1 /*******************************************************************************
2 *
3 * (c) 1998 by Computone Corporation
4 *
5 ********************************************************************************
6 *
7 *
8 * PACKAGE: Linux tty Device Driver for IntelliPort family of multiport
9 * serial I/O controllers.
10 *
11 * DESCRIPTION: Low-level interface code for the device driver
12 * (This is included source code, not a separate compilation
13 * module.)
14 *
15 *******************************************************************************/
16 //---------------------------------------------
17 // Function declarations private to this module
18 //---------------------------------------------
19 // Functions called only indirectly through i2eBordStr entries.
20
21 static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int);
22 static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int);
23 static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int);
24 static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int);
25
26 static unsigned short iiReadWord16(i2eBordStrPtr);
27 static unsigned short iiReadWord8(i2eBordStrPtr);
28 static void iiWriteWord16(i2eBordStrPtr, unsigned short);
29 static void iiWriteWord8(i2eBordStrPtr, unsigned short);
30
31 static int iiWaitForTxEmptyII(i2eBordStrPtr, int);
32 static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int);
33 static int iiTxMailEmptyII(i2eBordStrPtr);
34 static int iiTxMailEmptyIIEX(i2eBordStrPtr);
35 static int iiTrySendMailII(i2eBordStrPtr, unsigned char);
36 static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char);
37
38 static unsigned short iiGetMailII(i2eBordStrPtr);
39 static unsigned short iiGetMailIIEX(i2eBordStrPtr);
40
41 static void iiEnableMailIrqII(i2eBordStrPtr);
42 static void iiEnableMailIrqIIEX(i2eBordStrPtr);
43 static void iiWriteMaskII(i2eBordStrPtr, unsigned char);
44 static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char);
45
46 static void ii2DelayTimer(unsigned int);
47 static void ii2DelayWakeup(unsigned long id);
48 static void ii2Nop(void);
49
50 //***************
51 //* Static Data *
52 //***************
53
54 static int ii2Safe; // Safe I/O address for delay routine
55
56 static int iiDelayed; // Set when the iiResetDelay function is
57 // called. Cleared when ANY board is reset.
58 static struct timer_list * pDelayTimer; // Used by iiDelayTimer
59 static wait_queue_head_t pDelayWait; // Used by iiDelayTimer
60 static rwlock_t Dl_spinlock;
61
62 //********
63 //* Code *
64 //********
65
66 //=======================================================
67 // Initialization Routines
68 //
69 // iiSetAddress
70 // iiReset
71 // iiResetDelay
72 // iiInitialize
73 //=======================================================
74
75 //******************************************************************************
76 // Function: iiEllisInit()
77 // Parameters: None
78 //
79 // Returns: Nothing
80 //
81 // Description:
82 //
83 // This routine performs any required initialization of the iiEllis subsystem.
84 //
85 //******************************************************************************
86 static void
iiEllisInit(void)87 iiEllisInit(void)
88 {
89 pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL );
90 init_waitqueue_head(&pDelayWait);
91 LOCK_INIT(&Dl_spinlock);
92 }
93
94 //******************************************************************************
95 // Function: iiEllisCleanup()
96 // Parameters: None
97 //
98 // Returns: Nothing
99 //
100 // Description:
101 //
102 // This routine performs any required cleanup of the iiEllis subsystem.
103 //
104 //******************************************************************************
105 static void
iiEllisCleanup(void)106 iiEllisCleanup(void)
107 {
108 if ( pDelayTimer != NULL ) {
109 kfree ( pDelayTimer );
110 }
111 }
112
113 //******************************************************************************
114 // Function: iiSetAddress(pB, address, delay)
115 // Parameters: pB - pointer to the board structure
116 // address - the purported I/O address of the board
117 // delay - pointer to the 1-ms delay function to use
118 // in this and any future operations to this board
119 //
120 // Returns: True if everything appears copacetic.
121 // False if there is any error: the pB->i2eError field has the error
122 //
123 // Description:
124 //
125 // This routine (roughly) checks for address validity, sets the i2eValid OK and
126 // sets the state to II_STATE_COLD which means that we haven't even sent a reset
127 // yet.
128 //
129 //******************************************************************************
130 static int
iiSetAddress(i2eBordStrPtr pB,int address,delayFunc_t delay)131 iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay )
132 {
133 // Should any failure occur before init is finished...
134 pB->i2eValid = I2E_INCOMPLETE;
135
136 // Cannot check upper limit except extremely: Might be microchannel
137 // Address must be on an 8-byte boundary
138
139 if ((unsigned int)address <= 0x100
140 || (unsigned int)address >= 0xfff8
141 || (address & 0x7)
142 )
143 {
144 COMPLETE(pB,I2EE_BADADDR);
145 }
146
147 // Initialize accelerators
148 pB->i2eBase = address;
149 pB->i2eData = address + FIFO_DATA;
150 pB->i2eStatus = address + FIFO_STATUS;
151 pB->i2ePointer = address + FIFO_PTR;
152 pB->i2eXMail = address + FIFO_MAIL;
153 pB->i2eXMask = address + FIFO_MASK;
154
155 // Initialize i/o address for ii2DelayIO
156 ii2Safe = address + FIFO_NOP;
157
158 // Initialize the delay routine
159 pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop);
160
161 pB->i2eValid = I2E_MAGIC;
162 pB->i2eState = II_STATE_COLD;
163
164 COMPLETE(pB, I2EE_GOOD);
165 }
166
167 //******************************************************************************
168 // Function: iiReset(pB)
169 // Parameters: pB - pointer to the board structure
170 //
171 // Returns: True if everything appears copacetic.
172 // False if there is any error: the pB->i2eError field has the error
173 //
174 // Description:
175 //
176 // Attempts to reset the board (see also i2hw.h). Normally, we would use this to
177 // reset a board immediately after iiSetAddress(), but it is valid to reset a
178 // board from any state, say, in order to change or re-load loadware. (Under
179 // such circumstances, no reason to re-run iiSetAddress(), which is why it is a
180 // separate routine and not included in this routine.
181 //
182 //******************************************************************************
183 static int
iiReset(i2eBordStrPtr pB)184 iiReset(i2eBordStrPtr pB)
185 {
186 // Magic number should be set, else even the address is suspect
187 if (pB->i2eValid != I2E_MAGIC)
188 {
189 COMPLETE(pB, I2EE_BADMAGIC);
190 }
191
192 OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do
193 iiDelay(pB, 50); // Pause between resets
194 OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset
195
196 // We must wait before even attempting to read anything from the FIFO: the
197 // board's P.O.S.T may actually attempt to read and write its end of the
198 // FIFO in order to check flags, loop back (where supported), etc. On
199 // completion of this testing it would reset the FIFO, and on completion
200 // of all // P.O.S.T., write the message. We must not mistake data which
201 // might have been sent for testing as part of the reset message. To
202 // better utilize time, say, when resetting several boards, we allow the
203 // delay to be performed externally; in this way the caller can reset
204 // several boards, delay a single time, then call the initialization
205 // routine for all.
