1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/drivers/thermal/cpufreq_cooling.c
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
6 *
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25
26 #include <trace/events/thermal.h>
27
28 /*
29 * Cooling state <-> CPUFreq frequency
30 *
31 * Cooling states are translated to frequencies throughout this driver and this
32 * is the relation between them.
33 *
34 * Highest cooling state corresponds to lowest possible frequency.
35 *
36 * i.e.
37 * level 0 --> 1st Max Freq
38 * level 1 --> 2nd Max Freq
39 * ...
40 */
41
42 /**
43 * struct time_in_idle - Idle time stats
44 * @time: previous reading of the absolute time that this cpu was idle
45 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46 */
47 struct time_in_idle {
48 u64 time;
49 u64 timestamp;
50 };
51
52 /**
53 * struct cpufreq_cooling_device - data for cooling device with cpufreq
54 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55 * @cpufreq_state: integer value representing the current state of cpufreq
56 * cooling devices.
57 * @max_level: maximum cooling level. One less than total number of valid
58 * cpufreq frequencies.
59 * @em: Reference on the Energy Model of the device
60 * @cdev: thermal_cooling_device pointer to keep track of the
61 * registered cooling device.
62 * @policy: cpufreq policy.
63 * @idle_time: idle time stats
64 * @qos_req: PM QoS contraint to apply
65 *
66 * This structure is required for keeping information of each registered
67 * cpufreq_cooling_device.
68 */
69 struct cpufreq_cooling_device {
70 u32 last_load;
71 unsigned int cpufreq_state;
72 unsigned int max_level;
73 struct em_perf_domain *em;
74 struct cpufreq_policy *policy;
75 #ifndef CONFIG_SMP
76 struct time_in_idle *idle_time;
77 #endif
78 struct freq_qos_request qos_req;
79 };
80
81 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
82 /**
83 * get_level: Find the level for a particular frequency
84 * @cpufreq_cdev: cpufreq_cdev for which the property is required
85 * @freq: Frequency
86 *
87 * Return: level corresponding to the frequency.
88 */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)89 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
90 unsigned int freq)
91 {
92 int i;
93
94 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
95 if (freq > cpufreq_cdev->em->table[i].frequency)
96 break;
97 }
98
99 return cpufreq_cdev->max_level - i - 1;
100 }
101
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)102 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
103 u32 freq)
104 {
105 unsigned long power_mw;
106 int i;
107
108 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
109 if (freq > cpufreq_cdev->em->table[i].frequency)
110 break;
111 }
112
113 power_mw = cpufreq_cdev->em->table[i + 1].power;
114 power_mw /= MICROWATT_PER_MILLIWATT;
115
116 return power_mw;
117 }
118
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)119 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
120 u32 power)
121 {
122 unsigned long em_power_mw;
123 int i;
124
125 for (i = cpufreq_cdev->max_level; i > 0; i--) {
126 /* Convert EM power to milli-Watts to make safe comparison */
127 em_power_mw = cpufreq_cdev->em->table[i].power;
128 em_power_mw /= MICROWATT_PER_MILLIWATT;
129 if (power >= em_power_mw)
130 break;
131 }
132
133 return cpufreq_cdev->em->table[i].frequency;
134 }
135
136 /**
137 * get_load() - get load for a cpu
138 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
139 * @cpu: cpu number
140 * @cpu_idx: index of the cpu in time_in_idle array
141 *
142 * Return: The average load of cpu @cpu in percentage since this
143 * function was last called.
