obj: object to map through a fence reg
2561  * @pipelined: ring on which to queue the change, or NULL for CPU access
2562  * @interruptible: must we wait uninterruptibly for the register to retire?
2563  *
2564  * When mapping objects through the GTT, userspace wants to be able to write
2565  * to them without having to worry about swizzling if the object is tiled.
2566  *
2567  * This function walks the fence regs looking for a free one for @obj,
2568  * stealing one if it can't find any.
2569  *
2570  * It then sets up the reg based on the object's properties: address, pitch
2571  * and tiling format.
2572  */
2573 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)2574 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2575 			  struct intel_ring_buffer *pipelined)
2576 {
2577 	struct drm_device *dev = obj->base.dev;
2578 	struct drm_i915_private *dev_priv = dev->dev_private;
2579 	struct drm_i915_fence_reg *reg;
2580 	int ret;
2581 
2582 	/* XXX disable pipelining. There are bugs. Shocking. */
2583 	pipelined = NULL;
2584 
2585 	/* Just update our place in the LRU if our fence is getting reused. */
2586 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2587 		reg = &dev_priv->fence_regs[obj->fence_reg];
2588 		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2589 
2590 		if (obj->tiling_changed) {
2591 			ret = i915_gem_object_flush_fence(obj, pipelined);
2592 			if (ret)
2593 				return ret;
2594 
2595 			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2596 				pipelined = NULL;
2597 
2598 			if (pipelined) {
2599 				reg->setup_seqno =
2600 					i915_gem_next_request_seqno(pipelined);
2601 				obj->last_fenced_seqno = reg->setup_seqno;
2602 				obj->last_fenced_ring = pipelined;
2603 			}
2604 
2605 			goto update;
2606 		}
2607 
2608 		if (!pipelined) {
2609 			if (reg->setup_seqno) {
2610 				if (!ring_passed_seqno(obj->last_fenced_ring,
2611 						       reg->setup_seqno)) {
2612 					ret = i915_wait_request(obj->last_fenced_ring,
2613 								reg->setup_seqno);
2614 					if (ret)
2615 						return ret;
2616 				}
2617 
2618 				reg->setup_seqno = 0;
2619 			}
2620 		} else if (obj->last_fenced_ring &&
2621 			   obj->last_fenced_ring != pipelined) {
2622 			ret = i915_gem_object_flush_fence(obj, pipelined);
2623 			if (ret)
2624 				return ret;
2625 		}
2626 
2627 		return 0;
2628 	}
2629 
2630 	reg = i915_find_fence_reg(dev, pipelined);
2631 	if (reg == NULL)
2632 		return -ENOSPC;
2633 
2634 	ret = i915_gem_object_flush_fence(obj, pipelined);
2635 	if (ret)
2636 		return ret;
2637 
2638 	if (reg->obj) {
2639 		struct drm_i915_gem_object *old = reg->obj;
2640 
2641 		drm_gem_object_reference(&old->base);
2642 
2643 		if (old->tiling_mode)
2644 			i915_gem_release_mmap(old);
2645 
2646 		ret = i915_gem_object_flush_fence(old, pipelined);
2647 		if (ret) {
2648 			drm_gem_object_unreference(&old->base);
2649 			return ret;
2650 		}
2651 
2652 		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2653 			pipelined = NULL;
2654 
2655 		old->fence_reg = I915_FENCE_REG_NONE;
2656 		old->last_fenced_ring = pipelined;
2657 		old->last_fenced_seqno =
2658 			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2659 
2660 		drm_gem_object_unreference(&old->base);
2661 	} else if (obj->last_fenced_seqno == 0)
2662 		pipelined = NULL;
2663 
2664 	reg->obj = obj;
2665 	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2666 	obj->fence_reg = reg - dev_priv->fence_regs;
2667 	obj->last_fenced_ring = pipelined;
2668 
2669 	reg->setup_seqno =
2670 		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2671 	obj->last_fenced_seqno = reg->setup_seqno;
2672 
2673 update:
2674 	obj->tiling_changed = false;
2675 	switch (INTEL_INFO(dev)->gen) {
2676 	case 6:
2677 		ret = sandybridge_write_fence_reg(obj, pipelined);
2678 		break;
2679 	case 5:
2680 	case 4:
2681 		ret = i965_write_fence_reg(obj, pipelined);
2682 		break;
2683 	case 3:
2684 		ret = i915_write_fence_reg(obj, pipelined);
2685 		break;
2686 	case 2:
2687 		ret = i830_write_fence_reg(obj, pipelined);
2688 		break;
2689 	}
2690 
2691 	return ret;
2692 }
2693 
2694 /**
2695  * i915_gem_clear_fence_reg - clear out fence register info
2696  * @obj: object to clear
2697  *
2698  * Zeroes out the fence register itself and clears out the associated
2699  * data structures in dev_priv and obj.
2700  */
2701 static void
i915_gem_clear_fence_reg(struct drm_device * dev,struct drm_i915_fence_reg * reg)2702 i915_gem_clear_fence_reg(struct drm_device *dev,
2703 			 struct drm_i915_fence_reg *reg)
2704 {
2705 	drm_i915_private_t *dev_priv = dev->dev_private;
2706 	uint32_t fence_reg = reg - dev_priv->fence_regs;
2707 
2708 	switch (INTEL_INFO(dev)->gen) {
2709 	case 6:
2710 		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2711 		break;
2712 	case 5:
2713 	case 4:
2714 		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2715 		break;
2716 	case 3:
2717 		if (fence_reg >= 8)
2718 			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2719 		else
2720 	case 2:
2721 			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2722 
2723 		I915_WRITE(fence_reg, 0);
2724 		break;
2725 	}
2726 
2727 	list_del_init(&reg->lru_list);
2728 	reg->obj = NULL;
2729 	reg->setup_seqno = 0;
2730 }
2731 
2732 /**
2733  * Finds free space in the GTT aperture and binds the object there.