206
207 pB->i2eState = II_STATE_RESET;
208
209 iiDelayed = 0; // i.e., the delay routine hasn't been called since the most
210 // recent reset.
211
212 // Ensure anything which would have been of use to standard loadware is
213 // blanked out, since board has now forgotten everything!.
214
215 pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet
216 pB->i2eWaitingForEmptyFifo = 0;
217 pB->i2eOutMailWaiting = 0;
218 pB->i2eChannelPtr = NULL;
219 pB->i2eChannelCnt = 0;
220
221 pB->i2eLeadoffWord[0] = 0;
222 pB->i2eFifoInInts = 0;
223 pB->i2eFifoOutInts = 0;
224 pB->i2eFatalTrap = NULL;
225 pB->i2eFatal = 0;
226
227 COMPLETE(pB, I2EE_GOOD);
228 }
229
230 //******************************************************************************
231 // Function: iiResetDelay(pB)
232 // Parameters: pB - pointer to the board structure
233 //
234 // Returns: True if everything appears copacetic.
235 // False if there is any error: the pB->i2eError field has the error
236 //
237 // Description:
238 //
239 // Using the delay defined in board structure, waits two seconds (for board to
240 // reset).
241 //
242 //******************************************************************************
243 static int
iiResetDelay(i2eBordStrPtr pB)244 iiResetDelay(i2eBordStrPtr pB)
245 {
246 if (pB->i2eValid != I2E_MAGIC) {
247 COMPLETE(pB, I2EE_BADMAGIC);
248 }
249 if (pB->i2eState != II_STATE_RESET) {
250 COMPLETE(pB, I2EE_BADSTATE);
251 }
252 iiDelay(pB,2000); /* Now we wait for two seconds. */
253 iiDelayed = 1; /* Delay has been called: ok to initialize */
254 COMPLETE(pB, I2EE_GOOD);
255 }
256
257 //******************************************************************************
258 // Function: iiInitialize(pB)
259 // Parameters: pB - pointer to the board structure
260 //
261 // Returns: True if everything appears copacetic.
262 // False if there is any error: the pB->i2eError field has the error
263 //
264 // Description:
265 //
266 // Attempts to read the Power-on reset message. Initializes any remaining fields
267 // in the pB structure.
268 //
269 // This should be called as the third step of a process beginning with
270 // iiReset(), then iiResetDelay(). This routine checks to see that the structure
271 // is "valid" and in the reset state, also confirms that the delay routine has
272 // been called since the latest reset (to any board! overly strong!).
273 //
274 //******************************************************************************
275 static int
iiInitialize(i2eBordStrPtr pB)276 iiInitialize(i2eBordStrPtr pB)
277 {
278 int itemp;
279 unsigned char c;
280 unsigned short utemp;
281 unsigned int ilimit;
282
283 if (pB->i2eValid != I2E_MAGIC)
284 {
285 COMPLETE(pB, I2EE_BADMAGIC);
286 }
287
288 if (pB->i2eState != II_STATE_RESET || !iiDelayed)
289 {
290 COMPLETE(pB, I2EE_BADSTATE);
291 }
292
293 // In case there is a failure short of our completely reading the power-up
294 // message.
295 pB->i2eValid = I2E_INCOMPLETE;
296
297
298 // Now attempt to read the message.
299
300 for (itemp = 0; itemp < sizeof(porStr); itemp++)
301 {
302 // We expect the entire message is ready.
303 if (HAS_NO_INPUT(pB))
304 {
305 pB->i2ePomSize = itemp;
306 COMPLETE(pB, I2EE_PORM_SHORT);
307 }
308
309 pB->i2ePom.c[itemp] = c = BYTE_FROM(pB);
310
311 // We check the magic numbers as soon as they are supposed to be read
312 // (rather than after) to minimize effect of reading something we
313 // already suspect can't be "us".
314 if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) ||
315 (itemp == POR_2_INDEX && c != POR_MAGIC_2))
316 {
317 pB->i2ePomSize = itemp+1;
318 COMPLETE(pB, I2EE_BADMAGIC);
319 }
320 }
321
322 pB->i2ePomSize = itemp;
323
324 // Ensure that this was all the data...
325 if (HAS_INPUT(pB))
326 COMPLETE(pB, I2EE_PORM_LONG);
327
328 // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper:
329 // Implying we will not be able to download any code either: That's ok: the
330 // condition is pretty explicit.
331 if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER)
332 {
333 COMPLETE(pB, I2EE_POSTERR);
334 }
335
336 // Determine anything which must be done differently depending on the family
337 // of boards!
338 switch (pB->i2ePom.e.porID & POR_ID_FAMILY)
339 {
340 case POR_ID_FII: // IntelliPort-II
341
342 pB->i2eFifoStyle = FIFO_II;
343 pB->i2eFifoSize = 512; // 512 bytes, always
344 pB->i2eDataWidth16 = NO;
345
346 pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit
347 // slot, we do allow it to be done (documentation!)
348
349 pB->i2eGoodMap[1] =
350 pB->i2eGoodMap[2] =
351 pB->i2eGoodMap[3] =
352 pB->i2eChannelMap[1] =
353 pB->i2eChannelMap[2] =
354 pB->i2eChannelMap[3] = 0;
355
356 switch (pB->i2ePom.e.porID & POR_ID_SIZE)
357 {
358 case POR_ID_II_4:
359 pB->i2eGoodMap[0] =
360 pB->i2eChannelMap[0] = 0x0f; // four-port
361
362 // Since porPorts1 is based on the Hardware ID register, the numbers
363 // should always be consistent for IntelliPort-II. Ditto below...
364 if (pB->i2ePom.e.porPorts1 != 4)
365 {
366 COMPLETE(pB, I2EE_INCONSIST);
367 }
368 break;
369
370 case POR_ID_II_8:
371 case POR_ID_II_8R:
372 pB->i2eGoodMap[0] =
373 pB->i2eChannelMap[0] = 0xff; // Eight port
374 if (pB->i2ePom.e.porPorts1 != 8)
375 {
376 COMPLETE(pB, I2EE_INCONSIST);
377 }
378 break;
379
380 case POR_ID_II_6:
381 pB->i2eGoodMap[0] =
382 pB->i2eChannelMap[0] = 0x3f; // Six Port
383 if (pB->i2ePom.e.porPorts1 != 6)
384 {
385 COMPLETE(pB, I2EE_INCONSIST);
386 }
387 break;
388 }
389
390 // Fix up the "good channel list based on any errors reported.
