1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
62 
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
65 
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
68 
69 /* aio_setup
70  *	Creates the slab caches used by the aio routines, panic on
71  *	failure as this is done early during the boot sequence.
72  */
aio_setup(void)73 static int __init aio_setup(void)
74 {
75 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77 
78 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
79 	BUG_ON(!aio_wq);
80 
81 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 
83 	return 0;
84 }
85 __initcall(aio_setup);
86 
aio_free_ring(struct kioctx * ctx)87 static void aio_free_ring(struct kioctx *ctx)
88 {
89 	struct aio_ring_info *info = &ctx->ring_info;
90 	long i;
91 
92 	for (i=0; i<info->nr_pages; i++)
93 		put_page(info->ring_pages[i]);
94 
95 	if (info->mmap_size) {
96 		down_write(&ctx->mm->mmap_sem);
97 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 		up_write(&ctx->mm->mmap_sem);
99 	}
100 
101 	if (info->ring_pages && info->ring_pages != info->internal_pages)
102 		kfree(info->ring_pages);
103 	info->ring_pages = NULL;
104 	info->nr = 0;
105 }
106 
aio_setup_ring(struct kioctx * ctx)107 static int aio_setup_ring(struct kioctx *ctx)
108 {
109 	struct aio_ring *ring;
110 	struct aio_ring_info *info = &ctx->ring_info;
111 	unsigned nr_events = ctx->max_reqs;
112 	unsigned long size;
113 	int nr_pages;
114 
115 	/* Compensate for the ring buffer's head/tail overlap entry */
116 	nr_events += 2;	/* 1 is required, 2 for good luck */
117 
118 	size = sizeof(struct aio_ring);
119 	size += sizeof(struct io_event) * nr_events;
120 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
121 
122 	if (nr_pages < 0)
123 		return -EINVAL;
124 
125 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
126 
127 	info->nr = 0;
128 	info->ring_pages = info->internal_pages;
129 	if (nr_pages > AIO_RING_PAGES) {
130 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 		if (!info->ring_pages)
132 			return -ENOMEM;
133 	}
134 
135 	info->mmap_size = nr_pages * PAGE_SIZE;
136 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 	down_write(&ctx->mm->mmap_sem);
138 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
140 				  0);
141 	if (IS_ERR((void *)info->mmap_base)) {
142 		up_write(&ctx->mm->mmap_sem);
143 		info->mmap_size = 0;
144 		aio_free_ring(ctx);
145 		return -EAGAIN;
146 	}
147 
148 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 	info->nr_pages = get_user_pages(current, ctx->mm,
150 					info->mmap_base, nr_pages,
151 					1, 0, info->ring_pages, NULL);
152 	up_write(&ctx->mm->mmap_sem);
153 
154 	if (unlikely(info->nr_pages != nr_pages)) {
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	ctx->user_id = info->mmap_base;
160 
161 	info->nr = nr_events;		/* trusted copy */
162 
163 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164 	ring->nr = nr_events;	/* user copy */
165 	ring->id = ctx->user_id;
166 	ring->head = ring->tail = 0;
167 	ring->magic = AIO_RING_MAGIC;
168 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 	ring->header_length = sizeof(struct aio_ring);
171 	kunmap_atomic(ring, KM_USER0);
172 
173 	return 0;
174 }
175 
176 
177 /* aio_ring_event: returns a pointer to the event at the given index from
178  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
179  */
180 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
183 
184 #define aio_ring_event(info, nr, km) ({					\
185 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
186 	struct io_event *__event;					\
187 	__event = kmap_atomic(						\
188 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 	__event += pos % AIO_EVENTS_PER_PAGE;				\
190 	__event;							\
191 })
192 
193 #define put_aio_ring_event(event, km) do {	\
194 	struct io_event *__event = (event);	\
195 	(void)__event;				\
196 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 } while(0)
198 
ctx_rcu_free(struct rcu_head * head)199 static void ctx_rcu_free(struct rcu_head *head)
200 {
201 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 	unsigned nr_events = ctx->max_reqs;
203 
204 	kmem_cache_free(kioctx_cachep, ctx);
205 
206 	if (nr_events) {
207 		spin_lock(&aio_nr_lock);
208 		BUG_ON(aio_nr - nr_events > aio_nr);
209 		aio_nr -= nr_events;
210 		spin_unlock(&aio_nr_lock);
211 	}
212 }
213 
214 /* __put_ioctx
215  *	Called when the last user of an aio context has gone away,
216  *	and the struct needs to be freed.
217  */
__put_ioctx(struct kioctx * ctx)218 static void __put_ioctx(struct kioctx *ctx)
219 {
220 	BUG_ON(ctx->reqs_active);
221 
222 	cancel_delayed_work(&ctx->wq);
223 	cancel_work_sync(&ctx->wq.work);
224 	aio_free_ring(ctx);
225 	mmdrop(ctx->mm);
226 	ctx->mm = NULL;
227 	pr_debug("__put_ioctx: freeing %p\n", ctx);
228 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
229 }
230 
get_ioctx(struct kioctx * kioctx)231 static inline void get_ioctx(struct kioctx *kioctx)
232 {
233 	BUG_ON(atomic_read(&kioctx->users) <= 0);
234 	atomic_inc(&kioctx->users);
235 }
236 
try_get_ioctx(struct kioctx * kioctx)237 static inline int try_get_ioctx(struct kioctx *kioctx)
238 {
239 	return atomic_inc_not_zero(&kioctx->users);
240 }
241 
put_ioctx(struct kioctx * kioctx)242 static inline void put_ioctx(struct kioctx *kioctx)
243 {
244 	BUG_ON(atomic_read(&kioctx->users) <= 0);
245 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
246 		__put_ioctx(kioctx);
247 }
248 
249 /* ioctx_alloc
250  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
251  */
ioctx_alloc(unsigned nr_events)252 static struct kioctx *ioctx_alloc(unsigned nr_events)
253 {
254 	struct mm_struct *mm;
255 	struct kioctx *ctx;
256 	int did_sync = 0;
257 
258 	/* Prevent overflows */
259 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
260 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
261 		pr_debug("ENOMEM: nr_events too high\n");
262 		return ERR_PTR(-EINVAL);
263 	}
264 
265 	if ((unsigned long)nr_events > aio_max_nr)
266 		return ERR_PTR(-EAGAIN);
267 
268 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
269 	if (!ctx)
270 		return ERR_PTR(-ENOMEM);
271 
272 	ctx->max_reqs = nr_events;
273 	mm = ctx->mm = current->mm;
274 	atomic_inc(&mm->mm_count);
275 
276 	atomic_set(&ctx->users, 1);
277 	spin_lock_init(&ctx->ctx_lock);
278 	spin_lock_init(&ctx->ring_info.ring_lock);
279 	init_waitqueue_head(&ctx->wait);
280 
281 	INIT_LIST_HEAD(&ctx->active_reqs);
282 	INIT_LIST_HEAD(&ctx->run_list);
283 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
284 
285 	if (aio_setup_ring(ctx) < 0)
286 		goto out_freectx;
287 
288 	/* limit the number of system wide aios */
289 	do {
290 		spin_lock_bh(&aio_nr_lock);
291 		if (aio_nr + nr_events > aio_max_nr ||
292 		    aio_nr + nr_events < aio_nr)
293 			ctx->max_reqs = 0;
294 		else
295 			aio_nr += ctx->max_reqs;
296 		spin_unlock_bh(&aio_nr_lock);
297 		if (ctx->max_reqs || did_sync)
298 			break;
299 
300 		/* wait for rcu callbacks to have completed before giving up */
301 		synchronize_rcu();
302 		did_sync = 1;
303 		ctx->max_reqs = nr_events;
304 	} while (1);
305 
306 	if (ctx->max_reqs == 0)
307 		goto out_cleanup;
308 
309 	/* now link into global list. */
310 	spin_lock(&mm->ioctx_lock);
311 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
312 	spin_unlock(&mm->ioctx_lock);
313 
314 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
315 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
316 	return ctx;
317 
318 out_cleanup:
319 	__put_ioctx(ctx);
320 	return ERR_PTR(-EAGAIN);
321 
322 out_freectx:
323 	mmdrop(mm);
324 	kmem_cache_free(kioctx_cachep, ctx);
325 	ctx = ERR_PTR(-ENOMEM);
326 
327 	dprintk("aio: error allocating ioctx %p\n", ctx);
328 	return ctx;
329 }
330 
331 /* aio_cancel_all
332  *	Cancels all outstanding aio requests on an aio context.  Used
333  *	when the processes owning a context have all exited to encourage
334  *	the rapid destruction of the kioctx.
