1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
__unhash_process(struct task_struct * p,bool group_dead)64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
__exit_signal(struct task_struct * tsk)82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 
89 	sighand = rcu_dereference_check(tsk->sighand,
90 					lockdep_tasklist_lock_is_held());
91 	spin_lock(&sighand->siglock);
92 
93 	posix_cpu_timers_exit(tsk);
94 	if (group_dead) {
95 		posix_cpu_timers_exit_group(tsk);
96 		tty = sig->tty;
97 		sig->tty = NULL;
98 	} else {
99 		/*
100 		 * This can only happen if the caller is de_thread().
101 		 * FIXME: this is the temporary hack, we should teach
102 		 * posix-cpu-timers to handle this case correctly.
103 		 */
104 		if (unlikely(has_group_leader_pid(tsk)))
105 			posix_cpu_timers_exit_group(tsk);
106 
107 		/*
108 		 * If there is any task waiting for the group exit
109 		 * then notify it:
110 		 */
111 		if (sig->notify_count > 0 && !--sig->notify_count)
112 			wake_up_process(sig->group_exit_task);
113 
114 		if (tsk == sig->curr_target)
115 			sig->curr_target = next_thread(tsk);
116 		/*
117 		 * Accumulate here the counters for all threads but the
118 		 * group leader as they die, so they can be added into
119 		 * the process-wide totals when those are taken.
120 		 * The group leader stays around as a zombie as long
121 		 * as there are other threads.  When it gets reaped,
122 		 * the exit.c code will add its counts into these totals.
123 		 * We won't ever get here for the group leader, since it
124 		 * will have been the last reference on the signal_struct.
125 		 */
126 		sig->utime += tsk->utime;
127 		sig->stime += tsk->stime;
128 		sig->gtime += tsk->gtime;
129 		sig->min_flt += tsk->min_flt;
130 		sig->maj_flt += tsk->maj_flt;
131 		sig->nvcsw += tsk->nvcsw;
132 		sig->nivcsw += tsk->nivcsw;
133 		sig->inblock += task_io_get_inblock(tsk);
134 		sig->oublock += task_io_get_oublock(tsk);
135 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 	}
138 
139 	sig->nr_threads--;
140 	__unhash_process(tsk, group_dead);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
delayed_put_task_struct(struct rcu_head * rhp)158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
release_task(struct task_struct * p)168 void release_task(struct task_struct * p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 		/*
194 		 * If we were the last child thread and the leader has
195 		 * exited already, and the leader's parent ignores SIGCHLD,
196 		 * then we are the one who should release the leader.
197 		 */
198 		zap_leader = do_notify_parent(leader, leader->exit_signal);
199 		if (zap_leader)
200 			leader->exit_state = EXIT_DEAD;
201 	}
202 
203 	write_unlock_irq(&tasklist_lock);
204 	release_thread(p);
205 	call_rcu(&p->rcu, delayed_put_task_struct);
206 
207 	p = leader;
208 	if (unlikely(zap_leader))
209 		goto repeat;
210 }
211 
212 /*
213  * This checks not only the pgrp, but falls back on the pid if no
214  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215  * without this...
216  *
217  * The caller must hold rcu lock or the tasklist lock.
218  */
session_of_pgrp(struct pid * pgrp)219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 	struct task_struct *p;
222 	struct pid *sid = NULL;
223 
224 	p = pid_task(pgrp, PIDTYPE_PGID);
225 	if (p == NULL)
226 		p = pid_task(pgrp, PIDTYPE_PID);
227 	if (p != NULL)
228 		sid = task_session(p);
229 
230 	return sid;
231 }
232 
233 /*
234  * Determine if a process group is "orphaned", according to the POSIX
235  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
236  * by terminal-generated stop signals.  Newly orphaned process groups are
237  * to receive a SIGHUP and a SIGCONT.
238  *
239  * "I ask you, have you ever known what it is to be an orphan?"
240  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 	struct task_struct *p;
244 
245 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 		if ((p == ignored_task) ||
247 		    (p->exit_state && thread_group_empty(p)) ||
248 		    is_global_init(p->real_parent))
249 			continue;
250 
251 		if (task_pgrp(p->real_parent) != pgrp &&
252 		    task_session(p->real_parent) == task_session(p))
253 			return 0;
254 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 
256 	return 1;
257 }
258 
is_current_pgrp_orphaned(void)259 int is_current_pgrp_orphaned(void)
260 {
261 	int retval;
262 
263 	read_lock(&tasklist_lock);
264 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 	read_unlock(&tasklist_lock);
266 
267 	return retval;
268 }
269 
has_stopped_jobs(struct pid * pgrp)270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 			return true;
277 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 
279 	return false;
280 }
281 
282 /*
283  * Check to see if any process groups have become orphaned as
284  * a result of our exiting, and if they have any stopped jobs,
285  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286  */
287 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 	struct pid *pgrp = task_pgrp(tsk);
291 	struct task_struct *ignored_task = tsk;
292 
293 	if (!parent)
294 		 /* exit: our father is in a different pgrp than
295 		  * we are and we were the only connection outside.
296 		  */
297 		parent = tsk->real_parent;
298 	else
299 		/* reparent: our child is in a different pgrp than
300 		 * we are, and it was the only connection outside.
301 		 */
302 		ignored_task = NULL;
303 
304 	if (task_pgrp(parent) != pgrp &&
305 	    task_session(parent) == task_session(tsk) &&
306 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 	    has_stopped_jobs(pgrp)) {
308 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 	}
311 }
312 
313 /**
314  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315  *
316  * If a kernel thread is launched as a result of a system call, or if
317  * it ever exits, it should generally reparent itself to kthreadd so it
318  * isn't in the way of other processes and is correctly cleaned up on exit.
319  *
320  * The various task state such as scheduling policy and priority may have
321  * been inherited from a user process, so we reset them to sane values here.
322  *
323  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324  */
reparent_to_kthreadd(void)325 static void reparent_to_kthreadd(void)
326 {
327 	write_lock_irq(&tasklist_lock);
328 
329 	ptrace_unlink(current);
330 	/* Reparent to init */
331 	current->real_parent = current->parent = kthreadd_task;
332 	list_move_tail(&current->sibling, &current->real_parent->children);
333 
334 	/* Set the exit signal to SIGCHLD so we signal init on exit */
335 	current->exit_signal = SIGCHLD;
336 
337 	if (task_nice(current) < 0)
338 		set_user_nice(current, 0);
339 	/* cpus_allowed? */
340 	/* rt_priority? */
341 	/* signals? */
342 	memcpy(current->signal->rlim, init_task.signal->rlim,
343 	       sizeof(current->signal->rlim));
344 
345 	atomic_inc(&init_cred.usage);
346 	commit_creds(&init_cred);
347 	write_unlock_irq(&tasklist_lock);
348 }
349 
__set_special_pids(struct pid * pid)350 void __set_special_pids(struct pid *pid)
351 {
352 	struct task_struct *curr = current->group_leader;
353 
354 	if (task_session(curr) != pid)
355 		change_pid(curr, PIDTYPE_SID, pid);
356 
357 	if (task_pgrp(curr) != pid)
358 		change_pid(curr, PIDTYPE_PGID, pid);
359 }
360 
set_special_pids(struct pid * pid)361 static void set_special_pids(struct pid *pid)
362 {
363 	write_lock_irq(&tasklist_lock);
364 	__set_special_pids(pid);
365 	write_unlock_irq(&tasklist_lock);
366 }
367 
368 /*
369  * Let kernel threads use this to say that they allow a certain signal.
