1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
31
32 /*
33 * If false, we're using the old mechanism for stimer0 interrupts
34 * where it sends a VMbus message when it expires. The old
35 * mechanism is used when running on older versions of Hyper-V
36 * that don't support Direct Mode. While Hyper-V provides
37 * four stimer's per CPU, Linux uses only stimer0.
38 *
39 * Because Direct Mode does not require processing a VMbus
40 * message, stimer interrupts can be enabled earlier in the
41 * process of booting a CPU, and consistent with when timer
42 * interrupts are enabled for other clocksource drivers.
43 * However, for legacy versions of Hyper-V when Direct Mode
44 * is not enabled, setting up stimer interrupts must be
45 * delayed until VMbus is initialized and can process the
46 * interrupt message.
47 */
48 static bool direct_mode_enabled;
49
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static DEFINE_PER_CPU(long, stimer0_evt);
53
54 /*
55 * Common code for stimer0 interrupts coming via Direct Mode or
56 * as a VMbus message.
57 */
hv_stimer0_isr(void)58 void hv_stimer0_isr(void)
59 {
60 struct clock_event_device *ce;
61
62 ce = this_cpu_ptr(hv_clock_event);
63 ce->event_handler(ce);
64 }
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66
67 /*
68 * stimer0 interrupt handler for architectures that support
69 * per-cpu interrupts, which also implies Direct Mode.
70 */
hv_stimer0_percpu_isr(int irq,void * dev_id)71 static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
72 {
73 hv_stimer0_isr();
74 return IRQ_HANDLED;
75 }
76
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)77 static int hv_ce_set_next_event(unsigned long delta,
78 struct clock_event_device *evt)
79 {
80 u64 current_tick;
81
82 current_tick = hv_read_reference_counter();
83 current_tick += delta;
84 hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
85 return 0;
86 }
87
hv_ce_shutdown(struct clock_event_device * evt)88 static int hv_ce_shutdown(struct clock_event_device *evt)
89 {
90 hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
91 hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
92 if (direct_mode_enabled && stimer0_irq >= 0)
93 disable_percpu_irq(stimer0_irq);
94
95 return 0;
96 }
97
hv_ce_set_oneshot(struct clock_event_device * evt)98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 {
100 union hv_stimer_config timer_cfg;
101
102 timer_cfg.as_uint64 = 0;
103 timer_cfg.enable = 1;
104 timer_cfg.auto_enable = 1;
105 if (direct_mode_enabled) {
106 /*
107 * When it expires, the timer will directly interrupt
108 * on the specified hardware vector/IRQ.
109 */
110 timer_cfg.direct_mode = 1;
111 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 if (stimer0_irq >= 0)
113 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 } else {
115 /*
116 * When it expires, the timer will generate a VMbus message,
117 * to be handled by the normal VMbus interrupt handler.
118 */
119 timer_cfg.direct_mode = 0;
120 timer_cfg.sintx = stimer0_message_sint;
121 }
122 hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
123 return 0;
124 }
125
126 /*
127 * hv_stimer_init - Per-cpu initialization of the clockevent
128 */
hv_stimer_init(unsigned int cpu)129 static int hv_stimer_init(unsigned int cpu)
130 {
131 struct clock_event_device *ce;
132
133 if (!hv_clock_event)
134 return 0;
135
136 ce = per_cpu_ptr(hv_clock_event, cpu);
137 ce->name = "Hyper-V clockevent";
138 ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 ce->cpumask = cpumask_of(cpu);
140 ce->rating = 1000;
141 ce->set_state_shutdown = hv_ce_shutdown;
142 ce->set_state_oneshot = hv_ce_set_oneshot;
143 ce->set_next_event = hv_ce_set_next_event;
144
145 clockevents_config_and_register(ce,
146 HV_CLOCK_HZ,
147 HV_MIN_DELTA_TICKS,
148 HV_MAX_MAX_DELTA_TICKS);
149 return 0;
150 }
151
152 /*
153 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154 */
hv_stimer_cleanup(unsigned int cpu)155 int hv_stimer_cleanup(unsigned int cpu)
156 {
157 struct clock_event_device *ce;
158
159 if (!hv_clock_event)
160 return 0;
161
162 /*
163 * In the legacy case where Direct Mode is not enabled
164 * (which can only be on x86/64), stimer cleanup happens
165 * relatively early in the CPU offlining process. We
166 * must unbind the stimer-based clockevent device so
167 * that the LAPIC timer can take over until clockevents
168 * are no longer needed in the offlining process. Note
169 * that clockevents_unbind_device() eventually calls
170 * hv_ce_shutdown().
