1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
10  *		Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25 
26 #include <trace/events/thermal.h>
27 
28 /*
29  * Cooling state <-> CPUFreq frequency
30  *
31  * Cooling states are translated to frequencies throughout this driver and this
32  * is the relation between them.
33  *
34  * Highest cooling state corresponds to lowest possible frequency.
35  *
36  * i.e.
37  *	level 0 --> 1st Max Freq
38  *	level 1 --> 2nd Max Freq
39  *	...
40  */
41 
42 /**
43  * struct time_in_idle - Idle time stats
44  * @time: previous reading of the absolute time that this cpu was idle
45  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46  */
47 struct time_in_idle {
48 	u64 time;
49 	u64 timestamp;
50 };
51 
52 /**
53  * struct cpufreq_cooling_device - data for cooling device with cpufreq
54  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55  * @cpufreq_state: integer value representing the current state of cpufreq
56  *	cooling	devices.
57  * @max_level: maximum cooling level. One less than total number of valid
58  *	cpufreq frequencies.
59  * @em: Reference on the Energy Model of the device
60  * @cdev: thermal_cooling_device pointer to keep track of the
61  *	registered cooling device.
62  * @policy: cpufreq policy.
63  * @idle_time: idle time stats
64  * @qos_req: PM QoS contraint to apply
65  *
66  * This structure is required for keeping information of each registered
67  * cpufreq_cooling_device.
68  */
69 struct cpufreq_cooling_device {
70 	u32 last_load;
71 	unsigned int cpufreq_state;
72 	unsigned int max_level;
73 	struct em_perf_domain *em;
74 	struct cpufreq_policy *policy;
75 #ifndef CONFIG_SMP
76 	struct time_in_idle *idle_time;
77 #endif
78 	struct freq_qos_request qos_req;
79 };
80 
81 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
82 /**
83  * get_level: Find the level for a particular frequency
84  * @cpufreq_cdev: cpufreq_cdev for which the property is required
85  * @freq: Frequency
86  *
87  * Return: level corresponding to the frequency.
88  */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)89 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
90 			       unsigned int freq)
91 {
92 	int i;
93 
94 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
95 		if (freq > cpufreq_cdev->em->table[i].frequency)
96 			break;
97 	}
98 
99 	return cpufreq_cdev->max_level - i - 1;
100 }
101 
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)102 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
103 			     u32 freq)
104 {
105 	unsigned long power_mw;
106 	int i;
107 
108 	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
109 		if (freq > cpufreq_cdev->em->table[i].frequency)
110 			break;
111 	}
112 
113 	power_mw = cpufreq_cdev->em->table[i + 1].power;
114 	power_mw /= MICROWATT_PER_MILLIWATT;
115 
116 	return power_mw;
117 }
118 
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)119 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
120 			     u32 power)
121 {
122 	unsigned long em_power_mw;
123 	int i;
124 
125 	for (i = cpufreq_cdev->max_level; i > 0; i--) {
126 		/* Convert EM power to milli-Watts to make safe comparison */
127 		em_power_mw = cpufreq_cdev->em->table[i].power;
128 		em_power_mw /= MICROWATT_PER_MILLIWATT;
129 		if (power >= em_power_mw)
130 			break;
131 	}
132 
133 	return cpufreq_cdev->em->table[i].frequency;
134 }
135 
136 /**
137  * get_load() - get load for a cpu
138  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
139  * @cpu: cpu number
140  * @cpu_idx: index of the cpu in time_in_idle array
141  *
142  * Return: The average load of cpu @cpu in percentage since this
143  * function was last called.