391 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1)
392 {
393 pB->i2eGoodMap[0] &= ~0x0f;
394 }
395
396 if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2)
397 {
398 pB->i2eGoodMap[0] &= ~0xf0;
399 }
400
401 break; // POR_ID_FII case
402
403 case POR_ID_FIIEX: // IntelliPort-IIEX
404
405 pB->i2eFifoStyle = FIFO_IIEX;
406
407 itemp = pB->i2ePom.e.porFifoSize;
408
409 // Implicit assumption that fifo would not grow beyond 32k,
410 // nor would ever be less than 256.
411
412 if (itemp < 8 || itemp > 15)
413 {
414 COMPLETE(pB, I2EE_INCONSIST);
415 }
416 pB->i2eFifoSize = (1 << itemp);
417
418 // These are based on what P.O.S.T thinks should be there, based on
419 // box ID registers
420 ilimit = pB->i2ePom.e.porNumBoxes;
421 if (ilimit > ABS_MAX_BOXES)
422 {
423 ilimit = ABS_MAX_BOXES;
424 }
425
426 // For as many boxes as EXIST, gives the type of box.
427 // Added 8/6/93: check for the ISA-4 (asic) which looks like an
428 // expandable but for whom "8 or 16?" is not the right question.
429
430 utemp = pB->i2ePom.e.porFlags;
431 if (utemp & POR_CEX4)
432 {
433 pB->i2eChannelMap[0] = 0x000f;
434 } else {
435 utemp &= POR_BOXES;
436 for (itemp = 0; itemp < ilimit; itemp++)
437 {
438 pB->i2eChannelMap[itemp] =
439 ((utemp & POR_BOX_16) ? 0xffff : 0x00ff);
440 utemp >>= 1;
441 }
442 }
443
444 // These are based on what P.O.S.T actually found.
445
446 utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1;
447
448 for (itemp = 0; itemp < ilimit; itemp++)
449 {
450 pB->i2eGoodMap[itemp] = 0;
451 if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f;
452 if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0;
453 if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00;
454 if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000;
455 utemp >>= 4;
456 }
457
458 // Now determine whether we should transfer in 8 or 16-bit mode.
459 switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) )
460 {
461 case POR_BUS_SLOT16 | POR_BUS_DIP16:
462 pB->i2eDataWidth16 = YES;
463 pB->i2eMaxIrq = 15;
464 break;
465
466 case POR_BUS_SLOT16:
467 pB->i2eDataWidth16 = NO;
468 pB->i2eMaxIrq = 15;
469 break;
470
471 case 0:
472 case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care.
473 default:
474 pB->i2eDataWidth16 = NO;
475 pB->i2eMaxIrq = 7;
476 break;
477 }
478 break; // POR_ID_FIIEX case
479
480 default: // Unknown type of board
481 COMPLETE(pB, I2EE_BAD_FAMILY);
482 break;
483 } // End the switch based on family
484
485 // Temporarily, claim there is no room in the outbound fifo.
486 // We will maintain this whenever we check for an empty outbound FIFO.
487 pB->i2eFifoRemains = 0;
488
489 // Now, based on the bus type, should we expect to be able to re-configure
490 // interrupts (say, for testing purposes).
491 switch (pB->i2ePom.e.porBus & POR_BUS_TYPE)
492 {
493 case POR_BUS_T_ISA:
494 case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok.
495 pB->i2eChangeIrq = YES;
496 break;
497 case POR_BUS_T_MCA:
498 case POR_BUS_T_EISA:
499 pB->i2eChangeIrq = NO;
500 break;
501 default:
502 COMPLETE(pB, I2EE_BADBUS);
503 }
504
505 if (pB->i2eDataWidth16 == YES)
506 {
507 pB->i2eWriteBuf = iiWriteBuf16;
508 pB->i2eReadBuf = iiReadBuf16;
509 pB->i2eWriteWord = iiWriteWord16;
510 pB->i2eReadWord = iiReadWord16;
511 } else {
512 pB->i2eWriteBuf = iiWriteBuf8;
513 pB->i2eReadBuf = iiReadBuf8;
514 pB->i2eWriteWord = iiWriteWord8;
515 pB->i2eReadWord = iiReadWord8;
516 }
517
518 switch(pB->i2eFifoStyle)
519 {
520 case FIFO_II:
521 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII;
522 pB->i2eTxMailEmpty = iiTxMailEmptyII;
523 pB->i2eTrySendMail = iiTrySendMailII;
524 pB->i2eGetMail = iiGetMailII;
525 pB->i2eEnableMailIrq = iiEnableMailIrqII;
526 pB->i2eWriteMask = iiWriteMaskII;
527
528 break;
529
530 case FIFO_IIEX:
531 pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX;
532 pB->i2eTxMailEmpty = iiTxMailEmptyIIEX;
533 pB->i2eTrySendMail = iiTrySendMailIIEX;
534 pB->i2eGetMail = iiGetMailIIEX;
535 pB->i2eEnableMailIrq = iiEnableMailIrqIIEX;
536 pB->i2eWriteMask = iiWriteMaskIIEX;
537
538 break;
539
540 default:
541 COMPLETE(pB, I2EE_INCONSIST);
542 }
543
544 // Initialize state information.
545 pB->i2eState = II_STATE_READY; // Ready to load loadware.
546
547 // Some Final cleanup:
548 // For some boards, the bootstrap firmware may perform some sort of test
549 // resulting in a stray character pending in the incoming mailbox. If one is
550 // there, it should be read and discarded, especially since for the standard
551 // firmware, it's the mailbox that interrupts the host.
552
553 pB->i2eStartMail = iiGetMail(pB);
554
555 // Throw it away and clear the mailbox structure element
556 pB->i2eStartMail = NO_MAIL_HERE;
557
558 // Everything is ok now, return with good status/
559
560 pB->i2eValid = I2E_MAGIC;
561 COMPLETE(pB, I2EE_GOOD);
562 }
563
564 //=======================================================
565 // Delay Routines
566 //
567 // iiDelayIO
568 // iiNop
569 //=======================================================
570
571 static void
ii2DelayWakeup(unsigned long id)572 ii2DelayWakeup(unsigned long id)
573 {
574 wake_up_interruptible ( &pDelayWait );
575 }
576
577 //******************************************************************************
578 // Function: ii2DelayTimer(mseconds)
579 // Parameters: mseconds - number of milliseconds to delay
580 //
581 // Returns: Nothing
582 //
583 // Description:
584 //
585 // This routine delays for approximately mseconds milliseconds and is intended
586 // to be called indirectly through i2Delay field in i2eBordStr. It uses the
587 // Linux timer_list mechanism.
