1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/proc_fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 /*
82 * Protected counters by write_lock_irq(&tasklist_lock)
83 */
84 unsigned long total_forks; /* Handle normal Linux uptimes. */
85 int nr_threads; /* The idle threads do not count.. */
86
87 int max_threads; /* tunable limit on nr_threads */
88
89 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
90
91 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
92
93 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)94 int lockdep_tasklist_lock_is_held(void)
95 {
96 return lockdep_is_held(&tasklist_lock);
97 }
98 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
99 #endif /* #ifdef CONFIG_PROVE_RCU */
100
nr_processes(void)101 int nr_processes(void)
102 {
103 int cpu;
104 int total = 0;
105
106 for_each_possible_cpu(cpu)
107 total += per_cpu(process_counts, cpu);
108
109 return total;
110 }
111
112 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
113 # define alloc_task_struct_node(node) \
114 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
115 # define free_task_struct(tsk) \
116 kmem_cache_free(task_struct_cachep, (tsk))
117 static struct kmem_cache *task_struct_cachep;
118 #endif
119
120 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
alloc_thread_info_node(struct task_struct * tsk,int node)121 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
122 int node)
123 {
124 #ifdef CONFIG_DEBUG_STACK_USAGE
125 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
126 #else
127 gfp_t mask = GFP_KERNEL;
128 #endif
129 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
130
131 return page ? page_address(page) : NULL;
132 }
133
free_thread_info(struct thread_info * ti)134 static inline void free_thread_info(struct thread_info *ti)
135 {
136 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
137 }
138 #endif
139
140 /* SLAB cache for signal_struct structures (tsk->signal) */
141 static struct kmem_cache *signal_cachep;
142
143 /* SLAB cache for sighand_struct structures (tsk->sighand) */
144 struct kmem_cache *sighand_cachep;
145
146 /* SLAB cache for files_struct structures (tsk->files) */
147 struct kmem_cache *files_cachep;
148
149 /* SLAB cache for fs_struct structures (tsk->fs) */
150 struct kmem_cache *fs_cachep;
151
152 /* SLAB cache for vm_area_struct structures */
153 struct kmem_cache *vm_area_cachep;
154
155 /* SLAB cache for mm_struct structures (tsk->mm) */
156 static struct kmem_cache *mm_cachep;
157
account_kernel_stack(struct thread_info * ti,int account)158 static void account_kernel_stack(struct thread_info *ti, int account)
159 {
160 struct zone *zone = page_zone(virt_to_page(ti));
161
162 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 }
164
free_task(struct task_struct * tsk)165 void free_task(struct task_struct *tsk)
166 {
167 prop_local_destroy_single(&tsk->dirties);
168 account_kernel_stack(tsk->stack, -1);
169 free_thread_info(tsk->stack);
170 rt_mutex_debug_task_free(tsk);
171 ftrace_graph_exit_task(tsk);
172 free_task_struct(tsk);
173 }
174 EXPORT_SYMBOL(free_task);
175
free_signal_struct(struct signal_struct * sig)176 static inline void free_signal_struct(struct signal_struct *sig)
177 {
178 taskstats_tgid_free(sig);
179 sched_autogroup_exit(sig);
180 kmem_cache_free(signal_cachep, sig);
181 }
182
put_signal_struct(struct signal_struct * sig)183 static inline void put_signal_struct(struct signal_struct *sig)
184 {
185 if (atomic_dec_and_test(&sig->sigcnt))
186 free_signal_struct(sig);
187 }
188
__put_task_struct(struct task_struct * tsk)189 void __put_task_struct(struct task_struct *tsk)
190 {
191 WARN_ON(!tsk->exit_state);
192 WARN_ON(atomic_read(&tsk->usage));
193 WARN_ON(tsk == current);
194
195 exit_creds(tsk);
196 delayacct_tsk_free(tsk);
197 put_signal_struct(tsk->signal);
198
199 if (!profile_handoff_task(tsk))
200 free_task(tsk);
201 }
202 EXPORT_SYMBOL_GPL(__put_task_struct);
203
204 /*
205 * macro override instead of weak attribute alias, to workaround
206 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207 */
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
211
fork_init(unsigned long mempages)212 void __init fork_init(unsigned long mempages)
213 {
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
217 #endif
218 /* create a slab on which task_structs can be allocated */
219 task_struct_cachep =
220 kmem_cache_create("task_struct", sizeof(struct task_struct),
221 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
223
224 /* do the arch specific task caches init */
225 arch_task_cache_init();
226
227 /*
228 * The default maximum number of threads is set to a safe
229 * value: the thread structures can take up at most half
230 * of memory.
231 */
232 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233
234 /*
235 * we need to allow at least 20 threads to boot a system
236 */
237 if(max_threads < 20)
238 max_threads = 20;
239
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 init_task.signal->rlim[RLIMIT_NPROC];
244 }
245
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 struct task_struct *src)
248 {
249 *dst = *src;
250 return 0;
251 }
252
dup_task_struct(struct task_struct * orig)253 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 {
255 struct task_struct *tsk;
256 struct thread_info *ti;
257 unsigned long *stackend;
258 int node = tsk_fork_get_node(orig);
259 int err;
260
261 prepare_to_copy(orig);
262
263 tsk = alloc_task_struct_node(node);
264 if (!tsk)
265 return NULL;
266
267 ti = alloc_thread_info_node(tsk, node);
268 if (!ti) {
269 free_task_struct(tsk);
270 return NULL;
271 }
272
273 err = arch_dup_task_struct(tsk, orig);
274 if (err)
275 goto out;
276
277 tsk->stack = ti;
278
279 err = prop_local_init_single(&tsk->dirties);
280 if (err)
281 goto out;
282
283 setup_thread_stack(tsk, orig);
284 clear_user_return_notifier(tsk);
285 clear_tsk_need_resched(tsk);
286 stackend = end_of_stack(tsk);
287 *stackend = STACK_END_MAGIC; /* for overflow detection */
288
289 #ifdef CONFIG_CC_STACKPROTECTOR
290 tsk->stack_canary = get_random_int();
291 #endif
292
293 /* One for us, one for whoever does the "release_task()" (usually parent) */
294 atomic_set(&tsk->usage,2);
295 atomic_set(&tsk->fs_excl, 0);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
300
301 account_kernel_stack(ti, 1);
302
303 return tsk;
304
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
309 }
310
311 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
319
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
322 /*
323 * Not linked in yet - no deadlock potential:
324 */
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
344
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
348
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
355 }
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
362 }
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
382
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 spin_lock(&mapping->i_mmap_lock);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 tmp->vm_truncate_count = mpnt->vm_truncate_count;
390 flush_dcache_mmap_lock(mapping);
391 /* insert tmp into the share list, just after mpnt */
392 vma_prio_tree_add(tmp, mpnt);
393 flush_dcache_mmap_unlock(mapping);
394 spin_unlock(&mapping->i_mmap_lock);
395 }
396
397 /*
398 * Clear hugetlb-related page reserves for children. This only
399 * affects MAP_PRIVATE mappings. Faults generated by the child
400 * are not guaranteed to succeed, even if read-only
401 */
402 if (is_vm_hugetlb_page(tmp))
403 reset_vma_resv_huge_pages(tmp);
404
405 /*
406 * Link in the new vma and copy the page table entries.