2734  */
2735 static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object * obj,unsigned alignment,bool map_and_fenceable)2736 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2737 			    unsigned alignment,
2738 			    bool map_and_fenceable)
2739 {
2740 	struct drm_device *dev = obj->base.dev;
2741 	drm_i915_private_t *dev_priv = dev->dev_private;
2742 	struct drm_mm_node *free_space;
2743 	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2744 	u32 size, fence_size, fence_alignment, unfenced_alignment;
2745 	bool mappable, fenceable;
2746 	int ret;
2747 
2748 	if (obj->madv != I915_MADV_WILLNEED) {
2749 		DRM_ERROR("Attempting to bind a purgeable object\n");
2750 		return -EINVAL;
2751 	}
2752 
2753 	fence_size = i915_gem_get_gtt_size(obj);
2754 	fence_alignment = i915_gem_get_gtt_alignment(obj);
2755 	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2756 
2757 	if (alignment == 0)
2758 		alignment = map_and_fenceable ? fence_alignment :
2759 						unfenced_alignment;
2760 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2761 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2762 		return -EINVAL;
2763 	}
2764 
2765 	size = map_and_fenceable ? fence_size : obj->base.size;
2766 
2767 	/* If the object is bigger than the entire aperture, reject it early
2768 	 * before evicting everything in a vain attempt to find space.
2769 	 */
2770 	if (obj->base.size >
2771 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2772 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2773 		return -E2BIG;
2774 	}
2775 
2776  search_free:
2777 	if (map_and_fenceable)
2778 		free_space =
2779 			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2780 						    size, alignment, 0,
2781 						    dev_priv->mm.gtt_mappable_end,
2782 						    0);
2783 	else
2784 		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2785 						size, alignment, 0);
2786 
2787 	if (free_space != NULL) {
2788 		if (map_and_fenceable)
2789 			obj->gtt_space =
2790 				drm_mm_get_block_range_generic(free_space,
2791 							       size, alignment, 0,
2792 							       dev_priv->mm.gtt_mappable_end,
2793 							       0);
2794 		else
2795 			obj->gtt_space =
2796 				drm_mm_get_block(free_space, size, alignment);
2797 	}
2798 	if (obj->gtt_space == NULL) {
2799 		/* If the gtt is empty and we're still having trouble
2800 		 * fitting our object in, we're out of memory.
2801 		 */
2802 		ret = i915_gem_evict_something(dev, size, alignment,
2803 					       map_and_fenceable);
2804 		if (ret)
2805 			return ret;
2806 
2807 		goto search_free;
2808 	}
2809 
2810 	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2811 	if (ret) {
2812 		drm_mm_put_block(obj->gtt_space);
2813 		obj->gtt_space = NULL;
2814 
2815 		if (ret == -ENOMEM) {
2816 			/* first try to reclaim some memory by clearing the GTT */
2817 			ret = i915_gem_evict_everything(dev, false);
2818 			if (ret) {
2819 				/* now try to shrink everyone else */
2820 				if (gfpmask) {
2821 					gfpmask = 0;
2822 					goto search_free;
2823 				}
2824 
2825 				return -ENOMEM;
2826 			}
2827 
2828 			goto search_free;
2829 		}
2830 
2831 		return ret;
2832 	}
2833 
2834 	ret = i915_gem_gtt_bind_object(obj);
2835 	if (ret) {
2836 		i915_gem_object_put_pages_gtt(obj);
2837 		drm_mm_put_block(obj->gtt_space);
2838 		obj->gtt_space = NULL;
2839 
2840 		if (i915_gem_evict_everything(dev, false))
2841 			return ret;
2842 
2843 		goto search_free;
2844 	}
2845 
2846 	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2847 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2848 
2849 	/* Assert that the object is not currently in any GPU domain. As it
2850 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2851 	 * a GPU cache
2852 	 */
2853 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2854 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2855 
2856 	obj->gtt_offset = obj->gtt_space->start;
2857 
2858 	fenceable =
2859 		obj->gtt_space->size == fence_size &&
2860 		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2861 
2862 	mappable =
2863 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2864 
2865 	obj->map_and_fenceable = mappable && fenceable;
2866 
2867 	trace_i915_gem_object_bind(obj, map_and_fenceable);
2868 	return 0;
2869 }
2870 
2871 void
i915_gem_clflush_object(struct drm_i915_gem_object * obj)2872 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2873 {
2874 	/* If we don't have a page list set up, then we're not pinned
2875 	 * to GPU, and we can ignore the cache flush because it'll happen
2876 	 * again at bind time.
2877 	 */
2878 	if (obj->pages == NULL)
2879 		return;
2880 
2881 	trace_i915_gem_object_clflush(obj);
2882 
2883 	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2884 }
2885 
2886 /** Flushes any GPU write domain for the object if it's dirty. */
2887 static int
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object * obj)2888 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2889 {
2890 	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2891 		return 0;
2892 
2893 	/* Queue the GPU write cache flushing we need. */
2894 	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2895 }
2896 
2897 /** Flushes the GTT write domain for the object if it's dirty. */
2898 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)2899 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2900 {
2901 	uint32_t old_write_domain;
2902 
2903 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2904 		return;
2905 
2906 	/* No actual flushing is required for the GTT write domain.  Writes
2907 	 * to it immediately go to main memory as far as we know, so there's
2908 	 * no chipset flush.  It also doesn't land in render cache.
2909 	 *
2910 	 * However, we do have to enforce the order so that all writes through
2911 	 * the GTT land before any writes to the device, such as updates to
2912 	 * the GATT itself.
2913 	 */
2914 	wmb();
2915 
2916 	i915_gem_release_mmap(obj);
2917 
2918 	old_write_domain = obj->base.write_domain;
2919 	obj->base.write_domain = 0;
2920 
2921 	trace_i915_gem_object_change_domain(obj,
2922 					    obj->base.read_domains,
2923 					    old_write_domain);
2924 }
2925 
2926 /** Flushes the CPU write domain for the object if it's dirty. */
2927 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)2928 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2929 {
2930 	uint32_t old_write_domain;
2931 
2932 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2933 		return;
2934 
2935 	i915_gem_clflush_object(obj);
2936 	intel_gtt_chipset_flush();
2937 	old_write_domain = obj->base.write_domain;
2938 	obj->base.write_domain = 0;
2939 
2940 	trace_i915_gem_object_change_domain(obj,
2941 					    obj->base.read_domains,
2942 					    old_write_domain);
2943 }
2944 
2945 /**
2946  * Moves a single object to the GTT read, and possibly write domain.
2947  *
2948  * This function returns when the move is complete, including waiting on
2949  * flushes to occur.
