1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 struct kmem_cache	*xfs_log_ticket_cache;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC void xlog_state_do_callback(
45 	struct xlog		*log);
46 STATIC int
47 xlog_state_get_iclog_space(
48 	struct xlog		*log,
49 	int			len,
50 	struct xlog_in_core	**iclog,
51 	struct xlog_ticket	*ticket,
52 	int			*logoffsetp);
53 STATIC void
54 xlog_grant_push_ail(
55 	struct xlog		*log,
56 	int			need_bytes);
57 STATIC void
58 xlog_sync(
59 	struct xlog		*log,
60 	struct xlog_in_core	*iclog);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_verify_grant_tail(
64 	struct xlog *log);
65 STATIC void
66 xlog_verify_iclog(
67 	struct xlog		*log,
68 	struct xlog_in_core	*iclog,
69 	int			count);
70 STATIC void
71 xlog_verify_tail_lsn(
72 	struct xlog		*log,
73 	struct xlog_in_core	*iclog);
74 #else
75 #define xlog_verify_grant_tail(a)
76 #define xlog_verify_iclog(a,b,c)
77 #define xlog_verify_tail_lsn(a,b)
78 #endif
79 
80 STATIC int
81 xlog_iclogs_empty(
82 	struct xlog		*log);
83 
84 static int
85 xfs_log_cover(struct xfs_mount *);
86 
87 /*
88  * We need to make sure the buffer pointer returned is naturally aligned for the
89  * biggest basic data type we put into it. We have already accounted for this
90  * padding when sizing the buffer.
91  *
92  * However, this padding does not get written into the log, and hence we have to
93  * track the space used by the log vectors separately to prevent log space hangs
94  * due to inaccurate accounting (i.e. a leak) of the used log space through the
95  * CIL context ticket.
96  *
97  * We also add space for the xlog_op_header that describes this region in the
98  * log. This prepends the data region we return to the caller to copy their data
99  * into, so do all the static initialisation of the ophdr now. Because the ophdr
100  * is not 8 byte aligned, we have to be careful to ensure that we align the
101  * start of the buffer such that the region we return to the call is 8 byte
102  * aligned and packed against the tail of the ophdr.
103  */
104 void *
xlog_prepare_iovec(struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp,uint type)105 xlog_prepare_iovec(
106 	struct xfs_log_vec	*lv,
107 	struct xfs_log_iovec	**vecp,
108 	uint			type)
109 {
110 	struct xfs_log_iovec	*vec = *vecp;
111 	struct xlog_op_header	*oph;
112 	uint32_t		len;
113 	void			*buf;
114 
115 	if (vec) {
116 		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
117 		vec++;
118 	} else {
119 		vec = &lv->lv_iovecp[0];
120 	}
121 
122 	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
123 	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
124 		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
125 					sizeof(struct xlog_op_header);
126 	}
127 
128 	vec->i_type = type;
129 	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
130 
131 	oph = vec->i_addr;
132 	oph->oh_clientid = XFS_TRANSACTION;
133 	oph->oh_res2 = 0;
134 	oph->oh_flags = 0;
135 
136 	buf = vec->i_addr + sizeof(struct xlog_op_header);
137 	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
138 
139 	*vecp = vec;
140 	return buf;
141 }
142 
143 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)144 xlog_grant_sub_space(
145 	struct xlog		*log,
146 	atomic64_t		*head,
147 	int			bytes)
148 {
149 	int64_t	head_val = atomic64_read(head);
150 	int64_t new, old;
151 
152 	do {
153 		int	cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		space -= bytes;
158 		if (space < 0) {
159 			space += log->l_logsize;
160 			cycle--;
161 		}
162 
163 		old = head_val;
164 		new = xlog_assign_grant_head_val(cycle, space);
165 		head_val = atomic64_cmpxchg(head, old, new);
166 	} while (head_val != old);
167 }
168 
169 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)170 xlog_grant_add_space(
171 	struct xlog		*log,
172 	atomic64_t		*head,
173 	int			bytes)
174 {
175 	int64_t	head_val = atomic64_read(head);
176 	int64_t new, old;
177 
178 	do {
179 		int		tmp;
180 		int		cycle, space;
181 
182 		xlog_crack_grant_head_val(head_val, &cycle, &space);
183 
184 		tmp = log->l_logsize - space;
185 		if (tmp > bytes)
186 			space += bytes;
187 		else {
188 			space = bytes - tmp;
189 			cycle++;
190 		}
191 
192 		old = head_val;
193 		new = xlog_assign_grant_head_val(cycle, space);
194 		head_val = atomic64_cmpxchg(head, old, new);
195 	} while (head_val != old);
196 }
197 
198 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)199 xlog_grant_head_init(
200 	struct xlog_grant_head	*head)
201 {
202 	xlog_assign_grant_head(&head->grant, 1, 0);
203 	INIT_LIST_HEAD(&head->waiters);
204 	spin_lock_init(&head->lock);
205 }
206 
207 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)208 xlog_grant_head_wake_all(
209 	struct xlog_grant_head	*head)
210 {
211 	struct xlog_ticket	*tic;
212 
213 	spin_lock(&head->lock);
214 	list_for_each_entry(tic, &head->waiters, t_queue)
215 		wake_up_process(tic->t_task);
216 	spin_unlock(&head->lock);
217 }
218 
219 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)220 xlog_ticket_reservation(
221 	struct xlog		*log,
222 	struct xlog_grant_head	*head,
223 	struct xlog_ticket	*tic)
224 {
225 	if (head == &log->l_write_head) {
226 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
227 		return tic->t_unit_res;
228 	} else {
229 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
230 			return tic->t_unit_res * tic->t_cnt;
231 		else
232 			return tic->t_unit_res;
233 	}
234 }
235 
236 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)237 xlog_grant_head_wake(
238 	struct xlog		*log,
239 	struct xlog_grant_head	*head,
240 	int			*free_bytes)
241 {
242 	struct xlog_ticket	*tic;
243 	int			need_bytes;
244 	bool			woken_task = false;
245 
246 	list_for_each_entry(tic, &head->waiters, t_queue) {
247 
248 		/*
249 		 * There is a chance that the size of the CIL checkpoints in
250 		 * progress at the last AIL push target calculation resulted in
251 		 * limiting the target to the log head (l_last_sync_lsn) at the
252 		 * time. This may not reflect where the log head is now as the
253 		 * CIL checkpoints may have completed.
254 		 *
255 		 * Hence when we are woken here, it may be that the head of the
256 		 * log that has moved rather than the tail. As the tail didn't
257 		 * move, there still won't be space available for the
258 		 * reservation we require.  However, if the AIL has already
259 		 * pushed to the target defined by the old log head location, we
260 		 * will hang here waiting for something else to update the AIL
261 		 * push target.
262 		 *
263 		 * Therefore, if there isn't space to wake the first waiter on
264 		 * the grant head, we need to push the AIL again to ensure the
265 		 * target reflects both the current log tail and log head
266 		 * position before we wait for the tail to move again.
267 		 */
268 
269 		need_bytes = xlog_ticket_reservation(log, head, tic);
270 		if (*free_bytes < need_bytes) {
271 			if (!woken_task)
272 				xlog_grant_push_ail(log, need_bytes);
273 			return false;
274 		}
275 
276 		*free_bytes -= need_bytes;
277 		trace_xfs_log_grant_wake_up(log, tic);
278 		wake_up_process(tic->t_task);
279 		woken_task = true;
280 	}
281 
282 	return true;
283 }
284 
285 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)286 xlog_grant_head_wait(
287 	struct xlog		*log,
288 	struct xlog_grant_head	*head,
289 	struct xlog_ticket	*tic,
290 	int			need_bytes) __releases(&head->lock)
291 					    __acquires(&head->lock)
292 {
293 	list_add_tail(&tic->t_queue, &head->waiters);
294 
295 	do {
296 		if (xlog_is_shutdown(log))
297 			goto shutdown;
298 		xlog_grant_push_ail(log, need_bytes);
299 
300 		__set_current_state(TASK_UNINTERRUPTIBLE);
301 		spin_unlock(&head->lock);
302 
303 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
304 
305 		trace_xfs_log_grant_sleep(log, tic);
306 		schedule();
307 		trace_xfs_log_grant_wake(log, tic);
308 
309 		spin_lock(&head->lock);
310 		if (xlog_is_shutdown(log))
311 			goto shutdown;
312 	} while (xlog_space_left(log, &head->grant) < need_bytes);
313 
314 	list_del_init(&tic->t_queue);
315 	return 0;
316 shutdown:
317 	list_del_init(&tic->t_queue);
318 	return -EIO;
319 }
320 
321 /*
322  * Atomically get the log space required for a log ticket.
323  *
324  * Once a ticket gets put onto head->waiters, it will only return after the
325  * needed reservation is satisfied.
326  *
327  * This function is structured so that it has a lock free fast path. This is
328  * necessary because every new transaction reservation will come through this
329  * path. Hence any lock will be globally hot if we take it unconditionally on
330  * every pass.
331  *
332  * As tickets are only ever moved on and off head->waiters under head->lock, we
333  * only need to take that lock if we are going to add the ticket to the queue
334  * and sleep. We can avoid taking the lock if the ticket was never added to
335  * head->waiters because the t_queue list head will be empty and we hold the
336  * only reference to it so it can safely be checked unlocked.
337  */
338 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)339 xlog_grant_head_check(
340 	struct xlog		*log,
341 	struct xlog_grant_head	*head,
342 	struct xlog_ticket	*tic,
343 	int			*need_bytes)
344 {
345 	int			free_bytes;
346 	int			error = 0;
347 
348 	ASSERT(!xlog_in_recovery(log));
349 
350 	/*
351 	 * If there are other waiters on the queue then give them a chance at
352 	 * logspace before us.  Wake up the first waiters, if we do not wake
353 	 * up all the waiters then go to sleep waiting for more free space,
354 	 * otherwise try to get some space for this transaction.
355 	 */
356 	*need_bytes = xlog_ticket_reservation(log, head, tic);
357 	free_bytes = xlog_space_left(log, &head->grant);
358 	if (!list_empty_careful(&head->waiters)) {
359 		spin_lock(&head->lock);
360 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
361 		    free_bytes < *need_bytes) {
362 			error = xlog_grant_head_wait(log, head, tic,
363 						     *need_bytes);
364 		}
365 		spin_unlock(&head->lock);
366 	} else if (free_bytes < *need_bytes) {
367 		spin_lock(&head->lock);
368 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
369 		spin_unlock(&head->lock);
370 	}
371 
372 	return error;
373 }
374 
375 bool
xfs_log_writable(struct xfs_mount * mp)376 xfs_log_writable(
377 	struct xfs_mount	*mp)
378 {
379 	/*
380 	 * Do not write to the log on norecovery mounts, if the data or log
381 	 * devices are read-only, or if the filesystem is shutdown. Read-only
382 	 * mounts allow internal writes for log recovery and unmount purposes,
383 	 * so don't restrict that case.
384 	 */
385 	if (xfs_has_norecovery(mp))
386 		return false;
387 	if (xfs_readonly_buftarg(mp->m_ddev_targp))
388 		return false;
389 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
390 		return false;
391 	if (xlog_is_shutdown(mp->m_log))
392 		return false;
393 	return true;
394 }
395 
396 /*
397  * Replenish the byte reservation required by moving the grant write head.
398  */
399 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)400 xfs_log_regrant(
401 	struct xfs_mount	*mp,
402 	struct xlog_ticket	*tic)
403 {
404 	struct xlog		*log = mp->m_log;
405 	int			need_bytes;
406 	int			error = 0;
407 
408 	if (xlog_is_shutdown(log))
409 		return -EIO;
410 
411 	XFS_STATS_INC(mp, xs_try_logspace);
412 
413 	/*
414 	 * This is a new transaction on the ticket, so we need to change the
415 	 * transaction ID so that the next transaction has a different TID in
416 	 * the log. Just add one to the existing tid so that we can see chains
417 	 * of rolling transactions in the log easily.
418 	 */
419 	tic->t_tid++;
420 
421 	xlog_grant_push_ail(log, tic->t_unit_res);
422 
423 	tic->t_curr_res = tic->t_unit_res;
424 	if (tic->t_cnt > 0)
425 		return 0;
426 
427 	trace_xfs_log_regrant(log, tic);
428 
429 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
430 				      &need_bytes);
431 	if (error)
432 		goto out_error;
433 
434 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
435 	trace_xfs_log_regrant_exit(log, tic);
436 	xlog_verify_grant_tail(log);
437 	return 0;
438 
439 out_error:
440 	/*
441 	 * If we are failing, make sure the ticket doesn't have any current
442 	 * reservations.  We don't want to add this back when the ticket/
443 	 * transaction gets cancelled.
444 	 */
445 	tic->t_curr_res = 0;
446 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
447 	return error;
448 }
449 
450 /*
451  * Reserve log space and return a ticket corresponding to the reservation.
452  *
453  * Each reservation is going to reserve extra space for a log record header.
454  * When writes happen to the on-disk log, we don't subtract the length of the
455  * log record header from any reservation.  By wasting space in each
456  * reservation, we prevent over allocation problems.
457  */
458 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,bool permanent)459 xfs_log_reserve(
460 	struct xfs_mount	*mp,
461 	int			unit_bytes,
462 	int			cnt,
463 	struct xlog_ticket	**ticp,
464 	bool			permanent)
465 {
466 	struct xlog		*log = mp->m_log;
467 	struct xlog_ticket	*tic;
468 	int			need_bytes;
469 	int			error = 0;
470 
471 	if (xlog_is_shutdown(log))
472 		return -EIO;
473 
474 	XFS_STATS_INC(mp, xs_try_logspace);
475 
476 	ASSERT(*ticp == NULL);
477 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
478 	*ticp = tic;
479 
480 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
481 					    : tic->t_unit_res);
482 
483 	trace_xfs_log_reserve(log, tic);
484 
485 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
486 				      &need_bytes);
487 	if (error)
488 		goto out_error;
489 
490 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
491 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
492 	trace_xfs_log_reserve_exit(log, tic);
493 	xlog_verify_grant_tail(log);
494 	return 0;
495 
496 out_error:
497 	/*
498 	 * If we are failing, make sure the ticket doesn't have any current
499 	 * reservations.  We don't want to add this back when the ticket/
500 	 * transaction gets cancelled.
501 	 */
502 	tic->t_curr_res = 0;
503 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
504 	return error;
505 }
506 
507 /*
508  * Run all the pending iclog callbacks and wake log force waiters and iclog
509  * space waiters so they can process the newly set shutdown state. We really
510  * don't care what order we process callbacks here because the log is shut down
511  * and so state cannot change on disk anymore. However, we cannot wake waiters
512  * until the callbacks have been processed because we may be in unmount and
513  * we must ensure that all AIL operations the callbacks perform have completed
514  * before we tear down the AIL.
515  *
516  * We avoid processing actively referenced iclogs so that we don't run callbacks
517  * while the iclog owner might still be preparing the iclog for IO submssion.
518  * These will be caught by xlog_state_iclog_release() and call this function
519  * again to process any callbacks that may have been added to that iclog.
520  */
521 static void
xlog_state_shutdown_callbacks(struct xlog * log)522 xlog_state_shutdown_callbacks(
523 	struct xlog		*log)
524 {
525 	struct xlog_in_core	*iclog;
526 	LIST_HEAD(cb_list);
527 
528 	iclog = log->l_iclog;
529 	do {
530 		if (atomic_read(&iclog->ic_refcnt)) {
531 			/* Reference holder will re-run iclog callbacks. */
532 			continue;
533 		}
534 		list_splice_init(&iclog->ic_callbacks, &cb_list);
535 		spin_unlock(&log->l_icloglock);
536 
537 		xlog_cil_process_committed(&cb_list);
538 
539 		spin_lock(&log->l_icloglock);
540 		wake_up_all(&iclog->ic_write_wait);
541 		wake_up_all(&iclog->ic_force_wait);
542 	} while ((iclog = iclog->ic_next) != log->l_iclog);
543 
544 	wake_up_all(&log->l_flush_wait);
545 }
546 
547 /*
548  * Flush iclog to disk if this is the last reference to the given iclog and the
549  * it is in the WANT_SYNC state.