335  */
aio_cancel_all(struct kioctx * ctx)336 static void aio_cancel_all(struct kioctx *ctx)
337 {
338 	int (*cancel)(struct kiocb *, struct io_event *);
339 	struct io_event res;
340 	spin_lock_irq(&ctx->ctx_lock);
341 	ctx->dead = 1;
342 	while (!list_empty(&ctx->active_reqs)) {
343 		struct list_head *pos = ctx->active_reqs.next;
344 		struct kiocb *iocb = list_kiocb(pos);
345 		list_del_init(&iocb->ki_list);
346 		cancel = iocb->ki_cancel;
347 		kiocbSetCancelled(iocb);
348 		if (cancel) {
349 			iocb->ki_users++;
350 			spin_unlock_irq(&ctx->ctx_lock);
351 			cancel(iocb, &res);
352 			spin_lock_irq(&ctx->ctx_lock);
353 		}
354 	}
355 	spin_unlock_irq(&ctx->ctx_lock);
356 }
357 
wait_for_all_aios(struct kioctx * ctx)358 static void wait_for_all_aios(struct kioctx *ctx)
359 {
360 	struct task_struct *tsk = current;
361 	DECLARE_WAITQUEUE(wait, tsk);
362 
363 	spin_lock_irq(&ctx->ctx_lock);
364 	if (!ctx->reqs_active)
365 		goto out;
366 
367 	add_wait_queue(&ctx->wait, &wait);
368 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
369 	while (ctx->reqs_active) {
370 		spin_unlock_irq(&ctx->ctx_lock);
371 		io_schedule();
372 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
373 		spin_lock_irq(&ctx->ctx_lock);
374 	}
375 	__set_task_state(tsk, TASK_RUNNING);
376 	remove_wait_queue(&ctx->wait, &wait);
377 
378 out:
379 	spin_unlock_irq(&ctx->ctx_lock);
380 }
381 
382 /* wait_on_sync_kiocb:
383  *	Waits on the given sync kiocb to complete.
384  */
wait_on_sync_kiocb(struct kiocb * iocb)385 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
386 {
387 	while (iocb->ki_users) {
388 		set_current_state(TASK_UNINTERRUPTIBLE);
389 		if (!iocb->ki_users)
390 			break;
391 		io_schedule();
392 	}
393 	__set_current_state(TASK_RUNNING);
394 	return iocb->ki_user_data;
395 }
396 EXPORT_SYMBOL(wait_on_sync_kiocb);
397 
398 /* exit_aio: called when the last user of mm goes away.  At this point,
399  * there is no way for any new requests to be submited or any of the
400  * io_* syscalls to be called on the context.  However, there may be
401  * outstanding requests which hold references to the context; as they
402  * go away, they will call put_ioctx and release any pinned memory
403  * associated with the request (held via struct page * references).
404  */
exit_aio(struct mm_struct * mm)405 void exit_aio(struct mm_struct *mm)
406 {
407 	struct kioctx *ctx;
408 
409 	while (!hlist_empty(&mm->ioctx_list)) {
410 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
411 		hlist_del_rcu(&ctx->list);
412 
413 		aio_cancel_all(ctx);
414 
415 		wait_for_all_aios(ctx);
416 		/*
417 		 * Ensure we don't leave the ctx on the aio_wq
418 		 */
419 		cancel_work_sync(&ctx->wq.work);
420 
421 		if (1 != atomic_read(&ctx->users))
422 			printk(KERN_DEBUG
423 				"exit_aio:ioctx still alive: %d %d %d\n",
424 				atomic_read(&ctx->users), ctx->dead,
425 				ctx->reqs_active);
426 		put_ioctx(ctx);
427 	}
428 }
429 
430 /* aio_get_req
431  *	Allocate a slot for an aio request.  Increments the users count
432  * of the kioctx so that the kioctx stays around until all requests are
433  * complete.  Returns NULL if no requests are free.
434  *
435  * Returns with kiocb->users set to 2.  The io submit code path holds
436  * an extra reference while submitting the i/o.
437  * This prevents races between the aio code path referencing the
438  * req (after submitting it) and aio_complete() freeing the req.
439  */
__aio_get_req(struct kioctx * ctx)440 static struct kiocb *__aio_get_req(struct kioctx *ctx)
441 {
442 	struct kiocb *req = NULL;
443 	struct aio_ring *ring;
444 	int okay = 0;
445 
446 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
447 	if (unlikely(!req))
448 		return NULL;
449 
450 	req->ki_flags = 0;
451 	req->ki_users = 2;
452 	req->ki_key = 0;
453 	req->ki_ctx = ctx;
454 	req->ki_cancel = NULL;
455 	req->ki_retry = NULL;
456 	req->ki_dtor = NULL;
457 	req->private = NULL;
458 	req->ki_iovec = NULL;
459 	INIT_LIST_HEAD(&req->ki_run_list);
460 	req->ki_eventfd = NULL;
461 
462 	/* Check if the completion queue has enough free space to
463 	 * accept an event from this io.
464 	 */
465 	spin_lock_irq(&ctx->ctx_lock);
466 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
467 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
468 		list_add(&req->ki_list, &ctx->active_reqs);
469 		ctx->reqs_active++;
470 		okay = 1;
471 	}
472 	kunmap_atomic(ring, KM_USER0);
473 	spin_unlock_irq(&ctx->ctx_lock);
474 
475 	if (!okay) {
476 		kmem_cache_free(kiocb_cachep, req);
477 		req = NULL;
478 	}
479 
480 	return req;
481 }
482 
aio_get_req(struct kioctx * ctx)483 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
484 {
485 	struct kiocb *req;
486 	/* Handle a potential starvation case -- should be exceedingly rare as
487 	 * requests will be stuck on fput_head only if the aio_fput_routine is
488 	 * delayed and the requests were the last user of the struct file.