171 *
172 * The unbind should not be done when Direct Mode is
173 * enabled because we may be on an architecture where
174 * there are no other clockevent devices to fallback to.
175 */
176 ce = per_cpu_ptr(hv_clock_event, cpu);
177 if (direct_mode_enabled)
178 hv_ce_shutdown(ce);
179 else
180 clockevents_unbind_device(ce, cpu);
181
182 return 0;
183 }
184 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
185
186 /*
187 * These placeholders are overridden by arch specific code on
188 * architectures that need special setup of the stimer0 IRQ because
189 * they don't support per-cpu IRQs (such as x86/x64).
190 */
hv_setup_stimer0_handler(void (* handler)(void))191 void __weak hv_setup_stimer0_handler(void (*handler)(void))
192 {
193 };
194
hv_remove_stimer0_handler(void)195 void __weak hv_remove_stimer0_handler(void)
196 {
197 };
198
199 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)200 static int hv_setup_stimer0_irq(void)
201 {
202 int ret;
203
204 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
205 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
206 if (ret < 0) {
207 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
208 return ret;
209 }
210 stimer0_irq = ret;
211
212 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
213 "Hyper-V stimer0", &stimer0_evt);
214 if (ret) {
215 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
216 stimer0_irq, ret);
217 acpi_unregister_gsi(stimer0_irq);
218 stimer0_irq = -1;
219 }
220 return ret;
221 }
222
hv_remove_stimer0_irq(void)223 static void hv_remove_stimer0_irq(void)
224 {
225 if (stimer0_irq == -1) {
226 hv_remove_stimer0_handler();
227 } else {
228 free_percpu_irq(stimer0_irq, &stimer0_evt);
229 acpi_unregister_gsi(stimer0_irq);
230 stimer0_irq = -1;
231 }
232 }
233
234 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)235 int hv_stimer_alloc(bool have_percpu_irqs)
236 {
237 int ret;
238
239 /*
240 * Synthetic timers are always available except on old versions of
241 * Hyper-V on x86. In that case, return as error as Linux will use a
242 * clockevent based on emulated LAPIC timer hardware.
243 */
244 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
245 return -EINVAL;
246
247 hv_clock_event = alloc_percpu(struct clock_event_device);
248 if (!hv_clock_event)
249 return -ENOMEM;
250
251 direct_mode_enabled = ms_hyperv.misc_features &
252 HV_STIMER_DIRECT_MODE_AVAILABLE;
253
254 /*
255 * If Direct Mode isn't enabled, the remainder of the initialization
256 * is done later by hv_stimer_legacy_init()
257 */
258 if (!direct_mode_enabled)
259 return 0;
260
261 if (have_percpu_irqs) {
262 ret = hv_setup_stimer0_irq();
263 if (ret)
264 goto free_clock_event;
265 } else {
266 hv_setup_stimer0_handler(hv_stimer0_isr);
267 }
268
269 /*
270 * Since we are in Direct Mode, stimer initialization
271 * can be done now with a CPUHP value in the same range
272 * as other clockevent devices.
273 */
274 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
275 "clockevents/hyperv/stimer:starting",
276 hv_stimer_init, hv_stimer_cleanup);
277 if (ret < 0) {
278 hv_remove_stimer0_irq();
279 goto free_clock_event;
280 }
281 return ret;
282
283 free_clock_event:
284 free_percpu(hv_clock_event);
285 hv_clock_event = NULL;
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
289
290 /*
291 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
292 * the case when Direct Mode is not enabled, and the stimer
293 * must be initialized late in the CPU onlining process.