550  *
551  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
552  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
553  * written to stable storage, and implies that a commit record is contained
554  * within the iclog. We need to ensure that the log tail does not move beyond
555  * the tail that the first commit record in the iclog ordered against, otherwise
556  * correct recovery of that checkpoint becomes dependent on future operations
557  * performed on this iclog.
558  *
559  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
560  * current tail into iclog. Once the iclog tail is set, future operations must
561  * not modify it, otherwise they potentially violate ordering constraints for
562  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
563  * the iclog will get zeroed on activation of the iclog after sync, so we
564  * always capture the tail lsn on the iclog on the first NEED_FUA release
565  * regardless of the number of active reference counts on this iclog.
566  */
567 int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)568 xlog_state_release_iclog(
569 	struct xlog		*log,
570 	struct xlog_in_core	*iclog)
571 {
572 	xfs_lsn_t		tail_lsn;
573 	bool			last_ref;
574 
575 	lockdep_assert_held(&log->l_icloglock);
576 
577 	trace_xlog_iclog_release(iclog, _RET_IP_);
578 	/*
579 	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
580 	 * of the tail LSN into the iclog so we guarantee that the log tail does
581 	 * not move between the first time we know that the iclog needs to be
582 	 * made stable and when we eventually submit it.
583 	 */
584 	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
585 	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
586 	    !iclog->ic_header.h_tail_lsn) {
587 		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
588 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
589 	}
590 
591 	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
592 
593 	if (xlog_is_shutdown(log)) {
594 		/*
595 		 * If there are no more references to this iclog, process the
596 		 * pending iclog callbacks that were waiting on the release of
597 		 * this iclog.
598 		 */
599 		if (last_ref)
600 			xlog_state_shutdown_callbacks(log);
601 		return -EIO;
602 	}
603 
604 	if (!last_ref)
605 		return 0;
606 
607 	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
608 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
609 		return 0;
610 	}
611 
612 	iclog->ic_state = XLOG_STATE_SYNCING;
613 	xlog_verify_tail_lsn(log, iclog);
614 	trace_xlog_iclog_syncing(iclog, _RET_IP_);
615 
616 	spin_unlock(&log->l_icloglock);
617 	xlog_sync(log, iclog);
618 	spin_lock(&log->l_icloglock);
619 	return 0;
620 }
621 
622 /*
623  * Mount a log filesystem
624  *
625  * mp		- ubiquitous xfs mount point structure
626  * log_target	- buftarg of on-disk log device
627  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
628  * num_bblocks	- Number of BBSIZE blocks in on-disk log
629  *
630  * Return error or zero.
631  */
632 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)633 xfs_log_mount(
634 	xfs_mount_t	*mp,
635 	xfs_buftarg_t	*log_target,
636 	xfs_daddr_t	blk_offset,
637 	int		num_bblks)
638 {
639 	struct xlog	*log;
640 	bool		fatal = xfs_has_crc(mp);
641 	int		error = 0;
642 	int		min_logfsbs;
643 
644 	if (!xfs_has_norecovery(mp)) {
645 		xfs_notice(mp, "Mounting V%d Filesystem",
646 			   XFS_SB_VERSION_NUM(&mp->m_sb));
647 	} else {
648 		xfs_notice(mp,
649 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
650 			   XFS_SB_VERSION_NUM(&mp->m_sb));
651 		ASSERT(xfs_is_readonly(mp));
652 	}
653 
654 	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
655 	if (IS_ERR(log)) {
656 		error = PTR_ERR(log);
657 		goto out;
658 	}
659 	mp->m_log = log;
660 
661 	/*
662 	 * Validate the given log space and drop a critical message via syslog
663 	 * if the log size is too small that would lead to some unexpected
664 	 * situations in transaction log space reservation stage.
665 	 *
666 	 * Note: we can't just reject the mount if the validation fails.  This
667 	 * would mean that people would have to downgrade their kernel just to
668 	 * remedy the situation as there is no way to grow the log (short of
669 	 * black magic surgery with xfs_db).
670 	 *
671 	 * We can, however, reject mounts for CRC format filesystems, as the
672 	 * mkfs binary being used to make the filesystem should never create a
673 	 * filesystem with a log that is too small.
674 	 */
675 	min_logfsbs = xfs_log_calc_minimum_size(mp);
676 
677 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
678 		xfs_warn(mp,
679 		"Log size %d blocks too small, minimum size is %d blocks",
680 			 mp->m_sb.sb_logblocks, min_logfsbs);
681 		error = -EINVAL;
682 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
683 		xfs_warn(mp,
684 		"Log size %d blocks too large, maximum size is %lld blocks",
685 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
686 		error = -EINVAL;
687 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
688 		xfs_warn(mp,
689 		"log size %lld bytes too large, maximum size is %lld bytes",
690 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
691 			 XFS_MAX_LOG_BYTES);
692 		error = -EINVAL;
693 	} else if (mp->m_sb.sb_logsunit > 1 &&
694 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
695 		xfs_warn(mp,
696 		"log stripe unit %u bytes must be a multiple of block size",
697 			 mp->m_sb.sb_logsunit);
698 		error = -EINVAL;
699 		fatal = true;
700 	}
701 	if (error) {
702 		/*
703 		 * Log check errors are always fatal on v5; or whenever bad
704 		 * metadata leads to a crash.
705 		 */
706 		if (fatal) {
707 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
708 			ASSERT(0);
709 			goto out_free_log;
710 		}
711 		xfs_crit(mp, "Log size out of supported range.");
712 		xfs_crit(mp,
713 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
714 	}
715 
716 	/*
717 	 * Initialize the AIL now we have a log.
718 	 */
719 	error = xfs_trans_ail_init(mp);
720 	if (error) {
721 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
722 		goto out_free_log;
723 	}
724 	log->l_ailp = mp->m_ail;
725 
726 	/*
727 	 * skip log recovery on a norecovery mount.  pretend it all
728 	 * just worked.
729 	 */
730 	if (!xfs_has_norecovery(mp)) {
731 		/*
732 		 * log recovery ignores readonly state and so we need to clear
733 		 * mount-based read only state so it can write to disk.
734 		 */
735 		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
736 						&mp->m_opstate);
737 		error = xlog_recover(log);
738 		if (readonly)
739 			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
740 		if (error) {
741 			xfs_warn(mp, "log mount/recovery failed: error %d",
742 				error);
743 			xlog_recover_cancel(log);
744 			goto out_destroy_ail;
745 		}
746 	}
747 
748 	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
749 			       "log");
750 	if (error)
751 		goto out_destroy_ail;
752 
753 	/* Normal transactions can now occur */
754 	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
755 
756 	/*
757 	 * Now the log has been fully initialised and we know were our
758 	 * space grant counters are, we can initialise the permanent ticket
759 	 * needed for delayed logging to work.
760 	 */
761 	xlog_cil_init_post_recovery(log);
762 
763 	return 0;
764 
765 out_destroy_ail:
766 	xfs_trans_ail_destroy(mp);
767 out_free_log:
768 	xlog_dealloc_log(log);
769 out:
770 	return error;
771 }
772 
773 /*
774  * Finish the recovery of the file system.  This is separate from the
775  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
776  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
777  * here.
778  *
779  * If we finish recovery successfully, start the background log work. If we are
780  * not doing recovery, then we have a RO filesystem and we don't need to start
781  * it.
782  */
783 int
xfs_log_mount_finish(struct xfs_mount * mp)784 xfs_log_mount_finish(
785 	struct xfs_mount	*mp)
786 {
787 	struct xlog		*log = mp->m_log;
788 	bool			readonly;
789 	int			error = 0;
790 
791 	if (xfs_has_norecovery(mp)) {
792 		ASSERT(xfs_is_readonly(mp));
793 		return 0;
794 	}
795 
796 	/*
797 	 * log recovery ignores readonly state and so we need to clear
798 	 * mount-based read only state so it can write to disk.
799 	 */
800 	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
801 
802 	/*
803 	 * During the second phase of log recovery, we need iget and
804 	 * iput to behave like they do for an active filesystem.
805 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
806 	 * of inodes before we're done replaying log items on those
807 	 * inodes.  Turn it off immediately after recovery finishes
808 	 * so that we don't leak the quota inodes if subsequent mount
809 	 * activities fail.
810 	 *
811 	 * We let all inodes involved in redo item processing end up on
812 	 * the LRU instead of being evicted immediately so that if we do
813 	 * something to an unlinked inode, the irele won't cause
814 	 * premature truncation and freeing of the inode, which results
815 	 * in log recovery failure.  We have to evict the unreferenced
816 	 * lru inodes after clearing SB_ACTIVE because we don't
817 	 * otherwise clean up the lru if there's a subsequent failure in
818 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
819 	 * else (e.g. quotacheck) references the inodes before the
820 	 * mount failure occurs.
821 	 */
822 	mp->m_super->s_flags |= SB_ACTIVE;
823 	xfs_log_work_queue(mp);
824 	if (xlog_recovery_needed(log))
825 		error = xlog_recover_finish(log);
826 	mp->m_super->s_flags &= ~SB_ACTIVE;
827 	evict_inodes(mp->m_super);
828 
829 	/*
830 	 * Drain the buffer LRU after log recovery. This is required for v4
831 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
832 	 * but we do it unconditionally to make sure we're always in a clean
833 	 * cache state after mount.
834 	 *
835 	 * Don't push in the error case because the AIL may have pending intents
836 	 * that aren't removed until recovery is cancelled.
837 	 */
838 	if (xlog_recovery_needed(log)) {
839 		if (!error) {
840 			xfs_log_force(mp, XFS_LOG_SYNC);
841 			xfs_ail_push_all_sync(mp->m_ail);
842 		}
843 		xfs_notice(mp, "Ending recovery (logdev: %s)",
844 				mp->m_logname ? mp->m_logname : "internal");
845 	} else {
846 		xfs_info(mp, "Ending clean mount");
847 	}
848 	xfs_buftarg_drain(mp->m_ddev_targp);
849 
850 	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
851 	if (readonly)
852 		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
853 
854 	/* Make sure the log is dead if we're returning failure. */
855 	ASSERT(!error || xlog_is_shutdown(log));
856 
857 	return error;
858 }
859 
860 /*
861  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
862  * the log.
863  */
864 void
xfs_log_mount_cancel(struct xfs_mount * mp)865 xfs_log_mount_cancel(
866 	struct xfs_mount	*mp)
867 {
868 	xlog_recover_cancel(mp->m_log);
869 	xfs_log_unmount(mp);
870 }
871 
872 /*
873  * Flush out the iclog to disk ensuring that device caches are flushed and
874  * the iclog hits stable storage before any completion waiters are woken.
875  */
876 static inline int
xlog_force_iclog(struct xlog_in_core * iclog)877 xlog_force_iclog(
878 	struct xlog_in_core	*iclog)
879 {
880 	atomic_inc(&iclog->ic_refcnt);
881 	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
882 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
883 		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
884 	return xlog_state_release_iclog(iclog->ic_log, iclog);
885 }
886 
887 /*
888  * Wait for the iclog and all prior iclogs to be written disk as required by the
889  * log force state machine. Waiting on ic_force_wait ensures iclog completions
890  * have been ordered and callbacks run before we are woken here, hence
891  * guaranteeing that all the iclogs up to this one are on stable storage.
892  */
893 int
xlog_wait_on_iclog(struct xlog_in_core * iclog)894 xlog_wait_on_iclog(
895 	struct xlog_in_core	*iclog)
896 		__releases(iclog->ic_log->l_icloglock)
897 {
898 	struct xlog		*log = iclog->ic_log;
899 
900 	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
901 	if (!xlog_is_shutdown(log) &&
902 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
903 	    iclog->ic_state != XLOG_STATE_DIRTY) {
904 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
905 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
906 	} else {
907 		spin_unlock(&log->l_icloglock);
908 	}
909 
910 	if (xlog_is_shutdown(log))
911 		return -EIO;
912 	return 0;
913 }
914 
915 /*
916  * Write out an unmount record using the ticket provided. We have to account for
917  * the data space used in the unmount ticket as this write is not done from a
918  * transaction context that has already done the accounting for us.
919  */
920 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket)921 xlog_write_unmount_record(
922 	struct xlog		*log,
923 	struct xlog_ticket	*ticket)
924 {
925 	struct  {
926 		struct xlog_op_header ophdr;
927 		struct xfs_unmount_log_format ulf;
928 	} unmount_rec = {
929 		.ophdr = {
930 			.oh_clientid = XFS_LOG,
931 			.oh_tid = cpu_to_be32(ticket->t_tid),
932 			.oh_flags = XLOG_UNMOUNT_TRANS,
933 		},
934 		.ulf = {
935 			.magic = XLOG_UNMOUNT_TYPE,
936 		},
937 	};
938 	struct xfs_log_iovec reg = {
939 		.i_addr = &unmount_rec,
940 		.i_len = sizeof(unmount_rec),
941 		.i_type = XLOG_REG_TYPE_UNMOUNT,
942 	};
943 	struct xfs_log_vec vec = {
944 		.lv_niovecs = 1,
945 		.lv_iovecp = &reg,
946 	};
947 
948 	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
949 		      sizeof(struct xfs_unmount_log_format)) !=
950 							sizeof(unmount_rec));
951 
952 	/* account for space used by record data */
953 	ticket->t_curr_res -= sizeof(unmount_rec);
954 
955 	return xlog_write(log, NULL, &vec, ticket, reg.i_len);
956 }
957 
958 /*
959  * Mark the filesystem clean by writing an unmount record to the head of the
960  * log.
961  */
962 static void
xlog_unmount_write(struct xlog * log)963 xlog_unmount_write(
964 	struct xlog		*log)
965 {
966 	struct xfs_mount	*mp = log->l_mp;
967 	struct xlog_in_core	*iclog;
968 	struct xlog_ticket	*tic = NULL;
969 	int			error;
970 
971 	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
972 	if (error)
973 		goto out_err;
974 
975 	error = xlog_write_unmount_record(log, tic);
976 	/*
977 	 * At this point, we're umounting anyway, so there's no point in
978 	 * transitioning log state to shutdown. Just continue...
979 	 */
980 out_err:
981 	if (error)
982 		xfs_alert(mp, "%s: unmount record failed", __func__);
983 
984 	spin_lock(&log->l_icloglock);
985 	iclog = log->l_iclog;
986 	error = xlog_force_iclog(iclog);
987 	xlog_wait_on_iclog(iclog);
988 
989 	if (tic) {
990 		trace_xfs_log_umount_write(log, tic);
991 		xfs_log_ticket_ungrant(log, tic);
992 	}
993 }
994 
995 static void
xfs_log_unmount_verify_iclog(struct xlog * log)996 xfs_log_unmount_verify_iclog(
997 	struct xlog		*log)
998 {
999 	struct xlog_in_core	*iclog = log->l_iclog;
1000 
1001 	do {
1002 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1003 		ASSERT(iclog->ic_offset == 0);
1004 	} while ((iclog = iclog->ic_next) != log->l_iclog);
1005 }
1006 
1007 /*
1008  * Unmount record used to have a string "Unmount filesystem--" in the
1009  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1010  * We just write the magic number now since that particular field isn't
1011  * currently architecture converted and "Unmount" is a bit foo.
1012  * As far as I know, there weren't any dependencies on the old behaviour.
1013  */
1014 static void
xfs_log_unmount_write(struct xfs_mount * mp)1015 xfs_log_unmount_write(
1016 	struct xfs_mount	*mp)
1017 {
1018 	struct xlog		*log = mp->m_log;
1019 
1020 	if (!xfs_log_writable(mp))
1021 		return;
1022 
1023 	xfs_log_force(mp, XFS_LOG_SYNC);
1024 
1025 	if (xlog_is_shutdown(log))
1026 		return;
1027 
1028 	/*
1029 	 * If we think the summary counters are bad, avoid writing the unmount
1030 	 * record to force log recovery at next mount, after which the summary
1031 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1032 	 * more details.