489 	 */
490 	req = __aio_get_req(ctx);
491 	if (unlikely(NULL == req)) {
492 		aio_fput_routine(NULL);
493 		req = __aio_get_req(ctx);
494 	}
495 	return req;
496 }
497 
really_put_req(struct kioctx * ctx,struct kiocb * req)498 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
499 {
500 	assert_spin_locked(&ctx->ctx_lock);
501 
502 	if (req->ki_eventfd != NULL)
503 		eventfd_ctx_put(req->ki_eventfd);
504 	if (req->ki_dtor)
505 		req->ki_dtor(req);
506 	if (req->ki_iovec != &req->ki_inline_vec)
507 		kfree(req->ki_iovec);
508 	kmem_cache_free(kiocb_cachep, req);
509 	ctx->reqs_active--;
510 
511 	if (unlikely(!ctx->reqs_active && ctx->dead))
512 		wake_up_all(&ctx->wait);
513 }
514 
aio_fput_routine(struct work_struct * data)515 static void aio_fput_routine(struct work_struct *data)
516 {
517 	spin_lock_irq(&fput_lock);
518 	while (likely(!list_empty(&fput_head))) {
519 		struct kiocb *req = list_kiocb(fput_head.next);
520 		struct kioctx *ctx = req->ki_ctx;
521 
522 		list_del(&req->ki_list);
523 		spin_unlock_irq(&fput_lock);
524 
525 		/* Complete the fput(s) */
526 		if (req->ki_filp != NULL)
527 			fput(req->ki_filp);
528 
529 		/* Link the iocb into the context's free list */
530 		spin_lock_irq(&ctx->ctx_lock);
531 		really_put_req(ctx, req);
532 		spin_unlock_irq(&ctx->ctx_lock);
533 
534 		put_ioctx(ctx);
535 		spin_lock_irq(&fput_lock);
536 	}
537 	spin_unlock_irq(&fput_lock);
538 }
539 
540 /* __aio_put_req
541  *	Returns true if this put was the last user of the request.
542  */
__aio_put_req(struct kioctx * ctx,struct kiocb * req)543 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
544 {
545 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
546 		req, atomic_long_read(&req->ki_filp->f_count));
547 
548 	assert_spin_locked(&ctx->ctx_lock);
549 
550 	req->ki_users--;
551 	BUG_ON(req->ki_users < 0);
552 	if (likely(req->ki_users))
553 		return 0;
554 	list_del(&req->ki_list);		/* remove from active_reqs */
555 	req->ki_cancel = NULL;
556 	req->ki_retry = NULL;
557 
558 	/*
559 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
560 	 * schedule work in case it is not final fput() time. In normal cases,
561 	 * we would not be holding the last reference to the file*, so
562 	 * this function will be executed w/out any aio kthread wakeup.
563 	 */
564 	if (unlikely(!fput_atomic(req->ki_filp))) {
565 		get_ioctx(ctx);
566 		spin_lock(&fput_lock);
567 		list_add(&req->ki_list, &fput_head);
568 		spin_unlock(&fput_lock);
569 		schedule_work(&fput_work);
570 	} else {
571 		req->ki_filp = NULL;
572 		really_put_req(ctx, req);
573 	}
574 	return 1;
575 }
576 
577 /* aio_put_req
578  *	Returns true if this put was the last user of the kiocb,
579  *	false if the request is still in use.
580  */
aio_put_req(struct kiocb * req)581 int aio_put_req(struct kiocb *req)
582 {
583 	struct kioctx *ctx = req->ki_ctx;
584 	int ret;
585 	spin_lock_irq(&ctx->ctx_lock);
586 	ret = __aio_put_req(ctx, req);
587 	spin_unlock_irq(&ctx->ctx_lock);
588 	return ret;
589 }
590 EXPORT_SYMBOL(aio_put_req);
591 
lookup_ioctx(unsigned long ctx_id)592 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
593 {
594 	struct mm_struct *mm = current->mm;
595 	struct kioctx *ctx, *ret = NULL;
596 	struct hlist_node *n;
597 
598 	rcu_read_lock();
599 
600 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
601 		/*
602 		 * RCU protects us against accessing freed memory but
603 		 * we have to be careful not to get a reference when the
604 		 * reference count already dropped to 0 (ctx->dead test
605 		 * is unreliable because of races).
606 		 */
607 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
608 			ret = ctx;
609 			break;
610 		}
611 	}
612 
613 	rcu_read_unlock();
614 	return ret;
615 }
616 
617 /*
618  * Queue up a kiocb to be retried. Assumes that the kiocb
619  * has already been marked as kicked, and places it on
620  * the retry run list for the corresponding ioctx, if it
621  * isn't already queued. Returns 1 if it actually queued
622  * the kiocb (to tell the caller to activate the work
623  * queue to process it), or 0, if it found that it was
624  * already queued.
625  */
__queue_kicked_iocb(struct kiocb * iocb)626 static inline int __queue_kicked_iocb(struct kiocb *iocb)
627 {
628 	struct kioctx *ctx = iocb->ki_ctx;
629 
630 	assert_spin_locked(&ctx->ctx_lock);
631 
632 	if (list_empty(&iocb->ki_run_list)) {
633 		list_add_tail(&iocb->ki_run_list,
634 			&ctx->run_list);
635 		return 1;
636 	}
637 	return 0;
638 }
639 
640 /* aio_run_iocb
641  *	This is the core aio execution routine. It is
642  *	invoked both for initial i/o submission and
643  *	subsequent retries via the aio_kick_handler.
644  *	Expects to be invoked with iocb->ki_ctx->lock
645  *	already held. The lock is released and reacquired
646  *	as needed during processing.
647  *
648  * Calls the iocb retry method (already setup for the
649  * iocb on initial submission) for operation specific
650  * handling, but takes care of most of common retry
651  * execution details for a given iocb. The retry method
652  * needs to be non-blocking as far as possible, to avoid
653  * holding up other iocbs waiting to be serviced by the
654  * retry kernel thread.
655  *
656  * The trickier parts in this code have to do with
657  * ensuring that only one retry instance is in progress
658  * for a given iocb at any time. Providing that guarantee
659  * simplifies the coding of individual aio operations as
660  * it avoids various potential races.
661  */
aio_run_iocb(struct kiocb * iocb)662 static ssize_t aio_run_iocb(struct kiocb *iocb)
663 {
664 	struct kioctx	*ctx = iocb->ki_ctx;
665 	ssize_t (*retry)(struct kiocb *);
666 	ssize_t ret;
667 
668 	if (!(retry = iocb->ki_retry)) {
669 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
670 		return 0;
671 	}
672 
673 	/*
674 	 * We don't want the next retry iteration for this
675 	 * operation to start until this one has returned and
676 	 * updated the iocb state. However, wait_queue functions
677 	 * can trigger a kick_iocb from interrupt context in the
678 	 * meantime, indicating that data is available for the next
679 	 * iteration. We want to remember that and enable the
680 	 * next retry iteration _after_ we are through with
681 	 * this one.
682 	 *
683 	 * So, in order to be able to register a "kick", but
684 	 * prevent it from being queued now, we clear the kick
685 	 * flag, but make the kick code *think* that the iocb is
686 	 * still on the run list until we are actually done.
687 	 * When we are done with this iteration, we check if
688 	 * the iocb was kicked in the meantime and if so, queue
689 	 * it up afresh.