407 */
408 *pprev = tmp;
409 pprev = &tmp->vm_next;
410 tmp->vm_prev = prev;
411 prev = tmp;
412
413 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414 rb_link = &tmp->vm_rb.rb_right;
415 rb_parent = &tmp->vm_rb;
416
417 mm->map_count++;
418 retval = copy_page_range(mm, oldmm, mpnt);
419
420 if (tmp->vm_ops && tmp->vm_ops->open)
421 tmp->vm_ops->open(tmp);
422
423 if (retval)
424 goto out;
425 }
426 /* a new mm has just been created */
427 arch_dup_mmap(oldmm, mm);
428 retval = 0;
429 out:
430 up_write(&mm->mmap_sem);
431 flush_tlb_mm(oldmm);
432 up_write(&oldmm->mmap_sem);
433 return retval;
434 fail_nomem_anon_vma_fork:
435 mpol_put(pol);
436 fail_nomem_policy:
437 kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439 retval = -ENOMEM;
440 vm_unacct_memory(charge);
441 goto out;
442 }
443
mm_alloc_pgd(struct mm_struct * mm)444 static inline int mm_alloc_pgd(struct mm_struct * mm)
445 {
446 mm->pgd = pgd_alloc(mm);
447 if (unlikely(!mm->pgd))
448 return -ENOMEM;
449 return 0;
450 }
451
mm_free_pgd(struct mm_struct * mm)452 static inline void mm_free_pgd(struct mm_struct * mm)
453 {
454 pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm) (0)
458 #define mm_alloc_pgd(mm) (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463
464 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
466
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468
coredump_filter_setup(char * s)469 static int __init coredump_filter_setup(char *s)
470 {
471 default_dump_filter =
472 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473 MMF_DUMP_FILTER_MASK;
474 return 1;
475 }
476
477 __setup("coredump_filter=", coredump_filter_setup);
478
479 #include <linux/init_task.h>
480
mm_init_aio(struct mm_struct * mm)481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484 spin_lock_init(&mm->ioctx_lock);
485 INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488
mm_init(struct mm_struct * mm,struct task_struct * p)489 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
490 {
491 atomic_set(&mm->mm_users, 1);
492 atomic_set(&mm->mm_count, 1);
493 init_rwsem(&mm->mmap_sem);
494 INIT_LIST_HEAD(&mm->mmlist);
495 mm->flags = (current->mm) ?
496 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497 mm->core_state = NULL;
498 mm->nr_ptes = 0;
499 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500 spin_lock_init(&mm->page_table_lock);
501 mm->free_area_cache = TASK_UNMAPPED_BASE;
502 mm->cached_hole_size = ~0UL;
503 mm_init_aio(mm);
504 mm_init_owner(mm, p);
505 atomic_set(&mm->oom_disable_count, 0);
506
507 if (likely(!mm_alloc_pgd(mm))) {
508 mm->def_flags = 0;
509 mmu_notifier_mm_init(mm);
510 return mm;
511 }
512
513 free_mm(mm);
514 return NULL;
515 }
516
517 /*
518 * Allocate and initialize an mm_struct.
519 */
mm_alloc(void)520 struct mm_struct * mm_alloc(void)
521 {
522 struct mm_struct * mm;
523
524 mm = allocate_mm();
525 if (mm) {
526 memset(mm, 0, sizeof(*mm));
527 mm = mm_init(mm, current);
528 }
529 return mm;
530 }
531
532 /*
533 * Called when the last reference to the mm
534 * is dropped: either by a lazy thread or by
535 * mmput. Free the page directory and the mm.
536 */
__mmdrop(struct mm_struct * mm)537 void __mmdrop(struct mm_struct *mm)
538 {
539 BUG_ON(mm == &init_mm);
540 mm_free_pgd(mm);
541 destroy_context(mm);
542 mmu_notifier_mm_destroy(mm);
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 VM_BUG_ON(mm->pmd_huge_pte);
545 #endif
546 free_mm(mm);
547 }
548 EXPORT_SYMBOL_GPL(__mmdrop);
549
550 /*
551 * Decrement the use count and release all resources for an mm.
552 */
mmput(struct mm_struct * mm)553 void mmput(struct mm_struct *mm)
554 {
555 might_sleep();
556
557 if (atomic_dec_and_test(&mm->mm_users)) {
558 exit_aio(mm);
559 ksm_exit(mm);
560 khugepaged_exit(mm); /* must run before exit_mmap */
561 exit_mmap(mm);
562 set_mm_exe_file(mm, NULL);
563 if (!list_empty(&mm->mmlist)) {
564 spin_lock(&mmlist_lock);
565 list_del(&mm->mmlist);
566 spin_unlock(&mmlist_lock);
567 }
568 put_swap_token(mm);
569 if (mm->binfmt)
570 module_put(mm->binfmt->module);
571 mmdrop(mm);
572 }
573 }
574 EXPORT_SYMBOL_GPL(mmput);
575
576 /**
577 * get_task_mm - acquire a reference to the task's mm
578 *
579 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
580 * this kernel workthread has transiently adopted a user mm with use_mm,
581 * to do its AIO) is not set and if so returns a reference to it, after
582 * bumping up the use count. User must release the mm via mmput()
583 * after use. Typically used by /proc and ptrace.