1033 	 */
1034 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1035 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1036 		xfs_alert(mp, "%s: will fix summary counters at next mount",
1037 				__func__);
1038 		return;
1039 	}
1040 
1041 	xfs_log_unmount_verify_iclog(log);
1042 	xlog_unmount_write(log);
1043 }
1044 
1045 /*
1046  * Empty the log for unmount/freeze.
1047  *
1048  * To do this, we first need to shut down the background log work so it is not
1049  * trying to cover the log as we clean up. We then need to unpin all objects in
1050  * the log so we can then flush them out. Once they have completed their IO and
1051  * run the callbacks removing themselves from the AIL, we can cover the log.
1052  */
1053 int
xfs_log_quiesce(struct xfs_mount * mp)1054 xfs_log_quiesce(
1055 	struct xfs_mount	*mp)
1056 {
1057 	/*
1058 	 * Clear log incompat features since we're quiescing the log.  Report
1059 	 * failures, though it's not fatal to have a higher log feature
1060 	 * protection level than the log contents actually require.
1061 	 */
1062 	if (xfs_clear_incompat_log_features(mp)) {
1063 		int error;
1064 
1065 		error = xfs_sync_sb(mp, false);
1066 		if (error)
1067 			xfs_warn(mp,
1068 	"Failed to clear log incompat features on quiesce");
1069 	}
1070 
1071 	cancel_delayed_work_sync(&mp->m_log->l_work);
1072 	xfs_log_force(mp, XFS_LOG_SYNC);
1073 
1074 	/*
1075 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1076 	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1077 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1078 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1079 	 * the IO to complete.
1080 	 */
1081 	xfs_ail_push_all_sync(mp->m_ail);
1082 	xfs_buftarg_wait(mp->m_ddev_targp);
1083 	xfs_buf_lock(mp->m_sb_bp);
1084 	xfs_buf_unlock(mp->m_sb_bp);
1085 
1086 	return xfs_log_cover(mp);
1087 }
1088 
1089 void
xfs_log_clean(struct xfs_mount * mp)1090 xfs_log_clean(
1091 	struct xfs_mount	*mp)
1092 {
1093 	xfs_log_quiesce(mp);
1094 	xfs_log_unmount_write(mp);
1095 }
1096 
1097 /*
1098  * Shut down and release the AIL and Log.
1099  *
1100  * During unmount, we need to ensure we flush all the dirty metadata objects
1101  * from the AIL so that the log is empty before we write the unmount record to
1102  * the log. Once this is done, we can tear down the AIL and the log.
1103  */
1104 void
xfs_log_unmount(struct xfs_mount * mp)1105 xfs_log_unmount(
1106 	struct xfs_mount	*mp)
1107 {
1108 	xfs_log_clean(mp);
1109 
1110 	xfs_buftarg_drain(mp->m_ddev_targp);
1111 
1112 	xfs_trans_ail_destroy(mp);
1113 
1114 	xfs_sysfs_del(&mp->m_log->l_kobj);
1115 
1116 	xlog_dealloc_log(mp->m_log);
1117 }
1118 
1119 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1120 xfs_log_item_init(
1121 	struct xfs_mount	*mp,
1122 	struct xfs_log_item	*item,
1123 	int			type,
1124 	const struct xfs_item_ops *ops)
1125 {
1126 	item->li_log = mp->m_log;
1127 	item->li_ailp = mp->m_ail;
1128 	item->li_type = type;
1129 	item->li_ops = ops;
1130 	item->li_lv = NULL;
1131 
1132 	INIT_LIST_HEAD(&item->li_ail);
1133 	INIT_LIST_HEAD(&item->li_cil);
1134 	INIT_LIST_HEAD(&item->li_bio_list);
1135 	INIT_LIST_HEAD(&item->li_trans);
1136 }
1137 
1138 /*
1139  * Wake up processes waiting for log space after we have moved the log tail.
1140  */
1141 void
xfs_log_space_wake(struct xfs_mount * mp)1142 xfs_log_space_wake(
1143 	struct xfs_mount	*mp)
1144 {
1145 	struct xlog		*log = mp->m_log;
1146 	int			free_bytes;
1147 
1148 	if (xlog_is_shutdown(log))
1149 		return;
1150 
1151 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1152 		ASSERT(!xlog_in_recovery(log));
1153 
1154 		spin_lock(&log->l_write_head.lock);
1155 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1156 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1157 		spin_unlock(&log->l_write_head.lock);
1158 	}
1159 
1160 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1161 		ASSERT(!xlog_in_recovery(log));
1162 
1163 		spin_lock(&log->l_reserve_head.lock);
1164 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1165 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1166 		spin_unlock(&log->l_reserve_head.lock);
1167 	}
1168 }
1169 
1170 /*
1171  * Determine if we have a transaction that has gone to disk that needs to be
1172  * covered. To begin the transition to the idle state firstly the log needs to
1173  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1174  * we start attempting to cover the log.
1175  *
1176  * Only if we are then in a state where covering is needed, the caller is
1177  * informed that dummy transactions are required to move the log into the idle
1178  * state.
1179  *
1180  * If there are any items in the AIl or CIL, then we do not want to attempt to
1181  * cover the log as we may be in a situation where there isn't log space
1182  * available to run a dummy transaction and this can lead to deadlocks when the
1183  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1184  * there's no point in running a dummy transaction at this point because we
1185  * can't start trying to idle the log until both the CIL and AIL are empty.
1186  */
1187 static bool
xfs_log_need_covered(struct xfs_mount * mp)1188 xfs_log_need_covered(
1189 	struct xfs_mount	*mp)
1190 {
1191 	struct xlog		*log = mp->m_log;
1192 	bool			needed = false;
1193 
1194 	if (!xlog_cil_empty(log))
1195 		return false;
1196 
1197 	spin_lock(&log->l_icloglock);
1198 	switch (log->l_covered_state) {
1199 	case XLOG_STATE_COVER_DONE:
1200 	case XLOG_STATE_COVER_DONE2:
1201 	case XLOG_STATE_COVER_IDLE:
1202 		break;
1203 	case XLOG_STATE_COVER_NEED:
1204 	case XLOG_STATE_COVER_NEED2:
1205 		if (xfs_ail_min_lsn(log->l_ailp))
1206 			break;
1207 		if (!xlog_iclogs_empty(log))
1208 			break;
1209 
1210 		needed = true;
1211 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1212 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1213 		else
1214 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1215 		break;
1216 	default:
1217 		needed = true;
1218 		break;
1219 	}
1220 	spin_unlock(&log->l_icloglock);
1221 	return needed;
1222 }
1223 
1224 /*
1225  * Explicitly cover the log. This is similar to background log covering but
1226  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1227  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1228  * must all be empty.
1229  */
1230 static int
xfs_log_cover(struct xfs_mount * mp)1231 xfs_log_cover(
1232 	struct xfs_mount	*mp)
1233 {
1234 	int			error = 0;
1235 	bool			need_covered;
1236 
1237 	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1238 	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1239 		xlog_is_shutdown(mp->m_log));
1240 
1241 	if (!xfs_log_writable(mp))
1242 		return 0;
1243 
1244 	/*
1245 	 * xfs_log_need_covered() is not idempotent because it progresses the
1246 	 * state machine if the log requires covering. Therefore, we must call
1247 	 * this function once and use the result until we've issued an sb sync.
1248 	 * Do so first to make that abundantly clear.
1249 	 *
1250 	 * Fall into the covering sequence if the log needs covering or the
1251 	 * mount has lazy superblock accounting to sync to disk. The sb sync
1252 	 * used for covering accumulates the in-core counters, so covering
1253 	 * handles this for us.
1254 	 */
1255 	need_covered = xfs_log_need_covered(mp);
1256 	if (!need_covered && !xfs_has_lazysbcount(mp))
1257 		return 0;
1258 
1259 	/*
1260 	 * To cover the log, commit the superblock twice (at most) in
1261 	 * independent checkpoints. The first serves as a reference for the
1262 	 * tail pointer. The sync transaction and AIL push empties the AIL and
1263 	 * updates the in-core tail to the LSN of the first checkpoint. The
1264 	 * second commit updates the on-disk tail with the in-core LSN,
1265 	 * covering the log. Push the AIL one more time to leave it empty, as
1266 	 * we found it.
1267 	 */
1268 	do {
1269 		error = xfs_sync_sb(mp, true);
1270 		if (error)
1271 			break;
1272 		xfs_ail_push_all_sync(mp->m_ail);
1273 	} while (xfs_log_need_covered(mp));
1274 
1275 	return error;
1276 }
1277 
1278 /*
1279  * We may be holding the log iclog lock upon entering this routine.
1280  */
1281 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1282 xlog_assign_tail_lsn_locked(
1283 	struct xfs_mount	*mp)
1284 {
1285 	struct xlog		*log = mp->m_log;
1286 	struct xfs_log_item	*lip;
1287 	xfs_lsn_t		tail_lsn;
1288 
1289 	assert_spin_locked(&mp->m_ail->ail_lock);
1290 
1291 	/*
1292 	 * To make sure we always have a valid LSN for the log tail we keep
1293 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1294 	 * and use that when the AIL was empty.
1295 	 */
1296 	lip = xfs_ail_min(mp->m_ail);
1297 	if (lip)
1298 		tail_lsn = lip->li_lsn;
1299 	else
1300 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1301 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1302 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1303 	return tail_lsn;
1304 }
1305 
1306 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1307 xlog_assign_tail_lsn(
1308 	struct xfs_mount	*mp)
1309 {
1310 	xfs_lsn_t		tail_lsn;
1311 
1312 	spin_lock(&mp->m_ail->ail_lock);
1313 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1314 	spin_unlock(&mp->m_ail->ail_lock);
1315 
1316 	return tail_lsn;
1317 }
1318 
1319 /*
1320  * Return the space in the log between the tail and the head.  The head
1321  * is passed in the cycle/bytes formal parms.  In the special case where
1322  * the reserve head has wrapped passed the tail, this calculation is no
1323  * longer valid.  In this case, just return 0 which means there is no space
1324  * in the log.  This works for all places where this function is called
1325  * with the reserve head.  Of course, if the write head were to ever
1326  * wrap the tail, we should blow up.  Rather than catch this case here,
1327  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1328  *
1329  * If reservation head is behind the tail, we have a problem. Warn about it,
1330  * but then treat it as if the log is empty.
1331  *
1332  * If the log is shut down, the head and tail may be invalid or out of whack, so
1333  * shortcut invalidity asserts in this case so that we don't trigger them
1334  * falsely.
1335  */
1336 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1337 xlog_space_left(
1338 	struct xlog	*log,
1339 	atomic64_t	*head)
1340 {
1341 	int		tail_bytes;
1342 	int		tail_cycle;
1343 	int		head_cycle;
1344 	int		head_bytes;
1345 
1346 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1347 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1348 	tail_bytes = BBTOB(tail_bytes);
1349 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1350 		return log->l_logsize - (head_bytes - tail_bytes);
1351 	if (tail_cycle + 1 < head_cycle)
1352 		return 0;
1353 
1354 	/* Ignore potential inconsistency when shutdown. */
1355 	if (xlog_is_shutdown(log))
1356 		return log->l_logsize;
1357 
1358 	if (tail_cycle < head_cycle) {
1359 		ASSERT(tail_cycle == (head_cycle - 1));
1360 		return tail_bytes - head_bytes;
1361 	}
1362 
1363 	/*
1364 	 * The reservation head is behind the tail. In this case we just want to
1365 	 * return the size of the log as the amount of space left.
1366 	 */
1367 	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1368 	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1369 		  tail_cycle, tail_bytes);
1370 	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1371 		  head_cycle, head_bytes);
1372 	ASSERT(0);
1373 	return log->l_logsize;
1374 }
1375 
1376 
1377 static void
xlog_ioend_work(struct work_struct * work)1378 xlog_ioend_work(
1379 	struct work_struct	*work)
1380 {
1381 	struct xlog_in_core     *iclog =
1382 		container_of(work, struct xlog_in_core, ic_end_io_work);
1383 	struct xlog		*log = iclog->ic_log;
1384 	int			error;
1385 
1386 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1387 #ifdef DEBUG
1388 	/* treat writes with injected CRC errors as failed */
1389 	if (iclog->ic_fail_crc)
1390 		error = -EIO;
1391 #endif
1392 
1393 	/*
1394 	 * Race to shutdown the filesystem if we see an error.
1395 	 */
1396 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1397 		xfs_alert(log->l_mp, "log I/O error %d", error);
1398 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1399 	}
1400 
1401 	xlog_state_done_syncing(iclog);
1402 	bio_uninit(&iclog->ic_bio);
1403 
1404 	/*
1405 	 * Drop the lock to signal that we are done. Nothing references the
1406 	 * iclog after this, so an unmount waiting on this lock can now tear it
1407 	 * down safely. As such, it is unsafe to reference the iclog after the
1408 	 * unlock as we could race with it being freed.
1409 	 */
1410 	up(&iclog->ic_sema);
1411 }
1412 
1413 /*
1414  * Return size of each in-core log record buffer.
1415  *
1416  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1417  *
1418  * If the filesystem blocksize is too large, we may need to choose a
1419  * larger size since the directory code currently logs entire blocks.
1420  */
1421 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1422 xlog_get_iclog_buffer_size(
1423 	struct xfs_mount	*mp,
1424 	struct xlog		*log)
1425 {
1426 	if (mp->m_logbufs <= 0)
1427 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1428 	if (mp->m_logbsize <= 0)
1429 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1430 
1431 	log->l_iclog_bufs = mp->m_logbufs;
1432 	log->l_iclog_size = mp->m_logbsize;
1433 
1434 	/*
1435 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1436 	 */
1437 	log->l_iclog_heads =
1438 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1439 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1440 }
1441 
1442 void
xfs_log_work_queue(struct xfs_mount * mp)1443 xfs_log_work_queue(
1444 	struct xfs_mount        *mp)
1445 {
1446 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1447 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1448 }
1449 
1450 /*
1451  * Clear the log incompat flags if we have the opportunity.
1452  *
1453  * This only happens if we're about to log the second dummy transaction as part
1454  * of covering the log and we can get the log incompat feature usage lock.
1455  */
1456 static inline void
xlog_clear_incompat(struct xlog * log)1457 xlog_clear_incompat(
1458 	struct xlog		*log)
1459 {
1460 	struct xfs_mount	*mp = log->l_mp;
1461 
1462 	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1463 				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1464 		return;
1465 
1466 	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1467 		return;
1468 
1469 	if (!down_write_trylock(&log->l_incompat_users))
1470 		return;
1471 
1472 	xfs_clear_incompat_log_features(mp);
1473 	up_write(&log->l_incompat_users);
1474 }
1475 
1476 /*
1477  * Every sync period we need to unpin all items in the AIL and push them to
1478  * disk. If there is nothing dirty, then we might need to cover the log to
1479  * indicate that the filesystem is idle.
1480  */
1481 static void
xfs_log_worker(struct work_struct * work)1482 xfs_log_worker(
1483 	struct work_struct	*work)
1484 {
1485 	struct xlog		*log = container_of(to_delayed_work(work),
1486 						struct xlog, l_work);
1487 	struct xfs_mount	*mp = log->l_mp;
1488 
1489 	/* dgc: errors ignored - not fatal and nowhere to report them */
1490 	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1491 		/*
1492 		 * Dump a transaction into the log that contains no real change.
1493 		 * This is needed to stamp the current tail LSN into the log
1494 		 * during the covering operation.
1495 		 *
1496 		 * We cannot use an inode here for this - that will push dirty
1497 		 * state back up into the VFS and then periodic inode flushing
1498 		 * will prevent log covering from making progress. Hence we
1499 		 * synchronously log the superblock instead to ensure the
1500 		 * superblock is immediately unpinned and can be written back.