588 //
589 // The Linux timers use a unit called "jiffies" which are 10mS in the Intel
590 // architecture. This function rounds the delay period up to the next "jiffy".
591 // In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended
592 // for Alpha platforms at this time.
593 //
594 //******************************************************************************
595 static void
ii2DelayTimer(unsigned int mseconds)596 ii2DelayTimer(unsigned int mseconds)
597 {
598 wait_queue_t wait;
599
600 init_waitqueue_entry(&wait, current);
601
602 init_timer ( pDelayTimer );
603
604 add_wait_queue(&pDelayWait, &wait);
605
606 set_current_state( TASK_INTERRUPTIBLE );
607
608 pDelayTimer->expires = jiffies + ((HZ * mseconds + 999) / 1000);
609 pDelayTimer->function = ii2DelayWakeup;
610 pDelayTimer->data = 0;
611
612 add_timer ( pDelayTimer );
613
614 schedule();
615
616 set_current_state( TASK_RUNNING );
617 remove_wait_queue(&pDelayWait, &wait);
618
619 del_timer ( pDelayTimer );
620 }
621
622 #if 0
623 //static void ii2DelayIO(unsigned int);
624 //******************************************************************************
625 // !!! Not Used, this is DOS crap, some of you young folks may be interested in
626 // in how things were done in the stone age of caculating machines !!!
627 // Function: ii2DelayIO(mseconds)
628 // Parameters: mseconds - number of milliseconds to delay
629 //
630 // Returns: Nothing
631 //
632 // Description:
633 //
634 // This routine delays for approximately mseconds milliseconds and is intended
635 // to be called indirectly through i2Delay field in i2eBordStr. It is intended
636 // for use where a clock-based function is impossible: for example, DOS drivers.
637 //
638 // This function uses the IN instruction to place bounds on the timing and
639 // assumes that ii2Safe has been set. This is because I/O instructions are not
640 // subject to caching and will therefore take a certain minimum time. To ensure
641 // the delay is at least long enough on fast machines, it is based on some
642 // fastest-case calculations. On slower machines this may cause VERY long
643 // delays. (3 x fastest case). In the fastest case, everything is cached except
644 // the I/O instruction itself.
645 //
646 // Timing calculations:
647 // The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O
648 // operation in question is a byte operation to an odd address. For 8-bit
649 // operations, the architecture generally enforces two wait states. At 10 MHz, a
650 // single cycle time is 100nS. A read operation at two wait states takes 6
651 // cycles for a total time of 600nS. Therefore approximately 1666 iterations
652 // would be required to generate a single millisecond delay. The worst
653 // (reasonable) case would be an 8MHz system with no cacheing. In this case, the
654 // I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code
655 // fetch of other instructions in the loop would take time (zero wait states,
656 // however) and would be hard to estimate. This is minimized by using in-line
657 // assembler for the in inner loop of IN instructions. This consists of just a
658 // few bytes. So we'll guess about four code fetches per loop. Each code fetch
659 // should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is
660 // that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS.
661 //
662 // So much for theoretical timings: results using 1666 value on some actual
663 // machines:
664 // IBM 286 6MHz 3.15 mS
665 // Zenith 386 33MHz 2.45 mS
666 // (brandX) 386 33MHz 1.90 mS (has cache)
667 // (brandY) 486 33MHz 2.35 mS
668 // NCR 486 ?? 1.65 mS (microchannel)
669 //
670 // For most machines, it is probably safe to scale this number back (remember,
671 // for robust operation use an actual timed delay if possible), so we are using
672 // a value of 1190. This yields 1.17 mS for the fastest machine in our sample,
673 // 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine.
674 //
675 // 1/29/93:
676 // The above timings are too slow. Actual cycle times might be faster. ISA cycle
677 // times could approach 500 nS, and ...
678 // The IBM model 77 being microchannel has no wait states for 8-bit reads and
679 // seems to be accessing the I/O at 440 nS per access (from start of one to
680 // start of next). This would imply we need 1000/.440 = 2272 iterations to
681 // guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in
682 // fact enough. For diagnostics, we keep the level at 1190, but developers note
683 // this needs tuning.
684 //
685 // Safe assumption: 2270 i/o reads = 1 millisecond
686 //
687 //******************************************************************************
688
689
690 static int ii2DelValue = 1190; // See timing calculations below
691 // 1666 for fastest theoretical machine
692 // 1190 safe for most fast 386 machines
693 // 1000 for fastest machine tested here
694 // 540 (sic) for AT286/6Mhz
695 static void
696 ii2DelayIO(unsigned int mseconds)
697 {
698 if (!ii2Safe)
699 return; /* Do nothing if this variable uninitialized */
700
701 while(mseconds--) {
702 int i = ii2DelValue;
703 while ( i-- ) {
704 INB ( ii2Safe );
705 }
706 }
707 }
708 #endif
709
710 //******************************************************************************
711 // Function: ii2Nop()
712 // Parameters: None
713 //
714 // Returns: Nothing
715 //
716 // Description:
717 //
718 // iiInitialize will set i2eDelay to this if the delay parameter is NULL. This
719 // saves checking for a NULL pointer at every call.
720 //******************************************************************************
721 static void
ii2Nop(void)722 ii2Nop(void)
723 {
724 return; // no mystery here
725 }
726
727 //=======================================================
728 // Routines which are available in 8/16-bit versions, or
729 // in different fifo styles. These are ALL called
730 // indirectly through the board structure.
731 //=======================================================
732
733 //******************************************************************************
734 // Function: iiWriteBuf16(pB, address, count)
735 // Parameters: pB - pointer to board structure
736 // address - address of data to write
737 // count - number of data bytes to write
738 //
739 // Returns: True if everything appears copacetic.
740 // False if there is any error: the pB->i2eError field has the error
741 //
742 // Description:
743 //
744 // Writes 'count' bytes from 'address' to the data fifo specified by the board
745 // structure pointer pB. Should count happen to be odd, an extra pad byte is
746 // sent (identity unknown...). Uses 16-bit (word) operations. Is called
747 // indirectly through pB->i2eWriteBuf.