584 */
get_task_mm(struct task_struct * task)585 struct mm_struct *get_task_mm(struct task_struct *task)
586 {
587 struct mm_struct *mm;
588
589 task_lock(task);
590 mm = task->mm;
591 if (mm) {
592 if (task->flags & PF_KTHREAD)
593 mm = NULL;
594 else
595 atomic_inc(&mm->mm_users);
596 }
597 task_unlock(task);
598 return mm;
599 }
600 EXPORT_SYMBOL_GPL(get_task_mm);
601
602 /* Please note the differences between mmput and mm_release.
603 * mmput is called whenever we stop holding onto a mm_struct,
604 * error success whatever.
605 *
606 * mm_release is called after a mm_struct has been removed
607 * from the current process.
608 *
609 * This difference is important for error handling, when we
610 * only half set up a mm_struct for a new process and need to restore
611 * the old one. Because we mmput the new mm_struct before
612 * restoring the old one. . .
613 * Eric Biederman 10 January 1998
614 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)615 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
616 {
617 struct completion *vfork_done = tsk->vfork_done;
618
619 /* Get rid of any futexes when releasing the mm */
620 #ifdef CONFIG_FUTEX
621 if (unlikely(tsk->robust_list)) {
622 exit_robust_list(tsk);
623 tsk->robust_list = NULL;
624 }
625 #ifdef CONFIG_COMPAT
626 if (unlikely(tsk->compat_robust_list)) {
627 compat_exit_robust_list(tsk);
628 tsk->compat_robust_list = NULL;
629 }
630 #endif
631 if (unlikely(!list_empty(&tsk->pi_state_list)))
632 exit_pi_state_list(tsk);
633 #endif
634
635 /* Get rid of any cached register state */
636 deactivate_mm(tsk, mm);
637
638 /* notify parent sleeping on vfork() */
639 if (vfork_done) {
640 tsk->vfork_done = NULL;
641 complete(vfork_done);
642 }
643
644 /*
645 * If we're exiting normally, clear a user-space tid field if
646 * requested. We leave this alone when dying by signal, to leave
647 * the value intact in a core dump, and to save the unnecessary
648 * trouble otherwise. Userland only wants this done for a sys_exit.
649 */
650 if (tsk->clear_child_tid) {
651 if (!(tsk->flags & PF_SIGNALED) &&
652 atomic_read(&mm->mm_users) > 1) {
653 /*
654 * We don't check the error code - if userspace has
655 * not set up a proper pointer then tough luck.
656 */
657 put_user(0, tsk->clear_child_tid);
658 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
659 1, NULL, NULL, 0);
660 }
661 tsk->clear_child_tid = NULL;
662 }
663 }
664
665 /*
666 * Allocate a new mm structure and copy contents from the
667 * mm structure of the passed in task structure.
668 */
dup_mm(struct task_struct * tsk)669 struct mm_struct *dup_mm(struct task_struct *tsk)
670 {
671 struct mm_struct *mm, *oldmm = current->mm;
672 int err;
673
674 if (!oldmm)
675 return NULL;
676
677 mm = allocate_mm();
678 if (!mm)
679 goto fail_nomem;
680
681 memcpy(mm, oldmm, sizeof(*mm));
682
683 /* Initializing for Swap token stuff */
684 mm->token_priority = 0;
685 mm->last_interval = 0;
686
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 mm->pmd_huge_pte = NULL;
689 #endif
690
691 if (!mm_init(mm, tsk))
692 goto fail_nomem;
693
694 if (init_new_context(tsk, mm))
695 goto fail_nocontext;
696
697 dup_mm_exe_file(oldmm, mm);
698
699 err = dup_mmap(mm, oldmm);
700 if (err)
701 goto free_pt;
702
703 mm->hiwater_rss = get_mm_rss(mm);
704 mm->hiwater_vm = mm->total_vm;
705
706 if (mm->binfmt && !try_module_get(mm->binfmt->module))
707 goto free_pt;
708
709 return mm;
710
711 free_pt:
712 /* don't put binfmt in mmput, we haven't got module yet */
713 mm->binfmt = NULL;
714 mmput(mm);
715
716 fail_nomem:
717 return NULL;
718
719 fail_nocontext:
720 /*
721 * If init_new_context() failed, we cannot use mmput() to free the mm
722 * because it calls destroy_context()
723 */
724 mm_free_pgd(mm);
725 free_mm(mm);
726 return NULL;
727 }
728
copy_mm(unsigned long clone_flags,struct task_struct * tsk)729 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
730 {
731 struct mm_struct * mm, *oldmm;
732 int retval;
733
734 tsk->min_flt = tsk->maj_flt = 0;
735 tsk->nvcsw = tsk->nivcsw = 0;
736 #ifdef CONFIG_DETECT_HUNG_TASK
737 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
738 #endif
739
740 tsk->mm = NULL;
741 tsk->active_mm = NULL;
742
743 /*
744 * Are we cloning a kernel thread?
745 *
746 * We need to steal a active VM for that..