690 	 */
691 
692 	kiocbClearKicked(iocb);
693 
694 	/*
695 	 * This is so that aio_complete knows it doesn't need to
696 	 * pull the iocb off the run list (We can't just call
697 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 	 * queue this on the run list yet)
699 	 */
700 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
701 	spin_unlock_irq(&ctx->ctx_lock);
702 
703 	/* Quit retrying if the i/o has been cancelled */
704 	if (kiocbIsCancelled(iocb)) {
705 		ret = -EINTR;
706 		aio_complete(iocb, ret, 0);
707 		/* must not access the iocb after this */
708 		goto out;
709 	}
710 
711 	/*
712 	 * Now we are all set to call the retry method in async
713 	 * context.
714 	 */
715 	ret = retry(iocb);
716 
717 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
718 		/*
719 		 * There's no easy way to restart the syscall since other AIO's
720 		 * may be already running. Just fail this IO with EINTR.
721 		 */
722 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
723 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
724 			ret = -EINTR;
725 		aio_complete(iocb, ret, 0);
726 	}
727 out:
728 	spin_lock_irq(&ctx->ctx_lock);
729 
730 	if (-EIOCBRETRY == ret) {
731 		/*
732 		 * OK, now that we are done with this iteration
733 		 * and know that there is more left to go,
734 		 * this is where we let go so that a subsequent
735 		 * "kick" can start the next iteration
736 		 */
737 
738 		/* will make __queue_kicked_iocb succeed from here on */
739 		INIT_LIST_HEAD(&iocb->ki_run_list);
740 		/* we must queue the next iteration ourselves, if it
741 		 * has already been kicked */
742 		if (kiocbIsKicked(iocb)) {
743 			__queue_kicked_iocb(iocb);
744 
745 			/*
746 			 * __queue_kicked_iocb will always return 1 here, because
747 			 * iocb->ki_run_list is empty at this point so it should
748 			 * be safe to unconditionally queue the context into the
749 			 * work queue.
750 			 */
751 			aio_queue_work(ctx);
752 		}
753 	}
754 	return ret;
755 }
756 
757 /*
758  * __aio_run_iocbs:
759  * 	Process all pending retries queued on the ioctx
760  * 	run list.
761  * Assumes it is operating within the aio issuer's mm
762  * context.
763  */
__aio_run_iocbs(struct kioctx * ctx)764 static int __aio_run_iocbs(struct kioctx *ctx)
765 {
766 	struct kiocb *iocb;
767 	struct list_head run_list;
768 
769 	assert_spin_locked(&ctx->ctx_lock);
770 
771 	list_replace_init(&ctx->run_list, &run_list);
772 	while (!list_empty(&run_list)) {
773 		iocb = list_entry(run_list.next, struct kiocb,
774 			ki_run_list);
775 		list_del(&iocb->ki_run_list);
776 		/*
777 		 * Hold an extra reference while retrying i/o.
778 		 */
779 		iocb->ki_users++;       /* grab extra reference */
780 		aio_run_iocb(iocb);
781 		__aio_put_req(ctx, iocb);
782  	}
783 	if (!list_empty(&ctx->run_list))
784 		return 1;
785 	return 0;
786 }
787 
aio_queue_work(struct kioctx * ctx)788 static void aio_queue_work(struct kioctx * ctx)
789 {
790 	unsigned long timeout;
791 	/*
792 	 * if someone is waiting, get the work started right
793 	 * away, otherwise, use a longer delay
794 	 */
795 	smp_mb();
796 	if (waitqueue_active(&ctx->wait))
797 		timeout = 1;
798 	else
799 		timeout = HZ/10;
800 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
801 }
802 
803 /*
804  * aio_run_all_iocbs:
805  *	Process all pending retries queued on the ioctx
806  *	run list, and keep running them until the list
807  *	stays empty.
808  * Assumes it is operating within the aio issuer's mm context.
809  */
aio_run_all_iocbs(struct kioctx * ctx)810 static inline void aio_run_all_iocbs(struct kioctx *ctx)
811 {
812 	spin_lock_irq(&ctx->ctx_lock);
813 	while (__aio_run_iocbs(ctx))
814 		;
815 	spin_unlock_irq(&ctx->ctx_lock);
816 }
817 
818 /*
819  * aio_kick_handler:
820  * 	Work queue handler triggered to process pending
821  * 	retries on an ioctx. Takes on the aio issuer's
822  *	mm context before running the iocbs, so that
823  *	copy_xxx_user operates on the issuer's address
824  *      space.
825  * Run on aiod's context.
826  */
aio_kick_handler(struct work_struct * work)827 static void aio_kick_handler(struct work_struct *work)
828 {
829 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
830 	mm_segment_t oldfs = get_fs();
831 	struct mm_struct *mm;
832 	int requeue;
833 
834 	set_fs(USER_DS);
835 	use_mm(ctx->mm);
836 	spin_lock_irq(&ctx->ctx_lock);
837 	requeue =__aio_run_iocbs(ctx);
838 	mm = ctx->mm;
839 	spin_unlock_irq(&ctx->ctx_lock);
840  	unuse_mm(mm);
841 	set_fs(oldfs);
842 	/*
843 	 * we're in a worker thread already, don't use queue_delayed_work,
844 	 */
845 	if (requeue)
846 		queue_delayed_work(aio_wq, &ctx->wq, 0);
847 }
848 
849 
850 /*
851  * Called by kick_iocb to queue the kiocb for retry
852  * and if required activate the aio work queue to process
853  * it
854  */
try_queue_kicked_iocb(struct kiocb * iocb)855 static void try_queue_kicked_iocb(struct kiocb *iocb)
856 {
857  	struct kioctx	*ctx = iocb->ki_ctx;
858 	unsigned long flags;
859 	int run = 0;
860 
861 	spin_lock_irqsave(&ctx->ctx_lock, flags);
862 	/* set this inside the lock so that we can't race with aio_run_iocb()
863 	 * testing it and putting the iocb on the run list under the lock */
864 	if (!kiocbTryKick(iocb))
865 		run = __queue_kicked_iocb(iocb);
866 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
867 	if (run)
868 		aio_queue_work(ctx);
869 }
870 
871 /*
872  * kick_iocb:
873  *      Called typically from a wait queue callback context
874  *      to trigger a retry of the iocb.
875  *      The retry is usually executed by aio workqueue
876  *      threads (See aio_kick_handler).
877  */
kick_iocb(struct kiocb * iocb)878 void kick_iocb(struct kiocb *iocb)
879 {
880 	/* sync iocbs are easy: they can only ever be executing from a
881 	 * single context. */
882 	if (is_sync_kiocb(iocb)) {
883 		kiocbSetKicked(iocb);
884 	        wake_up_process(iocb->ki_obj.tsk);
885 		return;
886 	}
887 
888 	try_queue_kicked_iocb(iocb);
889 }
890 EXPORT_SYMBOL(kick_iocb);
891 
892 /* aio_complete
893  *	Called when the io request on the given iocb is complete.
894  *	Returns true if this is the last user of the request.  The
895  *	only other user of the request can be the cancellation code.
