1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS 16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int sd_probe(struct device *);
107 static int sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static struct kmem_cache *sd_cdb_cache;
125 static mempool_t *sd_page_pool;
126 static struct lock_class_key sd_bio_compl_lkclass;
127
128 static const char *sd_cache_types[] = {
129 "write through", "none", "write back",
130 "write back, no read (daft)"
131 };
132
sd_set_flush_flag(struct scsi_disk * sdkp)133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
134 {
135 bool wc = false, fua = false;
136
137 if (sdkp->WCE) {
138 wc = true;
139 if (sdkp->DPOFUA)
140 fua = true;
141 }
142
143 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
144 }
145
146 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)147 cache_type_store(struct device *dev, struct device_attribute *attr,
148 const char *buf, size_t count)
149 {
150 int ct, rcd, wce, sp;
151 struct scsi_disk *sdkp = to_scsi_disk(dev);
152 struct scsi_device *sdp = sdkp->device;
153 char buffer[64];
154 char *buffer_data;
155 struct scsi_mode_data data;
156 struct scsi_sense_hdr sshdr;
157 static const char temp[] = "temporary ";
158 int len;
159
160 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
161 /* no cache control on RBC devices; theoretically they
162 * can do it, but there's probably so many exceptions
163 * it's not worth the risk */
164 return -EINVAL;
165
166 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
167 buf += sizeof(temp) - 1;
168 sdkp->cache_override = 1;
169 } else {
170 sdkp->cache_override = 0;
171 }
172
173 ct = sysfs_match_string(sd_cache_types, buf);
174 if (ct < 0)
175 return -EINVAL;
176
177 rcd = ct & 0x01 ? 1 : 0;
178 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
179
180 if (sdkp->cache_override) {
181 sdkp->WCE = wce;
182 sdkp->RCD = rcd;
183 sd_set_flush_flag(sdkp);
184 return count;
185 }
186
187 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
188 sdkp->max_retries, &data, NULL))
189 return -EINVAL;
190 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 data.block_descriptor_length);
192 buffer_data = buffer + data.header_length +
193 data.block_descriptor_length;
194 buffer_data[2] &= ~0x05;
195 buffer_data[2] |= wce << 2 | rcd;
196 sp = buffer_data[0] & 0x80 ? 1 : 0;
197 buffer_data[0] &= ~0x80;
198
199 /*
200 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 * received mode parameter buffer before doing MODE SELECT.
202 */
203 data.device_specific = 0;
204
205 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 sdkp->max_retries, &data, &sshdr)) {
207 if (scsi_sense_valid(&sshdr))
208 sd_print_sense_hdr(sdkp, &sshdr);
209 return -EINVAL;
210 }
211 sd_revalidate_disk(sdkp->disk);
212 return count;
213 }
214
215 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
217 char *buf)
218 {
219 struct scsi_disk *sdkp = to_scsi_disk(dev);
220 struct scsi_device *sdp = sdkp->device;
221
222 return sprintf(buf, "%u\n", sdp->manage_start_stop);
223 }
224
225 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
227 const char *buf, size_t count)
228 {
229 struct scsi_disk *sdkp = to_scsi_disk(dev);
230 struct scsi_device *sdp = sdkp->device;
231 bool v;
232
233 if (!capable(CAP_SYS_ADMIN))
234 return -EACCES;
235
236 if (kstrtobool(buf, &v))
237 return -EINVAL;
238
239 sdp->manage_start_stop = v;
240
241 return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244
245 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248 struct scsi_disk *sdkp = to_scsi_disk(dev);
249
250 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
251 }
252
253 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255 const char *buf, size_t count)
256 {
257 bool v;
258 struct scsi_disk *sdkp = to_scsi_disk(dev);
259 struct scsi_device *sdp = sdkp->device;
260
261 if (!capable(CAP_SYS_ADMIN))
262 return -EACCES;
263
264 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
265 return -EINVAL;
266
267 if (kstrtobool(buf, &v))
268 return -EINVAL;
269
270 sdp->allow_restart = v;
271
272 return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 struct scsi_disk *sdkp = to_scsi_disk(dev);
280 int ct = sdkp->RCD + 2*sdkp->WCE;
281
282 return sprintf(buf, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291 return sprintf(buf, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 char *buf)
298 {
299 struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301 return sprintf(buf, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 const char *buf, size_t count)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309 unsigned int val;
310 int err;
311
312 if (!capable(CAP_SYS_ADMIN))
313 return -EACCES;
314
315 err = kstrtouint(buf, 10, &val);
316
317 if (err)
318 return err;
319
320 if (val <= T10_PI_TYPE3_PROTECTION)