747 */
748 oldmm = current->mm;
749 if (!oldmm)
750 return 0;
751
752 if (clone_flags & CLONE_VM) {
753 atomic_inc(&oldmm->mm_users);
754 mm = oldmm;
755 goto good_mm;
756 }
757
758 retval = -ENOMEM;
759 mm = dup_mm(tsk);
760 if (!mm)
761 goto fail_nomem;
762
763 good_mm:
764 /* Initializing for Swap token stuff */
765 mm->token_priority = 0;
766 mm->last_interval = 0;
767 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
768 atomic_inc(&mm->oom_disable_count);
769
770 tsk->mm = mm;
771 tsk->active_mm = mm;
772 return 0;
773
774 fail_nomem:
775 return retval;
776 }
777
copy_fs(unsigned long clone_flags,struct task_struct * tsk)778 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
779 {
780 struct fs_struct *fs = current->fs;
781 if (clone_flags & CLONE_FS) {
782 /* tsk->fs is already what we want */
783 spin_lock(&fs->lock);
784 if (fs->in_exec) {
785 spin_unlock(&fs->lock);
786 return -EAGAIN;
787 }
788 fs->users++;
789 spin_unlock(&fs->lock);
790 return 0;
791 }
792 tsk->fs = copy_fs_struct(fs);
793 if (!tsk->fs)
794 return -ENOMEM;
795 return 0;
796 }
797
copy_files(unsigned long clone_flags,struct task_struct * tsk)798 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
799 {
800 struct files_struct *oldf, *newf;
801 int error = 0;
802
803 /*
804 * A background process may not have any files ...
805 */
806 oldf = current->files;
807 if (!oldf)
808 goto out;
809
810 if (clone_flags & CLONE_FILES) {
811 atomic_inc(&oldf->count);
812 goto out;
813 }
814
815 newf = dup_fd(oldf, &error);
816 if (!newf)
817 goto out;
818
819 tsk->files = newf;
820 error = 0;
821 out:
822 return error;
823 }
824
copy_io(unsigned long clone_flags,struct task_struct * tsk)825 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
826 {
827 #ifdef CONFIG_BLOCK
828 struct io_context *ioc = current->io_context;
829
830 if (!ioc)
831 return 0;
832 /*
833 * Share io context with parent, if CLONE_IO is set
834 */
835 if (clone_flags & CLONE_IO) {
836 tsk->io_context = ioc_task_link(ioc);
837 if (unlikely(!tsk->io_context))
838 return -ENOMEM;
839 } else if (ioprio_valid(ioc->ioprio)) {
840 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
841 if (unlikely(!tsk->io_context))
842 return -ENOMEM;
843
844 tsk->io_context->ioprio = ioc->ioprio;
845 }
846 #endif
847 return 0;
848 }
849
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)850 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
851 {
852 struct sighand_struct *sig;
853
854 if (clone_flags & CLONE_SIGHAND) {
855 atomic_inc(¤t->sighand->count);
856 return 0;
857 }
858 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
859 rcu_assign_pointer(tsk->sighand, sig);
860 if (!sig)
861 return -ENOMEM;
862 atomic_set(&sig->count, 1);
863 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
864 return 0;
865 }
866
__cleanup_sighand(struct sighand_struct * sighand)867 void __cleanup_sighand(struct sighand_struct *sighand)
868 {
869 if (atomic_dec_and_test(&sighand->count))
870 kmem_cache_free(sighand_cachep, sighand);
871 }
872
873
874 /*
875 * Initialize POSIX timer handling for a thread group.
876 */
posix_cpu_timers_init_group(struct signal_struct * sig)877 static void posix_cpu_timers_init_group(struct signal_struct *sig)
878 {
879 unsigned long cpu_limit;
880
881 /* Thread group counters. */
882 thread_group_cputime_init(sig);
883
884 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
885 if (cpu_limit != RLIM_INFINITY) {
886 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
887 sig->cputimer.running = 1;
888 }
889
890 /* The timer lists. */
891 INIT_LIST_HEAD(&sig->cpu_timers[0]);
892 INIT_LIST_HEAD(&sig->cpu_timers[1]);
893 INIT_LIST_HEAD(&sig->cpu_timers[2]);
894 }
895
copy_signal(unsigned long clone_flags,struct task_struct * tsk)896 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
897 {
898 struct signal_struct *sig;
899
900 if (clone_flags & CLONE_THREAD)
901 return 0;
902
903 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
904 tsk->signal = sig;
905 if (!sig)
906 return -ENOMEM;
907
908 sig->nr_threads = 1;
909 atomic_set(&sig->live, 1);
910 atomic_set(&sig->sigcnt, 1);
911 init_waitqueue_head(&sig->wait_chldexit);
912 if (clone_flags & CLONE_NEWPID)
913 sig->flags |= SIGNAL_UNKILLABLE;
914 sig->curr_target = tsk;
915 init_sigpending(&sig->shared_pending);
916 INIT_LIST_HEAD(&sig->posix_timers);
917
918 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
919 sig->real_timer.function = it_real_fn;
920
921 task_lock(current->group_leader);
922 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
923 task_unlock(current->group_leader);
924
925 posix_cpu_timers_init_group(sig);
926
927 tty_audit_fork(sig);
928 sched_autogroup_fork(sig);
929
930 sig->oom_adj = current->signal->oom_adj;
931 sig->oom_score_adj = current->signal->oom_score_adj;
932 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
933
934 mutex_init(&sig->cred_guard_mutex);
935
936 return 0;
937 }
938
copy_flags(unsigned long clone_flags,struct task_struct * p)939 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
940 {
941 unsigned long new_flags = p->flags;
942
943 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
944 new_flags |= PF_FORKNOEXEC;
945 new_flags |= PF_STARTING;
946 p->flags = new_flags;
947 clear_freeze_flag(p);
948 }
949
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)950 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
951 {
952 current->clear_child_tid = tidptr;
953
954 return task_pid_vnr(current);
955 }
956
rt_mutex_init_task(struct task_struct * p)957 static void rt_mutex_init_task(struct task_struct *p)
958 {
959 raw_spin_lock_init(&p->pi_lock);
960 #ifdef CONFIG_RT_MUTEXES
961 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
962 p->pi_blocked_on = NULL;
963 #endif
964 }
965
966 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)967 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
968 {
969 mm->owner = p;
970 }
971 #endif /* CONFIG_MM_OWNER */
972
973 /*
974 * Initialize POSIX timer handling for a single task.