896  */
aio_complete(struct kiocb * iocb,long res,long res2)897 int aio_complete(struct kiocb *iocb, long res, long res2)
898 {
899 	struct kioctx	*ctx = iocb->ki_ctx;
900 	struct aio_ring_info	*info;
901 	struct aio_ring	*ring;
902 	struct io_event	*event;
903 	unsigned long	flags;
904 	unsigned long	tail;
905 	int		ret;
906 
907 	/*
908 	 * Special case handling for sync iocbs:
909 	 *  - events go directly into the iocb for fast handling
910 	 *  - the sync task with the iocb in its stack holds the single iocb
911 	 *    ref, no other paths have a way to get another ref
912 	 *  - the sync task helpfully left a reference to itself in the iocb
913 	 */
914 	if (is_sync_kiocb(iocb)) {
915 		BUG_ON(iocb->ki_users != 1);
916 		iocb->ki_user_data = res;
917 		iocb->ki_users = 0;
918 		wake_up_process(iocb->ki_obj.tsk);
919 		return 1;
920 	}
921 
922 	info = &ctx->ring_info;
923 
924 	/* add a completion event to the ring buffer.
925 	 * must be done holding ctx->ctx_lock to prevent
926 	 * other code from messing with the tail
927 	 * pointer since we might be called from irq
928 	 * context.
929 	 */
930 	spin_lock_irqsave(&ctx->ctx_lock, flags);
931 
932 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
933 		list_del_init(&iocb->ki_run_list);
934 
935 	/*
936 	 * cancelled requests don't get events, userland was given one
937 	 * when the event got cancelled.
938 	 */
939 	if (kiocbIsCancelled(iocb))
940 		goto put_rq;
941 
942 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
943 
944 	tail = info->tail;
945 	event = aio_ring_event(info, tail, KM_IRQ0);
946 	if (++tail >= info->nr)
947 		tail = 0;
948 
949 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
950 	event->data = iocb->ki_user_data;
951 	event->res = res;
952 	event->res2 = res2;
953 
954 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
955 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
956 		res, res2);
957 
958 	/* after flagging the request as done, we
959 	 * must never even look at it again
960 	 */
961 	smp_wmb();	/* make event visible before updating tail */
962 
963 	info->tail = tail;
964 	ring->tail = tail;
965 
966 	put_aio_ring_event(event, KM_IRQ0);
967 	kunmap_atomic(ring, KM_IRQ1);
968 
969 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
970 
971 	/*
972 	 * Check if the user asked us to deliver the result through an
973 	 * eventfd. The eventfd_signal() function is safe to be called
974 	 * from IRQ context.
975 	 */
976 	if (iocb->ki_eventfd != NULL)
977 		eventfd_signal(iocb->ki_eventfd, 1);
978 
979 put_rq:
980 	/* everything turned out well, dispose of the aiocb. */
981 	ret = __aio_put_req(ctx, iocb);
982 
983 	/*
984 	 * We have to order our ring_info tail store above and test
985 	 * of the wait list below outside the wait lock.  This is
986 	 * like in wake_up_bit() where clearing a bit has to be
987 	 * ordered with the unlocked test.
988 	 */
989 	smp_mb();
990 
991 	if (waitqueue_active(&ctx->wait))
992 		wake_up(&ctx->wait);
993 
994 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
995 	return ret;
996 }
997 EXPORT_SYMBOL(aio_complete);
998 
999 /* aio_read_evt
1000  *	Pull an event off of the ioctx's event ring.  Returns the number of
1001  *	events fetched (0 or 1 ;-)
1002  *	FIXME: make this use cmpxchg.
1003  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1004  */
aio_read_evt(struct kioctx * ioctx,struct io_event * ent)1005 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1006 {
1007 	struct aio_ring_info *info = &ioctx->ring_info;
1008 	struct aio_ring *ring;
1009 	unsigned long head;
1010 	int ret = 0;
1011 
1012 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1013 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1014 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1015 		 (unsigned long)ring->nr);
1016 
1017 	if (ring->head == ring->tail)
1018 		goto out;
1019 
1020 	spin_lock(&info->ring_lock);
1021 
1022 	head = ring->head % info->nr;
1023 	if (head != ring->tail) {
1024 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1025 		*ent = *evp;
1026 		head = (head + 1) % info->nr;
1027 		smp_mb(); /* finish reading the event before updatng the head */
1028 		ring->head = head;
1029 		ret = 1;
1030 		put_aio_ring_event(evp, KM_USER1);
1031 	}
1032 	spin_unlock(&info->ring_lock);
1033 
1034 out:
1035 	kunmap_atomic(ring, KM_USER0);
1036 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1037 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1038 	return ret;
1039 }
1040 
1041 struct aio_timeout {
1042 	struct timer_list	timer;
1043 	int			timed_out;
1044 	struct task_struct	*p;
1045 };
1046 
timeout_func(unsigned long data)1047 static void timeout_func(unsigned long data)
1048 {
1049 	struct aio_timeout *to = (struct aio_timeout *)data;
1050 
1051 	to->timed_out = 1;
1052 	wake_up_process(to->p);
1053 }
1054 
init_timeout(struct aio_timeout * to)1055 static inline void init_timeout(struct aio_timeout *to)
1056 {
1057 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1058 	to->timed_out = 0;
1059 	to->p = current;
1060 }
1061 
set_timeout(long start_jiffies,struct aio_timeout * to,const struct timespec * ts)1062 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1063 			       const struct timespec *ts)
1064 {
1065 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1066 	if (time_after(to->timer.expires, jiffies))
1067 		add_timer(&to->timer);
1068 	else
1069 		to->timed_out = 1;
1070 }
1071 
clear_timeout(struct aio_timeout * to)1072 static inline void clear_timeout(struct aio_timeout *to)
1073 {
1074 	del_singleshot_timer_sync(&to->timer);
1075 }
1076 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1077 static int read_events(struct kioctx *ctx,
1078 			long min_nr, long nr,
1079 			struct io_event __user *event,
1080 			struct timespec __user *timeout)
1081 {
1082 	long			start_jiffies = jiffies;
1083 	struct task_struct	*tsk = current;
1084 	DECLARE_WAITQUEUE(wait, tsk);
1085 	int			ret;
1086 	int			i = 0;
1087 	struct io_event		ent;
1088 	struct aio_timeout	to;
1089 	int			retry = 0;
1090 
1091 	/* needed to zero any padding within an entry (there shouldn't be
1092 	 * any, but C is fun!