2950  */
2951 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)2952 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2953 {
2954 	uint32_t old_write_domain, old_read_domains;
2955 	int ret;
2956 
2957 	/* Not valid to be called on unbound objects. */
2958 	if (obj->gtt_space == NULL)
2959 		return -EINVAL;
2960 
2961 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2962 		return 0;
2963 
2964 	ret = i915_gem_object_flush_gpu_write_domain(obj);
2965 	if (ret)
2966 		return ret;
2967 
2968 	if (obj->pending_gpu_write || write) {
2969 		ret = i915_gem_object_wait_rendering(obj);
2970 		if (ret)
2971 			return ret;
2972 	}
2973 
2974 	i915_gem_object_flush_cpu_write_domain(obj);
2975 
2976 	old_write_domain = obj->base.write_domain;
2977 	old_read_domains = obj->base.read_domains;
2978 
2979 	/* It should now be out of any other write domains, and we can update
2980 	 * the domain values for our changes.
2981 	 */
2982 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2983 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2984 	if (write) {
2985 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2986 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2987 		obj->dirty = 1;
2988 	}
2989 
2990 	trace_i915_gem_object_change_domain(obj,
2991 					    old_read_domains,
2992 					    old_write_domain);
2993 
2994 	return 0;
2995 }
2996 
2997 /*
2998  * Prepare buffer for display plane. Use uninterruptible for possible flush
2999  * wait, as in modesetting process we're not supposed to be interrupted.
3000  */
3001 int
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object * obj,struct intel_ring_buffer * pipelined)3002 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3003 				     struct intel_ring_buffer *pipelined)
3004 {
3005 	uint32_t old_read_domains;
3006 	int ret;
3007 
3008 	/* Not valid to be called on unbound objects. */
3009 	if (obj->gtt_space == NULL)
3010 		return -EINVAL;
3011 
3012 	ret = i915_gem_object_flush_gpu_write_domain(obj);
3013 	if (ret)
3014 		return ret;
3015 
3016 
3017 	/* Currently, we are always called from an non-interruptible context. */
3018 	if (pipelined != obj->ring) {
3019 		ret = i915_gem_object_wait_rendering(obj);
3020 		if (ret)
3021 			return ret;
3022 	}
3023 
3024 	i915_gem_object_flush_cpu_write_domain(obj);
3025 
3026 	old_read_domains = obj->base.read_domains;
3027 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3028 
3029 	trace_i915_gem_object_change_domain(obj,
3030 					    old_read_domains,
3031 					    obj->base.write_domain);
3032 
3033 	return 0;
3034 }
3035 
3036 int
i915_gem_object_flush_gpu(struct drm_i915_gem_object * obj)3037 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3038 {
3039 	int ret;
3040 
3041 	if (!obj->active)
3042 		return 0;
3043 
3044 	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3045 		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3046 		if (ret)
3047 			return ret;
3048 	}
3049 
3050 	return i915_gem_object_wait_rendering(obj);
3051 }
3052 
3053 /**
3054  * Moves a single object to the CPU read, and possibly write domain.
3055  *
3056  * This function returns when the move is complete, including waiting on
3057  * flushes to occur.
3058  */
3059 static int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3060 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3061 {
3062 	uint32_t old_write_domain, old_read_domains;
3063 	int ret;
3064 
3065 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3066 		return 0;
3067 
3068 	ret = i915_gem_object_flush_gpu_write_domain(obj);
3069 	if (ret)
3070 		return ret;
3071 
3072 	ret = i915_gem_object_wait_rendering(obj);
3073 	if (ret)
3074 		return ret;
3075 
3076 	i915_gem_object_flush_gtt_write_domain(obj);
3077 
3078 	/* If we have a partially-valid cache of the object in the CPU,
3079 	 * finish invalidating it and free the per-page flags.
3080 	 */
3081 	i915_gem_object_set_to_full_cpu_read_domain(obj);
3082 
3083 	old_write_domain = obj->base.write_domain;
3084 	old_read_domains = obj->base.read_domains;
3085 
3086 	/* Flush the CPU cache if it's still invalid. */
3087 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3088 		i915_gem_clflush_object(obj);
3089 
3090 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3091 	}
3092 
3093 	/* It should now be out of any other write domains, and we can update
3094 	 * the domain values for our changes.
3095 	 */
3096 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3097 
3098 	/* If we're writing through the CPU, then the GPU read domains will
3099 	 * need to be invalidated at next use.
3100 	 */
3101 	if (write) {
3102 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3103 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3104 	}
3105 
3106 	trace_i915_gem_object_change_domain(obj,
3107 					    old_read_domains,
3108 					    old_write_domain);
3109 
3110 	return 0;
3111 }
3112 
3113 /**
3114  * Moves the object from a partially CPU read to a full one.
3115  *
3116  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3117  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3118  */
3119 static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object * obj)3120 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3121 {
3122 	if (!obj->page_cpu_valid)
3123 		return;
3124 
3125 	/* If we're partially in the CPU read domain, finish moving it in.
3126 	 */
3127 	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3128 		int i;
3129 
3130 		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3131 			if (obj->page_cpu_valid[i])
3132 				continue;
3133 			drm_clflush_pages(obj->pages + i, 1);
3134 		}
3135 	}
3136 
3137 	/* Free the page_cpu_valid mappings which are now stale, whether
3138 	 * or not we've got I915_GEM_DOMAIN_CPU.
3139 	 */
3140 	kfree(obj->page_cpu_valid);
3141 	obj->page_cpu_valid = NULL;
3142 }
3143 
3144 /**
3145  * Set the CPU read domain on a range of the object.
3146  *
3147  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3148  * not entirely valid.  The page_cpu_valid member of the object flags which
3149  * pages have been flushed, and will be respected by
3150  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3151  * of the whole object.
3152  *
3153  * This function returns when the move is complete, including waiting on
3154  * flushes to occur.
3155  */
3156 static int
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object * obj,uint64_t offset,uint64_t size)3157 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3158 					  uint64_t offset, uint64_t size)
3159 {
3160 	uint32_t old_read_domains;
3161 	int i, ret;
3162 
3163 	if (offset == 0 && size == obj->base.size)
3164 		return i915_gem_object_set_to_cpu_domain(obj, 0);
3165 
3166 	ret = i915_gem_object_flush_gpu_write_domain(obj);
3167 	if (ret)
3168 		return ret;
3169 
3170 	ret = i915_gem_object_wait_rendering(obj);
3171 	if (ret)
3172 		return ret;
3173 
3174 	i915_gem_object_flush_gtt_write_domain(obj);
3175 
3176 	/* If we're already fully in the CPU read domain, we're done. */
3177 	if (obj->page_cpu_valid == NULL &&
3178 	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3179 		return 0;
3180 
3181 	/* Otherwise, create/clear the per-page CPU read domain flag if we're
3182 	 * newly adding I915_GEM_DOMAIN_CPU
3183 	 */
3184 	if (obj->page_cpu_valid == NULL) {
3185 		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3186 					      GFP_KERNEL);
3187 		if (obj->page_cpu_valid == NULL)
3188 			return -ENOMEM;
3189 	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3190 		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3191 
3192 	/* Flush the cache on any pages that are still invalid from the CPU's
3193 	 * perspective.