321 sdkp->protection_type = val;
322
323 return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 char *buf)
330 {
331 struct scsi_disk *sdkp = to_scsi_disk(dev);
332 struct scsi_device *sdp = sdkp->device;
333 unsigned int dif, dix;
334
335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 dif = 0;
340 dix = 1;
341 }
342
343 if (!dif && !dix)
344 return sprintf(buf, "none\n");
345
346 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355 return sprintf(buf, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 char *buf)
362 {
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365 return sprintf(buf, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 /* sysfs_match_string() requires dense arrays */
370 static const char *lbp_mode[] = {
371 [SD_LBP_FULL] = "full",
372 [SD_LBP_UNMAP] = "unmap",
373 [SD_LBP_WS16] = "writesame_16",
374 [SD_LBP_WS10] = "writesame_10",
375 [SD_LBP_ZERO] = "writesame_zero",
376 [SD_LBP_DISABLE] = "disabled",
377 };
378
379 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
381 char *buf)
382 {
383 struct scsi_disk *sdkp = to_scsi_disk(dev);
384
385 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
386 }
387
388 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
390 const char *buf, size_t count)
391 {
392 struct scsi_disk *sdkp = to_scsi_disk(dev);
393 struct scsi_device *sdp = sdkp->device;
394 int mode;
395
396 if (!capable(CAP_SYS_ADMIN))
397 return -EACCES;
398
399 if (sd_is_zoned(sdkp)) {
400 sd_config_discard(sdkp, SD_LBP_DISABLE);
401 return count;
402 }
403
404 if (sdp->type != TYPE_DISK)
405 return -EINVAL;
406
407 mode = sysfs_match_string(lbp_mode, buf);
408 if (mode < 0)
409 return -EINVAL;
410
411 sd_config_discard(sdkp, mode);
412
413 return count;
414 }
415 static DEVICE_ATTR_RW(provisioning_mode);
416
417 /* sysfs_match_string() requires dense arrays */
418 static const char *zeroing_mode[] = {
419 [SD_ZERO_WRITE] = "write",
420 [SD_ZERO_WS] = "writesame",
421 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
422 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
423 };
424
425 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
427 char *buf)
428 {
429 struct scsi_disk *sdkp = to_scsi_disk(dev);
430
431 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
432 }
433
434 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
436 const char *buf, size_t count)
437 {
438 struct scsi_disk *sdkp = to_scsi_disk(dev);
439 int mode;
440
441 if (!capable(CAP_SYS_ADMIN))
442 return -EACCES;
443
444 mode = sysfs_match_string(zeroing_mode, buf);
445 if (mode < 0)
446 return -EINVAL;
447
448 sdkp->zeroing_mode = mode;
449
450 return count;
451 }
452 static DEVICE_ATTR_RW(zeroing_mode);
453
454 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)455 max_medium_access_timeouts_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct scsi_disk *sdkp = to_scsi_disk(dev);
459
460 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
461 }
462
463 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)464 max_medium_access_timeouts_store(struct device *dev,
465 struct device_attribute *attr, const char *buf,
466 size_t count)
467 {
468 struct scsi_disk *sdkp = to_scsi_disk(dev);
469 int err;
470
471 if (!capable(CAP_SYS_ADMIN))
472 return -EACCES;
473
474 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
475
476 return err ? err : count;
477 }
478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
479
480 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
482 char *buf)
483 {
484 struct scsi_disk *sdkp = to_scsi_disk(dev);
485
486 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
487 }
488
489 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
491 const char *buf, size_t count)
492 {
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494 struct scsi_device *sdp = sdkp->device;
495 unsigned long max;
496 int err;
497
498 if (!capable(CAP_SYS_ADMIN))
499 return -EACCES;
500
501 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
502 return -EINVAL;
503
504 err = kstrtoul(buf, 10, &max);
505
506 if (err)
507 return err;
508
509 if (max == 0)
510 sdp->no_write_same = 1;
511 else if (max <= SD_MAX_WS16_BLOCKS) {
512 sdp->no_write_same = 0;
513 sdkp->max_ws_blocks = max;
514 }
515
516 sd_config_write_same(sdkp);
517
518 return count;
519 }
520 static DEVICE_ATTR_RW(max_write_same_blocks);
521
522 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525 struct scsi_disk *sdkp = to_scsi_disk(dev);
526
527 if (sdkp->device->type == TYPE_ZBC)
528 return sprintf(buf, "host-managed\n");
529 if (sdkp->zoned == 1)
530 return sprintf(buf, "host-aware\n");
531 if (sdkp->zoned == 2)
532 return sprintf(buf, "drive-managed\n");
533 return sprintf(buf, "none\n");
534 }
535 static DEVICE_ATTR_RO(zoned_cap);
536
537 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)538 max_retries_store(struct device *dev, struct device_attribute *attr,