1093 	 */
1094 	memset(&ent, 0, sizeof(ent));
1095 retry:
1096 	ret = 0;
1097 	while (likely(i < nr)) {
1098 		ret = aio_read_evt(ctx, &ent);
1099 		if (unlikely(ret <= 0))
1100 			break;
1101 
1102 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1103 			ent.data, ent.obj, ent.res, ent.res2);
1104 
1105 		/* Could we split the check in two? */
1106 		ret = -EFAULT;
1107 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1108 			dprintk("aio: lost an event due to EFAULT.\n");
1109 			break;
1110 		}
1111 		ret = 0;
1112 
1113 		/* Good, event copied to userland, update counts. */
1114 		event ++;
1115 		i ++;
1116 	}
1117 
1118 	if (min_nr <= i)
1119 		return i;
1120 	if (ret)
1121 		return ret;
1122 
1123 	/* End fast path */
1124 
1125 	/* racey check, but it gets redone */
1126 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1127 		retry = 1;
1128 		aio_run_all_iocbs(ctx);
1129 		goto retry;
1130 	}
1131 
1132 	init_timeout(&to);
1133 	if (timeout) {
1134 		struct timespec	ts;
1135 		ret = -EFAULT;
1136 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1137 			goto out;
1138 
1139 		set_timeout(start_jiffies, &to, &ts);
1140 	}
1141 
1142 	while (likely(i < nr)) {
1143 		add_wait_queue_exclusive(&ctx->wait, &wait);
1144 		do {
1145 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1146 			ret = aio_read_evt(ctx, &ent);
1147 			if (ret)
1148 				break;
1149 			if (min_nr <= i)
1150 				break;
1151 			if (unlikely(ctx->dead)) {
1152 				ret = -EINVAL;
1153 				break;
1154 			}
1155 			if (to.timed_out)	/* Only check after read evt */
1156 				break;
1157 			/* Try to only show up in io wait if there are ops
1158 			 *  in flight */
1159 			if (ctx->reqs_active)
1160 				io_schedule();
1161 			else
1162 				schedule();
1163 			if (signal_pending(tsk)) {
1164 				ret = -EINTR;
1165 				break;
1166 			}
1167 			/*ret = aio_read_evt(ctx, &ent);*/
1168 		} while (1) ;
1169 
1170 		set_task_state(tsk, TASK_RUNNING);
1171 		remove_wait_queue(&ctx->wait, &wait);
1172 
1173 		if (unlikely(ret <= 0))
1174 			break;
1175 
1176 		ret = -EFAULT;
1177 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1178 			dprintk("aio: lost an event due to EFAULT.\n");
1179 			break;
1180 		}
1181 
1182 		/* Good, event copied to userland, update counts. */
1183 		event ++;
1184 		i ++;
1185 	}
1186 
1187 	if (timeout)
1188 		clear_timeout(&to);
1189 out:
1190 	destroy_timer_on_stack(&to.timer);
1191 	return i ? i : ret;
1192 }
1193 
1194 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1195  * against races with itself via ->dead.
1196  */
io_destroy(struct kioctx * ioctx)1197 static void io_destroy(struct kioctx *ioctx)
1198 {
1199 	struct mm_struct *mm = current->mm;
1200 	int was_dead;
1201 
1202 	/* delete the entry from the list is someone else hasn't already */
1203 	spin_lock(&mm->ioctx_lock);
1204 	was_dead = ioctx->dead;
1205 	ioctx->dead = 1;
1206 	hlist_del_rcu(&ioctx->list);
1207 	spin_unlock(&mm->ioctx_lock);
1208 
1209 	dprintk("aio_release(%p)\n", ioctx);
1210 	if (likely(!was_dead))
1211 		put_ioctx(ioctx);	/* twice for the list */
1212 
1213 	aio_cancel_all(ioctx);
1214 	wait_for_all_aios(ioctx);
1215 
1216 	/*
1217 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1218 	 * by other CPUs at this point.  Right now, we rely on the
1219 	 * locking done by the above calls to ensure this consistency.
1220 	 */
1221 	wake_up_all(&ioctx->wait);
1222 	put_ioctx(ioctx);	/* once for the lookup */
1223 }
1224 
1225 /* sys_io_setup:
1226  *	Create an aio_context capable of receiving at least nr_events.
1227  *	ctxp must not point to an aio_context that already exists, and
1228  *	must be initialized to 0 prior to the call.  On successful
1229  *	creation of the aio_context, *ctxp is filled in with the resulting
1230  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1231  *	if the specified nr_events exceeds internal limits.  May fail
1232  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1233  *	of available events.  May fail with -ENOMEM if insufficient kernel
1234  *	resources are available.  May fail with -EFAULT if an invalid
1235  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1236  *	implemented.
1237  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1238 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1239 {
1240 	struct kioctx *ioctx = NULL;
1241 	unsigned long ctx;
1242 	long ret;
1243 
1244 	ret = get_user(ctx, ctxp);
1245 	if (unlikely(ret))
1246 		goto out;
1247 
1248 	ret = -EINVAL;
1249 	if (unlikely(ctx || nr_events == 0)) {
1250 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1251 		         ctx, nr_events);
1252 		goto out;
1253 	}
1254 
1255 	ioctx = ioctx_alloc(nr_events);
1256 	ret = PTR_ERR(ioctx);
1257 	if (!IS_ERR(ioctx)) {
1258 		ret = put_user(ioctx->user_id, ctxp);
1259 		if (!ret)
1260 			return 0;
1261 
1262 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1263 		io_destroy(ioctx);
1264 	}
1265 
1266 out:
1267 	return ret;
1268 }
1269 
1270 /* sys_io_destroy:
1271  *	Destroy the aio_context specified.  May cancel any outstanding
1272  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1273  *	implemented.  May fail with -EINVAL if the context pointed to
1274  *	is invalid.
1275  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1276 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1277 {
1278 	struct kioctx *ioctx = lookup_ioctx(ctx);
1279 	if (likely(NULL != ioctx)) {
1280 		io_destroy(ioctx);
1281 		return 0;
1282 	}
1283 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1284 	return -EINVAL;
1285 }
1286 
aio_advance_iovec(struct kiocb * iocb,ssize_t ret)1287 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1288 {
1289 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1290 
1291 	BUG_ON(ret <= 0);
1292 
1293 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1294 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1295 		iov->iov_base += this;
1296 		iov->iov_len -= this;
1297 		iocb->ki_left -= this;
1298 		ret -= this;
1299 		if (iov->iov_len == 0) {
1300 			iocb->ki_cur_seg++;
1301 			iov++;
1302 		}
1303 	}
1304 
1305 	/* the caller should not have done more io than what fit in
1306 	 * the remaining iovecs */
1307 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1308 }
1309 
aio_rw_vect_retry(struct kiocb * iocb)1310 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1311 {
1312 	struct file *file = iocb->ki_filp;
1313 	struct address_space *mapping = file->f_mapping;
1314 	struct inode *inode = mapping->host;
1315 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1316 			 unsigned long, loff_t);
1317 	ssize_t ret = 0;
1318 	unsigned short opcode;
1319 
1320 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1321 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1322 		rw_op = file->f_op->aio_read;
1323 		opcode = IOCB_CMD_PREADV;
1324 	} else {
1325 		rw_op = file->f_op->aio_write;
1326 		opcode = IOCB_CMD_PWRITEV;
1327 	}
1328 
1329 	/* This matches the pread()/pwrite() logic */
1330 	if (iocb->ki_pos < 0)
1331 		return -EINVAL;
1332 
1333 	do {
1334 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1335 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1336 			    iocb->ki_pos);
1337 		if (ret > 0)
1338 			aio_advance_iovec(iocb, ret);
1339 
1340 	/* retry all partial writes.  retry partial reads as long as its a
1341 	 * regular file. */
1342 	} while (ret > 0 && iocb->ki_left > 0 &&
1343 		 (opcode == IOCB_CMD_PWRITEV ||
1344 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1345 
1346 	/* This means we must have transferred all that we could */
1347 	/* No need to retry anymore */
1348 	if ((ret == 0) || (iocb->ki_left == 0))
1349 		ret = iocb->ki_nbytes - iocb->ki_left;
1350 
1351 	/* If we managed to write some out we return that, rather than
1352 	 * the eventual error. */
1353 	if (opcode == IOCB_CMD_PWRITEV
1354 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1355 	    && iocb->ki_nbytes - iocb->ki_left)
1356 		ret = iocb->ki_nbytes - iocb->ki_left;
1357 
1358 	return ret;
1359 }
1360 
aio_fdsync(struct kiocb * iocb)1361 static ssize_t aio_fdsync(struct kiocb *iocb)
1362 {
1363 	struct file *file = iocb->ki_filp;
1364 	ssize_t ret = -EINVAL;
1365 
1366 	if (file->f_op->aio_fsync)
1367 		ret = file->f_op->aio_fsync(iocb, 1);
1368 	return ret;
1369 }
1370 
aio_fsync(struct kiocb * iocb)1371 static ssize_t aio_fsync(struct kiocb *iocb)
1372 {
1373 	struct file *file = iocb->ki_filp;
1374 	ssize_t ret = -EINVAL;
1375 
1376 	if (file->f_op->aio_fsync)
1377 		ret = file->f_op->aio_fsync(iocb, 0);
1378 	return ret;
1379 }
1380 
aio_setup_vectored_rw(int type,struct kiocb * kiocb,bool compat)1381 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1382 {
1383 	ssize_t ret;
1384 
1385 #ifdef CONFIG_COMPAT
1386 	if (compat)
1387 		ret = compat_rw_copy_check_uvector(type,
1388 				(struct compat_iovec __user *)kiocb->ki_buf,
1389 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1390 				&kiocb->ki_iovec);
1391 	else
1392 #endif
1393 		ret = rw_copy_check_uvector(type,
1394 				(struct iovec __user *)kiocb->ki_buf,
1395 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1396 				&kiocb->ki_iovec);
1397 	if (ret < 0)
1398 		goto out;
1399 
1400 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1401 	kiocb->ki_cur_seg = 0;
1402 	/* ki_nbytes/left now reflect bytes instead of segs */
1403 	kiocb->ki_nbytes = ret;
1404 	kiocb->ki_left = ret;
1405 
1406 	ret = 0;
1407 out:
1408 	return ret;
1409 }
1410 
aio_setup_single_vector(struct kiocb * kiocb)1411 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1412 {
1413 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1414 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1415 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1416 	kiocb->ki_nr_segs = 1;
1417 	kiocb->ki_cur_seg = 0;
1418 	return 0;
1419 }
1420 
1421 /*
1422  * aio_setup_iocb:
1423  *	Performs the initial checks and aio retry method
1424  *	setup for the kiocb at the time of io submission.