370  * Must not be used if kthread was cloned with CLONE_SIGHAND.
371  */
allow_signal(int sig)372 int allow_signal(int sig)
373 {
374 	if (!valid_signal(sig) || sig < 1)
375 		return -EINVAL;
376 
377 	spin_lock_irq(&current->sighand->siglock);
378 	/* This is only needed for daemonize()'ed kthreads */
379 	sigdelset(&current->blocked, sig);
380 	/*
381 	 * Kernel threads handle their own signals. Let the signal code
382 	 * know it'll be handled, so that they don't get converted to
383 	 * SIGKILL or just silently dropped.
384 	 */
385 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 	recalc_sigpending();
387 	spin_unlock_irq(&current->sighand->siglock);
388 	return 0;
389 }
390 
391 EXPORT_SYMBOL(allow_signal);
392 
disallow_signal(int sig)393 int disallow_signal(int sig)
394 {
395 	if (!valid_signal(sig) || sig < 1)
396 		return -EINVAL;
397 
398 	spin_lock_irq(&current->sighand->siglock);
399 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 	recalc_sigpending();
401 	spin_unlock_irq(&current->sighand->siglock);
402 	return 0;
403 }
404 
405 EXPORT_SYMBOL(disallow_signal);
406 
407 /*
408  *	Put all the gunge required to become a kernel thread without
409  *	attached user resources in one place where it belongs.
410  */
411 
daemonize(const char * name,...)412 void daemonize(const char *name, ...)
413 {
414 	va_list args;
415 	sigset_t blocked;
416 
417 	va_start(args, name);
418 	vsnprintf(current->comm, sizeof(current->comm), name, args);
419 	va_end(args);
420 
421 	/*
422 	 * If we were started as result of loading a module, close all of the
423 	 * user space pages.  We don't need them, and if we didn't close them
424 	 * they would be locked into memory.
425 	 */
426 	exit_mm(current);
427 	/*
428 	 * We don't want to get frozen, in case system-wide hibernation
429 	 * or suspend transition begins right now.
430 	 */
431 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432 
433 	if (current->nsproxy != &init_nsproxy) {
434 		get_nsproxy(&init_nsproxy);
435 		switch_task_namespaces(current, &init_nsproxy);
436 	}
437 	set_special_pids(&init_struct_pid);
438 	proc_clear_tty(current);
439 
440 	/* Block and flush all signals */
441 	sigfillset(&blocked);
442 	sigprocmask(SIG_BLOCK, &blocked, NULL);
443 	flush_signals(current);
444 
445 	/* Become as one with the init task */
446 
447 	daemonize_fs_struct();
448 	exit_files(current);
449 	current->files = init_task.files;
450 	atomic_inc(&current->files->count);
451 
452 	reparent_to_kthreadd();
453 }
454 
455 EXPORT_SYMBOL(daemonize);
456 
close_files(struct files_struct * files)457 static void close_files(struct files_struct * files)
458 {
459 	int i, j;
460 	struct fdtable *fdt;
461 
462 	j = 0;
463 
464 	/*
465 	 * It is safe to dereference the fd table without RCU or
466 	 * ->file_lock because this is the last reference to the
467 	 * files structure.  But use RCU to shut RCU-lockdep up.
468 	 */
469 	rcu_read_lock();
470 	fdt = files_fdtable(files);
471 	rcu_read_unlock();
472 	for (;;) {
473 		unsigned long set;
474 		i = j * BITS_PER_LONG;
475 		if (i >= fdt->max_fds)
476 			break;
477 		set = fdt->open_fds[j++];
478 		while (set) {
479 			if (set & 1) {
480 				struct file * file = xchg(&fdt->fd[i], NULL);
481 				if (file) {
482 					filp_close(file, files);
483 					cond_resched();
484 				}
485 			}
486 			i++;
487 			set >>= 1;
488 		}
489 	}
490 }
491 
get_files_struct(struct task_struct * task)492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494 	struct files_struct *files;
495 
496 	task_lock(task);
497 	files = task->files;
498 	if (files)
499 		atomic_inc(&files->count);
500 	task_unlock(task);
501 
502 	return files;
503 }
504 
put_files_struct(struct files_struct * files)505 void put_files_struct(struct files_struct *files)
506 {
507 	struct fdtable *fdt;
508 
509 	if (atomic_dec_and_test(&files->count)) {
510 		close_files(files);
511 		/*
512 		 * Free the fd and fdset arrays if we expanded them.
513 		 * If the fdtable was embedded, pass files for freeing
514 		 * at the end of the RCU grace period. Otherwise,
515 		 * you can free files immediately.
516 		 */
517 		rcu_read_lock();
518 		fdt = files_fdtable(files);
519 		if (fdt != &files->fdtab)
520 			kmem_cache_free(files_cachep, files);
521 		free_fdtable(fdt);
522 		rcu_read_unlock();
523 	}
524 }
525 
reset_files_struct(struct files_struct * files)526 void reset_files_struct(struct files_struct *files)
527 {
528 	struct task_struct *tsk = current;
529 	struct files_struct *old;
530 
531 	old = tsk->files;
532 	task_lock(tsk);
533 	tsk->files = files;
534 	task_unlock(tsk);
535 	put_files_struct(old);
536 }
537 
exit_files(struct task_struct * tsk)538 void exit_files(struct task_struct *tsk)
539 {
540 	struct files_struct * files = tsk->files;
541 
542 	if (files) {
543 		task_lock(tsk);
544 		tsk->files = NULL;
545 		task_unlock(tsk);
546 		put_files_struct(files);
547 	}
548 }
549 
550 #ifdef CONFIG_MM_OWNER
551 /*
552  * A task is exiting.   If it owned this mm, find a new owner for the mm.
553  */
mm_update_next_owner(struct mm_struct * mm)554 void mm_update_next_owner(struct mm_struct *mm)
555 {
556 	struct task_struct *c, *g, *p = current;
557 
558 retry:
559 	/*
560 	 * If the exiting or execing task is not the owner, it's
561 	 * someone else's problem.
562 	 */
563 	if (mm->owner != p)
564 		return;
565 	/*
566 	 * The current owner is exiting/execing and there are no other
567 	 * candidates.  Do not leave the mm pointing to a possibly
568 	 * freed task structure.
569 	 */
570 	if (atomic_read(&mm->mm_users) <= 1) {
571 		mm->owner = NULL;
572 		return;
573 	}
574 
575 	read_lock(&tasklist_lock);
576 	/*
577 	 * Search in the children
578 	 */
579 	list_for_each_entry(c, &p->children, sibling) {
580 		if (c->mm == mm)
581 			goto assign_new_owner;
582 	}
583 
584 	/*
585 	 * Search in the siblings
586 	 */
587 	list_for_each_entry(c, &p->real_parent->children, sibling) {
588 		if (c->mm == mm)
589 			goto assign_new_owner;
590 	}
591 
592 	/*
593 	 * Search through everything else. We should not get
594 	 * here often
595 	 */
596 	do_each_thread(g, c) {
597 		if (c->mm == mm)
598 			goto assign_new_owner;
599 	} while_each_thread(g, c);
600 
601 	read_unlock(&tasklist_lock);
602 	/*
603 	 * We found no owner yet mm_users > 1: this implies that we are
604 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
605 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
606 	 */
607 	mm->owner = NULL;
608 	return;
609 
610 assign_new_owner:
611 	BUG_ON(c == p);
612 	get_task_struct(c);
613 	/*
614 	 * The task_lock protects c->mm from changing.