539 const char *buf, size_t count)
540 {
541 struct scsi_disk *sdkp = to_scsi_disk(dev);
542 struct scsi_device *sdev = sdkp->device;
543 int retries, err;
544
545 err = kstrtoint(buf, 10, &retries);
546 if (err)
547 return err;
548
549 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
550 sdkp->max_retries = retries;
551 return count;
552 }
553
554 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
555 SD_MAX_RETRIES);
556 return -EINVAL;
557 }
558
559 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)560 max_retries_show(struct device *dev, struct device_attribute *attr,
561 char *buf)
562 {
563 struct scsi_disk *sdkp = to_scsi_disk(dev);
564
565 return sprintf(buf, "%d\n", sdkp->max_retries);
566 }
567
568 static DEVICE_ATTR_RW(max_retries);
569
570 static struct attribute *sd_disk_attrs[] = {
571 &dev_attr_cache_type.attr,
572 &dev_attr_FUA.attr,
573 &dev_attr_allow_restart.attr,
574 &dev_attr_manage_start_stop.attr,
575 &dev_attr_protection_type.attr,
576 &dev_attr_protection_mode.attr,
577 &dev_attr_app_tag_own.attr,
578 &dev_attr_thin_provisioning.attr,
579 &dev_attr_provisioning_mode.attr,
580 &dev_attr_zeroing_mode.attr,
581 &dev_attr_max_write_same_blocks.attr,
582 &dev_attr_max_medium_access_timeouts.attr,
583 &dev_attr_zoned_cap.attr,
584 &dev_attr_max_retries.attr,
585 NULL,
586 };
587 ATTRIBUTE_GROUPS(sd_disk);
588
589 static struct class sd_disk_class = {
590 .name = "scsi_disk",
591 .owner = THIS_MODULE,
592 .dev_release = scsi_disk_release,
593 .dev_groups = sd_disk_groups,
594 };
595
596 static const struct dev_pm_ops sd_pm_ops = {
597 .suspend = sd_suspend_system,
598 .resume = sd_resume_system,
599 .poweroff = sd_suspend_system,
600 .restore = sd_resume_system,
601 .runtime_suspend = sd_suspend_runtime,
602 .runtime_resume = sd_resume_runtime,
603 };
604
605 static struct scsi_driver sd_template = {
606 .gendrv = {
607 .name = "sd",
608 .owner = THIS_MODULE,
609 .probe = sd_probe,
610 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
611 .remove = sd_remove,
612 .shutdown = sd_shutdown,
613 .pm = &sd_pm_ops,
614 },
615 .rescan = sd_rescan,
616 .init_command = sd_init_command,
617 .uninit_command = sd_uninit_command,
618 .done = sd_done,
619 .eh_action = sd_eh_action,
620 .eh_reset = sd_eh_reset,
621 };
622
623 /*
624 * Don't request a new module, as that could deadlock in multipath
625 * environment.
626 */
sd_default_probe(dev_t devt)627 static void sd_default_probe(dev_t devt)
628 {
629 }
630
631 /*
632 * Device no to disk mapping:
633 *
634 * major disc2 disc p1
635 * |............|.............|....|....| <- dev_t
636 * 31 20 19 8 7 4 3 0
637 *
638 * Inside a major, we have 16k disks, however mapped non-
639 * contiguously. The first 16 disks are for major0, the next
640 * ones with major1, ... Disk 256 is for major0 again, disk 272
641 * for major1, ...
642 * As we stay compatible with our numbering scheme, we can reuse
643 * the well-know SCSI majors 8, 65--71, 136--143.
644 */
sd_major(int major_idx)645 static int sd_major(int major_idx)
646 {
647 switch (major_idx) {
648 case 0:
649 return SCSI_DISK0_MAJOR;
650 case 1 ... 7:
651 return SCSI_DISK1_MAJOR + major_idx - 1;
652 case 8 ... 15:
653 return SCSI_DISK8_MAJOR + major_idx - 8;
654 default:
655 BUG();
656 return 0; /* shut up gcc */
657 }
658 }
659
660 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
662 size_t len, bool send)
663 {
664 struct scsi_disk *sdkp = data;
665 struct scsi_device *sdev = sdkp->device;
666 u8 cdb[12] = { 0, };
667 int ret;
668
669 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
670 cdb[1] = secp;
671 put_unaligned_be16(spsp, &cdb[2]);
672 put_unaligned_be32(len, &cdb[6]);
673
674 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
675 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
676 RQF_PM, NULL);
677 return ret <= 0 ? ret : -EIO;
678 }
679 #endif /* CONFIG_BLK_SED_OPAL */
680
681 /*
682 * Look up the DIX operation based on whether the command is read or
683 * write and whether dix and dif are enabled.
684 */
sd_prot_op(bool write,bool dix,bool dif)685 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
686 {
687 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
688 static const unsigned int ops[] = { /* wrt dix dif */
689 SCSI_PROT_NORMAL, /* 0 0 0 */
690 SCSI_PROT_READ_STRIP, /* 0 0 1 */
691 SCSI_PROT_READ_INSERT, /* 0 1 0 */
692 SCSI_PROT_READ_PASS, /* 0 1 1 */
693 SCSI_PROT_NORMAL, /* 1 0 0 */
694 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
695 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
696 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
697 };
698
699 return ops[write << 2 | dix << 1 | dif];
700 }
701
702 /*
703 * Returns a mask of the protection flags that are valid for a given DIX
704 * operation.