144  */
145 #ifdef CONFIG_SMP
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)146 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
147 		    int cpu_idx)
148 {
149 	unsigned long max = arch_scale_cpu_capacity(cpu);
150 	unsigned long util;
151 
152 	util = sched_cpu_util(cpu, max);
153 	return (util * 100) / max;
154 }
155 #else /* !CONFIG_SMP */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)156 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
157 		    int cpu_idx)
158 {
159 	u32 load;
160 	u64 now, now_idle, delta_time, delta_idle;
161 	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
162 
163 	now_idle = get_cpu_idle_time(cpu, &now, 0);
164 	delta_idle = now_idle - idle_time->time;
165 	delta_time = now - idle_time->timestamp;
166 
167 	if (delta_time <= delta_idle)
168 		load = 0;
169 	else
170 		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171 
172 	idle_time->time = now_idle;
173 	idle_time->timestamp = now;
174 
175 	return load;
176 }
177 #endif /* CONFIG_SMP */
178 
179 /**
180  * get_dynamic_power() - calculate the dynamic power
181  * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
182  * @freq:	current frequency
183  *
184  * Return: the dynamic power consumed by the cpus described by
185  * @cpufreq_cdev.
186  */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)187 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
188 			     unsigned long freq)
189 {
190 	u32 raw_cpu_power;
191 
192 	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193 	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
194 }
195 
196 /**
197  * cpufreq_get_requested_power() - get the current power
198  * @cdev:	&thermal_cooling_device pointer
199  * @power:	pointer in which to store the resulting power
200  *
201  * Calculate the current power consumption of the cpus in milliwatts
202  * and store it in @power.  This function should actually calculate
203  * the requested power, but it's hard to get the frequency that
204  * cpufreq would have assigned if there were no thermal limits.
205  * Instead, we calculate the current power on the assumption that the
206  * immediate future will look like the immediate past.
207  *
208  * We use the current frequency and the average load since this
209  * function was last called.  In reality, there could have been
210  * multiple opps since this function was last called and that affects
211  * the load calculation.  While it's not perfectly accurate, this
212  * simplification is good enough and works.  REVISIT this, as more
213  * complex code may be needed if experiments show that it's not
214  * accurate enough.
215  *
216  * Return: 0 on success, -E* if getting the static power failed.
217  */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)218 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
219 				       u32 *power)
220 {
221 	unsigned long freq;
222 	int i = 0, cpu;
223 	u32 total_load = 0;
224 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
225 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
226 	u32 *load_cpu = NULL;
227 
228 	freq = cpufreq_quick_get(policy->cpu);
229 
230 	if (trace_thermal_power_cpu_get_power_enabled()) {
231 		u32 ncpus = cpumask_weight(policy->related_cpus);
232 
233 		load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
234 	}
235 
236 	for_each_cpu(cpu, policy->related_cpus) {
237 		u32 load;
238 
239 		if (cpu_online(cpu))
240 			load = get_load(cpufreq_cdev, cpu, i);
241 		else
242 			load = 0;
243 
244 		total_load += load;
245 		if (load_cpu)
246 			load_cpu[i] = load;
247 
248 		i++;
249 	}
250 
251 	cpufreq_cdev->last_load = total_load;
252 
253 	*power = get_dynamic_power(cpufreq_cdev, freq);
254 
255 	if (load_cpu) {
256 		trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
257 						  load_cpu, i, *power);
258 
259 		kfree(load_cpu);
260 	}
261 
262 	return 0;
263 }
264 
265 /**
266  * cpufreq_state2power() - convert a cpu cdev state to power consumed
267  * @cdev:	&thermal_cooling_device pointer
268  * @state:	cooling device state to be converted
269  * @power:	pointer in which to store the resulting power
270  *
271  * Convert cooling device state @state into power consumption in
272  * milliwatts assuming 100% load.  Store the calculated power in
273  * @power.
274  *
275  * Return: 0 on success, -EINVAL if the cooling device state could not
276  * be converted into a frequency or other -E* if there was an error
277  * when calculating the static power.
278  */
cpufreq_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)279 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
280 			       unsigned long state, u32 *power)
281 {
282 	unsigned int freq, num_cpus, idx;
283 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
284 
285 	/* Request state should be less than max_level */
286 	if (state > cpufreq_cdev->max_level)
287 		return -EINVAL;
288 
289 	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
290 
291 	idx = cpufreq_cdev->max_level - state;
292 	freq = cpufreq_cdev->em->table[idx].frequency;
293 	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
294 
295 	return 0;
296 }
297 
298 /**
299  * cpufreq_power2state() - convert power to a cooling device state
300  * @cdev:	&thermal_cooling_device pointer
301  * @power:	power in milliwatts to be converted
302  * @state:	pointer in which to store the resulting state
303  *
304  * Calculate a cooling device state for the cpus described by @cdev
305  * that would allow them to consume at most @power mW and store it in
306  * @state.  Note that this calculation depends on external factors
307  * such as the cpu load or the current static power.  Calling this
308  * function with the same power as input can yield different cooling
309  * device states depending on those external factors.