1501 		 */
1502 		xlog_clear_incompat(log);
1503 		xfs_sync_sb(mp, true);
1504 	} else
1505 		xfs_log_force(mp, 0);
1506 
1507 	/* start pushing all the metadata that is currently dirty */
1508 	xfs_ail_push_all(mp->m_ail);
1509 
1510 	/* queue us up again */
1511 	xfs_log_work_queue(mp);
1512 }
1513 
1514 /*
1515  * This routine initializes some of the log structure for a given mount point.
1516  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1517  * some other stuff may be filled in too.
1518  */
1519 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1520 xlog_alloc_log(
1521 	struct xfs_mount	*mp,
1522 	struct xfs_buftarg	*log_target,
1523 	xfs_daddr_t		blk_offset,
1524 	int			num_bblks)
1525 {
1526 	struct xlog		*log;
1527 	xlog_rec_header_t	*head;
1528 	xlog_in_core_t		**iclogp;
1529 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1530 	int			i;
1531 	int			error = -ENOMEM;
1532 	uint			log2_size = 0;
1533 
1534 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1535 	if (!log) {
1536 		xfs_warn(mp, "Log allocation failed: No memory!");
1537 		goto out;
1538 	}
1539 
1540 	log->l_mp	   = mp;
1541 	log->l_targ	   = log_target;
1542 	log->l_logsize     = BBTOB(num_bblks);
1543 	log->l_logBBstart  = blk_offset;
1544 	log->l_logBBsize   = num_bblks;
1545 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1546 	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1547 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1548 
1549 	log->l_prev_block  = -1;
1550 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1551 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1552 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1553 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1554 
1555 	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1556 		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1557 	else
1558 		log->l_iclog_roundoff = BBSIZE;
1559 
1560 	xlog_grant_head_init(&log->l_reserve_head);
1561 	xlog_grant_head_init(&log->l_write_head);
1562 
1563 	error = -EFSCORRUPTED;
1564 	if (xfs_has_sector(mp)) {
1565 	        log2_size = mp->m_sb.sb_logsectlog;
1566 		if (log2_size < BBSHIFT) {
1567 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1568 				log2_size, BBSHIFT);
1569 			goto out_free_log;
1570 		}
1571 
1572 	        log2_size -= BBSHIFT;
1573 		if (log2_size > mp->m_sectbb_log) {
1574 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1575 				log2_size, mp->m_sectbb_log);
1576 			goto out_free_log;
1577 		}
1578 
1579 		/* for larger sector sizes, must have v2 or external log */
1580 		if (log2_size && log->l_logBBstart > 0 &&
1581 			    !xfs_has_logv2(mp)) {
1582 			xfs_warn(mp,
1583 		"log sector size (0x%x) invalid for configuration.",
1584 				log2_size);
1585 			goto out_free_log;
1586 		}
1587 	}
1588 	log->l_sectBBsize = 1 << log2_size;
1589 
1590 	init_rwsem(&log->l_incompat_users);
1591 
1592 	xlog_get_iclog_buffer_size(mp, log);
1593 
1594 	spin_lock_init(&log->l_icloglock);
1595 	init_waitqueue_head(&log->l_flush_wait);
1596 
1597 	iclogp = &log->l_iclog;
1598 	/*
1599 	 * The amount of memory to allocate for the iclog structure is
1600 	 * rather funky due to the way the structure is defined.  It is
1601 	 * done this way so that we can use different sizes for machines
1602 	 * with different amounts of memory.  See the definition of
1603 	 * xlog_in_core_t in xfs_log_priv.h for details.
1604 	 */
1605 	ASSERT(log->l_iclog_size >= 4096);
1606 	for (i = 0; i < log->l_iclog_bufs; i++) {
1607 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1608 				sizeof(struct bio_vec);
1609 
1610 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1611 		if (!iclog)
1612 			goto out_free_iclog;
1613 
1614 		*iclogp = iclog;
1615 		iclog->ic_prev = prev_iclog;
1616 		prev_iclog = iclog;
1617 
1618 		iclog->ic_data = kvzalloc(log->l_iclog_size,
1619 				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1620 		if (!iclog->ic_data)
1621 			goto out_free_iclog;
1622 		head = &iclog->ic_header;
1623 		memset(head, 0, sizeof(xlog_rec_header_t));
1624 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1625 		head->h_version = cpu_to_be32(
1626 			xfs_has_logv2(log->l_mp) ? 2 : 1);
1627 		head->h_size = cpu_to_be32(log->l_iclog_size);
1628 		/* new fields */
1629 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1630 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1631 
1632 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1633 		iclog->ic_state = XLOG_STATE_ACTIVE;
1634 		iclog->ic_log = log;
1635 		atomic_set(&iclog->ic_refcnt, 0);
1636 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1637 		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1638 
1639 		init_waitqueue_head(&iclog->ic_force_wait);
1640 		init_waitqueue_head(&iclog->ic_write_wait);
1641 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1642 		sema_init(&iclog->ic_sema, 1);
1643 
1644 		iclogp = &iclog->ic_next;
1645 	}
1646 	*iclogp = log->l_iclog;			/* complete ring */
1647 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1648 
1649 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1650 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1651 				    WQ_HIGHPRI),
1652 			0, mp->m_super->s_id);
1653 	if (!log->l_ioend_workqueue)
1654 		goto out_free_iclog;
1655 
1656 	error = xlog_cil_init(log);
1657 	if (error)
1658 		goto out_destroy_workqueue;
1659 	return log;
1660 
1661 out_destroy_workqueue:
1662 	destroy_workqueue(log->l_ioend_workqueue);
1663 out_free_iclog:
1664 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1665 		prev_iclog = iclog->ic_next;
1666 		kmem_free(iclog->ic_data);
1667 		kmem_free(iclog);
1668 		if (prev_iclog == log->l_iclog)
1669 			break;
1670 	}
1671 out_free_log:
1672 	kmem_free(log);
1673 out:
1674 	return ERR_PTR(error);
1675 }	/* xlog_alloc_log */
1676 
1677 /*
1678  * Compute the LSN that we'd need to push the log tail towards in order to have
1679  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1680  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1681  * log free space already meets all three thresholds, this function returns
1682  * NULLCOMMITLSN.
1683  */
1684 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1685 xlog_grant_push_threshold(
1686 	struct xlog	*log,
1687 	int		need_bytes)
1688 {
1689 	xfs_lsn_t	threshold_lsn = 0;
1690 	xfs_lsn_t	last_sync_lsn;
1691 	int		free_blocks;
1692 	int		free_bytes;
1693 	int		threshold_block;
1694 	int		threshold_cycle;
1695 	int		free_threshold;
1696 
1697 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1698 
1699 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1700 	free_blocks = BTOBBT(free_bytes);
1701 
1702 	/*
1703 	 * Set the threshold for the minimum number of free blocks in the
1704 	 * log to the maximum of what the caller needs, one quarter of the
1705 	 * log, and 256 blocks.
1706 	 */
1707 	free_threshold = BTOBB(need_bytes);
1708 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1709 	free_threshold = max(free_threshold, 256);
1710 	if (free_blocks >= free_threshold)
1711 		return NULLCOMMITLSN;
1712 
1713 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1714 						&threshold_block);
1715 	threshold_block += free_threshold;
1716 	if (threshold_block >= log->l_logBBsize) {
1717 		threshold_block -= log->l_logBBsize;
1718 		threshold_cycle += 1;
1719 	}
1720 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1721 					threshold_block);
1722 	/*
1723 	 * Don't pass in an lsn greater than the lsn of the last
1724 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1725 	 * so that it doesn't change between the compare and the set.
1726 	 */
1727 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1728 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1729 		threshold_lsn = last_sync_lsn;
1730 
1731 	return threshold_lsn;
1732 }
1733 
1734 /*
1735  * Push the tail of the log if we need to do so to maintain the free log space
1736  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1737  * policy which pushes on an lsn which is further along in the log once we
1738  * reach the high water mark.  In this manner, we would be creating a low water
1739  * mark.
1740  */
1741 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1742 xlog_grant_push_ail(
1743 	struct xlog	*log,
1744 	int		need_bytes)
1745 {
1746 	xfs_lsn_t	threshold_lsn;
1747 
1748 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1749 	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1750 		return;
1751 
1752 	/*
1753 	 * Get the transaction layer to kick the dirty buffers out to
1754 	 * disk asynchronously. No point in trying to do this if
1755 	 * the filesystem is shutting down.
1756 	 */
1757 	xfs_ail_push(log->l_ailp, threshold_lsn);
1758 }
1759 
1760 /*
1761  * Stamp cycle number in every block
1762  */
1763 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1764 xlog_pack_data(
1765 	struct xlog		*log,
1766 	struct xlog_in_core	*iclog,
1767 	int			roundoff)
1768 {
1769 	int			i, j, k;
1770 	int			size = iclog->ic_offset + roundoff;
1771 	__be32			cycle_lsn;
1772 	char			*dp;
1773 
1774 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1775 
1776 	dp = iclog->ic_datap;
1777 	for (i = 0; i < BTOBB(size); i++) {
1778 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1779 			break;
1780 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1781 		*(__be32 *)dp = cycle_lsn;
1782 		dp += BBSIZE;
1783 	}
1784 
1785 	if (xfs_has_logv2(log->l_mp)) {
1786 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1787 
1788 		for ( ; i < BTOBB(size); i++) {
1789 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1790 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1791 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1792 			*(__be32 *)dp = cycle_lsn;
1793 			dp += BBSIZE;
1794 		}
1795 
1796 		for (i = 1; i < log->l_iclog_heads; i++)
1797 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1798 	}
1799 }
1800 
1801 /*
1802  * Calculate the checksum for a log buffer.
1803  *
1804  * This is a little more complicated than it should be because the various
1805  * headers and the actual data are non-contiguous.
1806  */
1807 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1808 xlog_cksum(
1809 	struct xlog		*log,
1810 	struct xlog_rec_header	*rhead,
1811 	char			*dp,
1812 	int			size)
1813 {
1814 	uint32_t		crc;
1815 
1816 	/* first generate the crc for the record header ... */
1817 	crc = xfs_start_cksum_update((char *)rhead,
1818 			      sizeof(struct xlog_rec_header),
1819 			      offsetof(struct xlog_rec_header, h_crc));
1820 
1821 	/* ... then for additional cycle data for v2 logs ... */
1822 	if (xfs_has_logv2(log->l_mp)) {
1823 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1824 		int		i;
1825 		int		xheads;
1826 
1827 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1828 
1829 		for (i = 1; i < xheads; i++) {
1830 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1831 				     sizeof(struct xlog_rec_ext_header));
1832 		}
1833 	}
1834 
1835 	/* ... and finally for the payload */
1836 	crc = crc32c(crc, dp, size);
1837 
1838 	return xfs_end_cksum(crc);
1839 }
1840 
1841 static void
xlog_bio_end_io(struct bio * bio)1842 xlog_bio_end_io(
1843 	struct bio		*bio)
1844 {
1845 	struct xlog_in_core	*iclog = bio->bi_private;
1846 
1847 	queue_work(iclog->ic_log->l_ioend_workqueue,
1848 		   &iclog->ic_end_io_work);
1849 }
1850 
1851 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1852 xlog_map_iclog_data(
1853 	struct bio		*bio,
1854 	void			*data,
1855 	size_t			count)
1856 {
1857 	do {
1858 		struct page	*page = kmem_to_page(data);
1859 		unsigned int	off = offset_in_page(data);
1860 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1861 
1862 		if (bio_add_page(bio, page, len, off) != len)
1863 			return -EIO;
1864 
1865 		data += len;
1866 		count -= len;
1867 	} while (count);
1868 
1869 	return 0;
1870 }
1871 
1872 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count)1873 xlog_write_iclog(
1874 	struct xlog		*log,
1875 	struct xlog_in_core	*iclog,
1876 	uint64_t		bno,
1877 	unsigned int		count)
1878 {
1879 	ASSERT(bno < log->l_logBBsize);
1880 	trace_xlog_iclog_write(iclog, _RET_IP_);
1881 
1882 	/*
1883 	 * We lock the iclogbufs here so that we can serialise against I/O
1884 	 * completion during unmount.  We might be processing a shutdown
1885 	 * triggered during unmount, and that can occur asynchronously to the
1886 	 * unmount thread, and hence we need to ensure that completes before
1887 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1888 	 * across the log IO to archieve that.
1889 	 */
1890 	down(&iclog->ic_sema);
1891 	if (xlog_is_shutdown(log)) {
1892 		/*
1893 		 * It would seem logical to return EIO here, but we rely on
1894 		 * the log state machine to propagate I/O errors instead of
1895 		 * doing it here.  We kick of the state machine and unlock
1896 		 * the buffer manually, the code needs to be kept in sync
1897 		 * with the I/O completion path.
1898 		 */
1899 		xlog_state_done_syncing(iclog);
1900 		up(&iclog->ic_sema);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1906 	 * IOs coming immediately after this one. This prevents the block layer
1907 	 * writeback throttle from throttling log writes behind background
1908 	 * metadata writeback and causing priority inversions.
1909 	 */
1910 	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1911 		 howmany(count, PAGE_SIZE),
1912 		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1913 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1914 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1915 	iclog->ic_bio.bi_private = iclog;
1916 
1917 	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1918 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1919 		/*
1920 		 * For external log devices, we also need to flush the data
1921 		 * device cache first to ensure all metadata writeback covered
1922 		 * by the LSN in this iclog is on stable storage. This is slow,
1923 		 * but it *must* complete before we issue the external log IO.
1924 		 */
1925 		if (log->l_targ != log->l_mp->m_ddev_targp)
1926 			blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1927 	}
1928 	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1929 		iclog->ic_bio.bi_opf |= REQ_FUA;
1930 
1931 	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1932 
1933 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1934 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1935 		return;
1936 	}
1937 	if (is_vmalloc_addr(iclog->ic_data))
1938 		flush_kernel_vmap_range(iclog->ic_data, count);
1939 
1940 	/*
1941 	 * If this log buffer would straddle the end of the log we will have
1942 	 * to split it up into two bios, so that we can continue at the start.
1943 	 */
1944 	if (bno + BTOBB(count) > log->l_logBBsize) {
1945 		struct bio *split;
1946 
1947 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1948 				  GFP_NOIO, &fs_bio_set);
1949 		bio_chain(split, &iclog->ic_bio);
1950 		submit_bio(split);
1951 
1952 		/* restart at logical offset zero for the remainder */
1953 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1954 	}
1955 
1956 	submit_bio(&iclog->ic_bio);
1957 }
1958 
1959 /*
1960  * We need to bump cycle number for the part of the iclog that is
1961  * written to the start of the log. Watch out for the header magic
1962  * number case, though.
1963  */
1964 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1965 xlog_split_iclog(
1966 	struct xlog		*log,
1967 	void			*data,
1968 	uint64_t		bno,
1969 	unsigned int		count)
1970 {
1971 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1972 	unsigned int		i;
1973 
1974 	for (i = split_offset; i < count; i += BBSIZE) {
1975 		uint32_t cycle = get_unaligned_be32(data + i);
1976 
1977 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1978 			cycle++;
1979 		put_unaligned_be32(cycle, data + i);
1980 	}
1981 }
1982 
1983 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1984 xlog_calc_iclog_size(
1985 	struct xlog		*log,
1986 	struct xlog_in_core	*iclog,
1987 	uint32_t		*roundoff)
1988 {
1989 	uint32_t		count_init, count;
1990 
1991 	/* Add for LR header */
1992 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1993 	count = roundup(count_init, log->l_iclog_roundoff);
1994 
1995 	*roundoff = count - count_init;
1996 
1997 	ASSERT(count >= count_init);
1998 	ASSERT(*roundoff < log->l_iclog_roundoff);
1999 	return count;
2000 }
2001 
2002 /*
2003  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2004  * fashion.  Previously, we should have moved the current iclog
2005  * ptr in the log to point to the next available iclog.  This allows further
2006  * write to continue while this code syncs out an iclog ready to go.
2007  * Before an in-core log can be written out, the data section must be scanned
2008  * to save away the 1st word of each BBSIZE block into the header.  We replace
2009  * it with the current cycle count.  Each BBSIZE block is tagged with the
2010  * cycle count because there in an implicit assumption that drives will
2011  * guarantee that entire 512 byte blocks get written at once.  In other words,
2012  * we can't have part of a 512 byte block written and part not written.  By
2013  * tagging each block, we will know which blocks are valid when recovering
2014  * after an unclean shutdown.