705 */
sd_prot_flag_mask(unsigned int prot_op)706 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
707 {
708 static const unsigned int flag_mask[] = {
709 [SCSI_PROT_NORMAL] = 0,
710
711 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
712 SCSI_PROT_GUARD_CHECK |
713 SCSI_PROT_REF_CHECK |
714 SCSI_PROT_REF_INCREMENT,
715
716 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
717 SCSI_PROT_IP_CHECKSUM,
718
719 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
720 SCSI_PROT_GUARD_CHECK |
721 SCSI_PROT_REF_CHECK |
722 SCSI_PROT_REF_INCREMENT |
723 SCSI_PROT_IP_CHECKSUM,
724
725 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
726 SCSI_PROT_REF_INCREMENT,
727
728 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
729 SCSI_PROT_REF_CHECK |
730 SCSI_PROT_REF_INCREMENT |
731 SCSI_PROT_IP_CHECKSUM,
732
733 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
734 SCSI_PROT_GUARD_CHECK |
735 SCSI_PROT_REF_CHECK |
736 SCSI_PROT_REF_INCREMENT |
737 SCSI_PROT_IP_CHECKSUM,
738 };
739
740 return flag_mask[prot_op];
741 }
742
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
744 unsigned int dix, unsigned int dif)
745 {
746 struct request *rq = scsi_cmd_to_rq(scmd);
747 struct bio *bio = rq->bio;
748 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
749 unsigned int protect = 0;
750
751 if (dix) { /* DIX Type 0, 1, 2, 3 */
752 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
753 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
754
755 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
756 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
757 }
758
759 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
760 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
761
762 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
763 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
764 }
765
766 if (dif) { /* DIX/DIF Type 1, 2, 3 */
767 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
768
769 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
770 protect = 3 << 5; /* Disable target PI checking */
771 else
772 protect = 1 << 5; /* Enable target PI checking */
773 }
774
775 scsi_set_prot_op(scmd, prot_op);
776 scsi_set_prot_type(scmd, dif);
777 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
778
779 return protect;
780 }
781
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
783 {
784 struct request_queue *q = sdkp->disk->queue;
785 unsigned int logical_block_size = sdkp->device->sector_size;
786 unsigned int max_blocks = 0;
787
788 q->limits.discard_alignment =
789 sdkp->unmap_alignment * logical_block_size;
790 q->limits.discard_granularity =
791 max(sdkp->physical_block_size,
792 sdkp->unmap_granularity * logical_block_size);
793 sdkp->provisioning_mode = mode;
794
795 switch (mode) {
796
797 case SD_LBP_FULL:
798 case SD_LBP_DISABLE:
799 blk_queue_max_discard_sectors(q, 0);
800 return;
801
802 case SD_LBP_UNMAP:
803 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
804 (u32)SD_MAX_WS16_BLOCKS);
805 break;
806
807 case SD_LBP_WS16:
808 if (sdkp->device->unmap_limit_for_ws)
809 max_blocks = sdkp->max_unmap_blocks;
810 else
811 max_blocks = sdkp->max_ws_blocks;
812
813 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
814 break;
815
816 case SD_LBP_WS10:
817 if (sdkp->device->unmap_limit_for_ws)
818 max_blocks = sdkp->max_unmap_blocks;
819 else
820 max_blocks = sdkp->max_ws_blocks;
821
822 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
823 break;
824
825 case SD_LBP_ZERO:
826 max_blocks = min_not_zero(sdkp->max_ws_blocks,
827 (u32)SD_MAX_WS10_BLOCKS);
828 break;
829 }
830
831 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
832 }
833
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
835 {
836 struct scsi_device *sdp = cmd->device;
837 struct request *rq = scsi_cmd_to_rq(cmd);
838 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
839 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
840 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
841 unsigned int data_len = 24;
842 char *buf;
843
844 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
845 if (!rq->special_vec.bv_page)
846 return BLK_STS_RESOURCE;
847 clear_highpage(rq->special_vec.bv_page);
848 rq->special_vec.bv_offset = 0;
849 rq->special_vec.bv_len = data_len;
850 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
851
852 cmd->cmd_len = 10;
853 cmd->cmnd[0] = UNMAP;
854 cmd->cmnd[8] = 24;
855
856 buf = bvec_virt(&rq->special_vec);
857 put_unaligned_be16(6 + 16, &buf[0]);
858 put_unaligned_be16(16, &buf[2]);
859 put_unaligned_be64(lba, &buf[8]);
860 put_unaligned_be32(nr_blocks, &buf[16]);
861
862 cmd->allowed = sdkp->max_retries;
863 cmd->transfersize = data_len;
864 rq->timeout = SD_TIMEOUT;
865
866 return scsi_alloc_sgtables(cmd);
867 }
868
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
870 bool unmap)
871 {
872 struct scsi_device *sdp = cmd->device;
873 struct request *rq = scsi_cmd_to_rq(cmd);
874 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
875 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877 u32 data_len = sdp->sector_size;
878
879 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880 if (!rq->special_vec.bv_page)
881 return BLK_STS_RESOURCE;
882 clear_highpage(rq->special_vec.bv_page);
883 rq->special_vec.bv_offset = 0;
884 rq->special_vec.bv_len = data_len;
885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886
887 cmd->cmd_len = 16;
888 cmd->cmnd[0] = WRITE_SAME_16;
889 if (unmap)
890 cmd->cmnd[1] = 0x8; /* UNMAP */
891 put_unaligned_be64(lba, &cmd->cmnd[2]);
892 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
893
894 cmd->allowed = sdkp->max_retries;
895 cmd->transfersize = data_len;
896 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
897
898 return scsi_alloc_sgtables(cmd);
899 }
900
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
902 bool unmap)
903 {
904 struct scsi_device *sdp = cmd->device;
905 struct request *rq = scsi_cmd_to_rq(cmd);
906 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
907 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
908 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
909 u32 data_len = sdp->sector_size;
910
911 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
912 if (!rq->special_vec.bv_page)
