1 /* @(#)e_j0.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
13    for performance improvement on pipelined processors.
14  */
15 
16 /* __ieee754_j0(x), __ieee754_y0(x)
17  * Bessel function of the first and second kinds of order zero.
18  * Method -- j0(x):
19  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
20  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
21  *	   for x in (0,2)
22  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
23  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
24  *	   for x in (2,inf)
25  *		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
26  *	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
27  *	   as follow:
28  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
29  *			= 1/sqrt(2) * (cos(x) + sin(x))
30  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
31  *			= 1/sqrt(2) * (sin(x) - cos(x))
32  *	   (To avoid cancellation, use
33  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
34  *	    to compute the worse one.)
35  *
36  *	3 Special cases
37  *		j0(nan)= nan
38  *		j0(0) = 1
39  *		j0(inf) = 0
40  *
41  * Method -- y0(x):
42  *	1. For x<2.
43  *	   Since
44  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
45  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
46  *	   We use the following function to approximate y0,
47  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
48  *	   where
49  *		U(z) = u00 + u01*z + ... + u06*z^6
50  *		V(z) = 1  + v01*z + ... + v04*z^4
51  *	   with absolute approximation error bounded by 2**-72.
52  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
53  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
54  *	2. For x>=2.
55  *		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
56  *	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
57  *	   by the method mentioned above.
58  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
59  */
60 
61 #include <math.h>
62 #include <math-barriers.h>
63 #include <math_private.h>
64 #include <libm-alias-finite.h>
65 
66 static double pzero (double), qzero (double);
67 
68 static const double
69   huge = 1e300,
70   one = 1.0,
71   invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
72   tpi = 6.36619772367581382433e-01,     /* 0x3FE45F30, 0x6DC9C883 */
73 /* R0/S0 on [0, 2.00] */
74   R[] = { 0.0, 0.0, 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
75 	  -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
76 	  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
77 	  -4.61832688532103189199e-09 }, /* 0xBE33D5E7, 0x73D63FCE */
78   S[] = { 0.0, 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
79 	  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
80 	  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
81 	  1.16614003333790000205e-09 }; /* 0x3E1408BC, 0xF4745D8F */
82 
83 static const double zero = 0.0;
84 
85 double
__ieee754_j0(double x)86 __ieee754_j0 (double x)
87 {
88   double z, s, c, ss, cc, r, u, v, r1, r2, s1, s2, z2, z4;
89   int32_t hx, ix;
90 
91   GET_HIGH_WORD (hx, x);
92   ix = hx & 0x7fffffff;
93   if (ix >= 0x7ff00000)
94     return one / (x * x);
95   x = fabs (x);
96   if (ix >= 0x40000000)         /* |x| >= 2.0 */
97     {
98       __sincos (x, &s, &c);
99       ss = s - c;
100       cc = s + c;
101       if (ix < 0x7fe00000)           /* make sure x+x not overflow */
102 	{
103 	  z = -__cos (x + x);
104 	  if ((s * c) < zero)
105 	    cc = z / ss;
106 	  else
107 	    ss = z / cc;
108 	}
109       /*
110        * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
111        * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
112        */
113       if (ix > 0x48000000)
114 	z = (invsqrtpi * cc) / sqrt (x);
115       else
116 	{
117 	  u = pzero (x); v = qzero (x);
118 	  z = invsqrtpi * (u * cc - v * ss) / sqrt (x);
119 	}
120       return z;
121     }
122   if (ix < 0x3f200000)          /* |x| < 2**-13 */
123     {
124       math_force_eval (huge + x);       /* raise inexact if x != 0 */
125       if (ix < 0x3e400000)
126 	return one;                     /* |x|<2**-27 */
127       else
128 	return one - 0.25 * x * x;
129     }
130   z = x * x;
131   r1 = z * R[2]; z2 = z * z;
132   r2 = R[3] + z * R[4]; z4 = z2 * z2;
133   r = r1 + z2 * r2 + z4 * R[5];
134   s1 = one + z * S[1];
135   s2 = S[2] + z * S[3];
136   s = s1 + z2 * s2 + z4 * S[4];
137   if (ix < 0x3FF00000)          /* |x| < 1.00 */
138     {
139       return one + z * (-0.25 + (r / s));
140     }
141   else
142     {
143       u = 0.5 * x;
144       return ((one + u) * (one - u) + z * (r / s));
145     }
146 }
147 libm_alias_finite (__ieee754_j0, __j0)
148 
149 static const double
150 U[] = { -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
151 	 1.76666452509181115538e-01,  /* 0x3FC69D01, 0x9DE9E3FC */
152 	-1.38185671945596898896e-02,  /* 0xBF8C4CE8, 0xB16CFA97 */
153 	 3.47453432093683650238e-04,  /* 0x3F36C54D, 0x20B29B6B */
154 	-3.81407053724364161125e-06,  /* 0xBECFFEA7, 0x73D25CAD */
155 	 1.95590137035022920206e-08,  /* 0x3E550057, 0x3B4EABD4 */
156 	-3.98205194132103398453e-11 }, /* 0xBDC5E43D, 0x693FB3C8 */
157 V[] = { 1.27304834834123699328e-02,   /* 0x3F8A1270, 0x91C9C71A */
158 	 7.60068627350353253702e-05,   /* 0x3F13ECBB, 0xF578C6C1 */
159 	 2.59150851840457805467e-07,   /* 0x3E91642D, 0x7FF202FD */
160 	 4.41110311332675467403e-10 }; /* 0x3DFE5018, 0x3BD6D9EF */
161 
162 double
__ieee754_y0(double x)163 __ieee754_y0 (double x)
164 {
165   double z, s, c, ss, cc, u, v, z2, z4, z6, u1, u2, u3, v1, v2;
166   int32_t hx, ix, lx;
167 
168   EXTRACT_WORDS (hx, lx, x);