615 	 * We always want mm->owner->mm == mm
616 	 */
617 	task_lock(c);
618 	/*
619 	 * Delay read_unlock() till we have the task_lock()
620 	 * to ensure that c does not slip away underneath us
621 	 */
622 	read_unlock(&tasklist_lock);
623 	if (c->mm != mm) {
624 		task_unlock(c);
625 		put_task_struct(c);
626 		goto retry;
627 	}
628 	mm->owner = c;
629 	task_unlock(c);
630 	put_task_struct(c);
631 }
632 #endif /* CONFIG_MM_OWNER */
633 
634 /*
635  * Turn us into a lazy TLB process if we
636  * aren't already..
637  */
exit_mm(struct task_struct * tsk)638 static void exit_mm(struct task_struct * tsk)
639 {
640 	struct mm_struct *mm = tsk->mm;
641 	struct core_state *core_state;
642 
643 	mm_release(tsk, mm);
644 	if (!mm)
645 		return;
646 	sync_mm_rss(mm);
647 	/*
648 	 * Serialize with any possible pending coredump.
649 	 * We must hold mmap_sem around checking core_state
650 	 * and clearing tsk->mm.  The core-inducing thread
651 	 * will increment ->nr_threads for each thread in the
652 	 * group with ->mm != NULL.
653 	 */
654 	down_read(&mm->mmap_sem);
655 	core_state = mm->core_state;
656 	if (core_state) {
657 		struct core_thread self;
658 		up_read(&mm->mmap_sem);
659 
660 		self.task = tsk;
661 		self.next = xchg(&core_state->dumper.next, &self);
662 		/*
663 		 * Implies mb(), the result of xchg() must be visible
664 		 * to core_state->dumper.
665 		 */
666 		if (atomic_dec_and_test(&core_state->nr_threads))
667 			complete(&core_state->startup);
668 
669 		for (;;) {
670 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
671 			if (!self.task) /* see coredump_finish() */
672 				break;
673 			schedule();
674 		}
675 		__set_task_state(tsk, TASK_RUNNING);
676 		down_read(&mm->mmap_sem);
677 	}
678 	atomic_inc(&mm->mm_count);
679 	BUG_ON(mm != tsk->active_mm);
680 	/* more a memory barrier than a real lock */
681 	task_lock(tsk);
682 	tsk->mm = NULL;
683 	up_read(&mm->mmap_sem);
684 	enter_lazy_tlb(mm, current);
685 	task_unlock(tsk);
686 	mm_update_next_owner(mm);
687 	mmput(mm);
688 }
689 
690 /*
691  * When we die, we re-parent all our children, and try to:
692  * 1. give them to another thread in our thread group, if such a member exists
693  * 2. give it to the first ancestor process which prctl'd itself as a
694  *    child_subreaper for its children (like a service manager)
695  * 3. give it to the init process (PID 1) in our pid namespace
696  */
find_new_reaper(struct task_struct * father)697 static struct task_struct *find_new_reaper(struct task_struct *father)
698 	__releases(&tasklist_lock)
699 	__acquires(&tasklist_lock)
700 {
701 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
702 	struct task_struct *thread;
703 
704 	thread = father;
705 	while_each_thread(father, thread) {
706 		if (thread->flags & PF_EXITING)
707 			continue;
708 		if (unlikely(pid_ns->child_reaper == father))
709 			pid_ns->child_reaper = thread;
710 		return thread;
711 	}
712 
713 	if (unlikely(pid_ns->child_reaper == father)) {
714 		write_unlock_irq(&tasklist_lock);
715 		if (unlikely(pid_ns == &init_pid_ns)) {
716 			panic("Attempted to kill init! exitcode=0x%08x\n",
717 				father->signal->group_exit_code ?:
718 					father->exit_code);
719 		}
720 
721 		zap_pid_ns_processes(pid_ns);
722 		write_lock_irq(&tasklist_lock);
723 		/*
724 		 * We can not clear ->child_reaper or leave it alone.
725 		 * There may by stealth EXIT_DEAD tasks on ->children,
726 		 * forget_original_parent() must move them somewhere.
727 		 */
728 		pid_ns->child_reaper = init_pid_ns.child_reaper;
729 	} else if (father->signal->has_child_subreaper) {
730 		struct task_struct *reaper;
731 
732 		/*
733 		 * Find the first ancestor marked as child_subreaper.
734 		 * Note that the code below checks same_thread_group(reaper,
735 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
736 		 * PID namespace. However we still need the check above, see
737 		 * http://marc.info/?l=linux-kernel&m=131385460420380
738 		 */
739 		for (reaper = father->real_parent;
740 		     reaper != &init_task;
741 		     reaper = reaper->real_parent) {
742 			if (same_thread_group(reaper, pid_ns->child_reaper))
743 				break;
744 			if (!reaper->signal->is_child_subreaper)
745 				continue;
746 			thread = reaper;
747 			do {
748 				if (!(thread->flags & PF_EXITING))
749 					return reaper;
750 			} while_each_thread(reaper, thread);
751 		}
752 	}
753 
754 	return pid_ns->child_reaper;
755 }
756 
757 /*
758 * Any that need to be release_task'd are put on the @dead list.
759  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)760 static void reparent_leader(struct task_struct *father, struct task_struct *p,
761 				struct list_head *dead)
762 {
763 	list_move_tail(&p->sibling, &p->real_parent->children);
764 	/*
765 	 * If this is a threaded reparent there is no need to
766 	 * notify anyone anything has happened.
767 	 */
768 	if (same_thread_group(p->real_parent, father))
769 		return;
770 
771 	/*
772 	 * We don't want people slaying init.
773 	 *
774 	 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
775 	 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
776 	 * state, do_notify_parent() was already called and ->exit_signal
777 	 * doesn't matter.
778 	 */
779 	p->exit_signal = SIGCHLD;
780 
781 	if (p->exit_state == EXIT_DEAD)
782 		return;
783 
784 	/* If it has exited notify the new parent about this child's death. */
785 	if (!p->ptrace &&
786 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
787 		if (do_notify_parent(p, p->exit_signal)) {
788 			p->exit_state = EXIT_DEAD;
789 			list_move_tail(&p->sibling, dead);
790 		}
791 	}
792 
793 	kill_orphaned_pgrp(p, father);
794 }
795 
forget_original_parent(struct task_struct * father)796 static void forget_original_parent(struct task_struct *father)
797 {
798 	struct task_struct *p, *n, *reaper;
799 	LIST_HEAD(dead_children);
800 
801 	write_lock_irq(&tasklist_lock);
802 	/*
803 	 * Note that exit_ptrace() and find_new_reaper() might
804 	 * drop tasklist_lock and reacquire it.