913 return BLK_STS_RESOURCE;
914 clear_highpage(rq->special_vec.bv_page);
915 rq->special_vec.bv_offset = 0;
916 rq->special_vec.bv_len = data_len;
917 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
918
919 cmd->cmd_len = 10;
920 cmd->cmnd[0] = WRITE_SAME;
921 if (unmap)
922 cmd->cmnd[1] = 0x8; /* UNMAP */
923 put_unaligned_be32(lba, &cmd->cmnd[2]);
924 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
925
926 cmd->allowed = sdkp->max_retries;
927 cmd->transfersize = data_len;
928 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
929
930 return scsi_alloc_sgtables(cmd);
931 }
932
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
934 {
935 struct request *rq = scsi_cmd_to_rq(cmd);
936 struct scsi_device *sdp = cmd->device;
937 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
938 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
939 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
940
941 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
942 switch (sdkp->zeroing_mode) {
943 case SD_ZERO_WS16_UNMAP:
944 return sd_setup_write_same16_cmnd(cmd, true);
945 case SD_ZERO_WS10_UNMAP:
946 return sd_setup_write_same10_cmnd(cmd, true);
947 }
948 }
949
950 if (sdp->no_write_same) {
951 rq->rq_flags |= RQF_QUIET;
952 return BLK_STS_TARGET;
953 }
954
955 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
956 return sd_setup_write_same16_cmnd(cmd, false);
957
958 return sd_setup_write_same10_cmnd(cmd, false);
959 }
960
sd_config_write_same(struct scsi_disk * sdkp)961 static void sd_config_write_same(struct scsi_disk *sdkp)
962 {
963 struct request_queue *q = sdkp->disk->queue;
964 unsigned int logical_block_size = sdkp->device->sector_size;
965
966 if (sdkp->device->no_write_same) {
967 sdkp->max_ws_blocks = 0;
968 goto out;
969 }
970
971 /* Some devices can not handle block counts above 0xffff despite
972 * supporting WRITE SAME(16). Consequently we default to 64k
973 * blocks per I/O unless the device explicitly advertises a
974 * bigger limit.
975 */
976 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
977 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
978 (u32)SD_MAX_WS16_BLOCKS);
979 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
980 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981 (u32)SD_MAX_WS10_BLOCKS);
982 else {
983 sdkp->device->no_write_same = 1;
984 sdkp->max_ws_blocks = 0;
985 }
986
987 if (sdkp->lbprz && sdkp->lbpws)
988 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
989 else if (sdkp->lbprz && sdkp->lbpws10)
990 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
991 else if (sdkp->max_ws_blocks)
992 sdkp->zeroing_mode = SD_ZERO_WS;
993 else
994 sdkp->zeroing_mode = SD_ZERO_WRITE;
995
996 if (sdkp->max_ws_blocks &&
997 sdkp->physical_block_size > logical_block_size) {
998 /*
999 * Reporting a maximum number of blocks that is not aligned
1000 * on the device physical size would cause a large write same
1001 * request to be split into physically unaligned chunks by
1002 * __blkdev_issue_write_zeroes() even if the caller of this
1003 * functions took care to align the large request. So make sure
1004 * the maximum reported is aligned to the device physical block
1005 * size. This is only an optional optimization for regular
1006 * disks, but this is mandatory to avoid failure of large write
1007 * same requests directed at sequential write required zones of
1008 * host-managed ZBC disks.
1009 */
1010 sdkp->max_ws_blocks =
1011 round_down(sdkp->max_ws_blocks,
1012 bytes_to_logical(sdkp->device,
1013 sdkp->physical_block_size));
1014 }
1015
1016 out:
1017 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018 (logical_block_size >> 9));
1019 }
1020
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023 struct request *rq = scsi_cmd_to_rq(cmd);
1024 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026 /* flush requests don't perform I/O, zero the S/G table */
1027 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1030 cmd->cmd_len = 10;
1031 cmd->transfersize = 0;
1032 cmd->allowed = sdkp->max_retries;
1033
1034 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1035 return BLK_STS_OK;
1036 }
1037
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1038 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1039 sector_t lba, unsigned int nr_blocks,
1040 unsigned char flags)
1041 {
1042 cmd->cmd_len = SD_EXT_CDB_SIZE;
1043 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1044 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1045 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1046 cmd->cmnd[10] = flags;
1047 put_unaligned_be64(lba, &cmd->cmnd[12]);
1048 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1049 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1050
1051 return BLK_STS_OK;
1052 }
1053
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1054 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1055 sector_t lba, unsigned int nr_blocks,
1056 unsigned char flags)
1057 {
1058 cmd->cmd_len = 16;
1059 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1060 cmd->cmnd[1] = flags;
1061 cmd->cmnd[14] = 0;
1062 cmd->cmnd[15] = 0;
1063 put_unaligned_be64(lba, &cmd->cmnd[2]);
1064 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1065
1066 return BLK_STS_OK;
1067 }
1068
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1069 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1070 sector_t lba, unsigned int nr_blocks,
1071 unsigned char flags)
1072 {
1073 cmd->cmd_len = 10;
1074 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1075 cmd->cmnd[1] = flags;
1076 cmd->cmnd[6] = 0;
1077 cmd->cmnd[9] = 0;
1078 put_unaligned_be32(lba, &cmd->cmnd[2]);
1079 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1080
1081 return BLK_STS_OK;
1082 }
1083
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1084 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1085 sector_t lba, unsigned int nr_blocks,
1086 unsigned char flags)
1087 {
1088 /* Avoid that 0 blocks gets translated into 256 blocks. */
1089 if (WARN_ON_ONCE(nr_blocks == 0))
1090 return BLK_STS_IOERR;
1091
1092 if (unlikely(flags & 0x8)) {
1093 /*
1094 * This happens only if this drive failed 10byte rw
1095 * command with ILLEGAL_REQUEST during operation and
1096 * thus turned off use_10_for_rw.