310  *
311  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
312  * the calculated frequency could not be converted to a valid state.
313  * The latter should not happen unless the frequencies available to
314  * cpufreq have changed since the initialization of the cpu cooling
315  * device.
316  */
cpufreq_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)317 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
318 			       u32 power, unsigned long *state)
319 {
320 	unsigned int target_freq;
321 	u32 last_load, normalised_power;
322 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
323 	struct cpufreq_policy *policy = cpufreq_cdev->policy;
324 
325 	last_load = cpufreq_cdev->last_load ?: 1;
326 	normalised_power = (power * 100) / last_load;
327 	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
328 
329 	*state = get_level(cpufreq_cdev, target_freq);
330 	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
331 				      power);
332 	return 0;
333 }
334 
em_is_sane(struct cpufreq_cooling_device * cpufreq_cdev,struct em_perf_domain * em)335 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
336 			      struct em_perf_domain *em) {
337 	struct cpufreq_policy *policy;
338 	unsigned int nr_levels;
339 
340 	if (!em || em_is_artificial(em))
341 		return false;
342 
343 	policy = cpufreq_cdev->policy;
344 	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
345 		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
346 			cpumask_pr_args(em_span_cpus(em)),
347 			cpumask_pr_args(policy->related_cpus));
348 		return false;
349 	}
350 
351 	nr_levels = cpufreq_cdev->max_level + 1;
352 	if (em_pd_nr_perf_states(em) != nr_levels) {
353 		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
354 			cpumask_pr_args(em_span_cpus(em)),
355 			em_pd_nr_perf_states(em), nr_levels);
356 		return false;
357 	}
358 
359 	return true;
360 }
361 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
362 
363 #ifdef CONFIG_SMP
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)364 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
365 {
366 	return 0;
367 }
368 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)369 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
370 {
371 }
372 #else
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)373 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
374 {
375 	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
376 
377 	cpufreq_cdev->idle_time = kcalloc(num_cpus,
378 					  sizeof(*cpufreq_cdev->idle_time),
379 					  GFP_KERNEL);
380 	if (!cpufreq_cdev->idle_time)
381 		return -ENOMEM;
382 
383 	return 0;
384 }
385 
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)386 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
387 {
388 	kfree(cpufreq_cdev->idle_time);
389 	cpufreq_cdev->idle_time = NULL;
390 }
391 #endif /* CONFIG_SMP */
392 
get_state_freq(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long state)393 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
394 				   unsigned long state)
395 {
396 	struct cpufreq_policy *policy;
397 	unsigned long idx;
398 
399 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
400 	/* Use the Energy Model table if available */
401 	if (cpufreq_cdev->em) {
402 		idx = cpufreq_cdev->max_level - state;
403 		return cpufreq_cdev->em->table[idx].frequency;
404 	}
405 #endif
406 
407 	/* Otherwise, fallback on the CPUFreq table */
408 	policy = cpufreq_cdev->policy;
409 	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
410 		idx = cpufreq_cdev->max_level - state;
411 	else
412 		idx = state;
413 
414 	return policy->freq_table[idx].frequency;
415 }
416 
417 /* cpufreq cooling device callback functions are defined below */
418 
419 /**
420  * cpufreq_get_max_state - callback function to get the max cooling state.
421  * @cdev: thermal cooling device pointer.
422  * @state: fill this variable with the max cooling state.
423  *
424  * Callback for the thermal cooling device to return the cpufreq
425  * max cooling state.
426  *
427  * Return: 0 on success, an error code otherwise.
428  */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)429 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
430 				 unsigned long *state)
431 {
432 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
433 
434 	*state = cpufreq_cdev->max_level;
435 	return 0;
436 }
437 
438 /**
439  * cpufreq_get_cur_state - callback function to get the current cooling state.