3194 	 */
3195 	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3196 	     i++) {
3197 		if (obj->page_cpu_valid[i])
3198 			continue;
3199 
3200 		drm_clflush_pages(obj->pages + i, 1);
3201 
3202 		obj->page_cpu_valid[i] = 1;
3203 	}
3204 
3205 	/* It should now be out of any other write domains, and we can update
3206 	 * the domain values for our changes.
3207 	 */
3208 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3209 
3210 	old_read_domains = obj->base.read_domains;
3211 	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3212 
3213 	trace_i915_gem_object_change_domain(obj,
3214 					    old_read_domains,
3215 					    obj->base.write_domain);
3216 
3217 	return 0;
3218 }
3219 
3220 /* Throttle our rendering by waiting until the ring has completed our requests
3221  * emitted over 20 msec ago.
3222  *
3223  * Note that if we were to use the current jiffies each time around the loop,
3224  * we wouldn't escape the function with any frames outstanding if the time to
3225  * render a frame was over 20ms.
3226  *
3227  * This should get us reasonable parallelism between CPU and GPU but also
3228  * relatively low latency when blocking on a particular request to finish.
3229  */
3230 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)3231 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3232 {
3233 	struct drm_i915_private *dev_priv = dev->dev_private;
3234 	struct drm_i915_file_private *file_priv = file->driver_priv;
3235 	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3236 	struct drm_i915_gem_request *request;
3237 	struct intel_ring_buffer *ring = NULL;
3238 	u32 seqno = 0;
3239 	int ret;
3240 
3241 	if (atomic_read(&dev_priv->mm.wedged))
3242 		return -EIO;
3243 
3244 	spin_lock(&file_priv->mm.lock);
3245 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3246 		if (time_after_eq(request->emitted_jiffies, recent_enough))
3247 			break;
3248 
3249 		ring = request->ring;
3250 		seqno = request->seqno;
3251 	}
3252 	spin_unlock(&file_priv->mm.lock);
3253 
3254 	if (seqno == 0)
3255 		return 0;
3256 
3257 	ret = 0;
3258 	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3259 		/* And wait for the seqno passing without holding any locks and
3260 		 * causing extra latency for others. This is safe as the irq
3261 		 * generation is designed to be run atomically and so is
3262 		 * lockless.
3263 		 */
3264 		if (ring->irq_get(ring)) {
3265 			ret = wait_event_interruptible(ring->irq_queue,
3266 						       i915_seqno_passed(ring->get_seqno(ring), seqno)
3267 						       || atomic_read(&dev_priv->mm.wedged));
3268 			ring->irq_put(ring);
3269 
3270 			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3271 				ret = -EIO;
3272 		}
3273 	}
3274 
3275 	if (ret == 0)
3276 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3277 
3278 	return ret;
3279 }
3280 
3281 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,uint32_t alignment,bool map_and_fenceable)3282 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3283 		    uint32_t alignment,
3284 		    bool map_and_fenceable)
3285 {
3286 	struct drm_device *dev = obj->base.dev;
3287 	struct drm_i915_private *dev_priv = dev->dev_private;
3288 	int ret;
3289 
3290 	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3291 	WARN_ON(i915_verify_lists(dev));
3292 
3293 	if (obj->gtt_space != NULL) {
3294 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3295 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3296 			WARN(obj->pin_count,
3297 			     "bo is already pinned with incorrect alignment:"
3298 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3299 			     " obj->map_and_fenceable=%d\n",
3300 			     obj->gtt_offset, alignment,
3301 			     map_and_fenceable,
3302 			     obj->map_and_fenceable);
3303 			ret = i915_gem_object_unbind(obj);
3304 			if (ret)
3305 				return ret;
3306 		}
3307 	}
3308 
3309 	if (obj->gtt_space == NULL) {
3310 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3311 						  map_and_fenceable);
3312 		if (ret)
3313 			return ret;
3314 	}
3315 
3316 	if (obj->pin_count++ == 0) {
3317 		if (!obj->active)
3318 			list_move_tail(&obj->mm_list,
3319 				       &dev_priv->mm.pinned_list);
3320 	}
3321 	obj->pin_mappable |= map_and_fenceable;
3322 
3323 	WARN_ON(i915_verify_lists(dev));
3324 	return 0;
3325 }
3326 
3327 void
i915_gem_object_unpin(struct drm_i915_gem_object * obj)3328 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3329 {
3330 	struct drm_device *dev = obj->base.dev;
3331 	drm_i915_private_t *dev_priv = dev->dev_private;
3332 
3333 	WARN_ON(i915_verify_lists(dev));
3334 	BUG_ON(obj->pin_count == 0);
3335 	BUG_ON(obj->gtt_space == NULL);
3336 
3337 	if (--obj->pin_count == 0) {
3338 		if (!obj->active)
3339 			list_move_tail(&obj->mm_list,
3340 				       &dev_priv->mm.inactive_list);
3341 		obj->pin_mappable = false;
3342 	}
3343 	WARN_ON(i915_verify_lists(dev));
3344 }
3345 
3346 int
i915_gem_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3347 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3348 		   struct drm_file *file)
3349 {
3350 	struct drm_i915_gem_pin *args = data;
3351 	struct drm_i915_gem_object *obj;
3352 	int ret;
3353 
3354 	ret = i915_mutex_lock_interruptible(dev);
3355 	if (ret)
3356 		return ret;
3357 
3358 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3359 	if (&obj->base == NULL) {
3360 		ret = -ENOENT;
3361 		goto unlock;
3362 	}
3363 
3364 	if (obj->madv != I915_MADV_WILLNEED) {
3365 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3371 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3372 			  args->handle);
3373 		ret = -EINVAL;
3374 		goto out;
3375 	}
3376 
3377 	obj->user_pin_count++;
3378 	obj->pin_filp = file;
3379 	if (obj->user_pin_count == 1) {
3380 		ret = i915_gem_object_pin(obj, args->alignment, true);
3381 		if (ret)
3382 			goto out;
3383 	}
3384 
3385 	/* XXX - flush the CPU caches for pinned objects