1097 */
1098 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1099 return BLK_STS_IOERR;
1100 }
1101
1102 cmd->cmd_len = 6;
1103 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1104 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1105 cmd->cmnd[2] = (lba >> 8) & 0xff;
1106 cmd->cmnd[3] = lba & 0xff;
1107 cmd->cmnd[4] = nr_blocks;
1108 cmd->cmnd[5] = 0;
1109
1110 return BLK_STS_OK;
1111 }
1112
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1113 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1114 {
1115 struct request *rq = scsi_cmd_to_rq(cmd);
1116 struct scsi_device *sdp = cmd->device;
1117 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1118 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1119 sector_t threshold;
1120 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1121 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1122 bool write = rq_data_dir(rq) == WRITE;
1123 unsigned char protect, fua;
1124 blk_status_t ret;
1125 unsigned int dif;
1126 bool dix;
1127
1128 ret = scsi_alloc_sgtables(cmd);
1129 if (ret != BLK_STS_OK)
1130 return ret;
1131
1132 ret = BLK_STS_IOERR;
1133 if (!scsi_device_online(sdp) || sdp->changed) {
1134 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1135 goto fail;
1136 }
1137
1138 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1139 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1140 goto fail;
1141 }
1142
1143 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1144 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1145 goto fail;
1146 }
1147
1148 /*
1149 * Some SD card readers can't handle accesses which touch the
1150 * last one or two logical blocks. Split accesses as needed.
1151 */
1152 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1153
1154 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1155 if (lba < threshold) {
1156 /* Access up to the threshold but not beyond */
1157 nr_blocks = threshold - lba;
1158 } else {
1159 /* Access only a single logical block */
1160 nr_blocks = 1;
1161 }
1162 }
1163
1164 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1165 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1166 if (ret)
1167 goto fail;
1168 }
1169
1170 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1171 dix = scsi_prot_sg_count(cmd);
1172 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1173
1174 if (dif || dix)
1175 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1176 else
1177 protect = 0;
1178
1179 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1180 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1181 protect | fua);
1182 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1183 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1184 protect | fua);
1185 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1186 sdp->use_10_for_rw || protect) {
1187 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1188 protect | fua);
1189 } else {
1190 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1191 protect | fua);
1192 }
1193
1194 if (unlikely(ret != BLK_STS_OK))
1195 goto fail;
1196
1197 /*
1198 * We shouldn't disconnect in the middle of a sector, so with a dumb
1199 * host adapter, it's safe to assume that we can at least transfer
1200 * this many bytes between each connect / disconnect.
1201 */
1202 cmd->transfersize = sdp->sector_size;
1203 cmd->underflow = nr_blocks << 9;
1204 cmd->allowed = sdkp->max_retries;
1205 cmd->sdb.length = nr_blocks * sdp->sector_size;
1206
1207 SCSI_LOG_HLQUEUE(1,
1208 scmd_printk(KERN_INFO, cmd,
1209 "%s: block=%llu, count=%d\n", __func__,
1210 (unsigned long long)blk_rq_pos(rq),
1211 blk_rq_sectors(rq)));
1212 SCSI_LOG_HLQUEUE(2,
1213 scmd_printk(KERN_INFO, cmd,
1214 "%s %d/%u 512 byte blocks.\n",
1215 write ? "writing" : "reading", nr_blocks,
1216 blk_rq_sectors(rq)));
1217
1218 /*
1219 * This indicates that the command is ready from our end to be queued.