805 	 */
806 	exit_ptrace(father);
807 	reaper = find_new_reaper(father);
808 
809 	list_for_each_entry_safe(p, n, &father->children, sibling) {
810 		struct task_struct *t = p;
811 		do {
812 			t->real_parent = reaper;
813 			if (t->parent == father) {
814 				BUG_ON(t->ptrace);
815 				t->parent = t->real_parent;
816 			}
817 			if (t->pdeath_signal)
818 				group_send_sig_info(t->pdeath_signal,
819 						    SEND_SIG_NOINFO, t);
820 		} while_each_thread(p, t);
821 		reparent_leader(father, p, &dead_children);
822 	}
823 	write_unlock_irq(&tasklist_lock);
824 
825 	BUG_ON(!list_empty(&father->children));
826 
827 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
828 		list_del_init(&p->sibling);
829 		release_task(p);
830 	}
831 }
832 
833 /*
834  * Send signals to all our closest relatives so that they know
835  * to properly mourn us..
836  */
exit_notify(struct task_struct * tsk,int group_dead)837 static void exit_notify(struct task_struct *tsk, int group_dead)
838 {
839 	bool autoreap;
840 
841 	/*
842 	 * This does two things:
843 	 *
844   	 * A.  Make init inherit all the child processes
845 	 * B.  Check to see if any process groups have become orphaned
846 	 *	as a result of our exiting, and if they have any stopped
847 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
848 	 */
849 	forget_original_parent(tsk);
850 	exit_task_namespaces(tsk);
851 
852 	write_lock_irq(&tasklist_lock);
853 	if (group_dead)
854 		kill_orphaned_pgrp(tsk->group_leader, NULL);
855 
856 	if (unlikely(tsk->ptrace)) {
857 		int sig = thread_group_leader(tsk) &&
858 				thread_group_empty(tsk) &&
859 				!ptrace_reparented(tsk) ?
860 			tsk->exit_signal : SIGCHLD;
861 		autoreap = do_notify_parent(tsk, sig);
862 	} else if (thread_group_leader(tsk)) {
863 		autoreap = thread_group_empty(tsk) &&
864 			do_notify_parent(tsk, tsk->exit_signal);
865 	} else {
866 		autoreap = true;
867 	}
868 
869 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
870 
871 	/* mt-exec, de_thread() is waiting for group leader */
872 	if (unlikely(tsk->signal->notify_count < 0))
873 		wake_up_process(tsk->signal->group_exit_task);
874 	write_unlock_irq(&tasklist_lock);
875 
876 	/* If the process is dead, release it - nobody will wait for it */
877 	if (autoreap)
878 		release_task(tsk);
879 }
880 
881 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)882 static void check_stack_usage(void)
883 {
884 	static DEFINE_SPINLOCK(low_water_lock);
885 	static int lowest_to_date = THREAD_SIZE;
886 	unsigned long free;
887 
888 	free = stack_not_used(current);
889 
890 	if (free >= lowest_to_date)
891 		return;
892 
893 	spin_lock(&low_water_lock);
894 	if (free < lowest_to_date) {
895 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
896 				"left\n",
897 				current->comm, free);
898 		lowest_to_date = free;
899 	}
900 	spin_unlock(&low_water_lock);
901 }
902 #else
check_stack_usage(void)903 static inline void check_stack_usage(void) {}
904 #endif
905 
do_exit(long code)906 void do_exit(long code)
907 {
908 	struct task_struct *tsk = current;
909 	int group_dead;
910 
911 	profile_task_exit(tsk);
912 
913 	WARN_ON(blk_needs_flush_plug(tsk));
914 
915 	if (unlikely(in_interrupt()))
916 		panic("Aiee, killing interrupt handler!");
917 	if (unlikely(!tsk->pid))
918 		panic("Attempted to kill the idle task!");
919 
920 	/*
921 	 * If do_exit is called because this processes oopsed, it's possible
922 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
923 	 * continuing. Amongst other possible reasons, this is to prevent
924 	 * mm_release()->clear_child_tid() from writing to a user-controlled
925 	 * kernel address.
926 	 */
927 	set_fs(USER_DS);
928 
929 	ptrace_event(PTRACE_EVENT_EXIT, code);
930 
931 	validate_creds_for_do_exit(tsk);
932 
933 	/*
934 	 * We're taking recursive faults here in do_exit. Safest is to just
935 	 * leave this task alone and wait for reboot.
936 	 */
937 	if (unlikely(tsk->flags & PF_EXITING)) {
938 		printk(KERN_ALERT
939 			"Fixing recursive fault but reboot is needed!\n");
940 		/*
941 		 * We can do this unlocked here. The futex code uses
942 		 * this flag just to verify whether the pi state
943 		 * cleanup has been done or not. In the worst case it
944 		 * loops once more. We pretend that the cleanup was
945 		 * done as there is no way to return. Either the
946 		 * OWNER_DIED bit is set by now or we push the blocked
947 		 * task into the wait for ever nirwana as well.
948 		 */
949 		tsk->flags |= PF_EXITPIDONE;
950 		set_current_state(TASK_UNINTERRUPTIBLE);
951 		schedule();
952 	}
953 
954 	exit_signals(tsk);  /* sets PF_EXITING */
955 	/*
956 	 * tsk->flags are checked in the futex code to protect against
957 	 * an exiting task cleaning up the robust pi futexes.
958 	 */
959 	smp_mb();
960 	raw_spin_unlock_wait(&tsk->pi_lock);
961 
962 	exit_irq_thread();
963 
964 	if (unlikely(in_atomic()))
965 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
966 				current->comm, task_pid_nr(current),
967 				preempt_count());
968 
969 	acct_update_integrals(tsk);
970 	/* sync mm's RSS info before statistics gathering */
971 	if (tsk->mm)
972 		sync_mm_rss(tsk->mm);
973 	group_dead = atomic_dec_and_test(&tsk->signal->live);
974 	if (group_dead) {
975 		hrtimer_cancel(&tsk->signal->real_timer);
976 		exit_itimers(tsk->signal);
977 		if (tsk->mm)
978 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
979 	}
980 	acct_collect(code, group_dead);
981 	if (group_dead)
982 		tty_audit_exit();
983 	audit_free(tsk);
984 
985 	tsk->exit_code = code;
986 	taskstats_exit(tsk, group_dead);
987 
988 	exit_mm(tsk);
989 
990 	if (group_dead)
991 		acct_process();
992 	trace_sched_process_exit(tsk);
993 
994 	exit_sem(tsk);
995 	exit_shm(tsk);
996 	exit_files(tsk);
997 	exit_fs(tsk);
998 	check_stack_usage();
999 	exit_thread();
1000 
1001 	/*
1002 	 * Flush inherited counters to the parent - before the parent
1003 	 * gets woken up by child-exit notifications.