2015  *
2016  * This routine is single threaded on the iclog.  No other thread can be in
2017  * this routine with the same iclog.  Changing contents of iclog can there-
2018  * fore be done without grabbing the state machine lock.  Updating the global
2019  * log will require grabbing the lock though.
2020  *
2021  * The entire log manager uses a logical block numbering scheme.  Only
2022  * xlog_write_iclog knows about the fact that the log may not start with
2023  * block zero on a given device.
2024  */
2025 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)2026 xlog_sync(
2027 	struct xlog		*log,
2028 	struct xlog_in_core	*iclog)
2029 {
2030 	unsigned int		count;		/* byte count of bwrite */
2031 	unsigned int		roundoff;       /* roundoff to BB or stripe */
2032 	uint64_t		bno;
2033 	unsigned int		size;
2034 
2035 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2036 	trace_xlog_iclog_sync(iclog, _RET_IP_);
2037 
2038 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2039 
2040 	/* move grant heads by roundoff in sync */
2041 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2042 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2043 
2044 	/* put cycle number in every block */
2045 	xlog_pack_data(log, iclog, roundoff);
2046 
2047 	/* real byte length */
2048 	size = iclog->ic_offset;
2049 	if (xfs_has_logv2(log->l_mp))
2050 		size += roundoff;
2051 	iclog->ic_header.h_len = cpu_to_be32(size);
2052 
2053 	XFS_STATS_INC(log->l_mp, xs_log_writes);
2054 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2055 
2056 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2057 
2058 	/* Do we need to split this write into 2 parts? */
2059 	if (bno + BTOBB(count) > log->l_logBBsize)
2060 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2061 
2062 	/* calculcate the checksum */
2063 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2064 					    iclog->ic_datap, size);
2065 	/*
2066 	 * Intentionally corrupt the log record CRC based on the error injection
2067 	 * frequency, if defined. This facilitates testing log recovery in the
2068 	 * event of torn writes. Hence, set the IOABORT state to abort the log
2069 	 * write on I/O completion and shutdown the fs. The subsequent mount
2070 	 * detects the bad CRC and attempts to recover.
2071 	 */
2072 #ifdef DEBUG
2073 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2074 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2075 		iclog->ic_fail_crc = true;
2076 		xfs_warn(log->l_mp,
2077 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2078 			 be64_to_cpu(iclog->ic_header.h_lsn));
2079 	}
2080 #endif
2081 	xlog_verify_iclog(log, iclog, count);
2082 	xlog_write_iclog(log, iclog, bno, count);
2083 }
2084 
2085 /*
2086  * Deallocate a log structure
2087  */
2088 STATIC void
xlog_dealloc_log(struct xlog * log)2089 xlog_dealloc_log(
2090 	struct xlog	*log)
2091 {
2092 	xlog_in_core_t	*iclog, *next_iclog;
2093 	int		i;
2094 
2095 	/*
2096 	 * Cycle all the iclogbuf locks to make sure all log IO completion
2097 	 * is done before we tear down these buffers.
2098 	 */
2099 	iclog = log->l_iclog;
2100 	for (i = 0; i < log->l_iclog_bufs; i++) {
2101 		down(&iclog->ic_sema);
2102 		up(&iclog->ic_sema);
2103 		iclog = iclog->ic_next;
2104 	}
2105 
2106 	/*
2107 	 * Destroy the CIL after waiting for iclog IO completion because an
2108 	 * iclog EIO error will try to shut down the log, which accesses the
2109 	 * CIL to wake up the waiters.
2110 	 */
2111 	xlog_cil_destroy(log);
2112 
2113 	iclog = log->l_iclog;
2114 	for (i = 0; i < log->l_iclog_bufs; i++) {
2115 		next_iclog = iclog->ic_next;
2116 		kmem_free(iclog->ic_data);
2117 		kmem_free(iclog);
2118 		iclog = next_iclog;
2119 	}
2120 
2121 	log->l_mp->m_log = NULL;
2122 	destroy_workqueue(log->l_ioend_workqueue);
2123 	kmem_free(log);
2124 }
2125 
2126 /*
2127  * Update counters atomically now that memcpy is done.
2128  */
2129 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2130 xlog_state_finish_copy(
2131 	struct xlog		*log,
2132 	struct xlog_in_core	*iclog,
2133 	int			record_cnt,
2134 	int			copy_bytes)
2135 {
2136 	lockdep_assert_held(&log->l_icloglock);
2137 
2138 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2139 	iclog->ic_offset += copy_bytes;
2140 }
2141 
2142 /*
2143  * print out info relating to regions written which consume
2144  * the reservation
2145  */
2146 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2147 xlog_print_tic_res(
2148 	struct xfs_mount	*mp,
2149 	struct xlog_ticket	*ticket)
2150 {
2151 	xfs_warn(mp, "ticket reservation summary:");
2152 	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2153 	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2154 	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2155 	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2156 }
2157 
2158 /*
2159  * Print a summary of the transaction.
2160  */
2161 void
xlog_print_trans(struct xfs_trans * tp)2162 xlog_print_trans(
2163 	struct xfs_trans	*tp)
2164 {
2165 	struct xfs_mount	*mp = tp->t_mountp;
2166 	struct xfs_log_item	*lip;
2167 
2168 	/* dump core transaction and ticket info */
2169 	xfs_warn(mp, "transaction summary:");
2170 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2171 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2172 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2173 
2174 	xlog_print_tic_res(mp, tp->t_ticket);
2175 
2176 	/* dump each log item */
2177 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2178 		struct xfs_log_vec	*lv = lip->li_lv;
2179 		struct xfs_log_iovec	*vec;
2180 		int			i;
2181 
2182 		xfs_warn(mp, "log item: ");
2183 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2184 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2185 		if (!lv)
2186 			continue;
2187 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2188 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2189 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2190 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2191 
2192 		/* dump each iovec for the log item */
2193 		vec = lv->lv_iovecp;
2194 		for (i = 0; i < lv->lv_niovecs; i++) {
2195 			int dumplen = min(vec->i_len, 32);
2196 
2197 			xfs_warn(mp, "  iovec[%d]", i);
2198 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2199 			xfs_warn(mp, "    len	= %d", vec->i_len);
2200 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2201 			xfs_hex_dump(vec->i_addr, dumplen);
2202 
2203 			vec++;
2204 		}
2205 	}
2206 }
2207 
2208 static inline void
xlog_write_iovec(struct xlog_in_core * iclog,uint32_t * log_offset,void * data,uint32_t write_len,int * bytes_left,uint32_t * record_cnt,uint32_t * data_cnt)2209 xlog_write_iovec(
2210 	struct xlog_in_core	*iclog,
2211 	uint32_t		*log_offset,
2212 	void			*data,
2213 	uint32_t		write_len,
2214 	int			*bytes_left,
2215 	uint32_t		*record_cnt,
2216 	uint32_t		*data_cnt)
2217 {
2218 	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2219 	ASSERT(*log_offset % sizeof(int32_t) == 0);
2220 	ASSERT(write_len % sizeof(int32_t) == 0);
2221 
2222 	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2223 	*log_offset += write_len;
2224 	*bytes_left -= write_len;
2225 	(*record_cnt)++;
2226 	*data_cnt += write_len;
2227 }
2228 
2229 /*
2230  * Write log vectors into a single iclog which is guaranteed by the caller
2231  * to have enough space to write the entire log vector into.
2232  */
2233 static void
xlog_write_full(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core * iclog,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2234 xlog_write_full(
2235 	struct xfs_log_vec	*lv,
2236 	struct xlog_ticket	*ticket,
2237 	struct xlog_in_core	*iclog,
2238 	uint32_t		*log_offset,
2239 	uint32_t		*len,
2240 	uint32_t		*record_cnt,
2241 	uint32_t		*data_cnt)
2242 {
2243 	int			index;
2244 
2245 	ASSERT(*log_offset + *len <= iclog->ic_size ||
2246 		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2247 
2248 	/*
2249 	 * Ordered log vectors have no regions to write so this
2250 	 * loop will naturally skip them.
2251 	 */
2252 	for (index = 0; index < lv->lv_niovecs; index++) {
2253 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2254 		struct xlog_op_header	*ophdr = reg->i_addr;
2255 
2256 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2257 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2258 				reg->i_len, len, record_cnt, data_cnt);
2259 	}
2260 }
2261 
2262 static int
xlog_write_get_more_iclog_space(struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t len,uint32_t * record_cnt,uint32_t * data_cnt)2263 xlog_write_get_more_iclog_space(
2264 	struct xlog_ticket	*ticket,
2265 	struct xlog_in_core	**iclogp,
2266 	uint32_t		*log_offset,
2267 	uint32_t		len,
2268 	uint32_t		*record_cnt,
2269 	uint32_t		*data_cnt)
2270 {
2271 	struct xlog_in_core	*iclog = *iclogp;
2272 	struct xlog		*log = iclog->ic_log;
2273 	int			error;
2274 
2275 	spin_lock(&log->l_icloglock);
2276 	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2277 	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2278 	error = xlog_state_release_iclog(log, iclog);
2279 	spin_unlock(&log->l_icloglock);
2280 	if (error)
2281 		return error;
2282 
2283 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2284 					log_offset);
2285 	if (error)
2286 		return error;
2287 	*record_cnt = 0;
2288 	*data_cnt = 0;
2289 	*iclogp = iclog;
2290 	return 0;
2291 }
2292 
2293 /*
2294  * Write log vectors into a single iclog which is smaller than the current chain
2295  * length. We write until we cannot fit a full record into the remaining space
2296  * and then stop. We return the log vector that is to be written that cannot
2297  * wholly fit in the iclog.
2298  */
2299 static int
xlog_write_partial(struct xfs_log_vec * lv,struct xlog_ticket * ticket,struct xlog_in_core ** iclogp,uint32_t * log_offset,uint32_t * len,uint32_t * record_cnt,uint32_t * data_cnt)2300 xlog_write_partial(
2301 	struct xfs_log_vec	*lv,
2302 	struct xlog_ticket	*ticket,
2303 	struct xlog_in_core	**iclogp,
2304 	uint32_t		*log_offset,
2305 	uint32_t		*len,
2306 	uint32_t		*record_cnt,
2307 	uint32_t		*data_cnt)
2308 {
2309 	struct xlog_in_core	*iclog = *iclogp;
2310 	struct xlog_op_header	*ophdr;
2311 	int			index = 0;
2312 	uint32_t		rlen;
2313 	int			error;
2314 
2315 	/* walk the logvec, copying until we run out of space in the iclog */
2316 	for (index = 0; index < lv->lv_niovecs; index++) {
2317 		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2318 		uint32_t		reg_offset = 0;
2319 
2320 		/*
2321 		 * The first region of a continuation must have a non-zero
2322 		 * length otherwise log recovery will just skip over it and
2323 		 * start recovering from the next opheader it finds. Because we
2324 		 * mark the next opheader as a continuation, recovery will then
2325 		 * incorrectly add the continuation to the previous region and
2326 		 * that breaks stuff.
2327 		 *
2328 		 * Hence if there isn't space for region data after the
2329 		 * opheader, then we need to start afresh with a new iclog.
2330 		 */
2331 		if (iclog->ic_size - *log_offset <=
2332 					sizeof(struct xlog_op_header)) {
2333 			error = xlog_write_get_more_iclog_space(ticket,
2334 					&iclog, log_offset, *len, record_cnt,
2335 					data_cnt);
2336 			if (error)
2337 				return error;
2338 		}
2339 
2340 		ophdr = reg->i_addr;
2341 		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2342 
2343 		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2344 		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2345 		if (rlen != reg->i_len)
2346 			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2347 
2348 		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2349 				rlen, len, record_cnt, data_cnt);
2350 
2351 		/* If we wrote the whole region, move to the next. */
2352 		if (rlen == reg->i_len)
2353 			continue;
2354 
2355 		/*
2356 		 * We now have a partially written iovec, but it can span
2357 		 * multiple iclogs so we loop here. First we release the iclog
2358 		 * we currently have, then we get a new iclog and add a new
2359 		 * opheader. Then we continue copying from where we were until
2360 		 * we either complete the iovec or fill the iclog. If we
2361 		 * complete the iovec, then we increment the index and go right
2362 		 * back to the top of the outer loop. if we fill the iclog, we
2363 		 * run the inner loop again.
2364 		 *
2365 		 * This is complicated by the tail of a region using all the
2366 		 * space in an iclog and hence requiring us to release the iclog
2367 		 * and get a new one before returning to the outer loop. We must
2368 		 * always guarantee that we exit this inner loop with at least
2369 		 * space for log transaction opheaders left in the current
2370 		 * iclog, hence we cannot just terminate the loop at the end
2371 		 * of the of the continuation. So we loop while there is no
2372 		 * space left in the current iclog, and check for the end of the
2373 		 * continuation after getting a new iclog.
2374 		 */
2375 		do {
2376 			/*
2377 			 * Ensure we include the continuation opheader in the
2378 			 * space we need in the new iclog by adding that size
2379 			 * to the length we require. This continuation opheader
2380 			 * needs to be accounted to the ticket as the space it
2381 			 * consumes hasn't been accounted to the lv we are
2382 			 * writing.
2383 			 */
2384 			error = xlog_write_get_more_iclog_space(ticket,
2385 					&iclog, log_offset,
2386 					*len + sizeof(struct xlog_op_header),
2387 					record_cnt, data_cnt);
2388 			if (error)
2389 				return error;
2390 
2391 			ophdr = iclog->ic_datap + *log_offset;
2392 			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2393 			ophdr->oh_clientid = XFS_TRANSACTION;
2394 			ophdr->oh_res2 = 0;
2395 			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2396 
2397 			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2398 			*log_offset += sizeof(struct xlog_op_header);
2399 			*data_cnt += sizeof(struct xlog_op_header);
2400 
2401 			/*
2402 			 * If rlen fits in the iclog, then end the region
2403 			 * continuation. Otherwise we're going around again.
2404 			 */
2405 			reg_offset += rlen;
2406 			rlen = reg->i_len - reg_offset;
2407 			if (rlen <= iclog->ic_size - *log_offset)
2408 				ophdr->oh_flags |= XLOG_END_TRANS;
2409 			else
2410 				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2411 
2412 			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2413 			ophdr->oh_len = cpu_to_be32(rlen);
2414 
2415 			xlog_write_iovec(iclog, log_offset,
2416 					reg->i_addr + reg_offset,
2417 					rlen, len, record_cnt, data_cnt);
2418 
2419 		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2420 	}
2421 
2422 	/*
2423 	 * No more iovecs remain in this logvec so return the next log vec to
2424 	 * the caller so it can go back to fast path copying.
2425 	 */
2426 	*iclogp = iclog;
2427 	return 0;
2428 }
2429 
2430 /*
2431  * Write some region out to in-core log
2432  *
2433  * This will be called when writing externally provided regions or when
2434  * writing out a commit record for a given transaction.
2435  *
2436  * General algorithm:
2437  *	1. Find total length of this write.  This may include adding to the
2438  *		lengths passed in.
2439  *	2. Check whether we violate the tickets reservation.
2440  *	3. While writing to this iclog
2441  *	    A. Reserve as much space in this iclog as can get
2442  *	    B. If this is first write, save away start lsn
2443  *	    C. While writing this region:
2444  *		1. If first write of transaction, write start record
2445  *		2. Write log operation header (header per region)
2446  *		3. Find out if we can fit entire region into this iclog
2447  *		4. Potentially, verify destination memcpy ptr
2448  *		5. Memcpy (partial) region
2449  *		6. If partial copy, release iclog; otherwise, continue
2450  *			copying more regions into current iclog
2451  *	4. Mark want sync bit (in simulation mode)
2452  *	5. Release iclog for potential flush to on-disk log.