144 */
145 #ifdef CONFIG_SMP
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)146 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
147 int cpu_idx)
148 {
149 unsigned long max = arch_scale_cpu_capacity(cpu);
150 unsigned long util;
151
152 util = sched_cpu_util(cpu, max);
153 return (util * 100) / max;
154 }
155 #else /* !CONFIG_SMP */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)156 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
157 int cpu_idx)
158 {
159 u32 load;
160 u64 now, now_idle, delta_time, delta_idle;
161 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
162
163 now_idle = get_cpu_idle_time(cpu, &now, 0);
164 delta_idle = now_idle - idle_time->time;
165 delta_time = now - idle_time->timestamp;
166
167 if (delta_time <= delta_idle)
168 load = 0;
169 else
170 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171
172 idle_time->time = now_idle;
173 idle_time->timestamp = now;
174
175 return load;
176 }
177 #endif /* CONFIG_SMP */
178
179 /**
180 * get_dynamic_power() - calculate the dynamic power
181 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
182 * @freq: current frequency
183 *
184 * Return: the dynamic power consumed by the cpus described by
185 * @cpufreq_cdev.
186 */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)187 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
188 unsigned long freq)
189 {
190 u32 raw_cpu_power;
191
192 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
194 }
195
196 /**
197 * cpufreq_get_requested_power() - get the current power
198 * @cdev: &thermal_cooling_device pointer
199 * @power: pointer in which to store the resulting power
200 *
201 * Calculate the current power consumption of the cpus in milliwatts
202 * and store it in @power. This function should actually calculate
203 * the requested power, but it's hard to get the frequency that
204 * cpufreq would have assigned if there were no thermal limits.
205 * Instead, we calculate the current power on the assumption that the
206 * immediate future will look like the immediate past.
207 *
208 * We use the current frequency and the average load since this
209 * function was last called. In reality, there could have been
210 * multiple opps since this function was last called and that affects
211 * the load calculation. While it's not perfectly accurate, this
212 * simplification is good enough and works. REVISIT this, as more
213 * complex code may be needed if experiments show that it's not
214 * accurate enough.
215 *
216 * Return: 0 on success, -E* if getting the static power failed.
217 */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)218 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
219 u32 *power)
220 {
221 unsigned long freq;
222 int i = 0, cpu;
223 u32 total_load = 0;
224 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
225 struct cpufreq_policy *policy = cpufreq_cdev->policy;
226 u32 *load_cpu = NULL;
227
228 freq = cpufreq_quick_get(policy->cpu);
229
230 if (trace_thermal_power_cpu_get_power_enabled()) {
231 u32 ncpus = cpumask_weight(policy->related_cpus);
232
233 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
234 }
235
236 for_each_cpu(cpu, policy->related_cpus) {
237 u32 load;
238
239 if (cpu_online(cpu))
240 load = get_load(cpufreq_cdev, cpu, i);
241 else
242 load = 0;
243
244 total_load += load;
245 if (load_cpu)
246 load_cpu[i] = load;
247
248 i++;
249 }
250
251 cpufreq_cdev->last_load = total_load;
252
253 *power = get_dynamic_power(cpufreq_cdev, freq);
254
255 if (load_cpu) {
256 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
257 load_cpu, i, *power);
258
259 kfree(load_cpu);
260 }
261
262 return 0;
263 }
264
265 /**
266 * cpufreq_state2power() - convert a cpu cdev state to power consumed
267 * @cdev: &thermal_cooling_device pointer
268 * @state: cooling device state to be converted
269 * @power: pointer in which to store the resulting power
270 *
271 * Convert cooling device state @state into power consumption in
272 * milliwatts assuming 100% load. Store the calculated power in
273 * @power.
274 *
275 * Return: 0 on success, -EINVAL if the cooling device state could not
276 * be converted into a frequency or other -E* if there was an error
277 * when calculating the static power.