1004 	 *
1005 	 * because of cgroup mode, must be called before cgroup_exit()
1006 	 */
1007 	perf_event_exit_task(tsk);
1008 
1009 	cgroup_exit(tsk, 1);
1010 
1011 	if (group_dead)
1012 		disassociate_ctty(1);
1013 
1014 	module_put(task_thread_info(tsk)->exec_domain->module);
1015 
1016 	proc_exit_connector(tsk);
1017 
1018 	/*
1019 	 * FIXME: do that only when needed, using sched_exit tracepoint
1020 	 */
1021 	ptrace_put_breakpoints(tsk);
1022 
1023 	exit_notify(tsk, group_dead);
1024 #ifdef CONFIG_NUMA
1025 	task_lock(tsk);
1026 	mpol_put(tsk->mempolicy);
1027 	tsk->mempolicy = NULL;
1028 	task_unlock(tsk);
1029 #endif
1030 #ifdef CONFIG_FUTEX
1031 	if (unlikely(current->pi_state_cache))
1032 		kfree(current->pi_state_cache);
1033 #endif
1034 	/*
1035 	 * Make sure we are holding no locks:
1036 	 */
1037 	debug_check_no_locks_held(tsk);
1038 	/*
1039 	 * We can do this unlocked here. The futex code uses this flag
1040 	 * just to verify whether the pi state cleanup has been done
1041 	 * or not. In the worst case it loops once more.
1042 	 */
1043 	tsk->flags |= PF_EXITPIDONE;
1044 
1045 	if (tsk->io_context)
1046 		exit_io_context(tsk);
1047 
1048 	if (tsk->splice_pipe)
1049 		__free_pipe_info(tsk->splice_pipe);
1050 
1051 	validate_creds_for_do_exit(tsk);
1052 
1053 	preempt_disable();
1054 	if (tsk->nr_dirtied)
1055 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1056 	exit_rcu();
1057 
1058 	/*
1059 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1060 	 * when the following two conditions become true.
1061 	 *   - There is race condition of mmap_sem (It is acquired by
1062 	 *     exit_mm()), and
1063 	 *   - SMI occurs before setting TASK_RUNINNG.
1064 	 *     (or hypervisor of virtual machine switches to other guest)
1065 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1066 	 *
1067 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
1068 	 * is held by try_to_wake_up()
1069 	 */
1070 	smp_mb();
1071 	raw_spin_unlock_wait(&tsk->pi_lock);
1072 
1073 	/* causes final put_task_struct in finish_task_switch(). */
1074 	tsk->state = TASK_DEAD;
1075 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
1076 	schedule();
1077 	BUG();
1078 	/* Avoid "noreturn function does return".  */
1079 	for (;;)
1080 		cpu_relax();	/* For when BUG is null */
1081 }
1082 
1083 EXPORT_SYMBOL_GPL(do_exit);
1084 
complete_and_exit(struct completion * comp,long code)1085 void complete_and_exit(struct completion *comp, long code)
1086 {
1087 	if (comp)
1088 		complete(comp);
1089 
1090 	do_exit(code);
1091 }
1092 
1093 EXPORT_SYMBOL(complete_and_exit);
1094 
SYSCALL_DEFINE1(exit,int,error_code)1095 SYSCALL_DEFINE1(exit, int, error_code)
1096 {
1097 	do_exit((error_code&0xff)<<8);
1098 }
1099 
1100 /*
1101  * Take down every thread in the group.  This is called by fatal signals
1102  * as well as by sys_exit_group (below).
1103  */
1104 void
do_group_exit(int exit_code)1105 do_group_exit(int exit_code)
1106 {
1107 	struct signal_struct *sig = current->signal;
1108 
1109 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1110 
1111 	if (signal_group_exit(sig))
1112 		exit_code = sig->group_exit_code;
1113 	else if (!thread_group_empty(current)) {
1114 		struct sighand_struct *const sighand = current->sighand;
1115 		spin_lock_irq(&sighand->siglock);
1116 		if (signal_group_exit(sig))
1117 			/* Another thread got here before we took the lock.  */
1118 			exit_code = sig->group_exit_code;
1119 		else {
1120 			sig->group_exit_code = exit_code;
1121 			sig->flags = SIGNAL_GROUP_EXIT;
1122 			zap_other_threads(current);
1123 		}
1124 		spin_unlock_irq(&sighand->siglock);
1125 	}
1126 
1127 	do_exit(exit_code);
1128 	/* NOTREACHED */
1129 }
1130 
1131 /*
1132  * this kills every thread in the thread group. Note that any externally
1133  * wait4()-ing process will get the correct exit code - even if this
1134  * thread is not the thread group leader.
1135  */
SYSCALL_DEFINE1(exit_group,int,error_code)1136 SYSCALL_DEFINE1(exit_group, int, error_code)
1137 {
1138 	do_group_exit((error_code & 0xff) << 8);
1139 	/* NOTREACHED */
1140 	return 0;
1141 }
1142 
1143 struct wait_opts {
1144 	enum pid_type		wo_type;
1145 	int			wo_flags;
1146 	struct pid		*wo_pid;
1147 
1148 	struct siginfo __user	*wo_info;
1149 	int __user		*wo_stat;
1150 	struct rusage __user	*wo_rusage;
1151 
1152 	wait_queue_t		child_wait;
1153 	int			notask_error;
1154 };
1155 
1156 static inline
task_pid_type(struct task_struct * task,enum pid_type type)1157 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158 {
1159 	if (type != PIDTYPE_PID)
1160 		task = task->group_leader;
1161 	return task->pids[type].pid;
1162 }
1163 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1164 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1165 {
1166 	return	wo->wo_type == PIDTYPE_MAX ||
1167 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1168 }
1169 
eligible_child(struct wait_opts * wo,struct task_struct * p)1170 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1171 {
1172 	if (!eligible_pid(wo, p))
1173 		return 0;
1174 	/* Wait for all children (clone and not) if __WALL is set;
1175 	 * otherwise, wait for clone children *only* if __WCLONE is
1176 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1177 	 * A "clone" child here is one that reports to its parent
1178 	 * using a signal other than SIGCHLD.) */
1179 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1180 	    && !(wo->wo_flags & __WALL))
1181 		return 0;
1182 
1183 	return 1;
1184 }
1185 
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)1186 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1187 				pid_t pid, uid_t uid, int why, int status)
1188 {
1189 	struct siginfo __user *infop;
1190 	int retval = wo->wo_rusage
1191 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1192 
1193 	put_task_struct(p);
1194 	infop = wo->wo_info;
1195 	if (infop) {
1196 		if (!retval)
1197 			retval = put_user(SIGCHLD, &infop->si_signo);
1198 		if (!retval)
1199 			retval = put_user(0, &infop->si_errno);
1200 		if (!retval)
1201 			retval = put_user((short)why, &infop->si_code);
1202 		if (!retval)
1203 			retval = put_user(pid, &infop->si_pid);
1204 		if (!retval)
1205 			retval = put_user(uid, &infop->si_uid);
1206 		if (!retval)
1207 			retval = put_user(status, &infop->si_status);
1208 	}
1209 	if (!retval)
1210 		retval = pid;
1211 	return retval;
1212 }
1213 
1214 /*
1215  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1216  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1217  * the lock and this task is uninteresting.  If we return nonzero, we have
1218  * released the lock and the system call should return.