2453  *
2454  * ERRORS:
2455  * 1.	Panic if reservation is overrun.  This should never happen since
2456  *	reservation amounts are generated internal to the filesystem.
2457  * NOTES:
2458  * 1. Tickets are single threaded data structures.
2459  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2460  *	syncing routine.  When a single log_write region needs to span
2461  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2462  *	on all log operation writes which don't contain the end of the
2463  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2464  *	operation which contains the end of the continued log_write region.
2465  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2466  *	we don't really know exactly how much space will be used.  As a result,
2467  *	we don't update ic_offset until the end when we know exactly how many
2468  *	bytes have been written out.
2469  */
2470 int
xlog_write(struct xlog * log,struct xfs_cil_ctx * ctx,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,uint32_t len)2471 xlog_write(
2472 	struct xlog		*log,
2473 	struct xfs_cil_ctx	*ctx,
2474 	struct xfs_log_vec	*log_vector,
2475 	struct xlog_ticket	*ticket,
2476 	uint32_t		len)
2477 
2478 {
2479 	struct xlog_in_core	*iclog = NULL;
2480 	struct xfs_log_vec	*lv = log_vector;
2481 	uint32_t		record_cnt = 0;
2482 	uint32_t		data_cnt = 0;
2483 	int			error = 0;
2484 	int			log_offset;
2485 
2486 	if (ticket->t_curr_res < 0) {
2487 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2488 		     "ctx ticket reservation ran out. Need to up reservation");
2489 		xlog_print_tic_res(log->l_mp, ticket);
2490 		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2491 	}
2492 
2493 	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2494 					   &log_offset);
2495 	if (error)
2496 		return error;
2497 
2498 	ASSERT(log_offset <= iclog->ic_size - 1);
2499 
2500 	/*
2501 	 * If we have a context pointer, pass it the first iclog we are
2502 	 * writing to so it can record state needed for iclog write
2503 	 * ordering.
2504 	 */
2505 	if (ctx)
2506 		xlog_cil_set_ctx_write_state(ctx, iclog);
2507 
2508 	while (lv) {
2509 		/*
2510 		 * If the entire log vec does not fit in the iclog, punt it to
2511 		 * the partial copy loop which can handle this case.
2512 		 */
2513 		if (lv->lv_niovecs &&
2514 		    lv->lv_bytes > iclog->ic_size - log_offset) {
2515 			error = xlog_write_partial(lv, ticket, &iclog,
2516 					&log_offset, &len, &record_cnt,
2517 					&data_cnt);
2518 			if (error) {
2519 				/*
2520 				 * We have no iclog to release, so just return
2521 				 * the error immediately.
2522 				 */
2523 				return error;
2524 			}
2525 		} else {
2526 			xlog_write_full(lv, ticket, iclog, &log_offset,
2527 					 &len, &record_cnt, &data_cnt);
2528 		}
2529 		lv = lv->lv_next;
2530 	}
2531 	ASSERT(len == 0);
2532 
2533 	/*
2534 	 * We've already been guaranteed that the last writes will fit inside
2535 	 * the current iclog, and hence it will already have the space used by
2536 	 * those writes accounted to it. Hence we do not need to update the
2537 	 * iclog with the number of bytes written here.
2538 	 */
2539 	spin_lock(&log->l_icloglock);
2540 	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2541 	error = xlog_state_release_iclog(log, iclog);
2542 	spin_unlock(&log->l_icloglock);
2543 
2544 	return error;
2545 }
2546 
2547 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2548 xlog_state_activate_iclog(
2549 	struct xlog_in_core	*iclog,
2550 	int			*iclogs_changed)
2551 {
2552 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2553 	trace_xlog_iclog_activate(iclog, _RET_IP_);
2554 
2555 	/*
2556 	 * If the number of ops in this iclog indicate it just contains the
2557 	 * dummy transaction, we can change state into IDLE (the second time
2558 	 * around). Otherwise we should change the state into NEED a dummy.
2559 	 * We don't need to cover the dummy.
2560 	 */
2561 	if (*iclogs_changed == 0 &&
2562 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2563 		*iclogs_changed = 1;
2564 	} else {
2565 		/*
2566 		 * We have two dirty iclogs so start over.  This could also be
2567 		 * num of ops indicating this is not the dummy going out.
2568 		 */
2569 		*iclogs_changed = 2;
2570 	}
2571 
2572 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2573 	iclog->ic_offset = 0;
2574 	iclog->ic_header.h_num_logops = 0;
2575 	memset(iclog->ic_header.h_cycle_data, 0,
2576 		sizeof(iclog->ic_header.h_cycle_data));
2577 	iclog->ic_header.h_lsn = 0;
2578 	iclog->ic_header.h_tail_lsn = 0;
2579 }
2580 
2581 /*
2582  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2583  * ACTIVE after iclog I/O has completed.
2584  */
2585 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2586 xlog_state_activate_iclogs(
2587 	struct xlog		*log,
2588 	int			*iclogs_changed)
2589 {
2590 	struct xlog_in_core	*iclog = log->l_iclog;
2591 
2592 	do {
2593 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2594 			xlog_state_activate_iclog(iclog, iclogs_changed);
2595 		/*
2596 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2597 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2598 		 */
2599 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2600 			break;
2601 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2602 }
2603 
2604 static int
xlog_covered_state(int prev_state,int iclogs_changed)2605 xlog_covered_state(
2606 	int			prev_state,
2607 	int			iclogs_changed)
2608 {
2609 	/*
2610 	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2611 	 * wrote the first covering record (DONE). We go to IDLE if we just
2612 	 * wrote the second covering record (DONE2) and remain in IDLE until a
2613 	 * non-covering write occurs.
2614 	 */
2615 	switch (prev_state) {
2616 	case XLOG_STATE_COVER_IDLE:
2617 		if (iclogs_changed == 1)
2618 			return XLOG_STATE_COVER_IDLE;
2619 		fallthrough;
2620 	case XLOG_STATE_COVER_NEED:
2621 	case XLOG_STATE_COVER_NEED2:
2622 		break;
2623 	case XLOG_STATE_COVER_DONE:
2624 		if (iclogs_changed == 1)
2625 			return XLOG_STATE_COVER_NEED2;
2626 		break;
2627 	case XLOG_STATE_COVER_DONE2:
2628 		if (iclogs_changed == 1)
2629 			return XLOG_STATE_COVER_IDLE;
2630 		break;
2631 	default:
2632 		ASSERT(0);
2633 	}
2634 
2635 	return XLOG_STATE_COVER_NEED;
2636 }
2637 
2638 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2639 xlog_state_clean_iclog(
2640 	struct xlog		*log,
2641 	struct xlog_in_core	*dirty_iclog)
2642 {
2643 	int			iclogs_changed = 0;
2644 
2645 	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2646 
2647 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2648 
2649 	xlog_state_activate_iclogs(log, &iclogs_changed);
2650 	wake_up_all(&dirty_iclog->ic_force_wait);
2651 
2652 	if (iclogs_changed) {
2653 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2654 				iclogs_changed);
2655 	}
2656 }
2657 
2658 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2659 xlog_get_lowest_lsn(
2660 	struct xlog		*log)
2661 {
2662 	struct xlog_in_core	*iclog = log->l_iclog;
2663 	xfs_lsn_t		lowest_lsn = 0, lsn;
2664 
2665 	do {
2666 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2667 		    iclog->ic_state == XLOG_STATE_DIRTY)
2668 			continue;
2669 
2670 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2671 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2672 			lowest_lsn = lsn;
2673 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2674 
2675 	return lowest_lsn;
2676 }
2677 
2678 /*
2679  * Completion of a iclog IO does not imply that a transaction has completed, as
2680  * transactions can be large enough to span many iclogs. We cannot change the
2681  * tail of the log half way through a transaction as this may be the only
2682  * transaction in the log and moving the tail to point to the middle of it
2683  * will prevent recovery from finding the start of the transaction. Hence we
2684  * should only update the last_sync_lsn if this iclog contains transaction
2685  * completion callbacks on it.
2686  *
2687  * We have to do this before we drop the icloglock to ensure we are the only one
2688  * that can update it.
2689  *
2690  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2691  * the reservation grant head pushing. This is due to the fact that the push
2692  * target is bound by the current last_sync_lsn value. Hence if we have a large
2693  * amount of log space bound up in this committing transaction then the
2694  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2695  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2696  * should push the AIL to ensure the push target (and hence the grant head) is
2697  * no longer bound by the old log head location and can move forwards and make
2698  * progress again.
2699  */
2700 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2701 xlog_state_set_callback(
2702 	struct xlog		*log,
2703 	struct xlog_in_core	*iclog,
2704 	xfs_lsn_t		header_lsn)
2705 {
2706 	trace_xlog_iclog_callback(iclog, _RET_IP_);
2707 	iclog->ic_state = XLOG_STATE_CALLBACK;
2708 
2709 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2710 			   header_lsn) <= 0);
2711 
2712 	if (list_empty_careful(&iclog->ic_callbacks))
2713 		return;
2714 
2715 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2716 	xlog_grant_push_ail(log, 0);
2717 }
2718 
2719 /*
2720  * Return true if we need to stop processing, false to continue to the next
2721  * iclog. The caller will need to run callbacks if the iclog is returned in the
2722  * XLOG_STATE_CALLBACK state.
2723  */
2724 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog)2725 xlog_state_iodone_process_iclog(
2726 	struct xlog		*log,
2727 	struct xlog_in_core	*iclog)
2728 {
2729 	xfs_lsn_t		lowest_lsn;
2730 	xfs_lsn_t		header_lsn;
2731 
2732 	switch (iclog->ic_state) {
2733 	case XLOG_STATE_ACTIVE:
2734 	case XLOG_STATE_DIRTY:
2735 		/*
2736 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2737 		 */
2738 		return false;
2739 	case XLOG_STATE_DONE_SYNC:
2740 		/*
2741 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2742 		 * one more check here to see if we have chased our tail around.
2743 		 * If this is not the lowest lsn iclog, then we will leave it
2744 		 * for another completion to process.
2745 		 */
2746 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2747 		lowest_lsn = xlog_get_lowest_lsn(log);
2748 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2749 			return false;
2750 		xlog_state_set_callback(log, iclog, header_lsn);
2751 		return false;
2752 	default:
2753 		/*
2754 		 * Can only perform callbacks in order.  Since this iclog is not
2755 		 * in the DONE_SYNC state, we skip the rest and just try to
2756 		 * clean up.
2757 		 */
2758 		return true;
2759 	}
2760 }
2761 
2762 /*
2763  * Loop over all the iclogs, running attached callbacks on them. Return true if
2764  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2765  * to handle transient shutdown state here at all because
2766  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2767  * cleanup of the callbacks.
2768  */
2769 static bool
xlog_state_do_iclog_callbacks(struct xlog * log)2770 xlog_state_do_iclog_callbacks(
2771 	struct xlog		*log)
2772 		__releases(&log->l_icloglock)
2773 		__acquires(&log->l_icloglock)
2774 {
2775 	struct xlog_in_core	*first_iclog = log->l_iclog;
2776 	struct xlog_in_core	*iclog = first_iclog;
2777 	bool			ran_callback = false;
2778 
2779 	do {
2780 		LIST_HEAD(cb_list);
2781 
2782 		if (xlog_state_iodone_process_iclog(log, iclog))
2783 			break;
2784 		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2785 			iclog = iclog->ic_next;
2786 			continue;
2787 		}
2788 		list_splice_init(&iclog->ic_callbacks, &cb_list);
2789 		spin_unlock(&log->l_icloglock);
2790 
2791 		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2792 		xlog_cil_process_committed(&cb_list);
2793 		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2794 		ran_callback = true;
2795 
2796 		spin_lock(&log->l_icloglock);
2797 		xlog_state_clean_iclog(log, iclog);
2798 		iclog = iclog->ic_next;
2799 	} while (iclog != first_iclog);
2800 
2801 	return ran_callback;
2802 }
2803 
2804 
2805 /*
2806  * Loop running iclog completion callbacks until there are no more iclogs in a
2807  * state that can run callbacks.
2808  */
2809 STATIC void
xlog_state_do_callback(struct xlog * log)2810 xlog_state_do_callback(
2811 	struct xlog		*log)
2812 {
2813 	int			flushcnt = 0;
2814 	int			repeats = 0;
2815 
2816 	spin_lock(&log->l_icloglock);
2817 	while (xlog_state_do_iclog_callbacks(log)) {
2818 		if (xlog_is_shutdown(log))
2819 			break;
2820 
2821 		if (++repeats > 5000) {
2822 			flushcnt += repeats;
2823 			repeats = 0;
2824 			xfs_warn(log->l_mp,
2825 				"%s: possible infinite loop (%d iterations)",
2826 				__func__, flushcnt);
2827 		}
2828 	}
2829 
2830 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2831 		wake_up_all(&log->l_flush_wait);
2832 
2833 	spin_unlock(&log->l_icloglock);
2834 }
2835 
2836 
2837 /*
2838  * Finish transitioning this iclog to the dirty state.
2839  *
2840  * Callbacks could take time, so they are done outside the scope of the
2841  * global state machine log lock.
2842  */
2843 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2844 xlog_state_done_syncing(
2845 	struct xlog_in_core	*iclog)
2846 {
2847 	struct xlog		*log = iclog->ic_log;
2848 
2849 	spin_lock(&log->l_icloglock);
2850 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2851 	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2852 
2853 	/*
2854 	 * If we got an error, either on the first buffer, or in the case of
2855 	 * split log writes, on the second, we shut down the file system and
2856 	 * no iclogs should ever be attempted to be written to disk again.
2857 	 */
2858 	if (!xlog_is_shutdown(log)) {
2859 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2860 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2861 	}
2862 
2863 	/*
2864 	 * Someone could be sleeping prior to writing out the next
2865 	 * iclog buffer, we wake them all, one will get to do the
2866 	 * I/O, the others get to wait for the result.
2867 	 */
2868 	wake_up_all(&iclog->ic_write_wait);
2869 	spin_unlock(&log->l_icloglock);
2870 	xlog_state_do_callback(log);
2871 }
2872 
2873 /*
2874  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2875  * sleep.  We wait on the flush queue on the head iclog as that should be
2876  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2877  * we will wait here and all new writes will sleep until a sync completes.
2878  *
2879  * The in-core logs are used in a circular fashion. They are not used
2880  * out-of-order even when an iclog past the head is free.
2881  *
2882  * return:
2883  *	* log_offset where xlog_write() can start writing into the in-core
2884  *		log's data space.
2885  *	* in-core log pointer to which xlog_write() should write.
2886  *	* boolean indicating this is a continued write to an in-core log.
2887  *		If this is the last write, then the in-core log's offset field
2888  *		needs to be incremented, depending on the amount of data which
2889  *		is copied.
2890  */
2891 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * logoffsetp)2892 xlog_state_get_iclog_space(
2893 	struct xlog		*log,
2894 	int			len,
2895 	struct xlog_in_core	**iclogp,
2896 	struct xlog_ticket	*ticket,
2897 	int			*logoffsetp)
2898 {
2899 	int		  log_offset;
2900 	xlog_rec_header_t *head;
2901 	xlog_in_core_t	  *iclog;
2902 
2903 restart:
2904 	spin_lock(&log->l_icloglock);
2905 	if (xlog_is_shutdown(log)) {
2906 		spin_unlock(&log->l_icloglock);
2907 		return -EIO;
2908 	}
2909 
2910 	iclog = log->l_iclog;
2911 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2912 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2913 
2914 		/* Wait for log writes to have flushed */
2915 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2916 		goto restart;
2917 	}
2918 
2919 	head = &iclog->ic_header;
2920 
2921 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2922 	log_offset = iclog->ic_offset;
2923 
2924 	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2925 
2926 	/* On the 1st write to an iclog, figure out lsn.  This works
2927 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2928 	 * committing to.  If the offset is set, that's how many blocks
2929 	 * must be written.