975 */
posix_cpu_timers_init(struct task_struct * tsk)976 static void posix_cpu_timers_init(struct task_struct *tsk)
977 {
978 tsk->cputime_expires.prof_exp = cputime_zero;
979 tsk->cputime_expires.virt_exp = cputime_zero;
980 tsk->cputime_expires.sched_exp = 0;
981 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
982 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
983 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
984 }
985
986 /*
987 * This creates a new process as a copy of the old one,
988 * but does not actually start it yet.
989 *
990 * It copies the registers, and all the appropriate
991 * parts of the process environment (as per the clone
992 * flags). The actual kick-off is left to the caller.
993 */
copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)994 static struct task_struct *copy_process(unsigned long clone_flags,
995 unsigned long stack_start,
996 struct pt_regs *regs,
997 unsigned long stack_size,
998 int __user *child_tidptr,
999 struct pid *pid,
1000 int trace)
1001 {
1002 int retval;
1003 struct task_struct *p;
1004 int cgroup_callbacks_done = 0;
1005
1006 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1007 return ERR_PTR(-EINVAL);
1008
1009 /*
1010 * Thread groups must share signals as well, and detached threads
1011 * can only be started up within the thread group.
1012 */
1013 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1014 return ERR_PTR(-EINVAL);
1015
1016 /*
1017 * Shared signal handlers imply shared VM. By way of the above,
1018 * thread groups also imply shared VM. Blocking this case allows
1019 * for various simplifications in other code.
1020 */
1021 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1022 return ERR_PTR(-EINVAL);
1023
1024 /*
1025 * Siblings of global init remain as zombies on exit since they are
1026 * not reaped by their parent (swapper). To solve this and to avoid
1027 * multi-rooted process trees, prevent global and container-inits
1028 * from creating siblings.
1029 */
1030 if ((clone_flags & CLONE_PARENT) &&
1031 current->signal->flags & SIGNAL_UNKILLABLE)
1032 return ERR_PTR(-EINVAL);
1033
1034 retval = security_task_create(clone_flags);
1035 if (retval)
1036 goto fork_out;
1037
1038 retval = -ENOMEM;
1039 p = dup_task_struct(current);
1040 if (!p)
1041 goto fork_out;
1042
1043 ftrace_graph_init_task(p);
1044
1045 rt_mutex_init_task(p);
1046
1047 #ifdef CONFIG_PROVE_LOCKING
1048 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1049 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1050 #endif
1051 retval = -EAGAIN;
1052 if (atomic_read(&p->real_cred->user->processes) >=
1053 task_rlimit(p, RLIMIT_NPROC)) {
1054 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1055 p->real_cred->user != INIT_USER)
1056 goto bad_fork_free;
1057 }
1058
1059 retval = copy_creds(p, clone_flags);
1060 if (retval < 0)
1061 goto bad_fork_free;
1062
1063 /*
1064 * If multiple threads are within copy_process(), then this check
1065 * triggers too late. This doesn't hurt, the check is only there
1066 * to stop root fork bombs.
1067 */
1068 retval = -EAGAIN;
1069 if (nr_threads >= max_threads)
1070 goto bad_fork_cleanup_count;
1071
1072 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1073 goto bad_fork_cleanup_count;
1074
1075 p->did_exec = 0;
1076 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1077 copy_flags(clone_flags, p);
1078 INIT_LIST_HEAD(&p->children);
1079 INIT_LIST_HEAD(&p->sibling);
1080 rcu_copy_process(p);
1081 p->vfork_done = NULL;
1082 spin_lock_init(&p->alloc_lock);
1083
1084 init_sigpending(&p->pending);
1085
1086 p->utime = cputime_zero;
1087 p->stime = cputime_zero;
1088 p->gtime = cputime_zero;
1089 p->utimescaled = cputime_zero;
1090 p->stimescaled = cputime_zero;
1091 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1092 p->prev_utime = cputime_zero;
1093 p->prev_stime = cputime_zero;
1094 #endif
1095 #if defined(SPLIT_RSS_COUNTING)
1096 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1097 #endif
1098
1099 p->default_timer_slack_ns = current->timer_slack_ns;
1100
1101 task_io_accounting_init(&p->ioac);
1102 acct_clear_integrals(p);
1103
1104 posix_cpu_timers_init(p);
1105
1106 p->lock_depth = -1; /* -1 = no lock */
1107 do_posix_clock_monotonic_gettime(&p->start_time);
1108 p->real_start_time = p->start_time;
1109 monotonic_to_bootbased(&p->real_start_time);
1110 p->io_context = NULL;
1111 p->audit_context = NULL;
1112 cgroup_fork(p);
1113 #ifdef CONFIG_NUMA
1114 p->mempolicy = mpol_dup(p->mempolicy);
1115 if (IS_ERR(p->mempolicy)) {
1116 retval = PTR_ERR(p->mempolicy);
1117 p->mempolicy = NULL;
1118 goto bad_fork_cleanup_cgroup;
1119 }
1120 mpol_fix_fork_child_flag(p);
1121 #endif
1122 #ifdef CONFIG_TRACE_IRQFLAGS
1123 p->irq_events = 0;