748 //
749 //******************************************************************************
750 static int
iiWriteBuf16(i2eBordStrPtr pB,unsigned char * address,int count)751 iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
752 {
753 // Rudimentary sanity checking here.
754 if (pB->i2eValid != I2E_MAGIC)
755 COMPLETE(pB, I2EE_INVALID);
756
757 OUTSW ( pB->i2eData, address, count);
758
759 COMPLETE(pB, I2EE_GOOD);
760 }
761
762 //******************************************************************************
763 // Function: iiWriteBuf8(pB, address, count)
764 // Parameters: pB - pointer to board structure
765 // address - address of data to write
766 // count - number of data bytes to write
767 //
768 // Returns: True if everything appears copacetic.
769 // False if there is any error: the pB->i2eError field has the error
770 //
771 // Description:
772 //
773 // Writes 'count' bytes from 'address' to the data fifo specified by the board
774 // structure pointer pB. Should count happen to be odd, an extra pad byte is
775 // sent (identity unknown...). This is to be consistant with the 16-bit version.
776 // Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf.
777 //
778 //******************************************************************************
779 static int
iiWriteBuf8(i2eBordStrPtr pB,unsigned char * address,int count)780 iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
781 {
782 /* Rudimentary sanity checking here */
783 if (pB->i2eValid != I2E_MAGIC)
784 COMPLETE(pB, I2EE_INVALID);
785
786 OUTSB ( pB->i2eData, address, count );
787
788 COMPLETE(pB, I2EE_GOOD);
789 }
790
791 //******************************************************************************
792 // Function: iiReadBuf16(pB, address, count)
793 // Parameters: pB - pointer to board structure
794 // address - address to put data read
795 // count - number of data bytes to read
796 //
797 // Returns: True if everything appears copacetic.
798 // False if there is any error: the pB->i2eError field has the error
799 //
800 // Description:
801 //
802 // Reads 'count' bytes into 'address' from the data fifo specified by the board
803 // structure pointer pB. Should count happen to be odd, an extra pad byte is
804 // received (identity unknown...). Uses 16-bit (word) operations. Is called
805 // indirectly through pB->i2eReadBuf.
806 //
807 //******************************************************************************
808 static int
iiReadBuf16(i2eBordStrPtr pB,unsigned char * address,int count)809 iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count)
810 {
811 // Rudimentary sanity checking here.
812 if (pB->i2eValid != I2E_MAGIC)
813 COMPLETE(pB, I2EE_INVALID);
814
815 INSW ( pB->i2eData, address, count);
816
817 COMPLETE(pB, I2EE_GOOD);
818 }
819
820 //******************************************************************************
821 // Function: iiReadBuf8(pB, address, count)
822 // Parameters: pB - pointer to board structure
823 // address - address to put data read
824 // count - number of data bytes to read
825 //
826 // Returns: True if everything appears copacetic.
827 // False if there is any error: the pB->i2eError field has the error
828 //
829 // Description:
830 //
831 // Reads 'count' bytes into 'address' from the data fifo specified by the board
832 // structure pointer pB. Should count happen to be odd, an extra pad byte is
833 // received (identity unknown...). This to match the 16-bit behaviour. Uses
834 // 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf.
835 //
836 //******************************************************************************
837 static int
iiReadBuf8(i2eBordStrPtr pB,unsigned char * address,int count)838 iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count)
839 {
840 // Rudimentary sanity checking here.
841 if (pB->i2eValid != I2E_MAGIC)
842 COMPLETE(pB, I2EE_INVALID);
843
844 INSB ( pB->i2eData, address, count);
845
846 COMPLETE(pB, I2EE_GOOD);
847 }
848
849 //******************************************************************************
850 // Function: iiReadWord16(pB)
851 // Parameters: pB - pointer to board structure
852 //
853 // Returns: True if everything appears copacetic.
854 // False if there is any error: the pB->i2eError field has the error
855 //
856 // Description:
857 //
858 // Returns the word read from the data fifo specified by the board-structure
859 // pointer pB. Uses a 16-bit operation. Is called indirectly through
860 // pB->i2eReadWord.
861 //
862 //******************************************************************************
863 static unsigned short
iiReadWord16(i2eBordStrPtr pB)864 iiReadWord16(i2eBordStrPtr pB)
865 {
866 return (unsigned short)( INW(pB->i2eData) );
867 }
868
869 //******************************************************************************
870 // Function: iiReadWord8(pB)
871 // Parameters: pB - pointer to board structure
872 //
873 // Returns: True if everything appears copacetic.
874 // False if there is any error: the pB->i2eError field has the error
875 //
876 // Description:
877 //
878 // Returns the word read from the data fifo specified by the board-structure
879 // pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is
880 // called indirectly through pB->i2eReadWord.
881 //
882 //******************************************************************************
883 static unsigned short
iiReadWord8(i2eBordStrPtr pB)884 iiReadWord8(i2eBordStrPtr pB)
885 {
886 unsigned short urs;
887
888 urs = INB ( pB->i2eData );
889
890 return ( ( INB ( pB->i2eData ) << 8 ) | urs );
891 }
892
893 //******************************************************************************
894 // Function: iiWriteWord16(pB, value)
895 // Parameters: pB - pointer to board structure
896 // value - data to write
897 //
898 // Returns: True if everything appears copacetic.
899 // False if there is any error: the pB->i2eError field has the error
900 //
901 // Description:
902 //
903 // Writes the word 'value' to the data fifo specified by the board-structure
904 // pointer pB. Uses 16-bit operation. Is called indirectly through
905 // pB->i2eWriteWord.
906 //
907 //******************************************************************************
908 static void
iiWriteWord16(i2eBordStrPtr pB,unsigned short value)909 iiWriteWord16(i2eBordStrPtr pB, unsigned short value)
910 {
911 WORD_TO(pB, (int)value);
912 }
913
914 //******************************************************************************
915 // Function: iiWriteWord8(pB, value)
916 // Parameters: pB - pointer to board structure
917 // value - data to write
918 //
919 // Returns: True if everything appears copacetic.
920 // False if there is any error: the pB->i2eError field has the error
921 //
922 // Description:
923 //
924 // Writes the word 'value' to the data fifo specified by the board-structure
925 // pointer pB. Uses two 8-bit operations (writes LSB first). Is called
926 // indirectly through pB->i2eWriteWord.