3386 	 * as the X server doesn't manage domains yet
3387 	 */
3388 	i915_gem_object_flush_cpu_write_domain(obj);
3389 	args->offset = obj->gtt_offset;
3390 out:
3391 	drm_gem_object_unreference(&obj->base);
3392 unlock:
3393 	mutex_unlock(&dev->struct_mutex);
3394 	return ret;
3395 }
3396 
3397 int
i915_gem_unpin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3398 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3399 		     struct drm_file *file)
3400 {
3401 	struct drm_i915_gem_pin *args = data;
3402 	struct drm_i915_gem_object *obj;
3403 	int ret;
3404 
3405 	ret = i915_mutex_lock_interruptible(dev);
3406 	if (ret)
3407 		return ret;
3408 
3409 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3410 	if (&obj->base == NULL) {
3411 		ret = -ENOENT;
3412 		goto unlock;
3413 	}
3414 
3415 	if (obj->pin_filp != file) {
3416 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3417 			  args->handle);
3418 		ret = -EINVAL;
3419 		goto out;
3420 	}
3421 	obj->user_pin_count--;
3422 	if (obj->user_pin_count == 0) {
3423 		obj->pin_filp = NULL;
3424 		i915_gem_object_unpin(obj);
3425 	}
3426 
3427 out:
3428 	drm_gem_object_unreference(&obj->base);
3429 unlock:
3430 	mutex_unlock(&dev->struct_mutex);
3431 	return ret;
3432 }
3433 
3434 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3435 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3436 		    struct drm_file *file)
3437 {
3438 	struct drm_i915_gem_busy *args = data;
3439 	struct drm_i915_gem_object *obj;
3440 	int ret;
3441 
3442 	ret = i915_mutex_lock_interruptible(dev);
3443 	if (ret)
3444 		return ret;
3445 
3446 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3447 	if (&obj->base == NULL) {
3448 		ret = -ENOENT;
3449 		goto unlock;
3450 	}
3451 
3452 	/* Count all active objects as busy, even if they are currently not used
3453 	 * by the gpu. Users of this interface expect objects to eventually
3454 	 * become non-busy without any further actions, therefore emit any
3455 	 * necessary flushes here.
3456 	 */
3457 	args->busy = obj->active;
3458 	if (args->busy) {
3459 		/* Unconditionally flush objects, even when the gpu still uses this
3460 		 * object. Userspace calling this function indicates that it wants to
3461 		 * use this buffer rather sooner than later, so issuing the required
3462 		 * flush earlier is beneficial.
3463 		 */
3464 		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3465 			ret = i915_gem_flush_ring(obj->ring,
3466 						  0, obj->base.write_domain);
3467 		} else if (obj->ring->outstanding_lazy_request ==
3468 			   obj->last_rendering_seqno) {
3469 			struct drm_i915_gem_request *request;
3470 
3471 			/* This ring is not being cleared by active usage,
3472 			 * so emit a request to do so.
3473 			 */
3474 			request = kzalloc(sizeof(*request), GFP_KERNEL);
3475 			if (request)
3476 				ret = i915_add_request(obj->ring, NULL,request);
3477 			else
3478 				ret = -ENOMEM;
3479 		}
3480 
3481 		/* Update the active list for the hardware's current position.
3482 		 * Otherwise this only updates on a delayed timer or when irqs
3483 		 * are actually unmasked, and our working set ends up being
3484 		 * larger than required.
3485 		 */
3486 		i915_gem_retire_requests_ring(obj->ring);
3487 
3488 		args->busy = obj->active;
3489 	}
3490 
3491 	drm_gem_object_unreference(&obj->base);
3492 unlock:
3493 	mutex_unlock(&dev->struct_mutex);
3494 	return ret;
3495 }
3496 
3497 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3498 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3499 			struct drm_file *file_priv)
3500 {
3501     return i915_gem_ring_throttle(dev, file_priv);
3502 }
3503 
3504 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3505 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3506 		       struct drm_file *file_priv)
3507 {
3508 	struct drm_i915_gem_madvise *args = data;
3509 	struct drm_i915_gem_object *obj;
3510 	int ret;
3511 
3512 	switch (args->madv) {
3513 	case I915_MADV_DONTNEED:
3514 	case I915_MADV_WILLNEED:
3515 	    break;
3516 	default:
3517 	    return -EINVAL;
3518 	}
3519 
3520 	ret = i915_mutex_lock_interruptible(dev);
3521 	if (ret)
3522 		return ret;
3523 
3524 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3525 	if (&obj->base == NULL) {
3526 		ret = -ENOENT;
3527 		goto unlock;
3528 	}
3529 
3530 	if (obj->pin_count) {
3531 		ret = -EINVAL;
3532 		goto out;
3533 	}
3534 
3535 	if (obj->madv != __I915_MADV_PURGED)
3536 		obj->madv = args->madv;
3537 
3538 	/* if the object is no longer bound, discard its backing storage */
3539 	if (i915_gem_object_is_purgeable(obj) &&
3540 	    obj->gtt_space == NULL)
3541 		i915_gem_object_truncate(obj);
3542 
3543 	args->retained = obj->madv != __I915_MADV_PURGED;
3544 
3545 out:
3546 	drm_gem_object_unreference(&obj->base);
3547 unlock:
3548 	mutex_unlock(&dev->struct_mutex);
3549 	return ret;
3550 }
3551 
i915_gem_alloc_object(struct drm_device * dev,size_t size)3552 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3553 						  size_t size)
3554 {
3555 	struct drm_i915_private *dev_priv = dev->dev_private;
3556 	struct drm_i915_gem_object *obj;
3557 
3558 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3559 	if (obj == NULL)
3560 		return NULL;
3561 
3562 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3563 		kfree(obj);
3564 		return NULL;
3565 	}
3566 
3567 	i915_gem_info_add_obj(dev_priv, size);
3568 
3569 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3570 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3571 
3572 	obj->agp_type = AGP_USER_MEMORY;
3573 	obj->base.driver_private = NULL;
3574 	obj->fence_reg = I915_FENCE_REG_NONE;
3575 	INIT_LIST_HEAD(&obj->mm_list);
3576 	INIT_LIST_HEAD(&obj->gtt_list);
3577 	INIT_LIST_HEAD(&obj->ring_list);
3578 	INIT_LIST_HEAD(&obj->exec_list);
3579 	INIT_LIST_HEAD(&obj->gpu_write_list);
3580 	obj->madv = I915_MADV_WILLNEED;