1124 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1125 p->hardirqs_enabled = 1;
1126 #else
1127 p->hardirqs_enabled = 0;
1128 #endif
1129 p->hardirq_enable_ip = 0;
1130 p->hardirq_enable_event = 0;
1131 p->hardirq_disable_ip = _THIS_IP_;
1132 p->hardirq_disable_event = 0;
1133 p->softirqs_enabled = 1;
1134 p->softirq_enable_ip = _THIS_IP_;
1135 p->softirq_enable_event = 0;
1136 p->softirq_disable_ip = 0;
1137 p->softirq_disable_event = 0;
1138 p->hardirq_context = 0;
1139 p->softirq_context = 0;
1140 #endif
1141 #ifdef CONFIG_LOCKDEP
1142 p->lockdep_depth = 0; /* no locks held yet */
1143 p->curr_chain_key = 0;
1144 p->lockdep_recursion = 0;
1145 #endif
1146
1147 #ifdef CONFIG_DEBUG_MUTEXES
1148 p->blocked_on = NULL; /* not blocked yet */
1149 #endif
1150 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1151 p->memcg_batch.do_batch = 0;
1152 p->memcg_batch.memcg = NULL;
1153 #endif
1154
1155 /* Perform scheduler related setup. Assign this task to a CPU. */
1156 sched_fork(p, clone_flags);
1157
1158 retval = perf_event_init_task(p);
1159 if (retval)
1160 goto bad_fork_cleanup_policy;
1161
1162 if ((retval = audit_alloc(p)))
1163 goto bad_fork_cleanup_policy;
1164 /* copy all the process information */
1165 if ((retval = copy_semundo(clone_flags, p)))
1166 goto bad_fork_cleanup_audit;
1167 if ((retval = copy_files(clone_flags, p)))
1168 goto bad_fork_cleanup_semundo;
1169 if ((retval = copy_fs(clone_flags, p)))
1170 goto bad_fork_cleanup_files;
1171 if ((retval = copy_sighand(clone_flags, p)))
1172 goto bad_fork_cleanup_fs;
1173 if ((retval = copy_signal(clone_flags, p)))
1174 goto bad_fork_cleanup_sighand;
1175 if ((retval = copy_mm(clone_flags, p)))
1176 goto bad_fork_cleanup_signal;
1177 if ((retval = copy_namespaces(clone_flags, p)))
1178 goto bad_fork_cleanup_mm;
1179 if ((retval = copy_io(clone_flags, p)))
1180 goto bad_fork_cleanup_namespaces;
1181 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1182 if (retval)
1183 goto bad_fork_cleanup_io;
1184
1185 if (pid != &init_struct_pid) {
1186 retval = -ENOMEM;
1187 pid = alloc_pid(p->nsproxy->pid_ns);
1188 if (!pid)
1189 goto bad_fork_cleanup_io;
1190 }
1191
1192 p->pid = pid_nr(pid);
1193 p->tgid = p->pid;
1194 if (clone_flags & CLONE_THREAD)
1195 p->tgid = current->tgid;
1196
1197 if (current->nsproxy != p->nsproxy) {
1198 retval = ns_cgroup_clone(p, pid);
1199 if (retval)
1200 goto bad_fork_free_pid;
1201 }
1202
1203 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1204 /*
1205 * Clear TID on mm_release()?
1206 */
1207 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1208 #ifdef CONFIG_BLOCK
1209 p->plug = NULL;
1210 #endif
1211 #ifdef CONFIG_FUTEX
1212 p->robust_list = NULL;
1213 #ifdef CONFIG_COMPAT
1214 p->compat_robust_list = NULL;
1215 #endif
1216 INIT_LIST_HEAD(&p->pi_state_list);
1217 p->pi_state_cache = NULL;
1218 #endif
1219 /*
1220 * sigaltstack should be cleared when sharing the same VM
1221 */
1222 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1223 p->sas_ss_sp = p->sas_ss_size = 0;
1224
1225 /*
1226 * Syscall tracing and stepping should be turned off in the
1227 * child regardless of CLONE_PTRACE.
1228 */
1229 user_disable_single_step(p);
1230 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1231 #ifdef TIF_SYSCALL_EMU
1232 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1233 #endif
1234 clear_all_latency_tracing(p);
1235
1236 /* ok, now we should be set up.. */
1237 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1238 p->pdeath_signal = 0;
1239 p->exit_state = 0;
1240
1241 /*
1242 * Ok, make it visible to the rest of the system.
1243 * We dont wake it up yet.
1244 */
1245 p->group_leader = p;
1246 INIT_LIST_HEAD(&p->thread_group);
1247
1248 /* Now that the task is set up, run cgroup callbacks if
1249 * necessary. We need to run them before the task is visible
1250 * on the tasklist. */
1251 cgroup_fork_callbacks(p);
1252 cgroup_callbacks_done = 1;
1253
1254 /* Need tasklist lock for parent etc handling! */
1255 write_lock_irq(&tasklist_lock);
1256
1257 /* CLONE_PARENT re-uses the old parent */
1258 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1259 p->real_parent = current->real_parent;
1260 p->parent_exec_id = current->parent_exec_id;
1261 } else {
1262 p->real_parent = current;
1263 p->parent_exec_id = current->self_exec_id;
1264 }
1265
1266 spin_lock(¤t->sighand->siglock);
1267
1268 /*
1269 * Process group and session signals need to be delivered to just the
1270 * parent before the fork or both the parent and the child after the
1271 * fork. Restart if a signal comes in before we add the new process to
1272 * it's process group.
1273 * A fatal signal pending means that current will exit, so the new
1274 * thread can't slip out of an OOM kill (or normal SIGKILL).