927 //
928 //******************************************************************************
929 static void
iiWriteWord8(i2eBordStrPtr pB,unsigned short value)930 iiWriteWord8(i2eBordStrPtr pB, unsigned short value)
931 {
932 BYTE_TO(pB, (char)value);
933 BYTE_TO(pB, (char)(value >> 8) );
934 }
935
936 //******************************************************************************
937 // Function: iiWaitForTxEmptyII(pB, mSdelay)
938 // Parameters: pB - pointer to board structure
939 // mSdelay - period to wait before returning
940 //
941 // Returns: True if the FIFO is empty.
942 // False if it not empty in the required time: the pB->i2eError
943 // field has the error.
944 //
945 // Description:
946 //
947 // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
948 // not empty by the required time, returns false and error in pB->i2eError,
949 // otherwise returns true.
950 //
951 // mSdelay == 0 is taken to mean must be empty on the first test.
952 //
953 // This version operates on IntelliPort-II - style FIFO's
954 //
955 // Note this routine is organized so that if status is ok there is no delay at
956 // all called either before or after the test. Is called indirectly through
957 // pB->i2eWaitForTxEmpty.
958 //
959 //******************************************************************************
960 static int
iiWaitForTxEmptyII(i2eBordStrPtr pB,int mSdelay)961 iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay)
962 {
963 unsigned long flags;
964 int itemp;
965
966 for (;;)
967 {
968 // This routine hinges on being able to see the "other" status register
969 // (as seen by the local processor). His incoming fifo is our outgoing
970 // FIFO.
971 //
972 // By the nature of this routine, you would be using this as part of a
973 // larger atomic context: i.e., you would use this routine to ensure the
974 // fifo empty, then act on this information. Between these two halves,
975 // you will generally not want to service interrupts or in any way
976 // disrupt the assumptions implicit in the larger context.
977 //
978 // Even worse, however, this routine "shifts" the status register to
979 // point to the local status register which is not the usual situation.
980 // Therefore for extra safety, we force the critical section to be
981 // completely atomic, and pick up after ourselves before allowing any
982 // interrupts of any kind.
983
984
985 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
986 OUTB(pB->i2ePointer, SEL_COMMAND);
987 OUTB(pB->i2ePointer, SEL_CMD_SH);
988
989 itemp = INB(pB->i2eStatus);
990
991 OUTB(pB->i2ePointer, SEL_COMMAND);
992 OUTB(pB->i2ePointer, SEL_CMD_UNSH);
993
994 if (itemp & ST_IN_EMPTY)
995 {
996 UPDATE_FIFO_ROOM(pB);
997 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
998 COMPLETE(pB, I2EE_GOOD);
999 }
1000
1001 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1002
1003 if (mSdelay-- == 0)
1004 break;
1005
1006 iiDelay(pB, 1); /* 1 mS granularity on checking condition */
1007 }
1008 COMPLETE(pB, I2EE_TXE_TIME);
1009 }
1010
1011 //******************************************************************************
1012 // Function: iiWaitForTxEmptyIIEX(pB, mSdelay)
1013 // Parameters: pB - pointer to board structure
1014 // mSdelay - period to wait before returning
1015 //
1016 // Returns: True if the FIFO is empty.
1017 // False if it not empty in the required time: the pB->i2eError
1018 // field has the error.
1019 //
1020 // Description:
1021 //
1022 // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if
1023 // not empty by the required time, returns false and error in pB->i2eError,
1024 // otherwise returns true.
1025 //
1026 // mSdelay == 0 is taken to mean must be empty on the first test.
1027 //
1028 // This version operates on IntelliPort-IIEX - style FIFO's
1029 //
1030 // Note this routine is organized so that if status is ok there is no delay at
1031 // all called either before or after the test. Is called indirectly through
1032 // pB->i2eWaitForTxEmpty.
1033 //
1034 //******************************************************************************
1035 static int
iiWaitForTxEmptyIIEX(i2eBordStrPtr pB,int mSdelay)1036 iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay)
1037 {
1038 unsigned long flags;
1039
1040 for (;;)
1041 {
1042 // By the nature of this routine, you would be using this as part of a
1043 // larger atomic context: i.e., you would use this routine to ensure the
1044 // fifo empty, then act on this information. Between these two halves,
1045 // you will generally not want to service interrupts or in any way
1046 // disrupt the assumptions implicit in the larger context.
1047
1048 WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags)
1049
1050 if (INB(pB->i2eStatus) & STE_OUT_MT) {
1051 UPDATE_FIFO_ROOM(pB);
1052 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1053 COMPLETE(pB, I2EE_GOOD);
1054 }
1055 WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags)
1056
1057 if (mSdelay-- == 0)
1058 break;
1059
1060 iiDelay(pB, 1); // 1 mS granularity on checking condition
1061 }
1062 COMPLETE(pB, I2EE_TXE_TIME);
1063 }
1064
1065 //******************************************************************************
1066 // Function: iiTxMailEmptyII(pB)
1067 // Parameters: pB - pointer to board structure
1068 //
1069 // Returns: True if the transmit mailbox is empty.
1070 // False if it not empty.
1071 //
1072 // Description:
1073 //
1074 // Returns true or false according to whether the transmit mailbox is empty (and
1075 // therefore able to accept more mail)
1076 //
1077 // This version operates on IntelliPort-II - style FIFO's
1078 //
1079 //******************************************************************************
1080 static int
iiTxMailEmptyII(i2eBordStrPtr pB)1081 iiTxMailEmptyII(i2eBordStrPtr pB)
1082 {
1083 int port = pB->i2ePointer;
1084 OUTB ( port, SEL_OUTMAIL );
1085 return ( INB(port) == 0 );
1086 }
1087
1088 //******************************************************************************
1089 // Function: iiTxMailEmptyIIEX(pB)
1090 // Parameters: pB - pointer to board structure
1091 //
1092 // Returns: True if the transmit mailbox is empty.
1093 // False if it not empty.
1094 //
1095 // Description:
1096 //
1097 // Returns true or false according to whether the transmit mailbox is empty (and
1098 // therefore able to accept more mail)
1099 //
1100 // This version operates on IntelliPort-IIEX - style FIFO's
1101 //
1102 //******************************************************************************
1103 static int
iiTxMailEmptyIIEX(i2eBordStrPtr pB)1104 iiTxMailEmptyIIEX(i2eBordStrPtr pB)
1105 {
1106 return !(INB(pB->i2eStatus) & STE_OUT_MAIL);
1107 }
1108
1109 //******************************************************************************
1110 // Function: iiTrySendMailII(pB,mail)
1111 // Parameters: pB - pointer to board structure
1112 // mail - value to write to mailbox
1113 //
1114 // Returns: True if the transmit mailbox is empty, and mail is sent.