1219  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1220 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1221 {
1222 	unsigned long state;
1223 	int retval, status, traced;
1224 	pid_t pid = task_pid_vnr(p);
1225 	uid_t uid = __task_cred(p)->uid;
1226 	struct siginfo __user *infop;
1227 
1228 	if (!likely(wo->wo_flags & WEXITED))
1229 		return 0;
1230 
1231 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1232 		int exit_code = p->exit_code;
1233 		int why;
1234 
1235 		get_task_struct(p);
1236 		read_unlock(&tasklist_lock);
1237 		if ((exit_code & 0x7f) == 0) {
1238 			why = CLD_EXITED;
1239 			status = exit_code >> 8;
1240 		} else {
1241 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1242 			status = exit_code & 0x7f;
1243 		}
1244 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1245 	}
1246 
1247 	/*
1248 	 * Try to move the task's state to DEAD
1249 	 * only one thread is allowed to do this:
1250 	 */
1251 	state = xchg(&p->exit_state, EXIT_DEAD);
1252 	if (state != EXIT_ZOMBIE) {
1253 		BUG_ON(state != EXIT_DEAD);
1254 		return 0;
1255 	}
1256 
1257 	traced = ptrace_reparented(p);
1258 	/*
1259 	 * It can be ptraced but not reparented, check
1260 	 * thread_group_leader() to filter out sub-threads.
1261 	 */
1262 	if (likely(!traced) && thread_group_leader(p)) {
1263 		struct signal_struct *psig;
1264 		struct signal_struct *sig;
1265 		unsigned long maxrss;
1266 		cputime_t tgutime, tgstime;
1267 
1268 		/*
1269 		 * The resource counters for the group leader are in its
1270 		 * own task_struct.  Those for dead threads in the group
1271 		 * are in its signal_struct, as are those for the child
1272 		 * processes it has previously reaped.  All these
1273 		 * accumulate in the parent's signal_struct c* fields.
1274 		 *
1275 		 * We don't bother to take a lock here to protect these
1276 		 * p->signal fields, because they are only touched by
1277 		 * __exit_signal, which runs with tasklist_lock
1278 		 * write-locked anyway, and so is excluded here.  We do
1279 		 * need to protect the access to parent->signal fields,
1280 		 * as other threads in the parent group can be right
1281 		 * here reaping other children at the same time.
1282 		 *
1283 		 * We use thread_group_times() to get times for the thread
1284 		 * group, which consolidates times for all threads in the
1285 		 * group including the group leader.
1286 		 */
1287 		thread_group_times(p, &tgutime, &tgstime);
1288 		spin_lock_irq(&p->real_parent->sighand->siglock);
1289 		psig = p->real_parent->signal;
1290 		sig = p->signal;
1291 		psig->cutime += tgutime + sig->cutime;
1292 		psig->cstime += tgstime + sig->cstime;
1293 		psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1294 		psig->cmin_flt +=
1295 			p->min_flt + sig->min_flt + sig->cmin_flt;
1296 		psig->cmaj_flt +=
1297 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1298 		psig->cnvcsw +=
1299 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1300 		psig->cnivcsw +=
1301 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1302 		psig->cinblock +=
1303 			task_io_get_inblock(p) +
1304 			sig->inblock + sig->cinblock;
1305 		psig->coublock +=
1306 			task_io_get_oublock(p) +
1307 			sig->oublock + sig->coublock;
1308 		maxrss = max(sig->maxrss, sig->cmaxrss);
1309 		if (psig->cmaxrss < maxrss)
1310 			psig->cmaxrss = maxrss;
1311 		task_io_accounting_add(&psig->ioac, &p->ioac);
1312 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1313 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1314 	}
1315 
1316 	/*
1317 	 * Now we are sure this task is interesting, and no other
1318 	 * thread can reap it because we set its state to EXIT_DEAD.
1319 	 */
1320 	read_unlock(&tasklist_lock);
1321 
1322 	retval = wo->wo_rusage
1323 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1324 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1325 		? p->signal->group_exit_code : p->exit_code;
1326 	if (!retval && wo->wo_stat)
1327 		retval = put_user(status, wo->wo_stat);
1328 
1329 	infop = wo->wo_info;
1330 	if (!retval && infop)
1331 		retval = put_user(SIGCHLD, &infop->si_signo);
1332 	if (!retval && infop)
1333 		retval = put_user(0, &infop->si_errno);
1334 	if (!retval && infop) {
1335 		int why;
1336 
1337 		if ((status & 0x7f) == 0) {
1338 			why = CLD_EXITED;
1339 			status >>= 8;
1340 		} else {
1341 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1342 			status &= 0x7f;
1343 		}
1344 		retval = put_user((short)why, &infop->si_code);
1345 		if (!retval)
1346 			retval = put_user(status, &infop->si_status);
1347 	}
1348 	if (!retval && infop)
1349 		retval = put_user(pid, &infop->si_pid);
1350 	if (!retval && infop)
1351 		retval = put_user(uid, &infop->si_uid);
1352 	if (!retval)
1353 		retval = pid;
1354 
1355 	if (traced) {
1356 		write_lock_irq(&tasklist_lock);
1357 		/* We dropped tasklist, ptracer could die and untrace */
1358 		ptrace_unlink(p);
1359 		/*
1360 		 * If this is not a sub-thread, notify the parent.
1361 		 * If parent wants a zombie, don't release it now.
1362 		 */
1363 		if (thread_group_leader(p) &&
1364 		    !do_notify_parent(p, p->exit_signal)) {
1365 			p->exit_state = EXIT_ZOMBIE;
1366 			p = NULL;
1367 		}
1368 		write_unlock_irq(&tasklist_lock);
1369 	}
1370 	if (p != NULL)
1371 		release_task(p);
1372 
1373 	return retval;
1374 }
1375 
task_stopped_code(struct task_struct * p,bool ptrace)1376 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1377 {
1378 	if (ptrace) {
1379 		if (task_is_stopped_or_traced(p) &&
1380 		    !(p->jobctl & JOBCTL_LISTENING))
1381 			return &p->exit_code;
1382 	} else {
1383 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1384 			return &p->signal->group_exit_code;
1385 	}
1386 	return NULL;
1387 }
1388 
1389 /**
1390  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1391  * @wo: wait options
1392  * @ptrace: is the wait for ptrace
1393  * @p: task to wait for
1394  *
1395  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1396  *
1397  * CONTEXT:
1398  * read_lock(&tasklist_lock), which is released if return value is
1399  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1400  *
1401  * RETURNS:
1402  * 0 if wait condition didn't exist and search for other wait conditions
1403  * should continue.  Non-zero return, -errno on failure and @p's pid on
1404  * success, implies that tasklist_lock is released and wait condition
1405  * search should terminate.
1406  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1407 static int wait_task_stopped(struct wait_opts *wo,
1408 				int ptrace, struct task_struct *p)
1409 {
1410 	struct siginfo __user *infop;
1411 	int retval, exit_code, *p_code, why;
1412 	uid_t uid = 0; /* unneeded, required by compiler */
1413 	pid_t pid;
1414 
1415 	/*
1416 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1417 	 */
1418 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1419 		return 0;
1420 
1421 	if (!task_stopped_code(p, ptrace))
1422 		return 0;
1423 
1424 	exit_code = 0;
1425 	spin_lock_irq(&p->sighand->siglock);
1426 
1427 	p_code = task_stopped_code(p, ptrace);
1428 	if (unlikely(!p_code))
1429 		goto unlock_sig;
1430 
1431 	exit_code = *p_code;
1432 	if (!exit_code)
1433 		goto unlock_sig;
1434 
1435 	if (!unlikely(wo->wo_flags & WNOWAIT))
1436 		*p_code = 0;
1437 
1438 	uid = task_uid(p);
1439 unlock_sig:
1440 	spin_unlock_irq(&p->sighand->siglock);
1441 	if (!exit_code)
1442 		return 0;
1443 
1444 	/*
1445 	 * Now we are pretty sure this task is interesting.