278 */
cpufreq_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)279 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
280 unsigned long state, u32 *power)
281 {
282 unsigned int freq, num_cpus, idx;
283 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
284
285 /* Request state should be less than max_level */
286 if (state > cpufreq_cdev->max_level)
287 return -EINVAL;
288
289 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
290
291 idx = cpufreq_cdev->max_level - state;
292 freq = cpufreq_cdev->em->table[idx].frequency;
293 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
294
295 return 0;
296 }
297
298 /**
299 * cpufreq_power2state() - convert power to a cooling device state
300 * @cdev: &thermal_cooling_device pointer
301 * @power: power in milliwatts to be converted
302 * @state: pointer in which to store the resulting state
303 *
304 * Calculate a cooling device state for the cpus described by @cdev
305 * that would allow them to consume at most @power mW and store it in
306 * @state. Note that this calculation depends on external factors
307 * such as the cpu load or the current static power. Calling this
308 * function with the same power as input can yield different cooling
309 * device states depending on those external factors.
310 *
311 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
312 * the calculated frequency could not be converted to a valid state.
313 * The latter should not happen unless the frequencies available to
314 * cpufreq have changed since the initialization of the cpu cooling
315 * device.
316 */
cpufreq_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)317 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
318 u32 power, unsigned long *state)
319 {
320 unsigned int target_freq;
321 u32 last_load, normalised_power;
322 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
323 struct cpufreq_policy *policy = cpufreq_cdev->policy;
324
325 last_load = cpufreq_cdev->last_load ?: 1;
326 normalised_power = (power * 100) / last_load;
327 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
328
329 *state = get_level(cpufreq_cdev, target_freq);
330 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
331 power);
332 return 0;
333 }
334
em_is_sane(struct cpufreq_cooling_device * cpufreq_cdev,struct em_perf_domain * em)335 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
336 struct em_perf_domain *em) {
337 struct cpufreq_policy *policy;
338 unsigned int nr_levels;
339
340 if (!em || em_is_artificial(em))
341 return false;
342
343 policy = cpufreq_cdev->policy;
344 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
345 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
346 cpumask_pr_args(em_span_cpus(em)),
347 cpumask_pr_args(policy->related_cpus));
348 return false;
349 }
350
351 nr_levels = cpufreq_cdev->max_level + 1;
352 if (em_pd_nr_perf_states(em) != nr_levels) {
353 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
354 cpumask_pr_args(em_span_cpus(em)),
355 em_pd_nr_perf_states(em), nr_levels);
356 return false;
357 }
358
359 return true;
360 }
361 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
362
363 #ifdef CONFIG_SMP
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)364 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
365 {
366 return 0;
367 }
368
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)369 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
370 {
371 }
372 #else
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)373 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
374 {
375 unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
376
377 cpufreq_cdev->idle_time = kcalloc(num_cpus,
378 sizeof(*cpufreq_cdev->idle_time),
379 GFP_KERNEL);
380 if (!cpufreq_cdev->idle_time)
381 return -ENOMEM;
382
383 return 0;
384 }
385
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)386 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
387 {
388 kfree(cpufreq_cdev->idle_time);
389 cpufreq_cdev->idle_time = NULL;
390 }
391 #endif /* CONFIG_SMP */
392
get_state_freq(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long state)393 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
394 unsigned long state)
395 {
396 struct cpufreq_policy *policy;
397 unsigned long idx;
398
399 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
400 /* Use the Energy Model table if available */
401 if (cpufreq_cdev->em) {
402 idx = cpufreq_cdev->max_level - state;
403 return cpufreq_cdev->em->table[idx].frequency;
404 }
405 #endif
406
407 /* Otherwise, fallback on the CPUFreq table */
408 policy = cpufreq_cdev->policy;
409 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
410 idx = cpufreq_cdev->max_level - state;
411 else
412 idx = state;
413
414 return policy->freq_table[idx].frequency;
415 }
416
417 /* cpufreq cooling device callback functions are defined below */
418
419 /**
420 * cpufreq_get_max_state - callback function to get the max cooling state.
421 * @cdev: thermal cooling device pointer.
422 * @state: fill this variable with the max cooling state.
423 *
424 * Callback for the thermal cooling device to return the cpufreq
425 * max cooling state.
426 *
427 * Return: 0 on success, an error code otherwise.