1115 // False if it not empty.
1116 //
1117 // Description:
1118 //
1119 // If outgoing mailbox is empty, sends mail and returns true. If outgoing
1120 // mailbox is not empty, returns false.
1121 //
1122 // This version operates on IntelliPort-II - style FIFO's
1123 //
1124 //******************************************************************************
1125 static int
iiTrySendMailII(i2eBordStrPtr pB,unsigned char mail)1126 iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail)
1127 {
1128 int port = pB->i2ePointer;
1129
1130 OUTB(port, SEL_OUTMAIL);
1131 if (INB(port) == 0) {
1132 OUTB(port, SEL_OUTMAIL);
1133 OUTB(port, mail);
1134 return 1;
1135 }
1136 return 0;
1137 }
1138
1139 //******************************************************************************
1140 // Function: iiTrySendMailIIEX(pB,mail)
1141 // Parameters: pB - pointer to board structure
1142 // mail - value to write to mailbox
1143 //
1144 // Returns: True if the transmit mailbox is empty, and mail is sent.
1145 // False if it not empty.
1146 //
1147 // Description:
1148 //
1149 // If outgoing mailbox is empty, sends mail and returns true. If outgoing
1150 // mailbox is not empty, returns false.
1151 //
1152 // This version operates on IntelliPort-IIEX - style FIFO's
1153 //
1154 //******************************************************************************
1155 static int
iiTrySendMailIIEX(i2eBordStrPtr pB,unsigned char mail)1156 iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail)
1157 {
1158 if(INB(pB->i2eStatus) & STE_OUT_MAIL) {
1159 return 0;
1160 }
1161 OUTB(pB->i2eXMail, mail);
1162 return 1;
1163 }
1164
1165 //******************************************************************************
1166 // Function: iiGetMailII(pB,mail)
1167 // Parameters: pB - pointer to board structure
1168 //
1169 // Returns: Mailbox data or NO_MAIL_HERE.
1170 //
1171 // Description:
1172 //
1173 // If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1174 // the mailbox, which is guaranteed != NO_MAIL_HERE.
1175 //
1176 // This version operates on IntelliPort-II - style FIFO's
1177 //
1178 //******************************************************************************
1179 static unsigned short
iiGetMailII(i2eBordStrPtr pB)1180 iiGetMailII(i2eBordStrPtr pB)
1181 {
1182 if (HAS_MAIL(pB)) {
1183 OUTB(pB->i2ePointer, SEL_INMAIL);
1184 return INB(pB->i2ePointer);
1185 } else {
1186 return NO_MAIL_HERE;
1187 }
1188 }
1189
1190 //******************************************************************************
1191 // Function: iiGetMailIIEX(pB,mail)
1192 // Parameters: pB - pointer to board structure
1193 //
1194 // Returns: Mailbox data or NO_MAIL_HERE.
1195 //
1196 // Description:
1197 //
1198 // If no mail available, returns NO_MAIL_HERE otherwise returns the data from
1199 // the mailbox, which is guaranteed != NO_MAIL_HERE.
1200 //
1201 // This version operates on IntelliPort-IIEX - style FIFO's
1202 //
1203 //******************************************************************************
1204 static unsigned short
iiGetMailIIEX(i2eBordStrPtr pB)1205 iiGetMailIIEX(i2eBordStrPtr pB)
1206 {
1207 if (HAS_MAIL(pB)) {
1208 return INB(pB->i2eXMail);
1209 } else {
1210 return NO_MAIL_HERE;
1211 }
1212 }
1213
1214 //******************************************************************************
1215 // Function: iiEnableMailIrqII(pB)
1216 // Parameters: pB - pointer to board structure
1217 //
1218 // Returns: Nothing
1219 //
1220 // Description:
1221 //
1222 // Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1223 //
1224 // This version operates on IntelliPort-II - style FIFO's
1225 //
1226 //******************************************************************************
1227 static void
iiEnableMailIrqII(i2eBordStrPtr pB)1228 iiEnableMailIrqII(i2eBordStrPtr pB)
1229 {
1230 OUTB(pB->i2ePointer, SEL_MASK);
1231 OUTB(pB->i2ePointer, ST_IN_MAIL);
1232 }
1233
1234 //******************************************************************************
1235 // Function: iiEnableMailIrqIIEX(pB)
1236 // Parameters: pB - pointer to board structure
1237 //
1238 // Returns: Nothing
1239 //
1240 // Description:
1241 //
1242 // Enables board to interrupt host (only) by writing to host's in-bound mailbox.
1243 //
1244 // This version operates on IntelliPort-IIEX - style FIFO's
1245 //
1246 //******************************************************************************
1247 static void
iiEnableMailIrqIIEX(i2eBordStrPtr pB)1248 iiEnableMailIrqIIEX(i2eBordStrPtr pB)
1249 {
1250 OUTB(pB->i2eXMask, MX_IN_MAIL);
1251 }
1252
1253 //******************************************************************************
1254 // Function: iiWriteMaskII(pB)
1255 // Parameters: pB - pointer to board structure
1256 //
1257 // Returns: Nothing
1258 //
1259 // Description:
1260 //
1261 // Writes arbitrary value to the mask register.
1262 //
1263 // This version operates on IntelliPort-II - style FIFO's
1264 //
1265 //******************************************************************************
1266 static void
iiWriteMaskII(i2eBordStrPtr pB,unsigned char value)1267 iiWriteMaskII(i2eBordStrPtr pB, unsigned char value)
1268 {
1269 OUTB(pB->i2ePointer, SEL_MASK);
1270 OUTB(pB->i2ePointer, value);
1271 }
1272
1273 //******************************************************************************
1274 // Function: iiWriteMaskIIEX(pB)
1275 // Parameters: pB - pointer to board structure
1276 //
1277 // Returns: Nothing
1278 //
1279 // Description:
1280 //
1281 // Writes arbitrary value to the mask register.
1282 //
1283 // This version operates on IntelliPort-IIEX - style FIFO's
1284 //
1285 //******************************************************************************
1286 static void
iiWriteMaskIIEX(i2eBordStrPtr pB,unsigned char value)1287 iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value)
1288 {
1289 OUTB(pB->i2eXMask, value);
1290 }
1291
1292 //******************************************************************************
1293 // Function: iiDownloadBlock(pB, pSource, isStandard)
1294 // Parameters: pB - pointer to board structure
1295 // pSource - loadware block to download
1296 // isStandard - True if "standard" loadware, else false.