1446 	 * Make sure it doesn't get reaped out from under us while we
1447 	 * give up the lock and then examine it below.  We don't want to
1448 	 * keep holding onto the tasklist_lock while we call getrusage and
1449 	 * possibly take page faults for user memory.
1450 	 */
1451 	get_task_struct(p);
1452 	pid = task_pid_vnr(p);
1453 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1454 	read_unlock(&tasklist_lock);
1455 
1456 	if (unlikely(wo->wo_flags & WNOWAIT))
1457 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1458 
1459 	retval = wo->wo_rusage
1460 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1461 	if (!retval && wo->wo_stat)
1462 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1463 
1464 	infop = wo->wo_info;
1465 	if (!retval && infop)
1466 		retval = put_user(SIGCHLD, &infop->si_signo);
1467 	if (!retval && infop)
1468 		retval = put_user(0, &infop->si_errno);
1469 	if (!retval && infop)
1470 		retval = put_user((short)why, &infop->si_code);
1471 	if (!retval && infop)
1472 		retval = put_user(exit_code, &infop->si_status);
1473 	if (!retval && infop)
1474 		retval = put_user(pid, &infop->si_pid);
1475 	if (!retval && infop)
1476 		retval = put_user(uid, &infop->si_uid);
1477 	if (!retval)
1478 		retval = pid;
1479 	put_task_struct(p);
1480 
1481 	BUG_ON(!retval);
1482 	return retval;
1483 }
1484 
1485 /*
1486  * Handle do_wait work for one task in a live, non-stopped state.
1487  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1488  * the lock and this task is uninteresting.  If we return nonzero, we have
1489  * released the lock and the system call should return.
1490  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1491 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1492 {
1493 	int retval;
1494 	pid_t pid;
1495 	uid_t uid;
1496 
1497 	if (!unlikely(wo->wo_flags & WCONTINUED))
1498 		return 0;
1499 
1500 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1501 		return 0;
1502 
1503 	spin_lock_irq(&p->sighand->siglock);
1504 	/* Re-check with the lock held.  */
1505 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1506 		spin_unlock_irq(&p->sighand->siglock);
1507 		return 0;
1508 	}
1509 	if (!unlikely(wo->wo_flags & WNOWAIT))
1510 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1511 	uid = task_uid(p);
1512 	spin_unlock_irq(&p->sighand->siglock);
1513 
1514 	pid = task_pid_vnr(p);
1515 	get_task_struct(p);
1516 	read_unlock(&tasklist_lock);
1517 
1518 	if (!wo->wo_info) {
1519 		retval = wo->wo_rusage
1520 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1521 		put_task_struct(p);
1522 		if (!retval && wo->wo_stat)
1523 			retval = put_user(0xffff, wo->wo_stat);
1524 		if (!retval)
1525 			retval = pid;
1526 	} else {
1527 		retval = wait_noreap_copyout(wo, p, pid, uid,
1528 					     CLD_CONTINUED, SIGCONT);
1529 		BUG_ON(retval == 0);
1530 	}
1531 
1532 	return retval;
1533 }
1534 
1535 /*
1536  * Consider @p for a wait by @parent.
1537  *
1538  * -ECHILD should be in ->notask_error before the first call.
1539  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1540  * Returns zero if the search for a child should continue;
1541  * then ->notask_error is 0 if @p is an eligible child,
1542  * or another error from security_task_wait(), or still -ECHILD.
1543  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1544 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1545 				struct task_struct *p)
1546 {
1547 	int ret = eligible_child(wo, p);
1548 	if (!ret)
1549 		return ret;
1550 
1551 	ret = security_task_wait(p);
1552 	if (unlikely(ret < 0)) {
1553 		/*
1554 		 * If we have not yet seen any eligible child,
1555 		 * then let this error code replace -ECHILD.
1556 		 * A permission error will give the user a clue
1557 		 * to look for security policy problems, rather
1558 		 * than for mysterious wait bugs.
1559 		 */
1560 		if (wo->notask_error)
1561 			wo->notask_error = ret;
1562 		return 0;
1563 	}
1564 
1565 	/* dead body doesn't have much to contribute */
1566 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1567 		/*
1568 		 * But do not ignore this task until the tracer does
1569 		 * wait_task_zombie()->do_notify_parent().
1570 		 */
1571 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1572 			wo->notask_error = 0;
1573 		return 0;
1574 	}
1575 
1576 	/* slay zombie? */
1577 	if (p->exit_state == EXIT_ZOMBIE) {
1578 		/*
1579 		 * A zombie ptracee is only visible to its ptracer.
1580 		 * Notification and reaping will be cascaded to the real
1581 		 * parent when the ptracer detaches.
1582 		 */
1583 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1584 			/* it will become visible, clear notask_error */
1585 			wo->notask_error = 0;
1586 			return 0;
1587 		}
1588 
1589 		/* we don't reap group leaders with subthreads */
1590 		if (!delay_group_leader(p))
1591 			return wait_task_zombie(wo, p);
1592 
1593 		/*
1594 		 * Allow access to stopped/continued state via zombie by
1595 		 * falling through.  Clearing of notask_error is complex.
1596 		 *
1597 		 * When !@ptrace:
1598 		 *
1599 		 * If WEXITED is set, notask_error should naturally be
1600 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1601 		 * so, if there are live subthreads, there are events to
1602 		 * wait for.  If all subthreads are dead, it's still safe
1603 		 * to clear - this function will be called again in finite
1604 		 * amount time once all the subthreads are released and
1605 		 * will then return without clearing.
1606 		 *
1607 		 * When @ptrace:
1608 		 *
1609 		 * Stopped state is per-task and thus can't change once the
1610 		 * target task dies.  Only continued and exited can happen.
1611 		 * Clear notask_error if WCONTINUED | WEXITED.
1612 		 */
1613 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1614 			wo->notask_error = 0;
1615 	} else {
1616 		/*
1617 		 * If @p is ptraced by a task in its real parent's group,
1618 		 * hide group stop/continued state when looking at @p as
1619 		 * the real parent; otherwise, a single stop can be
1620 		 * reported twice as group and ptrace stops.
1621 		 *
1622 		 * If a ptracer wants to distinguish the two events for its
1623 		 * own children, it should create a separate process which
1624 		 * takes the role of real parent.
1625 		 */
1626 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1627 			return 0;
1628 
1629 		/*
1630 		 * @p is alive and it's gonna stop, continue or exit, so
1631 		 * there always is something to wait for.
1632 		 */
1633 		wo->notask_error = 0;
1634 	}
1635 
1636 	/*
1637 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1638 	 * is used and the two don't interact with each other.