1425  */
aio_setup_iocb(struct kiocb * kiocb,bool compat)1426 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1427 {
1428 	struct file *file = kiocb->ki_filp;
1429 	ssize_t ret = 0;
1430 
1431 	switch (kiocb->ki_opcode) {
1432 	case IOCB_CMD_PREAD:
1433 		ret = -EBADF;
1434 		if (unlikely(!(file->f_mode & FMODE_READ)))
1435 			break;
1436 		ret = -EFAULT;
1437 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1438 			kiocb->ki_left)))
1439 			break;
1440 		ret = security_file_permission(file, MAY_READ);
1441 		if (unlikely(ret))
1442 			break;
1443 		ret = aio_setup_single_vector(kiocb);
1444 		if (ret)
1445 			break;
1446 		ret = -EINVAL;
1447 		if (file->f_op->aio_read)
1448 			kiocb->ki_retry = aio_rw_vect_retry;
1449 		break;
1450 	case IOCB_CMD_PWRITE:
1451 		ret = -EBADF;
1452 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1453 			break;
1454 		ret = -EFAULT;
1455 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1456 			kiocb->ki_left)))
1457 			break;
1458 		ret = security_file_permission(file, MAY_WRITE);
1459 		if (unlikely(ret))
1460 			break;
1461 		ret = aio_setup_single_vector(kiocb);
1462 		if (ret)
1463 			break;
1464 		ret = -EINVAL;
1465 		if (file->f_op->aio_write)
1466 			kiocb->ki_retry = aio_rw_vect_retry;
1467 		break;
1468 	case IOCB_CMD_PREADV:
1469 		ret = -EBADF;
1470 		if (unlikely(!(file->f_mode & FMODE_READ)))
1471 			break;
1472 		ret = security_file_permission(file, MAY_READ);
1473 		if (unlikely(ret))
1474 			break;
1475 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1476 		if (ret)
1477 			break;
1478 		ret = -EINVAL;
1479 		if (file->f_op->aio_read)
1480 			kiocb->ki_retry = aio_rw_vect_retry;
1481 		break;
1482 	case IOCB_CMD_PWRITEV:
1483 		ret = -EBADF;
1484 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1485 			break;
1486 		ret = security_file_permission(file, MAY_WRITE);
1487 		if (unlikely(ret))
1488 			break;
1489 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1490 		if (ret)
1491 			break;
1492 		ret = -EINVAL;
1493 		if (file->f_op->aio_write)
1494 			kiocb->ki_retry = aio_rw_vect_retry;
1495 		break;
1496 	case IOCB_CMD_FDSYNC:
1497 		ret = -EINVAL;
1498 		if (file->f_op->aio_fsync)
1499 			kiocb->ki_retry = aio_fdsync;
1500 		break;
1501 	case IOCB_CMD_FSYNC:
1502 		ret = -EINVAL;
1503 		if (file->f_op->aio_fsync)
1504 			kiocb->ki_retry = aio_fsync;
1505 		break;
1506 	default:
1507 		dprintk("EINVAL: io_submit: no operation provided\n");
1508 		ret = -EINVAL;
1509 	}
1510 
1511 	if (!kiocb->ki_retry)
1512 		return ret;
1513 
1514 	return 0;
1515 }
1516 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb,bool compat)1517 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1518 			 struct iocb *iocb, bool compat)
1519 {
1520 	struct kiocb *req;
1521 	struct file *file;
1522 	ssize_t ret;
1523 
1524 	/* enforce forwards compatibility on users */
1525 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1526 		pr_debug("EINVAL: io_submit: reserve field set\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	/* prevent overflows */
1531 	if (unlikely(
1532 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1533 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1534 	    ((ssize_t)iocb->aio_nbytes < 0)
1535 	   )) {
1536 		pr_debug("EINVAL: io_submit: overflow check\n");
1537 		return -EINVAL;
1538 	}
1539 
1540 	file = fget(iocb->aio_fildes);
1541 	if (unlikely(!file))
1542 		return -EBADF;
1543 
1544 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1545 	if (unlikely(!req)) {
1546 		fput(file);
1547 		return -EAGAIN;
1548 	}
1549 	req->ki_filp = file;
1550 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1551 		/*
1552 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1553 		 * instance of the file* now. The file descriptor must be
1554 		 * an eventfd() fd, and will be signaled for each completed
1555 		 * event using the eventfd_signal() function.
1556 		 */
1557 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1558 		if (IS_ERR(req->ki_eventfd)) {
1559 			ret = PTR_ERR(req->ki_eventfd);
1560 			req->ki_eventfd = NULL;
1561 			goto out_put_req;
1562 		}
1563 	}
1564 
1565 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1566 	if (unlikely(ret)) {
1567 		dprintk("EFAULT: aio_key\n");
1568 		goto out_put_req;
1569 	}
1570 
1571 	req->ki_obj.user = user_iocb;
1572 	req->ki_user_data = iocb->aio_data;
1573 	req->ki_pos = iocb->aio_offset;
1574 
1575 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1576 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1577 	req->ki_opcode = iocb->aio_lio_opcode;
1578 
1579 	ret = aio_setup_iocb(req, compat);
1580 
1581 	if (ret)
1582 		goto out_put_req;
1583 
1584 	spin_lock_irq(&ctx->ctx_lock);
1585 	/*
1586 	 * We could have raced with io_destroy() and are currently holding a
1587 	 * reference to ctx which should be destroyed. We cannot submit IO
1588 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1589 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1590 	 * for outstanding IO and the barrier between these two is realized by
1591 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1592 	 * increment ctx->reqs_active before checking for ctx->dead and the
1593 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1594 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1595 	 * finish.