1297 //
1298 // Returns: Success or Failure
1299 //
1300 // Description:
1301 //
1302 // Downloads a single block (at pSource)to the board referenced by pB. Caller
1303 // sets isStandard to true/false according to whether the "standard" loadware is
1304 // what's being loaded. The normal process, then, is to perform an iiInitialize
1305 // to the board, then perform some number of iiDownloadBlocks using the returned
1306 // state to determine when download is complete.
1307 //
1308 // Possible return values: (see I2ELLIS.H)
1309 // II_DOWN_BADVALID
1310 // II_DOWN_BADFILE
1311 // II_DOWN_CONTINUING
1312 // II_DOWN_GOOD
1313 // II_DOWN_BAD
1314 // II_DOWN_BADSTATE
1315 // II_DOWN_TIMEOUT
1316 //
1317 // Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to
1318 // determine whether this is the first block, whether to check for magic
1319 // numbers, how many blocks there are to go...
1320 //
1321 //******************************************************************************
1322 static int
iiDownloadBlock(i2eBordStrPtr pB,loadHdrStrPtr pSource,int isStandard)1323 iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard)
1324 {
1325 int itemp;
1326 int loadedFirst;
1327
1328 if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID;
1329
1330 switch(pB->i2eState)
1331 {
1332 case II_STATE_READY:
1333
1334 // Loading the first block after reset. Must check the magic number of the
1335 // loadfile, store the number of blocks we expect to load.
1336 if (pSource->e.loadMagic != MAGIC_LOADFILE)
1337 {
1338 return II_DOWN_BADFILE;
1339 }
1340
1341 // Next we store the total number of blocks to load, including this one.
1342 pB->i2eToLoad = 1 + pSource->e.loadBlocksMore;
1343
1344 // Set the state, store the version numbers. ('Cause this may have come
1345 // from a file - we might want to report these versions and revisions in
1346 // case of an error!
1347 pB->i2eState = II_STATE_LOADING;
1348 pB->i2eLVersion = pSource->e.loadVersion;
1349 pB->i2eLRevision = pSource->e.loadRevision;
1350 pB->i2eLSub = pSource->e.loadSubRevision;
1351
1352 // The time and date of compilation is also available but don't bother
1353 // storing it for normal purposes.
1354 loadedFirst = 1;
1355 break;
1356
1357 case II_STATE_LOADING:
1358 loadedFirst = 0;
1359 break;
1360
1361 default:
1362 return II_DOWN_BADSTATE;
1363 }
1364
1365 // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad
1366 // must be positive still, because otherwise we would have cleaned up last
1367 // time and set the state to II_STATE_LOADED.
1368 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1369 return II_DOWN_TIMEOUT;
1370 }
1371
1372 if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) {
1373 return II_DOWN_BADVALID;
1374 }
1375
1376 // If we just loaded the first block, wait for the fifo to empty an extra
1377 // long time to allow for any special startup code in the firmware, like
1378 // sending status messages to the LCD's.
1379
1380 if (loadedFirst) {
1381 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) {
1382 return II_DOWN_TIMEOUT;
1383 }
1384 }
1385
1386 // Determine whether this was our last block!
1387 if (--(pB->i2eToLoad)) {
1388 return II_DOWN_CONTINUING; // more to come...
1389 }
1390
1391 // It WAS our last block: Clean up operations...
1392 // ...Wait for last buffer to drain from the board...
1393 if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) {
1394 return II_DOWN_TIMEOUT;
1395 }
1396 // If there were only a single block written, this would come back
1397 // immediately and be harmless, though not strictly necessary.
1398 itemp = MAX_DLOAD_ACK_TIME/10;
1399 while (--itemp) {
1400 if (HAS_INPUT(pB)) {
1401 switch(BYTE_FROM(pB))
1402 {
1403 case LOADWARE_OK:
1404 pB->i2eState =
1405 isStandard ? II_STATE_STDLOADED :II_STATE_LOADED;
1406
1407 // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2)
1408 // will, // if there is a debug port attached, require some
1409 // time to send information to the debug port now. It will do
1410 // this before // executing any of the code we just downloaded.
1411 // It may take up to 700 milliseconds.
1412 if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) {
1413 iiDelay(pB, 700);
1414 }
1415
1416 return II_DOWN_GOOD;
1417
1418 case LOADWARE_BAD:
1419 default:
1420 return II_DOWN_BAD;
1421 }
1422 }
1423
1424 iiDelay(pB, 10); // 10 mS granularity on checking condition
1425 }
1426
1427 // Drop-through --> timed out waiting for firmware confirmation
1428
1429 pB->i2eState = II_STATE_BADLOAD;
1430 return II_DOWN_TIMEOUT;
1431 }
1432
1433 //******************************************************************************
1434 // Function: iiDownloadAll(pB, pSource, isStandard, size)
1435 // Parameters: pB - pointer to board structure
1436 // pSource - loadware block to download
1437 // isStandard - True if "standard" loadware, else false.
1438 // size - size of data to download (in bytes)
1439 //
1440 // Returns: Success or Failure
1441 //
1442 // Description:
1443 //
1444 // Given a pointer to a board structure, a pointer to the beginning of some
1445 // loadware, whether it is considered the "standard loadware", and the size of
1446 // the array in bytes loads the entire array to the board as loadware.
1447 //
1448 // Assumes the board has been freshly reset and the power-up reset message read.
1449 // (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be
1450 // too much or too little data to load, or if iiDownloadBlock complains.
1451 //******************************************************************************
1452 static int
iiDownloadAll(i2eBordStrPtr pB,loadHdrStrPtr pSource,int isStandard,int size)1453 iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size)
1454 {
1455 int status;
1456
1457 // We know (from context) board should be ready for the first block of
1458 // download. Complain if not.
1459 if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE;
1460
1461 while (size > 0) {
1462 size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to
1463 // load after the following operation ?
1464
1465 // Note we just bump pSource by "one", because its size is actually that
1466 // of an entire block, same as LOADWARE_BLOCK_SIZE.
1467 status = iiDownloadBlock(pB, pSource++, isStandard);
1468
1469 switch(status)
1470 {
1471 case II_DOWN_GOOD:
1472 return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD);
1473
1474 case II_DOWN_CONTINUING:
1475 break;
1476
1477 default:
1478 return status;
1479 }
1480 }
1481
1482 // We shouldn't drop out: it means "while" caught us with nothing left to
1483 // download, yet the previous DownloadBlock did not return complete. Ergo,
1484 // not enough data to match the size byte in the header.
1485 return II_DOWN_UNDER;
1486 }
1487