428 */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)429 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
430 unsigned long *state)
431 {
432 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
433
434 *state = cpufreq_cdev->max_level;
435 return 0;
436 }
437
438 /**
439 * cpufreq_get_cur_state - callback function to get the current cooling state.
440 * @cdev: thermal cooling device pointer.
441 * @state: fill this variable with the current cooling state.
442 *
443 * Callback for the thermal cooling device to return the cpufreq
444 * current cooling state.
445 *
446 * Return: 0 on success, an error code otherwise.
447 */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)448 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
449 unsigned long *state)
450 {
451 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
452
453 *state = cpufreq_cdev->cpufreq_state;
454
455 return 0;
456 }
457
458 /**
459 * cpufreq_set_cur_state - callback function to set the current cooling state.
460 * @cdev: thermal cooling device pointer.
461 * @state: set this variable to the current cooling state.
462 *
463 * Callback for the thermal cooling device to change the cpufreq
464 * current cooling state.
465 *
466 * Return: 0 on success, an error code otherwise.
467 */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)468 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
469 unsigned long state)
470 {
471 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
472 struct cpumask *cpus;
473 unsigned int frequency;
474 int ret;
475
476 /* Request state should be less than max_level */
477 if (state > cpufreq_cdev->max_level)
478 return -EINVAL;
479
480 /* Check if the old cooling action is same as new cooling action */
481 if (cpufreq_cdev->cpufreq_state == state)
482 return 0;
483
484 frequency = get_state_freq(cpufreq_cdev, state);
485
486 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
487 if (ret >= 0) {
488 cpufreq_cdev->cpufreq_state = state;
489 cpus = cpufreq_cdev->policy->related_cpus;
490 arch_update_thermal_pressure(cpus, frequency);
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 /* Bind cpufreq callbacks to thermal cooling device ops */
498
499 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
500 .get_max_state = cpufreq_get_max_state,
501 .get_cur_state = cpufreq_get_cur_state,
502 .set_cur_state = cpufreq_set_cur_state,
503 };
504
505 /**
506 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
507 * @np: a valid struct device_node to the cooling device device tree node
508 * @policy: cpufreq policy
509 * Normally this should be same as cpufreq policy->related_cpus.
510 * @em: Energy Model of the cpufreq policy
511 *
512 * This interface function registers the cpufreq cooling device with the name
513 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
514 * cooling devices. It also gives the opportunity to link the cooling device
515 * with a device tree node, in order to bind it via the thermal DT code.
516 *
517 * Return: a valid struct thermal_cooling_device pointer on success,
518 * on failure, it returns a corresponding ERR_PTR().
519 */
520 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,struct em_perf_domain * em)521 __cpufreq_cooling_register(struct device_node *np,
522 struct cpufreq_policy *policy,
523 struct em_perf_domain *em)
524 {
525 struct thermal_cooling_device *cdev;
526 struct cpufreq_cooling_device *cpufreq_cdev;
527 unsigned int i;
528 struct device *dev;
529 int ret;
530 struct thermal_cooling_device_ops *cooling_ops;
531 char *name;
532
533 dev = get_cpu_device(policy->cpu);
534 if (unlikely(!dev)) {
535 pr_warn("No cpu device for cpu %d\n", policy->cpu);
536 return ERR_PTR(-ENODEV);
537 }
538
539 if (IS_ERR_OR_NULL(policy)) {
540 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
541 return ERR_PTR(-EINVAL);
542 }
543
544 i = cpufreq_table_count_valid_entries(policy);
545 if (!i) {
546 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
547 __func__);
548 return ERR_PTR(-ENODEV);
549 }
550
551 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
552 if (!cpufreq_cdev)
553 return ERR_PTR(-ENOMEM);
554
555 cpufreq_cdev->policy = policy;
556
557 ret = allocate_idle_time(cpufreq_cdev);
558 if (ret) {
559 cdev = ERR_PTR(ret);
560 goto free_cdev;
561 }
562