1220 */
1221 return BLK_STS_OK;
1222 fail:
1223 scsi_free_sgtables(cmd);
1224 return ret;
1225 }
1226
sd_init_command(struct scsi_cmnd * cmd)1227 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1228 {
1229 struct request *rq = scsi_cmd_to_rq(cmd);
1230
1231 switch (req_op(rq)) {
1232 case REQ_OP_DISCARD:
1233 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1234 case SD_LBP_UNMAP:
1235 return sd_setup_unmap_cmnd(cmd);
1236 case SD_LBP_WS16:
1237 return sd_setup_write_same16_cmnd(cmd, true);
1238 case SD_LBP_WS10:
1239 return sd_setup_write_same10_cmnd(cmd, true);
1240 case SD_LBP_ZERO:
1241 return sd_setup_write_same10_cmnd(cmd, false);
1242 default:
1243 return BLK_STS_TARGET;
1244 }
1245 case REQ_OP_WRITE_ZEROES:
1246 return sd_setup_write_zeroes_cmnd(cmd);
1247 case REQ_OP_FLUSH:
1248 return sd_setup_flush_cmnd(cmd);
1249 case REQ_OP_READ:
1250 case REQ_OP_WRITE:
1251 case REQ_OP_ZONE_APPEND:
1252 return sd_setup_read_write_cmnd(cmd);
1253 case REQ_OP_ZONE_RESET:
1254 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1255 false);
1256 case REQ_OP_ZONE_RESET_ALL:
1257 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1258 true);
1259 case REQ_OP_ZONE_OPEN:
1260 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1261 case REQ_OP_ZONE_CLOSE:
1262 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1263 case REQ_OP_ZONE_FINISH:
1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1265 default:
1266 WARN_ON_ONCE(1);
1267 return BLK_STS_NOTSUPP;
1268 }
1269 }
1270
sd_uninit_command(struct scsi_cmnd * SCpnt)1271 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1272 {
1273 struct request *rq = scsi_cmd_to_rq(SCpnt);
1274
1275 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1276 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1277 }
1278
sd_need_revalidate(struct block_device * bdev,struct scsi_disk * sdkp)1279 static bool sd_need_revalidate(struct block_device *bdev,
1280 struct scsi_disk *sdkp)
1281 {
1282 if (sdkp->device->removable || sdkp->write_prot) {
1283 if (bdev_check_media_change(bdev))
1284 return true;
1285 }
1286
1287 /*
1288 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1289 * nothing to do with partitions, BLKRRPART is used to force a full
1290 * revalidate after things like a format for historical reasons.
1291 */
1292 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1293 }
1294
1295 /**
1296 * sd_open - open a scsi disk device
1297 * @bdev: Block device of the scsi disk to open
1298 * @mode: FMODE_* mask
1299 *
1300 * Returns 0 if successful. Returns a negated errno value in case
1301 * of error.
1302 *
1303 * Note: This can be called from a user context (e.g. fsck(1) )
1304 * or from within the kernel (e.g. as a result of a mount(1) ).
1305 * In the latter case @inode and @filp carry an abridged amount
1306 * of information as noted above.
1307 *
1308 * Locking: called with bdev->bd_disk->open_mutex held.
1309 **/
sd_open(struct block_device * bdev,fmode_t mode)1310 static int sd_open(struct block_device *bdev, fmode_t mode)
1311 {
1312 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1313 struct scsi_device *sdev = sdkp->device;
1314 int retval;
1315
1316 if (scsi_device_get(sdev))
1317 return -ENXIO;
1318
1319 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1320
1321 /*
1322 * If the device is in error recovery, wait until it is done.
1323 * If the device is offline, then disallow any access to it.
1324 */
1325 retval = -ENXIO;
1326 if (!scsi_block_when_processing_errors(sdev))
1327 goto error_out;
1328
1329 if (sd_need_revalidate(bdev, sdkp))
1330 sd_revalidate_disk(bdev->bd_disk);
1331
1332 /*
1333 * If the drive is empty, just let the open fail.
1334 */
1335 retval = -ENOMEDIUM;
1336 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1337 goto error_out;
1338
1339 /*
1340 * If the device has the write protect tab set, have the open fail
1341 * if the user expects to be able to write to the thing.
1342 */
1343 retval = -EROFS;
1344 if (sdkp->write_prot && (mode & FMODE_WRITE))
1345 goto error_out;
1346
1347 /*
1348 * It is possible that the disk changing stuff resulted in
1349 * the device being taken offline. If this is the case,
1350 * report this to the user, and don't pretend that the
1351 * open actually succeeded.
1352 */
1353 retval = -ENXIO;
1354 if (!scsi_device_online(sdev))
1355 goto error_out;
1356
1357 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1358 if (scsi_block_when_processing_errors(sdev))
1359 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1360 }
1361
1362 return 0;
1363
1364 error_out:
1365 scsi_device_put(sdev);
1366 return retval;
1367 }
1368
1369 /**
1370 * sd_release - invoked when the (last) close(2) is called on this
1371 * scsi disk.
1372 * @disk: disk to release
1373 * @mode: FMODE_* mask
1374 *
1375 * Returns 0.
1376 *
1377 * Note: may block (uninterruptible) if error recovery is underway
1378 * on this disk.
1379 *
1380 * Locking: called with bdev->bd_disk->open_mutex held.
1381 **/
sd_release(struct gendisk * disk,fmode_t mode)1382 static void sd_release(struct gendisk *disk, fmode_t mode)
1383 {
1384 struct scsi_disk *sdkp = scsi_disk(disk);
1385 struct scsi_device *sdev = sdkp->device;
1386
1387 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1388
1389 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1390 if (scsi_block_when_processing_errors(sdev))
1391 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1392 }
1393
1394 scsi_device_put(sdev);
1395 }
1396
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1397 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1398 {
1399 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1400 struct scsi_device *sdp = sdkp->device;
1401 struct Scsi_Host *host = sdp->host;
1402 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1403 int diskinfo[4];
1404
1405 /* default to most commonly used values */
1406 diskinfo[0] = 0x40; /* 1 << 6 */
1407 diskinfo[1] = 0x20; /* 1 << 5 */
1408 diskinfo[2] = capacity >> 11;
1409
1410 /* override with calculated, extended default, or driver values */
1411 if (host->hostt->bios_param)
1412 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1413 else
1414 scsicam_bios_param(bdev, capacity, diskinfo);
1415
1416 geo->heads = diskinfo[0];
1417 geo->sectors = diskinfo[1];
1418 geo->cylinders = diskinfo[2];
1419 return 0;
1420 }
1421
1422 /**
1423 * sd_ioctl - process an ioctl
1424 * @bdev: target block device
1425 * @mode: FMODE_* mask
1426 * @cmd: ioctl command number
1427 * @arg: this is third argument given to ioctl(2) system call.