294 *
295 */
hv_stimer_legacy_init(unsigned int cpu,int sint)296 void hv_stimer_legacy_init(unsigned int cpu, int sint)
297 {
298 if (direct_mode_enabled)
299 return;
300
301 /*
302 * This function gets called by each vCPU, so setting the
303 * global stimer_message_sint value each time is conceptually
304 * not ideal, but the value passed in is always the same and
305 * it avoids introducing yet another interface into this
306 * clocksource driver just to set the sint in the legacy case.
307 */
308 stimer0_message_sint = sint;
309 (void)hv_stimer_init(cpu);
310 }
311 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
312
313 /*
314 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
315 * handle the case when Direct Mode is not enabled, and the
316 * stimer must be cleaned up early in the CPU offlining
317 * process.
318 */
hv_stimer_legacy_cleanup(unsigned int cpu)319 void hv_stimer_legacy_cleanup(unsigned int cpu)
320 {
321 if (direct_mode_enabled)
322 return;
323 (void)hv_stimer_cleanup(cpu);
324 }
325 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
326
327 /*
328 * Do a global cleanup of clockevents for the cases of kexec and
329 * vmbus exit
330 */
hv_stimer_global_cleanup(void)331 void hv_stimer_global_cleanup(void)
332 {
333 int cpu;
334
335 /*
336 * hv_stime_legacy_cleanup() will stop the stimer if Direct
337 * Mode is not enabled, and fallback to the LAPIC timer.
338 */
339 for_each_present_cpu(cpu) {
340 hv_stimer_legacy_cleanup(cpu);
341 }
342
343 if (!hv_clock_event)
344 return;
345
346 if (direct_mode_enabled) {
347 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
348 hv_remove_stimer0_irq();
349 stimer0_irq = -1;
350 }
351 free_percpu(hv_clock_event);
352 hv_clock_event = NULL;
353
354 }
355 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
356
357 /*
358 * Code and definitions for the Hyper-V clocksources. Two
359 * clocksources are defined: one that reads the Hyper-V defined MSR, and
360 * the other that uses the TSC reference page feature as defined in the
361 * TLFS. The MSR version is for compatibility with old versions of
362 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
363 */
364
365 static union {
366 struct ms_hyperv_tsc_page page;
367 u8 reserved[PAGE_SIZE];
368 } tsc_pg __aligned(PAGE_SIZE);
369
hv_get_tsc_page(void)370 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
371 {
372 return &tsc_pg.page;
373 }
374 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
375
read_hv_clock_tsc(void)376 static u64 notrace read_hv_clock_tsc(void)
377 {
378 u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
379
380 if (current_tick == U64_MAX)
381 current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
382
383 return current_tick;
384 }
385
read_hv_clock_tsc_cs(struct clocksource * arg)386 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
387 {
388 return read_hv_clock_tsc();
389 }
390
read_hv_sched_clock_tsc(void)391 static u64 notrace read_hv_sched_clock_tsc(void)
392 {
393 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
394 (NSEC_PER_SEC / HV_CLOCK_HZ);
395 }
396
suspend_hv_clock_tsc(struct clocksource * arg)397 static void suspend_hv_clock_tsc(struct clocksource *arg)
398 {
399 union hv_reference_tsc_msr tsc_msr;
400
401 /* Disable the TSC page */
402 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
403 tsc_msr.enable = 0;
404 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
405 }
406
407
resume_hv_clock_tsc(struct clocksource * arg)408 static void resume_hv_clock_tsc(struct clocksource *arg)
409 {
410 phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
411 union hv_reference_tsc_msr tsc_msr;
412
413 /* Re-enable the TSC page */
414 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
415 tsc_msr.enable = 1;
416 tsc_msr.pfn = HVPFN_DOWN(phys_addr);
417 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
418 }
419
420 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)421 static int hv_cs_enable(struct clocksource *cs)
422 {
423 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
424 return 0;
425 }
426 #endif
427
428 static struct clocksource hyperv_cs_tsc = {
429 .name = "hyperv_clocksource_tsc_page",
430 .rating = 500,
431 .read = read_hv_clock_tsc_cs,
432 .mask = CLOCKSOURCE_MASK(64),
433 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
434 .suspend= suspend_hv_clock_tsc,
435 .resume = resume_hv_clock_tsc,
436 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
437 .enable = hv_cs_enable,
438 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
439 #else
440 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
441 #endif
442 };
443
read_hv_clock_msr(void)444 static u64 notrace read_hv_clock_msr(void)
445 {
446 /*
447 * Read the partition counter to get the current tick count. This count
448 * is set to 0 when the partition is created and is incremented in
449 * 100 nanosecond units.