563 /* max_level is an index, not a counter */
564 cpufreq_cdev->max_level = i - 1;
565
566 cooling_ops = &cpufreq_cooling_ops;
567
568 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
569 if (em_is_sane(cpufreq_cdev, em)) {
570 cpufreq_cdev->em = em;
571 cooling_ops->get_requested_power = cpufreq_get_requested_power;
572 cooling_ops->state2power = cpufreq_state2power;
573 cooling_ops->power2state = cpufreq_power2state;
574 } else
575 #endif
576 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
577 pr_err("%s: unsorted frequency tables are not supported\n",
578 __func__);
579 cdev = ERR_PTR(-EINVAL);
580 goto free_idle_time;
581 }
582
583 ret = freq_qos_add_request(&policy->constraints,
584 &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
585 get_state_freq(cpufreq_cdev, 0));
586 if (ret < 0) {
587 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
588 ret);
589 cdev = ERR_PTR(ret);
590 goto free_idle_time;
591 }
592
593 cdev = ERR_PTR(-ENOMEM);
594 name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
595 if (!name)
596 goto remove_qos_req;
597
598 cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
599 cooling_ops);
600 kfree(name);
601
602 if (IS_ERR(cdev))
603 goto remove_qos_req;
604
605 return cdev;
606
607 remove_qos_req:
608 freq_qos_remove_request(&cpufreq_cdev->qos_req);
609 free_idle_time:
610 free_idle_time(cpufreq_cdev);
611 free_cdev:
612 kfree(cpufreq_cdev);
613 return cdev;
614 }
615
616 /**
617 * cpufreq_cooling_register - function to create cpufreq cooling device.
618 * @policy: cpufreq policy
619 *
620 * This interface function registers the cpufreq cooling device with the name
621 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
622 * cooling devices.
623 *
624 * Return: a valid struct thermal_cooling_device pointer on success,
625 * on failure, it returns a corresponding ERR_PTR().
626 */
627 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)628 cpufreq_cooling_register(struct cpufreq_policy *policy)
629 {
630 return __cpufreq_cooling_register(NULL, policy, NULL);
631 }
632 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
633
634 /**
635 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
636 * @policy: cpufreq policy
637 *
638 * This interface function registers the cpufreq cooling device with the name
639 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
640 * cooling devices. Using this API, the cpufreq cooling device will be
641 * linked to the device tree node provided.
642 *
643 * Using this function, the cooling device will implement the power
644 * extensions by using a simple cpu power model. The cpus must have
645 * registered their OPPs using the OPP library.
646 *
647 * It also takes into account, if property present in policy CPU node, the
648 * static power consumed by the cpu.
649 *
650 * Return: a valid struct thermal_cooling_device pointer on success,
651 * and NULL on failure.
652 */
653 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)654 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
655 {
656 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
657 struct thermal_cooling_device *cdev = NULL;
658
659 if (!np) {
660 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
661 policy->cpu);
662 return NULL;
663 }
664
665 if (of_find_property(np, "#cooling-cells", NULL)) {
666 struct em_perf_domain *em = em_cpu_get(policy->cpu);
667
668 cdev = __cpufreq_cooling_register(np, policy, em);
669 if (IS_ERR(cdev)) {
670 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
671 policy->cpu, PTR_ERR(cdev));
672 cdev = NULL;
673 }
674 }
675
676 of_node_put(np);
677 return cdev;
678 }
679 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
680
681 /**
682 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
683 * @cdev: thermal cooling device pointer.
684 *
685 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
686 */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)687 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
688 {
689 struct cpufreq_cooling_device *cpufreq_cdev;
690
691 if (!cdev)
692 return;
693
694 cpufreq_cdev = cdev->devdata;
695
696 thermal_cooling_device_unregister(cdev);
697 freq_qos_remove_request(&cpufreq_cdev->qos_req);
698 free_idle_time(cpufreq_cdev);
699 kfree(cpufreq_cdev);
700 }
701 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
702