3581 	/* Avoid an unnecessary call to unbind on the first bind. */
3582 	obj->map_and_fenceable = true;
3583 
3584 	return obj;
3585 }
3586 
i915_gem_init_object(struct drm_gem_object * obj)3587 int i915_gem_init_object(struct drm_gem_object *obj)
3588 {
3589 	BUG();
3590 
3591 	return 0;
3592 }
3593 
i915_gem_free_object_tail(struct drm_i915_gem_object * obj)3594 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3595 {
3596 	struct drm_device *dev = obj->base.dev;
3597 	drm_i915_private_t *dev_priv = dev->dev_private;
3598 	int ret;
3599 
3600 	ret = i915_gem_object_unbind(obj);
3601 	if (ret == -ERESTARTSYS) {
3602 		list_move(&obj->mm_list,
3603 			  &dev_priv->mm.deferred_free_list);
3604 		return;
3605 	}
3606 
3607 	trace_i915_gem_object_destroy(obj);
3608 
3609 	if (obj->base.map_list.map)
3610 		i915_gem_free_mmap_offset(obj);
3611 
3612 	drm_gem_object_release(&obj->base);
3613 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3614 
3615 	kfree(obj->page_cpu_valid);
3616 	kfree(obj->bit_17);
3617 	kfree(obj);
3618 }
3619 
i915_gem_free_object(struct drm_gem_object * gem_obj)3620 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3621 {
3622 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3623 	struct drm_device *dev = obj->base.dev;
3624 
3625 	while (obj->pin_count > 0)
3626 		i915_gem_object_unpin(obj);
3627 
3628 	if (obj->phys_obj)
3629 		i915_gem_detach_phys_object(dev, obj);
3630 
3631 	i915_gem_free_object_tail(obj);
3632 }
3633 
3634 int
i915_gem_idle(struct drm_device * dev)3635 i915_gem_idle(struct drm_device *dev)
3636 {
3637 	drm_i915_private_t *dev_priv = dev->dev_private;
3638 	int ret;
3639 
3640 	mutex_lock(&dev->struct_mutex);
3641 
3642 	if (dev_priv->mm.suspended) {
3643 		mutex_unlock(&dev->struct_mutex);
3644 		return 0;
3645 	}
3646 
3647 	ret = i915_gpu_idle(dev);
3648 	if (ret) {
3649 		mutex_unlock(&dev->struct_mutex);
3650 		return ret;
3651 	}
3652 
3653 	/* Under UMS, be paranoid and evict. */
3654 	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3655 		ret = i915_gem_evict_inactive(dev, false);
3656 		if (ret) {
3657 			mutex_unlock(&dev->struct_mutex);
3658 			return ret;
3659 		}
3660 	}
3661 
3662 	i915_gem_reset_fences(dev);
3663 
3664 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3665 	 * We need to replace this with a semaphore, or something.
3666 	 * And not confound mm.suspended!
3667 	 */
3668 	dev_priv->mm.suspended = 1;
3669 	del_timer_sync(&dev_priv->hangcheck_timer);
3670 
3671 	i915_kernel_lost_context(dev);
3672 	i915_gem_cleanup_ringbuffer(dev);
3673 
3674 	mutex_unlock(&dev->struct_mutex);
3675 
3676 	/* Cancel the retire work handler, which should be idle now. */
3677 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3678 
3679 	return 0;
3680 }
3681 
3682 int
i915_gem_init_ringbuffer(struct drm_device * dev)3683 i915_gem_init_ringbuffer(struct drm_device *dev)
3684 {
3685 	drm_i915_private_t *dev_priv = dev->dev_private;
3686 	int ret;
3687 
3688 	ret = intel_init_render_ring_buffer(dev);
3689 	if (ret)
3690 		return ret;
3691 
3692 	if (HAS_BSD(dev)) {
3693 		ret = intel_init_bsd_ring_buffer(dev);
3694 		if (ret)
3695 			goto cleanup_render_ring;
3696 	}
3697 
3698 	if (HAS_BLT(dev)) {
3699 		ret = intel_init_blt_ring_buffer(dev);
3700 		if (ret)
3701 			goto cleanup_bsd_ring;
3702 	}
3703 
3704 	dev_priv->next_seqno = 1;
3705 
3706 	return 0;
3707 
3708 cleanup_bsd_ring:
3709 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3710 cleanup_render_ring:
3711 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3712 	return ret;
3713 }
3714 
3715 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)3716 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3717 {
3718 	drm_i915_private_t *dev_priv = dev->dev_private;
3719 	int i;
3720 
3721 	for (i = 0; i < I915_NUM_RINGS; i++)
3722 		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3723 }
3724 
3725 int
i915_gem_entervt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3726 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3727 		       struct drm_file *file_priv)
3728 {
3729 	drm_i915_private_t *dev_priv = dev->dev_private;
3730 	int ret, i;
3731 
3732 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3733 		return 0;
3734 
3735 	if (atomic_read(&dev_priv->mm.wedged)) {
3736 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3737 		atomic_set(&dev_priv->mm.wedged, 0);
3738 	}
3739 
3740 	mutex_lock(&dev->struct_mutex);
3741 	dev_priv->mm.suspended = 0;
3742 
3743 	ret = i915_gem_init_ringbuffer(dev);
3744 	if (ret != 0) {
3745 		mutex_unlock(&dev->struct_mutex);
3746 		return ret;
3747 	}
3748 
3749 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3750 	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3751 	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3752 	for (i = 0; i < I915_NUM_RINGS; i++) {
3753 		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3754 		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3755 	}
3756 	mutex_unlock(&dev->struct_mutex);
3757 
3758 	ret = drm_irq_install(dev);
3759 	if (ret)
3760 		goto cleanup_ringbuffer;
3761 
3762 	return 0;
3763 
3764 cleanup_ringbuffer:
3765 	mutex_lock(&dev->struct_mutex);
3766 	i915_gem_cleanup_ringbuffer(dev);
3767 	dev_priv->mm.suspended = 1;
3768 	mutex_unlock(&dev->struct_mutex);
3769 
3770 	return ret;
3771 }
3772 
3773 int
i915_gem_leavevt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)3774 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3775 		       struct drm_file *file_priv)
3776 {
3777 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3778 		return 0;
3779 
3780 	drm_irq_uninstall(dev);
3781 	return i915_gem_idle(dev);
3782 }
3783 
3784 void
i915_gem_lastclose(struct drm_device * dev)3785 i915_gem_lastclose(struct drm_device *dev)
3786 {
3787 	int ret;
3788 
3789 	if (drm_core_check_feature(dev, DRIVER_MODESET))
3790 		return;
3791 
3792 	ret = i915_gem_idle(dev);