450 */
451 return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
452 }
453
read_hv_clock_msr_cs(struct clocksource * arg)454 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
455 {
456 return read_hv_clock_msr();
457 }
458
read_hv_sched_clock_msr(void)459 static u64 notrace read_hv_sched_clock_msr(void)
460 {
461 return (read_hv_clock_msr() - hv_sched_clock_offset) *
462 (NSEC_PER_SEC / HV_CLOCK_HZ);
463 }
464
465 static struct clocksource hyperv_cs_msr = {
466 .name = "hyperv_clocksource_msr",
467 .rating = 500,
468 .read = read_hv_clock_msr_cs,
469 .mask = CLOCKSOURCE_MASK(64),
470 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
471 };
472
473 /*
474 * Reference to pv_ops must be inline so objtool
475 * detection of noinstr violations can work correctly.
476 */
477 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)478 static __always_inline void hv_setup_sched_clock(void *sched_clock)
479 {
480 /*
481 * We're on an architecture with generic sched clock (not x86/x64).
482 * The Hyper-V sched clock read function returns nanoseconds, not
483 * the normal 100ns units of the Hyper-V synthetic clock.
484 */
485 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
486 }
487 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)488 static __always_inline void hv_setup_sched_clock(void *sched_clock)
489 {
490 /* We're on x86/x64 *and* using PV ops */
491 paravirt_set_sched_clock(sched_clock);
492 }
493 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)494 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
495 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
496
hv_init_tsc_clocksource(void)497 static bool __init hv_init_tsc_clocksource(void)
498 {
499 union hv_reference_tsc_msr tsc_msr;
500 phys_addr_t phys_addr;
501
502 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
503 return false;
504
505 if (hv_root_partition)
506 return false;
507
508 /*
509 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
510 * handles frequency and offset changes due to live migration,
511 * pause/resume, and other VM management operations. So lower the
512 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
513 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
514 * TSC will be preferred over the virtualized ARM64 arch counter.
515 * While the Hyper-V MSR clocksource won't be used since the
516 * Reference TSC clocksource is present, change its rating as
517 * well for consistency.
518 */
519 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
520 hyperv_cs_tsc.rating = 250;
521 hyperv_cs_msr.rating = 250;
522 }
523
524 hv_read_reference_counter = read_hv_clock_tsc;
525 phys_addr = virt_to_phys(hv_get_tsc_page());
526
527 /*
528 * The Hyper-V TLFS specifies to preserve the value of reserved
529 * bits in registers. So read the existing value, preserve the
530 * low order 12 bits, and add in the guest physical address
531 * (which already has at least the low 12 bits set to zero since
532 * it is page aligned). Also set the "enable" bit, which is bit 0.
533 */
534 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
535 tsc_msr.enable = 1;
536 tsc_msr.pfn = HVPFN_DOWN(phys_addr);
537 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
538
539 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
540
541 hv_sched_clock_offset = hv_read_reference_counter();
542 hv_setup_sched_clock(read_hv_sched_clock_tsc);
543
544 return true;
545 }
546
hv_init_clocksource(void)547 void __init hv_init_clocksource(void)
548 {
549 /*
550 * Try to set up the TSC page clocksource. If it succeeds, we're
551 * done. Otherwise, set up the MSR clocksource. At least one of
552 * these will always be available except on very old versions of
553 * Hyper-V on x86. In that case we won't have a Hyper-V
554 * clocksource, but Linux will still run with a clocksource based
555 * on the emulated PIT or LAPIC timer.
556 */
557 if (hv_init_tsc_clocksource())
558 return;
559
560 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
561 return;
562
563 hv_read_reference_counter = read_hv_clock_msr;
564 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
565
566 hv_sched_clock_offset = hv_read_reference_counter();
567 hv_setup_sched_clock(read_hv_sched_clock_msr);
568 }
569