169   ix = 0x7fffffff & hx;
170   /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf.  */
171   if (ix >= 0x7ff00000)
172     return one / (x + x * x);
173   if ((ix | lx) == 0)
174     return -1 / zero; /* -inf and divide by zero exception.  */
175   if (hx < 0)
176     return zero / (zero * x);
177   if (ix >= 0x40000000)         /* |x| >= 2.0 */
178     {   /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
179 		 * where x0 = x-pi/4
180 		 *      Better formula:
181 		 *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
182 		 *                      =  1/sqrt(2) * (sin(x) + cos(x))
183 		 *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
184 		 *                      =  1/sqrt(2) * (sin(x) - cos(x))
185 		 * To avoid cancellation, use
186 		 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
187 		 * to compute the worse one.
188 		 */
189       __sincos (x, &s, &c);
190       ss = s - c;
191       cc = s + c;
192       /*
193        * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
194        * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
195        */
196       if (ix < 0x7fe00000)           /* make sure x+x not overflow */
197 	{
198 	  z = -__cos (x + x);
199 	  if ((s * c) < zero)
200 	    cc = z / ss;
201 	  else
202 	    ss = z / cc;
203 	}
204       if (ix > 0x48000000)
205 	z = (invsqrtpi * ss) / sqrt (x);
206       else
207 	{
208 	  u = pzero (x); v = qzero (x);
209 	  z = invsqrtpi * (u * ss + v * cc) / sqrt (x);
210 	}
211       return z;
212     }
213   if (ix <= 0x3e400000)         /* x < 2**-27 */
214     {
215       return (U[0] + tpi * __ieee754_log (x));
216     }
217   z = x * x;
218   u1 = U[0] + z * U[1]; z2 = z * z;
219   u2 = U[2] + z * U[3]; z4 = z2 * z2;
220   u3 = U[4] + z * U[5]; z6 = z4 * z2;
221   u = u1 + z2 * u2 + z4 * u3 + z6 * U[6];
222   v1 = one + z * V[0];
223   v2 = V[1] + z * V[2];
224   v = v1 + z2 * v2 + z4 * V[3];
225   return (u / v + tpi * (__ieee754_j0 (x) * __ieee754_log (x)));
226 }
227 libm_alias_finite (__ieee754_y0, __y0)
228 
229 /* The asymptotic expansions of pzero is
230  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
231  * For x >= 2, We approximate pzero by
232  *	pzero(x) = 1 + (R/S)
233  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
234  *	  S = 1 + pS0*s^2 + ... + pS4*s^10
235  * and
236  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
237  */
238 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
239   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
240  -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
241  -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
242  -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
243  -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
244  -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
245 };
246 static const double pS8[5] = {
247   1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
248   3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
249   4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
250   1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
251   4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
252 };
253 
254 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
255  -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
256  -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
257  -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
258  -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
259  -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
260  -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
261 };
262 static const double pS5[5] = {
263   6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
264   1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
265   5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
266   9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
267   2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
268 };
269 
270 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
271  -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
272  -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
273  -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
274  -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
275  -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
276  -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
277 };
278 static const double pS3[5] = {
279   3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
280   3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
281   1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
282   1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
283   1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
284 };
285 
286 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
287  -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
288  -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
289  -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
290  -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
291  -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
292  -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
293 };
294 static const double pS2[5] = {
295   2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
296   1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
297   2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
298   1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
299   1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
300 };
301 
302 static double
pzero(double x)303 pzero (double x)
304 {
305   const double *p, *q;