1275 */
1276 recalc_sigpending();
1277 if (signal_pending(current)) {
1278 spin_unlock(¤t->sighand->siglock);
1279 write_unlock_irq(&tasklist_lock);
1280 retval = -ERESTARTNOINTR;
1281 goto bad_fork_free_pid;
1282 }
1283
1284 if (clone_flags & CLONE_THREAD) {
1285 current->signal->nr_threads++;
1286 atomic_inc(¤t->signal->live);
1287 atomic_inc(¤t->signal->sigcnt);
1288 p->group_leader = current->group_leader;
1289 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1290 }
1291
1292 if (likely(p->pid)) {
1293 tracehook_finish_clone(p, clone_flags, trace);
1294
1295 if (thread_group_leader(p)) {
1296 if (is_child_reaper(pid))
1297 p->nsproxy->pid_ns->child_reaper = p;
1298
1299 p->signal->leader_pid = pid;
1300 p->signal->tty = tty_kref_get(current->signal->tty);
1301 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1302 attach_pid(p, PIDTYPE_SID, task_session(current));
1303 list_add_tail(&p->sibling, &p->real_parent->children);
1304 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1305 __this_cpu_inc(process_counts);
1306 }
1307 attach_pid(p, PIDTYPE_PID, pid);
1308 nr_threads++;
1309 }
1310
1311 total_forks++;
1312 spin_unlock(¤t->sighand->siglock);
1313 write_unlock_irq(&tasklist_lock);
1314 proc_fork_connector(p);
1315 cgroup_post_fork(p);
1316 perf_event_fork(p);
1317 return p;
1318
1319 bad_fork_free_pid:
1320 if (pid != &init_struct_pid)
1321 free_pid(pid);
1322 bad_fork_cleanup_io:
1323 if (p->io_context)
1324 exit_io_context(p);
1325 bad_fork_cleanup_namespaces:
1326 exit_task_namespaces(p);
1327 bad_fork_cleanup_mm:
1328 if (p->mm) {
1329 task_lock(p);
1330 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1331 atomic_dec(&p->mm->oom_disable_count);
1332 task_unlock(p);
1333 mmput(p->mm);
1334 }
1335 bad_fork_cleanup_signal:
1336 if (!(clone_flags & CLONE_THREAD))
1337 free_signal_struct(p->signal);
1338 bad_fork_cleanup_sighand:
1339 __cleanup_sighand(p->sighand);
1340 bad_fork_cleanup_fs:
1341 exit_fs(p); /* blocking */
1342 bad_fork_cleanup_files:
1343 exit_files(p); /* blocking */
1344 bad_fork_cleanup_semundo:
1345 exit_sem(p);
1346 bad_fork_cleanup_audit:
1347 audit_free(p);
1348 bad_fork_cleanup_policy:
1349 perf_event_free_task(p);
1350 #ifdef CONFIG_NUMA
1351 mpol_put(p->mempolicy);
1352 bad_fork_cleanup_cgroup:
1353 #endif
1354 cgroup_exit(p, cgroup_callbacks_done);
1355 delayacct_tsk_free(p);
1356 module_put(task_thread_info(p)->exec_domain->module);
1357 bad_fork_cleanup_count:
1358 atomic_dec(&p->cred->user->processes);
1359 exit_creds(p);
1360 bad_fork_free:
1361 free_task(p);
1362 fork_out:
1363 return ERR_PTR(retval);
1364 }
1365
idle_regs(struct pt_regs * regs)1366 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1367 {
1368 memset(regs, 0, sizeof(struct pt_regs));
1369 return regs;
1370 }
1371
init_idle_pids(struct pid_link * links)1372 static inline void init_idle_pids(struct pid_link *links)
1373 {
1374 enum pid_type type;
1375
1376 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1377 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1378 links[type].pid = &init_struct_pid;
1379 }
1380 }
1381
fork_idle(int cpu)1382 struct task_struct * __cpuinit fork_idle(int cpu)
1383 {
1384 struct task_struct *task;
1385 struct pt_regs regs;
1386
1387 task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL,
1388 &init_struct_pid, 0);
1389 if (!IS_ERR(task)) {
1390 init_idle_pids(task->pids);
1391 init_idle(task, cpu);
1392 }
1393
1394 return task;
1395 }
1396
1397 /*
1398 * Ok, this is the main fork-routine.
1399 *
1400 * It copies the process, and if successful kick-starts
1401 * it and waits for it to finish using the VM if required.
1402 */
do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1403 long do_fork(unsigned long clone_flags,
1404 unsigned long stack_start,
1405 struct pt_regs *regs,
1406 unsigned long stack_size,
1407 int __user *parent_tidptr,
1408 int __user *child_tidptr)
1409 {
1410 struct task_struct *p;
1411 int trace = 0;
1412 long nr;
1413
1414 /*
1415 * Do some preliminary argument and permissions checking before we
1416 * actually start allocating stuff
1417 */
1418 if (clone_flags & CLONE_NEWUSER) {
1419 if (clone_flags & CLONE_THREAD)
1420 return -EINVAL;
1421 /* hopefully this check will go away when userns support is
1422 * complete
1423 */
1424 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1425 !capable(CAP_SETGID))
1426 return -EPERM;
1427 }
1428
1429 /*
1430 * When called from kernel_thread, don't do user tracing stuff.
1431 */
1432 if (likely(user_mode(regs)))
1433 trace = tracehook_prepare_clone(clone_flags);
1434
1435 p = copy_process(clone_flags, stack_start, regs, stack_size,
1436 child_tidptr, NULL, trace);
1437 /*
1438 * Do this prior waking up the new thread - the thread pointer
1439 * might get invalid after that point, if the thread exits quickly.
1440 */
1441 if (!IS_ERR(p)) {
1442 struct completion vfork;
1443
1444 trace_sched_process_fork(current, p);
1445
1446 nr = task_pid_vnr(p);
1447
1448 if (clone_flags & CLONE_PARENT_SETTID)
1449 put_user(nr, parent_tidptr);
1450
1451 if (clone_flags & CLONE_VFORK) {
1452 p->vfork_done = &vfork;
1453 init_completion(&vfork);
1454 }
1455
1456 audit_finish_fork(p);
1457 tracehook_report_clone(regs, clone_flags, nr, p);
1458
1459 /*
1460 * We set PF_STARTING at creation in case tracing wants to
1461 * use this to distinguish a fully live task from one that
1462 * hasn't gotten to tracehook_report_clone() yet. Now we
1463 * clear it and set the child going.