1596 	 */
1597 	if (ctx->dead) {
1598 		spin_unlock_irq(&ctx->ctx_lock);
1599 		ret = -EINVAL;
1600 		goto out_put_req;
1601 	}
1602 	aio_run_iocb(req);
1603 	if (!list_empty(&ctx->run_list)) {
1604 		/* drain the run list */
1605 		while (__aio_run_iocbs(ctx))
1606 			;
1607 	}
1608 	spin_unlock_irq(&ctx->ctx_lock);
1609 
1610 	aio_put_req(req);	/* drop extra ref to req */
1611 	return 0;
1612 
1613 out_put_req:
1614 	aio_put_req(req);	/* drop extra ref to req */
1615 	aio_put_req(req);	/* drop i/o ref to req */
1616 	return ret;
1617 }
1618 
do_io_submit(aio_context_t ctx_id,long nr,struct iocb __user * __user * iocbpp,bool compat)1619 long do_io_submit(aio_context_t ctx_id, long nr,
1620 		  struct iocb __user *__user *iocbpp, bool compat)
1621 {
1622 	struct kioctx *ctx;
1623 	long ret = 0;
1624 	int i;
1625 	struct blk_plug plug;
1626 
1627 	if (unlikely(nr < 0))
1628 		return -EINVAL;
1629 
1630 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1631 		nr = LONG_MAX/sizeof(*iocbpp);
1632 
1633 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1634 		return -EFAULT;
1635 
1636 	ctx = lookup_ioctx(ctx_id);
1637 	if (unlikely(!ctx)) {
1638 		pr_debug("EINVAL: io_submit: invalid context id\n");
1639 		return -EINVAL;
1640 	}
1641 
1642 	blk_start_plug(&plug);
1643 
1644 	/*
1645 	 * AKPM: should this return a partial result if some of the IOs were
1646 	 * successfully submitted?
1647 	 */
1648 	for (i=0; i<nr; i++) {
1649 		struct iocb __user *user_iocb;
1650 		struct iocb tmp;
1651 
1652 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1653 			ret = -EFAULT;
1654 			break;
1655 		}
1656 
1657 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1658 			ret = -EFAULT;
1659 			break;
1660 		}
1661 
1662 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1663 		if (ret)
1664 			break;
1665 	}
1666 	blk_finish_plug(&plug);
1667 
1668 	put_ioctx(ctx);
1669 	return i ? i : ret;
1670 }
1671 
1672 /* sys_io_submit:
1673  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1674  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1675  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1676  *	*iocbpp[0] is not properly initialized, if the operation specified
1677  *	is invalid for the file descriptor in the iocb.  May fail with
1678  *	-EFAULT if any of the data structures point to invalid data.  May
1679  *	fail with -EBADF if the file descriptor specified in the first
1680  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1681  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1682  *	fail with -ENOSYS if not implemented.
1683  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1684 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1685 		struct iocb __user * __user *, iocbpp)
1686 {
1687 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1688 }
1689 
1690 /* lookup_kiocb
1691  *	Finds a given iocb for cancellation.
1692  */
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1693 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1694 				  u32 key)
1695 {
1696 	struct list_head *pos;
1697 
1698 	assert_spin_locked(&ctx->ctx_lock);
1699 
1700 	/* TODO: use a hash or array, this sucks. */
1701 	list_for_each(pos, &ctx->active_reqs) {
1702 		struct kiocb *kiocb = list_kiocb(pos);
1703 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1704 			return kiocb;
1705 	}
1706 	return NULL;
1707 }
1708 
1709 /* sys_io_cancel:
1710  *	Attempts to cancel an iocb previously passed to io_submit.  If
1711  *	the operation is successfully cancelled, the resulting event is
1712  *	copied into the memory pointed to by result without being placed
1713  *	into the completion queue and 0 is returned.  May fail with
1714  *	-EFAULT if any of the data structures pointed to are invalid.
1715  *	May fail with -EINVAL if aio_context specified by ctx_id is
1716  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1717  *	cancelled.  Will fail with -ENOSYS if not implemented.
1718  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1719 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1720 		struct io_event __user *, result)
1721 {
1722 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1723 	struct kioctx *ctx;
1724 	struct kiocb *kiocb;
1725 	u32 key;
1726 	int ret;
1727 
1728 	ret = get_user(key, &iocb->aio_key);
1729 	if (unlikely(ret))
1730 		return -EFAULT;
1731 
1732 	ctx = lookup_ioctx(ctx_id);
1733 	if (unlikely(!ctx))
1734 		return -EINVAL;
1735 
1736 	spin_lock_irq(&ctx->ctx_lock);
1737 	ret = -EAGAIN;
1738 	kiocb = lookup_kiocb(ctx, iocb, key);
1739 	if (kiocb && kiocb->ki_cancel) {
1740 		cancel = kiocb->ki_cancel;
1741 		kiocb->ki_users ++;
1742 		kiocbSetCancelled(kiocb);
1743 	} else
1744 		cancel = NULL;
1745 	spin_unlock_irq(&ctx->ctx_lock);
1746 
1747 	if (NULL != cancel) {
1748 		struct io_event tmp;
1749 		pr_debug("calling cancel\n");
1750 		memset(&tmp, 0, sizeof(tmp));
1751 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1752 		tmp.data = kiocb->ki_user_data;
1753 		ret = cancel(kiocb, &tmp);
1754 		if (!ret) {
1755 			/* Cancellation succeeded -- copy the result
1756 			 * into the user's buffer.
1757 			 */
1758 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1759 				ret = -EFAULT;
1760 		}
1761 	} else
1762 		ret = -EINVAL;
1763 
1764 	put_ioctx(ctx);
1765 
1766 	return ret;
1767 }
1768 
1769 /* io_getevents:
1770  *	Attempts to read at least min_nr events and up to nr events from
1771  *	the completion queue for the aio_context specified by ctx_id. If
1772  *	it succeeds, the number of read events is returned. May fail with
1773  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1774  *	out of range, if timeout is out of range.  May fail with -EFAULT
1775  *	if any of the memory specified is invalid.  May return 0 or
1776  *	< min_nr if the timeout specified by timeout has elapsed
1777  *	before sufficient events are available, where timeout == NULL
1778  *	specifies an infinite timeout. Note that the timeout pointed to by
1779  *	timeout is relative and will be updated if not NULL and the
1780  *	operation blocks. Will fail with -ENOSYS if not implemented.
1781  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1782 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1783 		long, min_nr,
1784 		long, nr,
1785 		struct io_event __user *, events,
1786 		struct timespec __user *, timeout)
1787 {
1788 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1789 	long ret = -EINVAL;
1790 
1791 	if (likely(ioctx)) {
1792 		if (likely(min_nr <= nr && min_nr >= 0))
1793 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1794 		put_ioctx(ioctx);
1795 	}
1796 
1797 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1798 	return ret;
1799 }
1800