306   double z, r, s, z2, z4, r1, r2, r3, s1, s2, s3;
307   int32_t ix;
308   GET_HIGH_WORD (ix, x);
309   ix &= 0x7fffffff;
310   /* ix >= 0x40000000 for all calls to this function.  */
311   if (ix >= 0x41b00000)
312     {
313       return one;
314     }
315   else if (ix >= 0x40200000)
316     {
317       p = pR8; q = pS8;
318     }
319   else if (ix >= 0x40122E8B)
320     {
321       p = pR5; q = pS5;
322     }
323   else if (ix >= 0x4006DB6D)
324     {
325       p = pR3; q = pS3;
326     }
327   else
328     {
329       p = pR2; q = pS2;
330     }
331   z = one / (x * x);
332   r1 = p[0] + z * p[1]; z2 = z * z;
333   r2 = p[2] + z * p[3]; z4 = z2 * z2;
334   r3 = p[4] + z * p[5];
335   r = r1 + z2 * r2 + z4 * r3;
336   s1 = one + z * q[0];
337   s2 = q[1] + z * q[2];
338   s3 = q[3] + z * q[4];
339   s = s1 + z2 * s2 + z4 * s3;
340   return one + r / s;
341 }
342 
343 
344 /* For x >= 8, the asymptotic expansions of qzero is
345  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
346  * We approximate pzero by
347  *	qzero(x) = s*(-1.25 + (R/S))
348  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
349  *	  S = 1 + qS0*s^2 + ... + qS5*s^12
350  * and
351  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
352  */
353 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
354   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
355   7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
356   1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
357   5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
358   8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
359   3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
360 };
361 static const double qS8[6] = {
362   1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
363   8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
364   1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
365   8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
366   8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
367  -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
368 };
369 
370 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
371   1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
372   7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
373   5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
374   1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
375   1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
376   1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
377 };
378 static const double qS5[6] = {
379   8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
380   2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
381   1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
382   5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
383   3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
384  -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
385 };
386 
387 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
388   4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
389   7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
390   3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
391   4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
392   1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
393   1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
394 };
395 static const double qS3[6] = {
396   4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
397   7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
398   3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
399   6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
400   2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
401  -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
402 };
403 
404 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
405   1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
406   7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
407   1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
408   1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
409   3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
410   1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
411 };
412 static const double qS2[6] = {
413   3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
414   2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
415   8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
416   8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
417   2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
418  -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
419 };
420 
421 static double
qzero(double x)422 qzero (double x)
423 {
424   const double *p, *q;
425   double s, r, z, z2, z4, z6, r1, r2, r3, s1, s2, s3;
426   int32_t ix;
427   GET_HIGH_WORD (ix, x);
428   ix &= 0x7fffffff;
429   /* ix >= 0x40000000 for all calls to this function.  */
430   if (ix >= 0x41b00000)
431     {
432       return -.125 / x;
433     }
434   else if (ix >= 0x40200000)
435     {
436       p = qR8; q = qS8;
437     }
438   else if (ix >= 0x40122E8B)
439     {
440       p = qR5; q = qS5;
441     }
442   else if (ix >= 0x4006DB6D)
443     {
444       p = qR3; q = qS3;
445     }
446   else
447     {
448       p = qR2; q = qS2;
449     }
450   z = one / (x * x);
451   r1 = p[0] + z * p[1]; z2 = z * z;
452   r2 = p[2] + z * p[3]; z4 = z2 * z2;
453   r3 = p[4] + z * p[5]; z6 = z4 * z2;
454   r = r1 + z2 * r2 + z4 * r3;
455   s1 = one + z * q[0];
456   s2 = q[1] + z * q[2];
457   s3 = q[3] + z * q[4];
458   s = s1 + z2 * s2 + z4 * s3 + z6 * q[5];
459   return (-.125 + r / s) / x;
460 }
461