3793 	if (ret)
3794 		DRM_ERROR("failed to idle hardware: %d\n", ret);
3795 }
3796 
3797 static void
init_ring_lists(struct intel_ring_buffer * ring)3798 init_ring_lists(struct intel_ring_buffer *ring)
3799 {
3800 	INIT_LIST_HEAD(&ring->active_list);
3801 	INIT_LIST_HEAD(&ring->request_list);
3802 	INIT_LIST_HEAD(&ring->gpu_write_list);
3803 }
3804 
3805 void
i915_gem_load(struct drm_device * dev)3806 i915_gem_load(struct drm_device *dev)
3807 {
3808 	int i;
3809 	drm_i915_private_t *dev_priv = dev->dev_private;
3810 
3811 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3812 	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3813 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3814 	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3815 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3816 	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3817 	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3818 	for (i = 0; i < I915_NUM_RINGS; i++)
3819 		init_ring_lists(&dev_priv->ring[i]);
3820 	for (i = 0; i < 16; i++)
3821 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3822 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3823 			  i915_gem_retire_work_handler);
3824 	init_completion(&dev_priv->error_completion);
3825 
3826 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3827 	if (IS_GEN3(dev)) {
3828 		u32 tmp = I915_READ(MI_ARB_STATE);
3829 		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3830 			/* arb state is a masked write, so set bit + bit in mask */
3831 			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3832 			I915_WRITE(MI_ARB_STATE, tmp);
3833 		}
3834 	}
3835 
3836 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3837 
3838 	/* Old X drivers will take 0-2 for front, back, depth buffers */
3839 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3840 		dev_priv->fence_reg_start = 3;
3841 
3842 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3843 		dev_priv->num_fence_regs = 16;
3844 	else
3845 		dev_priv->num_fence_regs = 8;
3846 
3847 	/* Initialize fence registers to zero */
3848 	switch (INTEL_INFO(dev)->gen) {
3849 	case 6:
3850 		for (i = 0; i < 16; i++)
3851 			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3852 		break;
3853 	case 5:
3854 	case 4:
3855 		for (i = 0; i < 16; i++)
3856 			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3857 		break;
3858 	case 3:
3859 		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3860 			for (i = 0; i < 8; i++)
3861 				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3862 	case 2:
3863 		for (i = 0; i < 8; i++)
3864 			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3865 		break;
3866 	}
3867 	i915_gem_detect_bit_6_swizzle(dev);
3868 	init_waitqueue_head(&dev_priv->pending_flip_queue);
3869 
3870 	dev_priv->mm.interruptible = true;
3871 
3872 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3873 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3874 	register_shrinker(&dev_priv->mm.inactive_shrinker);
3875 }
3876 
3877 /*
3878  * Create a physically contiguous memory object for this object
3879  * e.g. for cursor + overlay regs
3880  */
i915_gem_init_phys_object(struct drm_device * dev,int id,int size,int align)3881 static int i915_gem_init_phys_object(struct drm_device *dev,
3882 				     int id, int size, int align)
3883 {
3884 	drm_i915_private_t *dev_priv = dev->dev_private;
3885 	struct drm_i915_gem_phys_object *phys_obj;
3886 	int ret;
3887 
3888 	if (dev_priv->mm.phys_objs[id - 1] || !size)
3889 		return 0;
3890 
3891 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3892 	if (!phys_obj)
3893 		return -ENOMEM;
3894 
3895 	phys_obj->id = id;
3896 
3897 	phys_obj->handle = drm_pci_alloc(dev, size, align);
3898 	if (!phys_obj->handle) {
3899 		ret = -ENOMEM;
3900 		goto kfree_obj;
3901 	}
3902 #ifdef CONFIG_X86
3903 	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3904 #endif
3905 
3906 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
3907 
3908 	return 0;
3909 kfree_obj:
3910 	kfree(phys_obj);
3911 	return ret;
3912 }
3913 
i915_gem_free_phys_object(struct drm_device * dev,int id)3914 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3915 {
3916 	drm_i915_private_t *dev_priv = dev->dev_private;
3917 	struct drm_i915_gem_phys_object *phys_obj;
3918 
3919 	if (!dev_priv->mm.phys_objs[id - 1])
3920 		return;
3921 
3922 	phys_obj = dev_priv->mm.phys_objs[id - 1];
3923 	if (phys_obj->cur_obj) {
3924 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3925 	}
3926 
3927 #ifdef CONFIG_X86
3928 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3929 #endif
3930 	drm_pci_free(dev, phys_obj->handle);
3931 	kfree(phys_obj);
3932 	dev_priv->mm.phys_objs[id - 1] = NULL;
3933 }
3934 
i915_gem_free_all_phys_object(struct drm_device * dev)3935 void i915_gem_free_all_phys_object(struct drm_device *dev)
3936 {
3937 	int i;
3938 
3939 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3940 		i915_gem_free_phys_object(dev, i);
3941 }
3942 
i915_gem_detach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj)3943 void i915_gem_detach_phys_object(struct drm_device *dev,
3944 				 struct drm_i915_gem_object *obj)
3945 {
3946 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3947 	char *vaddr;
3948 	int i;
3949 	int page_count;
3950 
3951 	if (!obj->phys_obj)
3952 		return;
3953 	vaddr = obj->phys_obj->handle->vaddr;
3954 
3955 	page_count = obj->base.size / PAGE_SIZE;
3956 	for (i = 0; i < page_count; i++) {
3957 		struct page *page = read_cache_page_gfp(mapping, i,
3958 							GFP_HIGHUSER | __GFP_RECLAIMABLE);
3959 		if (!IS_ERR(page)) {
3960 			char *dst = kmap_atomic(page);
3961 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3962 			kunmap_atomic(dst);
3963 
3964 			drm_clflush_pages(&page, 1);
3965 
3966 			set_page_dirty(page);
3967 			mark_page_accessed(page);
3968 			page_cache_release(page);
3969 		}
3970 	}