1639 	 */
1640 	ret = wait_task_stopped(wo, ptrace, p);
1641 	if (ret)
1642 		return ret;
1643 
1644 	/*
1645 	 * Wait for continued.  There's only one continued state and the
1646 	 * ptracer can consume it which can confuse the real parent.  Don't
1647 	 * use WCONTINUED from ptracer.  You don't need or want it.
1648 	 */
1649 	return wait_task_continued(wo, p);
1650 }
1651 
1652 /*
1653  * Do the work of do_wait() for one thread in the group, @tsk.
1654  *
1655  * -ECHILD should be in ->notask_error before the first call.
1656  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1657  * Returns zero if the search for a child should continue; then
1658  * ->notask_error is 0 if there were any eligible children,
1659  * or another error from security_task_wait(), or still -ECHILD.
1660  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1661 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1662 {
1663 	struct task_struct *p;
1664 
1665 	list_for_each_entry(p, &tsk->children, sibling) {
1666 		int ret = wait_consider_task(wo, 0, p);
1667 		if (ret)
1668 			return ret;
1669 	}
1670 
1671 	return 0;
1672 }
1673 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1674 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1675 {
1676 	struct task_struct *p;
1677 
1678 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1679 		int ret = wait_consider_task(wo, 1, p);
1680 		if (ret)
1681 			return ret;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1687 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1688 				int sync, void *key)
1689 {
1690 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1691 						child_wait);
1692 	struct task_struct *p = key;
1693 
1694 	if (!eligible_pid(wo, p))
1695 		return 0;
1696 
1697 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1698 		return 0;
1699 
1700 	return default_wake_function(wait, mode, sync, key);
1701 }
1702 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1703 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1704 {
1705 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1706 				TASK_INTERRUPTIBLE, 1, p);
1707 }
1708 
do_wait(struct wait_opts * wo)1709 static long do_wait(struct wait_opts *wo)
1710 {
1711 	struct task_struct *tsk;
1712 	int retval;
1713 
1714 	trace_sched_process_wait(wo->wo_pid);
1715 
1716 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1717 	wo->child_wait.private = current;
1718 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1719 repeat:
1720 	/*
1721 	 * If there is nothing that can match our critiera just get out.
1722 	 * We will clear ->notask_error to zero if we see any child that
1723 	 * might later match our criteria, even if we are not able to reap
1724 	 * it yet.
1725 	 */
1726 	wo->notask_error = -ECHILD;
1727 	if ((wo->wo_type < PIDTYPE_MAX) &&
1728 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1729 		goto notask;
1730 
1731 	set_current_state(TASK_INTERRUPTIBLE);
1732 	read_lock(&tasklist_lock);
1733 	tsk = current;
1734 	do {
1735 		retval = do_wait_thread(wo, tsk);
1736 		if (retval)
1737 			goto end;
1738 
1739 		retval = ptrace_do_wait(wo, tsk);
1740 		if (retval)
1741 			goto end;
1742 
1743 		if (wo->wo_flags & __WNOTHREAD)
1744 			break;
1745 	} while_each_thread(current, tsk);
1746 	read_unlock(&tasklist_lock);
1747 
1748 notask:
1749 	retval = wo->notask_error;
1750 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1751 		retval = -ERESTARTSYS;
1752 		if (!signal_pending(current)) {
1753 			schedule();
1754 			goto repeat;
1755 		}
1756 	}
1757 end:
1758 	__set_current_state(TASK_RUNNING);
1759 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1760 	return retval;
1761 }
1762 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1763 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1764 		infop, int, options, struct rusage __user *, ru)
1765 {
1766 	struct wait_opts wo;
1767 	struct pid *pid = NULL;
1768 	enum pid_type type;
1769 	long ret;
1770 
1771 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1772 		return -EINVAL;
1773 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1774 		return -EINVAL;
1775 
1776 	switch (which) {
1777 	case P_ALL:
1778 		type = PIDTYPE_MAX;
1779 		break;
1780 	case P_PID:
1781 		type = PIDTYPE_PID;
1782 		if (upid <= 0)
1783 			return -EINVAL;
1784 		break;
1785 	case P_PGID:
1786 		type = PIDTYPE_PGID;
1787 		if (upid <= 0)
1788 			return -EINVAL;
1789 		break;
1790 	default:
1791 		return -EINVAL;
1792 	}
1793 
1794 	if (type < PIDTYPE_MAX)
1795 		pid = find_get_pid(upid);
1796 
1797 	wo.wo_type	= type;
1798 	wo.wo_pid	= pid;
1799 	wo.wo_flags	= options;
1800 	wo.wo_info	= infop;
1801 	wo.wo_stat	= NULL;
1802 	wo.wo_rusage	= ru;
1803 	ret = do_wait(&wo);
1804 
1805 	if (ret > 0) {
1806 		ret = 0;
1807 	} else if (infop) {
1808 		/*
1809 		 * For a WNOHANG return, clear out all the fields
1810 		 * we would set so the user can easily tell the
1811 		 * difference.
1812 		 */
1813 		if (!ret)
1814 			ret = put_user(0, &infop->si_signo);
1815 		if (!ret)
1816 			ret = put_user(0, &infop->si_errno);
1817 		if (!ret)
1818 			ret = put_user(0, &infop->si_code);
1819 		if (!ret)
1820 			ret = put_user(0, &infop->si_pid);
1821 		if (!ret)
1822 			ret = put_user(0, &infop->si_uid);
1823 		if (!ret)
1824 			ret = put_user(0, &infop->si_status);
1825 	}
1826 
1827 	put_pid(pid);
1828 
1829 	/* avoid REGPARM breakage on x86: */
1830 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1831 	return ret;
1832 }
1833 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1834 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1835 		int, options, struct rusage __user *, ru)
1836 {
1837 	struct wait_opts wo;
1838 	struct pid *pid = NULL;
1839 	enum pid_type type;
1840 	long ret;
1841 
1842 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1843 			__WNOTHREAD|__WCLONE|__WALL))
1844 		return -EINVAL;
1845 
1846 	if (upid == -1)
1847 		type = PIDTYPE_MAX;
1848 	else if (upid < 0) {
1849 		type = PIDTYPE_PGID;
1850 		pid = find_get_pid(-upid);
1851 	} else if (upid == 0) {
1852 		type = PIDTYPE_PGID;
1853 		pid = get_task_pid(current, PIDTYPE_PGID);
1854 	} else /* upid > 0 */ {
1855 		type = PIDTYPE_PID;
1856 		pid = find_get_pid(upid);
1857 	}
1858 
1859 	wo.wo_type	= type;
1860 	wo.wo_pid	= pid;
1861 	wo.wo_flags	= options | WEXITED;
1862 	wo.wo_info	= NULL;
1863 	wo.wo_stat	= stat_addr;
1864 	wo.wo_rusage	= ru;
1865 	ret = do_wait(&wo);
1866 	put_pid(pid);
1867 
1868 	/* avoid REGPARM breakage on x86: */
1869 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1870 	return ret;
1871 }
1872 
1873 #ifdef __ARCH_WANT_SYS_WAITPID
1874 
1875 /*
1876  * sys_waitpid() remains for compatibility. waitpid() should be
1877  * implemented by calling sys_wait4() from libc.a.
1878  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1879 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1880 {
1881 	return sys_wait4(pid, stat_addr, options, NULL);
1882 }
1883 
1884 #endif
1885