440  * @cdev: thermal cooling device pointer.
441  * @state: fill this variable with the current cooling state.
442  *
443  * Callback for the thermal cooling device to return the cpufreq
444  * current cooling state.
445  *
446  * Return: 0 on success, an error code otherwise.
447  */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)448 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
449 				 unsigned long *state)
450 {
451 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
452 
453 	*state = cpufreq_cdev->cpufreq_state;
454 
455 	return 0;
456 }
457 
458 /**
459  * cpufreq_set_cur_state - callback function to set the current cooling state.
460  * @cdev: thermal cooling device pointer.
461  * @state: set this variable to the current cooling state.
462  *
463  * Callback for the thermal cooling device to change the cpufreq
464  * current cooling state.
465  *
466  * Return: 0 on success, an error code otherwise.
467  */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)468 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
469 				 unsigned long state)
470 {
471 	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
472 	struct cpumask *cpus;
473 	unsigned int frequency;
474 	int ret;
475 
476 	/* Request state should be less than max_level */
477 	if (state > cpufreq_cdev->max_level)
478 		return -EINVAL;
479 
480 	/* Check if the old cooling action is same as new cooling action */
481 	if (cpufreq_cdev->cpufreq_state == state)
482 		return 0;
483 
484 	frequency = get_state_freq(cpufreq_cdev, state);
485 
486 	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
487 	if (ret >= 0) {
488 		cpufreq_cdev->cpufreq_state = state;
489 		cpus = cpufreq_cdev->policy->related_cpus;
490 		arch_update_thermal_pressure(cpus, frequency);
491 		ret = 0;
492 	}
493 
494 	return ret;
495 }
496 
497 /* Bind cpufreq callbacks to thermal cooling device ops */
498 
499 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
500 	.get_max_state		= cpufreq_get_max_state,
501 	.get_cur_state		= cpufreq_get_cur_state,
502 	.set_cur_state		= cpufreq_set_cur_state,
503 };
504 
505 /**
506  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
507  * @np: a valid struct device_node to the cooling device device tree node
508  * @policy: cpufreq policy
509  * Normally this should be same as cpufreq policy->related_cpus.
510  * @em: Energy Model of the cpufreq policy
511  *
512  * This interface function registers the cpufreq cooling device with the name
513  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
514  * cooling devices. It also gives the opportunity to link the cooling device
515  * with a device tree node, in order to bind it via the thermal DT code.
516  *
517  * Return: a valid struct thermal_cooling_device pointer on success,
518  * on failure, it returns a corresponding ERR_PTR().
519  */
520 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,struct em_perf_domain * em)521 __cpufreq_cooling_register(struct device_node *np,
522 			struct cpufreq_policy *policy,
523 			struct em_perf_domain *em)
524 {
525 	struct thermal_cooling_device *cdev;
526 	struct cpufreq_cooling_device *cpufreq_cdev;
527 	unsigned int i;
528 	struct device *dev;
529 	int ret;
530 	struct thermal_cooling_device_ops *cooling_ops;
531 	char *name;
532 
533 	dev = get_cpu_device(policy->cpu);
534 	if (unlikely(!dev)) {
535 		pr_warn("No cpu device for cpu %d\n", policy->cpu);
536 		return ERR_PTR(-ENODEV);
537 	}
538 
539 	if (IS_ERR_OR_NULL(policy)) {
540 		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
541 		return ERR_PTR(-EINVAL);
542 	}
543 
544 	i = cpufreq_table_count_valid_entries(policy);
545 	if (!i) {
546 		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
547 			 __func__);
548 		return ERR_PTR(-ENODEV);
549 	}
550 
551 	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
552 	if (!cpufreq_cdev)
553 		return ERR_PTR(-ENOMEM);
554 
555 	cpufreq_cdev->policy = policy;
556 
557 	ret = allocate_idle_time(cpufreq_cdev);
558 	if (ret) {
559 		cdev = ERR_PTR(ret);
560 		goto free_cdev;
561 	}
562 
563 	/* max_level is an index, not a counter */
564 	cpufreq_cdev->max_level = i - 1;
565 
566 	cooling_ops = &cpufreq_cooling_ops;
567 
568 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
569 	if (em_is_sane(cpufreq_cdev, em)) {