3971 	intel_gtt_chipset_flush();
3972 
3973 	obj->phys_obj->cur_obj = NULL;
3974 	obj->phys_obj = NULL;
3975 }
3976 
3977 int
i915_gem_attach_phys_object(struct drm_device * dev,struct drm_i915_gem_object * obj,int id,int align)3978 i915_gem_attach_phys_object(struct drm_device *dev,
3979 			    struct drm_i915_gem_object *obj,
3980 			    int id,
3981 			    int align)
3982 {
3983 	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3984 	drm_i915_private_t *dev_priv = dev->dev_private;
3985 	int ret = 0;
3986 	int page_count;
3987 	int i;
3988 
3989 	if (id > I915_MAX_PHYS_OBJECT)
3990 		return -EINVAL;
3991 
3992 	if (obj->phys_obj) {
3993 		if (obj->phys_obj->id == id)
3994 			return 0;
3995 		i915_gem_detach_phys_object(dev, obj);
3996 	}
3997 
3998 	/* create a new object */
3999 	if (!dev_priv->mm.phys_objs[id - 1]) {
4000 		ret = i915_gem_init_phys_object(dev, id,
4001 						obj->base.size, align);
4002 		if (ret) {
4003 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4004 				  id, obj->base.size);
4005 			return ret;
4006 		}
4007 	}
4008 
4009 	/* bind to the object */
4010 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4011 	obj->phys_obj->cur_obj = obj;
4012 
4013 	page_count = obj->base.size / PAGE_SIZE;
4014 
4015 	for (i = 0; i < page_count; i++) {
4016 		struct page *page;
4017 		char *dst, *src;
4018 
4019 		page = read_cache_page_gfp(mapping, i,
4020 					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
4021 		if (IS_ERR(page))
4022 			return PTR_ERR(page);
4023 
4024 		src = kmap_atomic(page);
4025 		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4026 		memcpy(dst, src, PAGE_SIZE);
4027 		kunmap_atomic(src);
4028 
4029 		mark_page_accessed(page);
4030 		page_cache_release(page);
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 static int
i915_gem_phys_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)4037 i915_gem_phys_pwrite(struct drm_device *dev,
4038 		     struct drm_i915_gem_object *obj,
4039 		     struct drm_i915_gem_pwrite *args,
4040 		     struct drm_file *file_priv)
4041 {
4042 	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4043 	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4044 
4045 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4046 		unsigned long unwritten;
4047 
4048 		/* The physical object once assigned is fixed for the lifetime
4049 		 * of the obj, so we can safely drop the lock and continue
4050 		 * to access vaddr.
4051 		 */
4052 		mutex_unlock(&dev->struct_mutex);
4053 		unwritten = copy_from_user(vaddr, user_data, args->size);
4054 		mutex_lock(&dev->struct_mutex);
4055 		if (unwritten)
4056 			return -EFAULT;
4057 	}
4058 
4059 	intel_gtt_chipset_flush();
4060 	return 0;
4061 }
4062 
i915_gem_release(struct drm_device * dev,struct drm_file * file)4063 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4064 {
4065 	struct drm_i915_file_private *file_priv = file->driver_priv;
4066 
4067 	/* Clean up our request list when the client is going away, so that
4068 	 * later retire_requests won't dereference our soon-to-be-gone
4069 	 * file_priv.
4070 	 */
4071 	spin_lock(&file_priv->mm.lock);
4072 	while (!list_empty(&file_priv->mm.request_list)) {
4073 		struct drm_i915_gem_request *request;
4074 
4075 		request = list_first_entry(&file_priv->mm.request_list,
4076 					   struct drm_i915_gem_request,
4077 					   client_list);
4078 		list_del(&request->client_list);
4079 		request->file_priv = NULL;
4080 	}
4081 	spin_unlock(&file_priv->mm.lock);
4082 }
4083 
4084 static int
i915_gpu_is_active(struct drm_device * dev)4085 i915_gpu_is_active(struct drm_device *dev)
4086 {
4087 	drm_i915_private_t *dev_priv = dev->dev_private;
4088 	int lists_empty;
4089 
4090 	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4091 		      list_empty(&dev_priv->mm.active_list);
4092 
4093 	return !lists_empty;
4094 }
4095 
4096 static int
i915_gem_inactive_shrink(struct shrinker * shrinker,int nr_to_scan,gfp_t gfp_mask)4097 i915_gem_inactive_shrink(struct shrinker *shrinker,
4098 			 int nr_to_scan,
4099 			 gfp_t gfp_mask)
4100 {
4101 	struct drm_i915_private *dev_priv =
4102 		container_of(shrinker,
4103 			     struct drm_i915_private,
4104 			     mm.inactive_shrinker);
4105 	struct drm_device *dev = dev_priv->dev;
4106 	struct drm_i915_gem_object *obj, *next;
4107 	int cnt;
4108 
4109 	if (!mutex_trylock(&dev->struct_mutex))
4110 		return 0;
4111 
4112 	/* "fast-path" to count number of available objects */
4113 	if (nr_to_scan == 0) {
4114 		cnt = 0;
4115 		list_for_each_entry(obj,
4116 				    &dev_priv->mm.inactive_list,
4117 				    mm_list)
4118 			cnt++;
4119 		mutex_unlock(&dev->struct_mutex);
4120 		return cnt / 100 * sysctl_vfs_cache_pressure;
4121 	}
4122 
4123 rescan:
4124 	/* first scan for clean buffers */
4125 	i915_gem_retire_requests(dev);
4126 
4127 	list_for_each_entry_safe(obj, next,
4128 				 &dev_priv->mm.inactive_list,
4129 				 mm_list) {
4130 		if (i915_gem_object_is_purgeable(obj)) {
4131 			if (i915_gem_object_unbind(obj) == 0 &&
4132 			    --nr_to_scan == 0)
4133 				break;
4134 		}
4135 	}
4136 
4137 	/* second pass, evict/count anything still on the inactive list */
4138 	cnt = 0;
4139 	list_for_each_entry_safe(obj, next,
4140 				 &dev_priv->mm.inactive_list,
4141 				 mm_list) {
4142 		if (nr_to_scan &&
4143 		    i915_gem_object_unbind(obj) == 0)
4144 			nr_to_scan--;
4145 		else
4146 			cnt++;
4147 	}
4148 
4149 	if (nr_to_scan && i915_gpu_is_active(dev)) {
4150 		/*
4151 		 * We are desperate for pages, so as a last resort, wait
4152 		 * for the GPU to finish and discard whatever we can.
4153 		 * This has a dramatic impact to reduce the number of
4154 		 * OOM-killer events whilst running the GPU aggressively.
4155 		 */
4156 		if (i915_gpu_idle(dev) == 0)
4157 			goto rescan;
4158 	}
4159 	mutex_unlock(&dev->struct_mutex);
4160 	return cnt / 100 * sysctl_vfs_cache_pressure;
4161 }
4162