2930 	 */
2931 	if (log_offset == 0) {
2932 		ticket->t_curr_res -= log->l_iclog_hsize;
2933 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2934 		head->h_lsn = cpu_to_be64(
2935 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2936 		ASSERT(log->l_curr_block >= 0);
2937 	}
2938 
2939 	/* If there is enough room to write everything, then do it.  Otherwise,
2940 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2941 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2942 	 * until you know exactly how many bytes get copied.  Therefore, wait
2943 	 * until later to update ic_offset.
2944 	 *
2945 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2946 	 * can fit into remaining data section.
2947 	 */
2948 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2949 		int		error = 0;
2950 
2951 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2952 
2953 		/*
2954 		 * If we are the only one writing to this iclog, sync it to
2955 		 * disk.  We need to do an atomic compare and decrement here to
2956 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2957 		 * xlog_state_release_iclog() when there is more than one
2958 		 * reference to the iclog.
2959 		 */
2960 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2961 			error = xlog_state_release_iclog(log, iclog);
2962 		spin_unlock(&log->l_icloglock);
2963 		if (error)
2964 			return error;
2965 		goto restart;
2966 	}
2967 
2968 	/* Do we have enough room to write the full amount in the remainder
2969 	 * of this iclog?  Or must we continue a write on the next iclog and
2970 	 * mark this iclog as completely taken?  In the case where we switch
2971 	 * iclogs (to mark it taken), this particular iclog will release/sync
2972 	 * to disk in xlog_write().
2973 	 */
2974 	if (len <= iclog->ic_size - iclog->ic_offset)
2975 		iclog->ic_offset += len;
2976 	else
2977 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2978 	*iclogp = iclog;
2979 
2980 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2981 	spin_unlock(&log->l_icloglock);
2982 
2983 	*logoffsetp = log_offset;
2984 	return 0;
2985 }
2986 
2987 /*
2988  * The first cnt-1 times a ticket goes through here we don't need to move the
2989  * grant write head because the permanent reservation has reserved cnt times the
2990  * unit amount.  Release part of current permanent unit reservation and reset
2991  * current reservation to be one units worth.  Also move grant reservation head
2992  * forward.
2993  */
2994 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2995 xfs_log_ticket_regrant(
2996 	struct xlog		*log,
2997 	struct xlog_ticket	*ticket)
2998 {
2999 	trace_xfs_log_ticket_regrant(log, ticket);
3000 
3001 	if (ticket->t_cnt > 0)
3002 		ticket->t_cnt--;
3003 
3004 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3005 					ticket->t_curr_res);
3006 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3007 					ticket->t_curr_res);
3008 	ticket->t_curr_res = ticket->t_unit_res;
3009 
3010 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3011 
3012 	/* just return if we still have some of the pre-reserved space */
3013 	if (!ticket->t_cnt) {
3014 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3015 				     ticket->t_unit_res);
3016 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3017 
3018 		ticket->t_curr_res = ticket->t_unit_res;
3019 	}
3020 
3021 	xfs_log_ticket_put(ticket);
3022 }
3023 
3024 /*
3025  * Give back the space left from a reservation.
3026  *
3027  * All the information we need to make a correct determination of space left
3028  * is present.  For non-permanent reservations, things are quite easy.  The
3029  * count should have been decremented to zero.  We only need to deal with the
3030  * space remaining in the current reservation part of the ticket.  If the
3031  * ticket contains a permanent reservation, there may be left over space which
3032  * needs to be released.  A count of N means that N-1 refills of the current
3033  * reservation can be done before we need to ask for more space.  The first
3034  * one goes to fill up the first current reservation.  Once we run out of
3035  * space, the count will stay at zero and the only space remaining will be
3036  * in the current reservation field.
3037  */
3038 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3039 xfs_log_ticket_ungrant(
3040 	struct xlog		*log,
3041 	struct xlog_ticket	*ticket)
3042 {
3043 	int			bytes;
3044 
3045 	trace_xfs_log_ticket_ungrant(log, ticket);
3046 
3047 	if (ticket->t_cnt > 0)
3048 		ticket->t_cnt--;
3049 
3050 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3051 
3052 	/*
3053 	 * If this is a permanent reservation ticket, we may be able to free
3054 	 * up more space based on the remaining count.
3055 	 */
3056 	bytes = ticket->t_curr_res;
3057 	if (ticket->t_cnt > 0) {
3058 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3059 		bytes += ticket->t_unit_res*ticket->t_cnt;
3060 	}
3061 
3062 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3063 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3064 
3065 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3066 
3067 	xfs_log_space_wake(log->l_mp);
3068 	xfs_log_ticket_put(ticket);
3069 }
3070 
3071 /*
3072  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3073  * the current iclog pointer to the next iclog in the ring.
3074  */
3075 void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3076 xlog_state_switch_iclogs(
3077 	struct xlog		*log,
3078 	struct xlog_in_core	*iclog,
3079 	int			eventual_size)
3080 {
3081 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3082 	assert_spin_locked(&log->l_icloglock);
3083 	trace_xlog_iclog_switch(iclog, _RET_IP_);
3084 
3085 	if (!eventual_size)
3086 		eventual_size = iclog->ic_offset;
3087 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3088 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3089 	log->l_prev_block = log->l_curr_block;
3090 	log->l_prev_cycle = log->l_curr_cycle;
3091 
3092 	/* roll log?: ic_offset changed later */
3093 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3094 
3095 	/* Round up to next log-sunit */
3096 	if (log->l_iclog_roundoff > BBSIZE) {
3097 		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3098 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3099 	}
3100 
3101 	if (log->l_curr_block >= log->l_logBBsize) {
3102 		/*
3103 		 * Rewind the current block before the cycle is bumped to make
3104 		 * sure that the combined LSN never transiently moves forward
3105 		 * when the log wraps to the next cycle. This is to support the
3106 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3107 		 * other cases should acquire l_icloglock.
3108 		 */
3109 		log->l_curr_block -= log->l_logBBsize;
3110 		ASSERT(log->l_curr_block >= 0);
3111 		smp_wmb();
3112 		log->l_curr_cycle++;
3113 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3114 			log->l_curr_cycle++;
3115 	}
3116 	ASSERT(iclog == log->l_iclog);
3117 	log->l_iclog = iclog->ic_next;
3118 }
3119 
3120 /*
3121  * Force the iclog to disk and check if the iclog has been completed before
3122  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3123  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3124  * If completion has already occurred, tell the caller so that it can avoid an
3125  * unnecessary wait on the iclog.
3126  */
3127 static int
xlog_force_and_check_iclog(struct xlog_in_core * iclog,bool * completed)3128 xlog_force_and_check_iclog(
3129 	struct xlog_in_core	*iclog,
3130 	bool			*completed)
3131 {
3132 	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3133 	int			error;
3134 
3135 	*completed = false;
3136 	error = xlog_force_iclog(iclog);
3137 	if (error)
3138 		return error;
3139 
3140 	/*
3141 	 * If the iclog has already been completed and reused the header LSN
3142 	 * will have been rewritten by completion
3143 	 */
3144 	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3145 		*completed = true;
3146 	return 0;
3147 }
3148 
3149 /*
3150  * Write out all data in the in-core log as of this exact moment in time.
3151  *
3152  * Data may be written to the in-core log during this call.  However,
3153  * we don't guarantee this data will be written out.  A change from past
3154  * implementation means this routine will *not* write out zero length LRs.
3155  *
3156  * Basically, we try and perform an intelligent scan of the in-core logs.
3157  * If we determine there is no flushable data, we just return.  There is no
3158  * flushable data if:
3159  *
3160  *	1. the current iclog is active and has no data; the previous iclog
3161  *		is in the active or dirty state.
3162  *	2. the current iclog is drity, and the previous iclog is in the
3163  *		active or dirty state.
3164  *
3165  * We may sleep if:
3166  *
3167  *	1. the current iclog is not in the active nor dirty state.
3168  *	2. the current iclog dirty, and the previous iclog is not in the
3169  *		active nor dirty state.
3170  *	3. the current iclog is active, and there is another thread writing
3171  *		to this particular iclog.
3172  *	4. a) the current iclog is active and has no other writers
3173  *	   b) when we return from flushing out this iclog, it is still
3174  *		not in the active nor dirty state.
3175  */
3176 int
xfs_log_force(struct xfs_mount * mp,uint flags)3177 xfs_log_force(
3178 	struct xfs_mount	*mp,
3179 	uint			flags)
3180 {
3181 	struct xlog		*log = mp->m_log;
3182 	struct xlog_in_core	*iclog;
3183 
3184 	XFS_STATS_INC(mp, xs_log_force);
3185 	trace_xfs_log_force(mp, 0, _RET_IP_);
3186 
3187 	xlog_cil_force(log);
3188 
3189 	spin_lock(&log->l_icloglock);
3190 	if (xlog_is_shutdown(log))
3191 		goto out_error;
3192 
3193 	iclog = log->l_iclog;
3194 	trace_xlog_iclog_force(iclog, _RET_IP_);
3195 
3196 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3197 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3198 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3199 		/*
3200 		 * If the head is dirty or (active and empty), then we need to
3201 		 * look at the previous iclog.
3202 		 *
3203 		 * If the previous iclog is active or dirty we are done.  There
3204 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3205 		 * previous iclog and go to sleep.
3206 		 */
3207 		iclog = iclog->ic_prev;
3208 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3209 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3210 			/* We have exclusive access to this iclog. */
3211 			bool	completed;
3212 
3213 			if (xlog_force_and_check_iclog(iclog, &completed))
3214 				goto out_error;
3215 
3216 			if (completed)
3217 				goto out_unlock;
3218 		} else {
3219 			/*
3220 			 * Someone else is still writing to this iclog, so we
3221 			 * need to ensure that when they release the iclog it
3222 			 * gets synced immediately as we may be waiting on it.
3223 			 */
3224 			xlog_state_switch_iclogs(log, iclog, 0);
3225 		}
3226 	}
3227 
3228 	/*
3229 	 * The iclog we are about to wait on may contain the checkpoint pushed
3230 	 * by the above xlog_cil_force() call, but it may not have been pushed
3231 	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3232 	 * are flushed when this iclog is written.
3233 	 */
3234 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3235 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3236 
3237 	if (flags & XFS_LOG_SYNC)
3238 		return xlog_wait_on_iclog(iclog);
3239 out_unlock:
3240 	spin_unlock(&log->l_icloglock);
3241 	return 0;
3242 out_error:
3243 	spin_unlock(&log->l_icloglock);
3244 	return -EIO;
3245 }
3246 
3247 /*
3248  * Force the log to a specific LSN.
3249  *
3250  * If an iclog with that lsn can be found:
3251  *	If it is in the DIRTY state, just return.
3252  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3253  *		state and go to sleep or return.
3254  *	If it is in any other state, go to sleep or return.
3255  *
3256  * Synchronous forces are implemented with a wait queue.  All callers trying
3257  * to force a given lsn to disk must wait on the queue attached to the
3258  * specific in-core log.  When given in-core log finally completes its write
3259  * to disk, that thread will wake up all threads waiting on the queue.
3260  */
3261 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3262 xlog_force_lsn(
3263 	struct xlog		*log,
3264 	xfs_lsn_t		lsn,
3265 	uint			flags,
3266 	int			*log_flushed,
3267 	bool			already_slept)
3268 {
3269 	struct xlog_in_core	*iclog;
3270 	bool			completed;
3271 
3272 	spin_lock(&log->l_icloglock);
3273 	if (xlog_is_shutdown(log))
3274 		goto out_error;
3275 
3276 	iclog = log->l_iclog;
3277 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3278 		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3279 		iclog = iclog->ic_next;
3280 		if (iclog == log->l_iclog)
3281 			goto out_unlock;
3282 	}
3283 
3284 	switch (iclog->ic_state) {
3285 	case XLOG_STATE_ACTIVE:
3286 		/*
3287 		 * We sleep here if we haven't already slept (e.g. this is the
3288 		 * first time we've looked at the correct iclog buf) and the
3289 		 * buffer before us is going to be sync'ed.  The reason for this
3290 		 * is that if we are doing sync transactions here, by waiting
3291 		 * for the previous I/O to complete, we can allow a few more
3292 		 * transactions into this iclog before we close it down.
3293 		 *
3294 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3295 		 * refcnt so we can release the log (which drops the ref count).
3296 		 * The state switch keeps new transaction commits from using
3297 		 * this buffer.  When the current commits finish writing into
3298 		 * the buffer, the refcount will drop to zero and the buffer
3299 		 * will go out then.
3300 		 */
3301 		if (!already_slept &&
3302 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3303 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3304 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3305 					&log->l_icloglock);
3306 			return -EAGAIN;
3307 		}
3308 		if (xlog_force_and_check_iclog(iclog, &completed))
3309 			goto out_error;
3310 		if (log_flushed)
3311 			*log_flushed = 1;
3312 		if (completed)
3313 			goto out_unlock;
3314 		break;
3315 	case XLOG_STATE_WANT_SYNC:
3316 		/*
3317 		 * This iclog may contain the checkpoint pushed by the
3318 		 * xlog_cil_force_seq() call, but there are other writers still
3319 		 * accessing it so it hasn't been pushed to disk yet. Like the
3320 		 * ACTIVE case above, we need to make sure caches are flushed
3321 		 * when this iclog is written.
3322 		 */
3323 		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3324 		break;
3325 	default:
3326 		/*
3327 		 * The entire checkpoint was written by the CIL force and is on
3328 		 * its way to disk already. It will be stable when it
3329 		 * completes, so we don't need to manipulate caches here at all.
3330 		 * We just need to wait for completion if necessary.
3331 		 */
3332 		break;
3333 	}
3334 
3335 	if (flags & XFS_LOG_SYNC)
3336 		return xlog_wait_on_iclog(iclog);
3337 out_unlock:
3338 	spin_unlock(&log->l_icloglock);
3339 	return 0;
3340 out_error:
3341 	spin_unlock(&log->l_icloglock);
3342 	return -EIO;
3343 }
3344 
3345 /*
3346  * Force the log to a specific checkpoint sequence.
3347  *
3348  * First force the CIL so that all the required changes have been flushed to the
3349  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3350  * the iclog that needs to be flushed to stable storage. If the caller needs
3351  * a synchronous log force, we will wait on the iclog with the LSN returned by
3352  * xlog_cil_force_seq() to be completed.
3353  */
3354 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3355 xfs_log_force_seq(
3356 	struct xfs_mount	*mp,
3357 	xfs_csn_t		seq,
3358 	uint			flags,
3359 	int			*log_flushed)
3360 {
3361 	struct xlog		*log = mp->m_log;
3362 	xfs_lsn_t		lsn;
3363 	int			ret;
3364 	ASSERT(seq != 0);
3365 
3366 	XFS_STATS_INC(mp, xs_log_force);
3367 	trace_xfs_log_force(mp, seq, _RET_IP_);
3368 
3369 	lsn = xlog_cil_force_seq(log, seq);
3370 	if (lsn == NULLCOMMITLSN)
3371 		return 0;
3372 
3373 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3374 	if (ret == -EAGAIN) {
3375 		XFS_STATS_INC(mp, xs_log_force_sleep);
3376 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3377 	}
3378 	return ret;
3379 }
3380 
3381 /*
3382  * Free a used ticket when its refcount falls to zero.
3383  */
3384 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3385 xfs_log_ticket_put(
3386 	xlog_ticket_t	*ticket)
3387 {
3388 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3389 	if (atomic_dec_and_test(&ticket->t_ref))
3390 		kmem_cache_free(xfs_log_ticket_cache, ticket);
3391 }
3392 
3393 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3394 xfs_log_ticket_get(
3395 	xlog_ticket_t	*ticket)
3396 {
3397 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3398 	atomic_inc(&ticket->t_ref);
3399 	return ticket;
3400 }
3401 
3402 /*
3403  * Figure out the total log space unit (in bytes) that would be
3404  * required for a log ticket.
3405  */
3406 static int
xlog_calc_unit_res(struct xlog * log,int unit_bytes)3407 xlog_calc_unit_res(
3408 	struct xlog		*log,
3409 	int			unit_bytes)
3410 {
3411 	int			iclog_space;
3412 	uint			num_headers;
3413 
3414 	/*
3415 	 * Permanent reservations have up to 'cnt'-1 active log operations
3416 	 * in the log.  A unit in this case is the amount of space for one
3417 	 * of these log operations.  Normal reservations have a cnt of 1
3418 	 * and their unit amount is the total amount of space required.