1464 */
1465 p->flags &= ~PF_STARTING;
1466
1467 wake_up_new_task(p, clone_flags);
1468
1469 tracehook_report_clone_complete(trace, regs,
1470 clone_flags, nr, p);
1471
1472 if (clone_flags & CLONE_VFORK) {
1473 freezer_do_not_count();
1474 wait_for_completion(&vfork);
1475 freezer_count();
1476 tracehook_report_vfork_done(p, nr);
1477 }
1478 } else {
1479 nr = PTR_ERR(p);
1480 }
1481 return nr;
1482 }
1483
1484 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1485 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1486 #endif
1487
sighand_ctor(void * data)1488 static void sighand_ctor(void *data)
1489 {
1490 struct sighand_struct *sighand = data;
1491
1492 spin_lock_init(&sighand->siglock);
1493 init_waitqueue_head(&sighand->signalfd_wqh);
1494 }
1495
proc_caches_init(void)1496 void __init proc_caches_init(void)
1497 {
1498 sighand_cachep = kmem_cache_create("sighand_cache",
1499 sizeof(struct sighand_struct), 0,
1500 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1501 SLAB_NOTRACK, sighand_ctor);
1502 signal_cachep = kmem_cache_create("signal_cache",
1503 sizeof(struct signal_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 files_cachep = kmem_cache_create("files_cache",
1506 sizeof(struct files_struct), 0,
1507 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 fs_cachep = kmem_cache_create("fs_cache",
1509 sizeof(struct fs_struct), 0,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 mm_cachep = kmem_cache_create("mm_struct",
1512 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1513 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1515 mmap_init();
1516 }
1517
1518 /*
1519 * Check constraints on flags passed to the unshare system call.
1520 */
check_unshare_flags(unsigned long unshare_flags)1521 static int check_unshare_flags(unsigned long unshare_flags)
1522 {
1523 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1524 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1525 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1526 return -EINVAL;
1527 /*
1528 * Not implemented, but pretend it works if there is nothing to
1529 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1530 * needs to unshare vm.
1531 */
1532 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1533 /* FIXME: get_task_mm() increments ->mm_users */
1534 if (atomic_read(¤t->mm->mm_users) > 1)
1535 return -EINVAL;
1536 }
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * Unshare the filesystem structure if it is being shared
1543 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1544 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1545 {
1546 struct fs_struct *fs = current->fs;
1547
1548 if (!(unshare_flags & CLONE_FS) || !fs)
1549 return 0;
1550
1551 /* don't need lock here; in the worst case we'll do useless copy */
1552 if (fs->users == 1)
1553 return 0;
1554
1555 *new_fsp = copy_fs_struct(fs);
1556 if (!*new_fsp)
1557 return -ENOMEM;
1558
1559 return 0;
1560 }
1561
1562 /*
1563 * Unshare file descriptor table if it is being shared
1564 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1566 {
1567 struct files_struct *fd = current->files;
1568 int error = 0;
1569
1570 if ((unshare_flags & CLONE_FILES) &&
1571 (fd && atomic_read(&fd->count) > 1)) {
1572 *new_fdp = dup_fd(fd, &error);
1573 if (!*new_fdp)
1574 return error;
1575 }
1576
1577 return 0;
1578 }
1579
1580 /*
1581 * unshare allows a process to 'unshare' part of the process
1582 * context which was originally shared using clone. copy_*
1583 * functions used by do_fork() cannot be used here directly
1584 * because they modify an inactive task_struct that is being
1585 * constructed. Here we are modifying the current, active,
1586 * task_struct.
1587 */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1588 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1589 {
1590 struct fs_struct *fs, *new_fs = NULL;
1591 struct files_struct *fd, *new_fd = NULL;
1592 struct nsproxy *new_nsproxy = NULL;
1593 int do_sysvsem = 0;
1594 int err;
1595
1596 err = check_unshare_flags(unshare_flags);
1597 if (err)
1598 goto bad_unshare_out;
1599
1600 /*
1601 * If unsharing namespace, must also unshare filesystem information.
1602 */
1603 if (unshare_flags & CLONE_NEWNS)
1604 unshare_flags |= CLONE_FS;
1605 /*
1606 * CLONE_NEWIPC must also detach from the undolist: after switching
1607 * to a new ipc namespace, the semaphore arrays from the old
1608 * namespace are unreachable.
1609 */
1610 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1611 do_sysvsem = 1;
1612 if ((err = unshare_fs(unshare_flags, &new_fs)))
1613 goto bad_unshare_out;
1614 if ((err = unshare_fd(unshare_flags, &new_fd)))
1615 goto bad_unshare_cleanup_fs;
1616 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1617 new_fs)))
1618 goto bad_unshare_cleanup_fd;
1619
1620 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1621 if (do_sysvsem) {
1622 /*
1623 * CLONE_SYSVSEM is equivalent to sys_exit().
1624 */
1625 exit_sem(current);
1626 }
1627
1628 if (new_nsproxy) {
1629 switch_task_namespaces(current, new_nsproxy);
1630 new_nsproxy = NULL;
1631 }
1632
1633 task_lock(current);
1634
1635 if (new_fs) {
1636 fs = current->fs;
1637 spin_lock(&fs->lock);
1638 current->fs = new_fs;
1639 if (--fs->users)
1640 new_fs = NULL;
1641 else
1642 new_fs = fs;
1643 spin_unlock(&fs->lock);
1644 }
1645
1646 if (new_fd) {
1647 fd = current->files;
1648 current->files = new_fd;
1649 new_fd = fd;
1650 }
1651
1652 task_unlock(current);
1653 }
1654
1655 if (new_nsproxy)
1656 put_nsproxy(new_nsproxy);
1657
1658 bad_unshare_cleanup_fd:
1659 if (new_fd)
1660 put_files_struct(new_fd);
1661
1662 bad_unshare_cleanup_fs:
1663 if (new_fs)
1664 free_fs_struct(new_fs);
1665
1666 bad_unshare_out:
1667 return err;
1668 }
1669
1670 /*
1671 * Helper to unshare the files of the current task.
1672 * We don't want to expose copy_files internals to
1673 * the exec layer of the kernel.
1674 */
1675
unshare_files(struct files_struct ** displaced)1676 int unshare_files(struct files_struct **displaced)
1677 {
1678 struct task_struct *task = current;
1679 struct files_struct *copy = NULL;
1680 int error;
1681
1682 error = unshare_fd(CLONE_FILES, ©);
1683 if (error || !copy) {
1684 *displaced = NULL;
1685 return error;
1686 }
1687 *displaced = task->files;
1688 task_lock(task);
1689 task->files = copy;
1690 task_unlock(task);
1691 return 0;
1692 }
1693