570 		cpufreq_cdev->em = em;
571 		cooling_ops->get_requested_power = cpufreq_get_requested_power;
572 		cooling_ops->state2power = cpufreq_state2power;
573 		cooling_ops->power2state = cpufreq_power2state;
574 	} else
575 #endif
576 	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
577 		pr_err("%s: unsorted frequency tables are not supported\n",
578 		       __func__);
579 		cdev = ERR_PTR(-EINVAL);
580 		goto free_idle_time;
581 	}
582 
583 	ret = freq_qos_add_request(&policy->constraints,
584 				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
585 				   get_state_freq(cpufreq_cdev, 0));
586 	if (ret < 0) {
587 		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
588 		       ret);
589 		cdev = ERR_PTR(ret);
590 		goto free_idle_time;
591 	}
592 
593 	cdev = ERR_PTR(-ENOMEM);
594 	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
595 	if (!name)
596 		goto remove_qos_req;
597 
598 	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
599 						  cooling_ops);
600 	kfree(name);
601 
602 	if (IS_ERR(cdev))
603 		goto remove_qos_req;
604 
605 	return cdev;
606 
607 remove_qos_req:
608 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
609 free_idle_time:
610 	free_idle_time(cpufreq_cdev);
611 free_cdev:
612 	kfree(cpufreq_cdev);
613 	return cdev;
614 }
615 
616 /**
617  * cpufreq_cooling_register - function to create cpufreq cooling device.
618  * @policy: cpufreq policy
619  *
620  * This interface function registers the cpufreq cooling device with the name
621  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
622  * cooling devices.
623  *
624  * Return: a valid struct thermal_cooling_device pointer on success,
625  * on failure, it returns a corresponding ERR_PTR().
626  */
627 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)628 cpufreq_cooling_register(struct cpufreq_policy *policy)
629 {
630 	return __cpufreq_cooling_register(NULL, policy, NULL);
631 }
632 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
633 
634 /**
635  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
636  * @policy: cpufreq policy
637  *
638  * This interface function registers the cpufreq cooling device with the name
639  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
640  * cooling devices. Using this API, the cpufreq cooling device will be
641  * linked to the device tree node provided.
642  *
643  * Using this function, the cooling device will implement the power
644  * extensions by using a simple cpu power model.  The cpus must have
645  * registered their OPPs using the OPP library.
646  *
647  * It also takes into account, if property present in policy CPU node, the
648  * static power consumed by the cpu.
649  *
650  * Return: a valid struct thermal_cooling_device pointer on success,
651  * and NULL on failure.
652  */
653 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)654 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
655 {
656 	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
657 	struct thermal_cooling_device *cdev = NULL;
658 
659 	if (!np) {
660 		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
661 		       policy->cpu);
662 		return NULL;
663 	}
664 
665 	if (of_find_property(np, "#cooling-cells", NULL)) {
666 		struct em_perf_domain *em = em_cpu_get(policy->cpu);
667 
668 		cdev = __cpufreq_cooling_register(np, policy, em);
669 		if (IS_ERR(cdev)) {
670 			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
671 			       policy->cpu, PTR_ERR(cdev));
672 			cdev = NULL;
673 		}
674 	}
675 
676 	of_node_put(np);
677 	return cdev;
678 }
679 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
680 
681 /**
682  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
683  * @cdev: thermal cooling device pointer.
684  *
685  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
686  */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)687 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
688 {
689 	struct cpufreq_cooling_device *cpufreq_cdev;
690 
691 	if (!cdev)
692 		return;
693 
694 	cpufreq_cdev = cdev->devdata;
695 
696 	thermal_cooling_device_unregister(cdev);
697 	freq_qos_remove_request(&cpufreq_cdev->qos_req);
698 	free_idle_time(cpufreq_cdev);
699 	kfree(cpufreq_cdev);
700 }
701 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
702