3419 	 *
3420 	 * The following lines of code account for non-transaction data
3421 	 * which occupy space in the on-disk log.
3422 	 *
3423 	 * Normal form of a transaction is:
3424 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3425 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3426 	 *
3427 	 * We need to account for all the leadup data and trailer data
3428 	 * around the transaction data.
3429 	 * And then we need to account for the worst case in terms of using
3430 	 * more space.
3431 	 * The worst case will happen if:
3432 	 * - the placement of the transaction happens to be such that the
3433 	 *   roundoff is at its maximum
3434 	 * - the transaction data is synced before the commit record is synced
3435 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3436 	 *   Therefore the commit record is in its own Log Record.
3437 	 *   This can happen as the commit record is called with its
3438 	 *   own region to xlog_write().
3439 	 *   This then means that in the worst case, roundoff can happen for
3440 	 *   the commit-rec as well.
3441 	 *   The commit-rec is smaller than padding in this scenario and so it is
3442 	 *   not added separately.
3443 	 */
3444 
3445 	/* for trans header */
3446 	unit_bytes += sizeof(xlog_op_header_t);
3447 	unit_bytes += sizeof(xfs_trans_header_t);
3448 
3449 	/* for start-rec */
3450 	unit_bytes += sizeof(xlog_op_header_t);
3451 
3452 	/*
3453 	 * for LR headers - the space for data in an iclog is the size minus
3454 	 * the space used for the headers. If we use the iclog size, then we
3455 	 * undercalculate the number of headers required.
3456 	 *
3457 	 * Furthermore - the addition of op headers for split-recs might
3458 	 * increase the space required enough to require more log and op
3459 	 * headers, so take that into account too.
3460 	 *
3461 	 * IMPORTANT: This reservation makes the assumption that if this
3462 	 * transaction is the first in an iclog and hence has the LR headers
3463 	 * accounted to it, then the remaining space in the iclog is
3464 	 * exclusively for this transaction.  i.e. if the transaction is larger
3465 	 * than the iclog, it will be the only thing in that iclog.
3466 	 * Fundamentally, this means we must pass the entire log vector to
3467 	 * xlog_write to guarantee this.
3468 	 */
3469 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3470 	num_headers = howmany(unit_bytes, iclog_space);
3471 
3472 	/* for split-recs - ophdrs added when data split over LRs */
3473 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3474 
3475 	/* add extra header reservations if we overrun */
3476 	while (!num_headers ||
3477 	       howmany(unit_bytes, iclog_space) > num_headers) {
3478 		unit_bytes += sizeof(xlog_op_header_t);
3479 		num_headers++;
3480 	}
3481 	unit_bytes += log->l_iclog_hsize * num_headers;
3482 
3483 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3484 	unit_bytes += log->l_iclog_hsize;
3485 
3486 	/* roundoff padding for transaction data and one for commit record */
3487 	unit_bytes += 2 * log->l_iclog_roundoff;
3488 
3489 	return unit_bytes;
3490 }
3491 
3492 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3493 xfs_log_calc_unit_res(
3494 	struct xfs_mount	*mp,
3495 	int			unit_bytes)
3496 {
3497 	return xlog_calc_unit_res(mp->m_log, unit_bytes);
3498 }
3499 
3500 /*
3501  * Allocate and initialise a new log ticket.
3502  */
3503 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,bool permanent)3504 xlog_ticket_alloc(
3505 	struct xlog		*log,
3506 	int			unit_bytes,
3507 	int			cnt,
3508 	bool			permanent)
3509 {
3510 	struct xlog_ticket	*tic;
3511 	int			unit_res;
3512 
3513 	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3514 
3515 	unit_res = xlog_calc_unit_res(log, unit_bytes);
3516 
3517 	atomic_set(&tic->t_ref, 1);
3518 	tic->t_task		= current;
3519 	INIT_LIST_HEAD(&tic->t_queue);
3520 	tic->t_unit_res		= unit_res;
3521 	tic->t_curr_res		= unit_res;
3522 	tic->t_cnt		= cnt;
3523 	tic->t_ocnt		= cnt;
3524 	tic->t_tid		= prandom_u32();
3525 	if (permanent)
3526 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3527 
3528 	return tic;
3529 }
3530 
3531 #if defined(DEBUG)
3532 /*
3533  * Check to make sure the grant write head didn't just over lap the tail.  If
3534  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3535  * the cycles differ by exactly one and check the byte count.
3536  *
3537  * This check is run unlocked, so can give false positives. Rather than assert
3538  * on failures, use a warn-once flag and a panic tag to allow the admin to
3539  * determine if they want to panic the machine when such an error occurs. For
3540  * debug kernels this will have the same effect as using an assert but, unlinke
3541  * an assert, it can be turned off at runtime.
3542  */
3543 STATIC void
xlog_verify_grant_tail(struct xlog * log)3544 xlog_verify_grant_tail(
3545 	struct xlog	*log)
3546 {
3547 	int		tail_cycle, tail_blocks;
3548 	int		cycle, space;
3549 
3550 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3551 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3552 	if (tail_cycle != cycle) {
3553 		if (cycle - 1 != tail_cycle &&
3554 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3555 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3556 				"%s: cycle - 1 != tail_cycle", __func__);
3557 		}
3558 
3559 		if (space > BBTOB(tail_blocks) &&
3560 		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3561 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3562 				"%s: space > BBTOB(tail_blocks)", __func__);
3563 		}
3564 	}
3565 }
3566 
3567 /* check if it will fit */
3568 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog)3569 xlog_verify_tail_lsn(
3570 	struct xlog		*log,
3571 	struct xlog_in_core	*iclog)
3572 {
3573 	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3574 	int		blocks;
3575 
3576     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3577 	blocks =
3578 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3579 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3580 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3581     } else {
3582 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3583 
3584 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3585 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3586 
3587 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3588 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3589 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3590     }
3591 }
3592 
3593 /*
3594  * Perform a number of checks on the iclog before writing to disk.
3595  *
3596  * 1. Make sure the iclogs are still circular
3597  * 2. Make sure we have a good magic number
3598  * 3. Make sure we don't have magic numbers in the data
3599  * 4. Check fields of each log operation header for:
3600  *	A. Valid client identifier
3601  *	B. tid ptr value falls in valid ptr space (user space code)
3602  *	C. Length in log record header is correct according to the
3603  *		individual operation headers within record.
3604  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3605  *	log, check the preceding blocks of the physical log to make sure all
3606  *	the cycle numbers agree with the current cycle number.
3607  */
3608 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3609 xlog_verify_iclog(
3610 	struct xlog		*log,
3611 	struct xlog_in_core	*iclog,
3612 	int			count)
3613 {
3614 	xlog_op_header_t	*ophead;
3615 	xlog_in_core_t		*icptr;
3616 	xlog_in_core_2_t	*xhdr;
3617 	void			*base_ptr, *ptr, *p;
3618 	ptrdiff_t		field_offset;
3619 	uint8_t			clientid;
3620 	int			len, i, j, k, op_len;
3621 	int			idx;
3622 
3623 	/* check validity of iclog pointers */
3624 	spin_lock(&log->l_icloglock);
3625 	icptr = log->l_iclog;
3626 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3627 		ASSERT(icptr);
3628 
3629 	if (icptr != log->l_iclog)
3630 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3631 	spin_unlock(&log->l_icloglock);
3632 
3633 	/* check log magic numbers */
3634 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3635 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3636 
3637 	base_ptr = ptr = &iclog->ic_header;
3638 	p = &iclog->ic_header;
3639 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3640 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3641 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3642 				__func__);
3643 	}
3644 
3645 	/* check fields */
3646 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3647 	base_ptr = ptr = iclog->ic_datap;
3648 	ophead = ptr;
3649 	xhdr = iclog->ic_data;
3650 	for (i = 0; i < len; i++) {
3651 		ophead = ptr;
3652 
3653 		/* clientid is only 1 byte */
3654 		p = &ophead->oh_clientid;
3655 		field_offset = p - base_ptr;
3656 		if (field_offset & 0x1ff) {
3657 			clientid = ophead->oh_clientid;
3658 		} else {
3659 			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3660 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3661 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3662 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3663 				clientid = xlog_get_client_id(
3664 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3665 			} else {
3666 				clientid = xlog_get_client_id(
3667 					iclog->ic_header.h_cycle_data[idx]);
3668 			}
3669 		}
3670 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3671 			xfs_warn(log->l_mp,
3672 				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3673 				__func__, i, clientid, ophead,
3674 				(unsigned long)field_offset);
3675 		}
3676 
3677 		/* check length */
3678 		p = &ophead->oh_len;
3679 		field_offset = p - base_ptr;
3680 		if (field_offset & 0x1ff) {
3681 			op_len = be32_to_cpu(ophead->oh_len);
3682 		} else {
3683 			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3684 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3685 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3686 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3687 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3688 			} else {
3689 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3690 			}
3691 		}
3692 		ptr += sizeof(xlog_op_header_t) + op_len;
3693 	}
3694 }
3695 #endif
3696 
3697 /*
3698  * Perform a forced shutdown on the log.
3699  *
3700  * This can be called from low level log code to trigger a shutdown, or from the
3701  * high level mount shutdown code when the mount shuts down.
3702  *
3703  * Our main objectives here are to make sure that:
3704  *	a. if the shutdown was not due to a log IO error, flush the logs to
3705  *	   disk. Anything modified after this is ignored.
3706  *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3707  *	   parties to find out. Nothing new gets queued after this is done.
3708  *	c. Tasks sleeping on log reservations, pinned objects and
3709  *	   other resources get woken up.
3710  *	d. The mount is also marked as shut down so that log triggered shutdowns
3711  *	   still behave the same as if they called xfs_forced_shutdown().
3712  *
3713  * Return true if the shutdown cause was a log IO error and we actually shut the
3714  * log down.
3715  */
3716 bool
xlog_force_shutdown(struct xlog * log,uint32_t shutdown_flags)3717 xlog_force_shutdown(
3718 	struct xlog	*log,
3719 	uint32_t	shutdown_flags)
3720 {
3721 	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3722 
3723 	if (!log)
3724 		return false;
3725 
3726 	/*
3727 	 * Flush all the completed transactions to disk before marking the log
3728 	 * being shut down. We need to do this first as shutting down the log
3729 	 * before the force will prevent the log force from flushing the iclogs
3730 	 * to disk.
3731 	 *
3732 	 * When we are in recovery, there are no transactions to flush, and
3733 	 * we don't want to touch the log because we don't want to perturb the
3734 	 * current head/tail for future recovery attempts. Hence we need to
3735 	 * avoid a log force in this case.
3736 	 *
3737 	 * If we are shutting down due to a log IO error, then we must avoid
3738 	 * trying to write the log as that may just result in more IO errors and
3739 	 * an endless shutdown/force loop.
3740 	 */
3741 	if (!log_error && !xlog_in_recovery(log))
3742 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3743 
3744 	/*
3745 	 * Atomically set the shutdown state. If the shutdown state is already
3746 	 * set, there someone else is performing the shutdown and so we are done
3747 	 * here. This should never happen because we should only ever get called
3748 	 * once by the first shutdown caller.
3749 	 *
3750 	 * Much of the log state machine transitions assume that shutdown state
3751 	 * cannot change once they hold the log->l_icloglock. Hence we need to
3752 	 * hold that lock here, even though we use the atomic test_and_set_bit()
3753 	 * operation to set the shutdown state.
3754 	 */
3755 	spin_lock(&log->l_icloglock);
3756 	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3757 		spin_unlock(&log->l_icloglock);
3758 		return false;
3759 	}
3760 	spin_unlock(&log->l_icloglock);
3761 
3762 	/*
3763 	 * If this log shutdown also sets the mount shutdown state, issue a
3764 	 * shutdown warning message.
3765 	 */
3766 	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3767 		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3768 "Filesystem has been shut down due to log error (0x%x).",
3769 				shutdown_flags);
3770 		xfs_alert(log->l_mp,
3771 "Please unmount the filesystem and rectify the problem(s).");
3772 		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3773 			xfs_stack_trace();
3774 	}
3775 
3776 	/*
3777 	 * We don't want anybody waiting for log reservations after this. That
3778 	 * means we have to wake up everybody queued up on reserveq as well as
3779 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3780 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3781 	 * action is protected by the grant locks.
3782 	 */
3783 	xlog_grant_head_wake_all(&log->l_reserve_head);
3784 	xlog_grant_head_wake_all(&log->l_write_head);
3785 
3786 	/*
3787 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3788 	 * as if the log writes were completed. The abort handling in the log
3789 	 * item committed callback functions will do this again under lock to
3790 	 * avoid races.
3791 	 */
3792 	spin_lock(&log->l_cilp->xc_push_lock);
3793 	wake_up_all(&log->l_cilp->xc_start_wait);
3794 	wake_up_all(&log->l_cilp->xc_commit_wait);
3795 	spin_unlock(&log->l_cilp->xc_push_lock);
3796 
3797 	spin_lock(&log->l_icloglock);
3798 	xlog_state_shutdown_callbacks(log);
3799 	spin_unlock(&log->l_icloglock);
3800 
3801 	wake_up_var(&log->l_opstate);
3802 	return log_error;
3803 }
3804 
3805 STATIC int
xlog_iclogs_empty(struct xlog * log)3806 xlog_iclogs_empty(
3807 	struct xlog	*log)
3808 {
3809 	xlog_in_core_t	*iclog;
3810 
3811 	iclog = log->l_iclog;
3812 	do {
3813 		/* endianness does not matter here, zero is zero in
3814 		 * any language.
3815 		 */
3816 		if (iclog->ic_header.h_num_logops)
3817 			return 0;
3818 		iclog = iclog->ic_next;
3819 	} while (iclog != log->l_iclog);
3820 	return 1;
3821 }
3822 
3823 /*
3824  * Verify that an LSN stamped into a piece of metadata is valid. This is
3825  * intended for use in read verifiers on v5 superblocks.
3826  */
3827 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3828 xfs_log_check_lsn(
3829 	struct xfs_mount	*mp,
3830 	xfs_lsn_t		lsn)
3831 {
3832 	struct xlog		*log = mp->m_log;
3833 	bool			valid;
3834 
3835 	/*
3836 	 * norecovery mode skips mount-time log processing and unconditionally
3837 	 * resets the in-core LSN. We can't validate in this mode, but
3838 	 * modifications are not allowed anyways so just return true.
3839 	 */
3840 	if (xfs_has_norecovery(mp))
3841 		return true;
3842 
3843 	/*
3844 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3845 	 * handled by recovery and thus safe to ignore here.
3846 	 */
3847 	if (lsn == NULLCOMMITLSN)
3848 		return true;
3849 
3850 	valid = xlog_valid_lsn(mp->m_log, lsn);
3851 
3852 	/* warn the user about what's gone wrong before verifier failure */
3853 	if (!valid) {
3854 		spin_lock(&log->l_icloglock);
3855 		xfs_warn(mp,
3856 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3857 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3858 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3859 			 log->l_curr_cycle, log->l_curr_block);
3860 		spin_unlock(&log->l_icloglock);
3861 	}
3862 
3863 	return valid;
3864 }
3865 
3866 /*
3867  * Notify the log that we're about to start using a feature that is protected
3868  * by a log incompat feature flag.  This will prevent log covering from
3869  * clearing those flags.
3870  */
3871 void
xlog_use_incompat_feat(struct xlog * log)3872 xlog_use_incompat_feat(
3873 	struct xlog		*log)
3874 {
3875 	down_read(&log->l_incompat_users);
3876 }
3877 
3878 /* Notify the log that we've finished using log incompat features. */
3879 void
xlog_drop_incompat_feat(struct xlog * log)3880 xlog_drop_incompat_feat(
3881 	struct xlog		*log)
3882 {
3883 	up_read(&log->l_incompat_users);
3884 }
3885