1428 * Often contains a pointer.
1429 *
1430 * Returns 0 if successful (some ioctls return positive numbers on
1431 * success as well). Returns a negated errno value in case of error.
1432 *
1433 * Note: most ioctls are forward onto the block subsystem or further
1434 * down in the scsi subsystem.
1435 **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1436 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1437 unsigned int cmd, unsigned long arg)
1438 {
1439 struct gendisk *disk = bdev->bd_disk;
1440 struct scsi_disk *sdkp = scsi_disk(disk);
1441 struct scsi_device *sdp = sdkp->device;
1442 void __user *p = (void __user *)arg;
1443 int error;
1444
1445 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1446 "cmd=0x%x\n", disk->disk_name, cmd));
1447
1448 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1449 return -ENOIOCTLCMD;
1450
1451 /*
1452 * If we are in the middle of error recovery, don't let anyone
1453 * else try and use this device. Also, if error recovery fails, it
1454 * may try and take the device offline, in which case all further
1455 * access to the device is prohibited.
1456 */
1457 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1458 (mode & FMODE_NDELAY) != 0);
1459 if (error)
1460 return error;
1461
1462 if (is_sed_ioctl(cmd))
1463 return sed_ioctl(sdkp->opal_dev, cmd, p);
1464 return scsi_ioctl(sdp, mode, cmd, p);
1465 }
1466
set_media_not_present(struct scsi_disk * sdkp)1467 static void set_media_not_present(struct scsi_disk *sdkp)
1468 {
1469 if (sdkp->media_present)
1470 sdkp->device->changed = 1;
1471
1472 if (sdkp->device->removable) {
1473 sdkp->media_present = 0;
1474 sdkp->capacity = 0;
1475 }
1476 }
1477
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1478 static int media_not_present(struct scsi_disk *sdkp,
1479 struct scsi_sense_hdr *sshdr)
1480 {
1481 if (!scsi_sense_valid(sshdr))
1482 return 0;
1483
1484 /* not invoked for commands that could return deferred errors */
1485 switch (sshdr->sense_key) {
1486 case UNIT_ATTENTION:
1487 case NOT_READY:
1488 /* medium not present */
1489 if (sshdr->asc == 0x3A) {
1490 set_media_not_present(sdkp);
1491 return 1;
1492 }
1493 }
1494 return 0;
1495 }
1496
1497 /**
1498 * sd_check_events - check media events
1499 * @disk: kernel device descriptor
1500 * @clearing: disk events currently being cleared
1501 *
1502 * Returns mask of DISK_EVENT_*.
1503 *
1504 * Note: this function is invoked from the block subsystem.
1505 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1506 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1507 {
1508 struct scsi_disk *sdkp = disk->private_data;
1509 struct scsi_device *sdp;
1510 int retval;
1511 bool disk_changed;
1512
1513 if (!sdkp)
1514 return 0;
1515
1516 sdp = sdkp->device;
1517 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1518
1519 /*
1520 * If the device is offline, don't send any commands - just pretend as
1521 * if the command failed. If the device ever comes back online, we
1522 * can deal with it then. It is only because of unrecoverable errors
1523 * that we would ever take a device offline in the first place.
1524 */
1525 if (!scsi_device_online(sdp)) {
1526 set_media_not_present(sdkp);
1527 goto out;
1528 }
1529
1530 /*
1531 * Using TEST_UNIT_READY enables differentiation between drive with
1532 * no cartridge loaded - NOT READY, drive with changed cartridge -
1533 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1534 *
1535 * Drives that auto spin down. eg iomega jaz 1G, will be started
1536 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1537 * sd_revalidate() is called.
1538 */
1539 if (scsi_block_when_processing_errors(sdp)) {
1540 struct scsi_sense_hdr sshdr = { 0, };
1541
1542 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1543 &sshdr);
1544
1545 /* failed to execute TUR, assume media not present */
1546 if (retval < 0 || host_byte(retval)) {
1547 set_media_not_present(sdkp);
1548 goto out;
1549 }
1550
1551 if (media_not_present(sdkp, &sshdr))
1552 goto out;
1553 }
1554
1555 /*
1556 * For removable scsi disk we have to recognise the presence
1557 * of a disk in the drive.
1558 */
1559 if (!sdkp->media_present)
1560 sdp->changed = 1;
1561 sdkp->media_present = 1;
1562 out:
1563 /*
1564 * sdp->changed is set under the following conditions:
1565 *
1566 * Medium present state has changed in either direction.
1567 * Device has indicated UNIT_ATTENTION.
1568 */
1569 disk_changed = sdp->changed;
1570 sdp->changed = 0;
1571 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1572 }
1573
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1574 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1575 {
1576 int retries, res;
1577 struct scsi_device *sdp = sdkp->device;
1578 const int timeout = sdp->request_queue->rq_timeout
1579 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1580 struct scsi_sense_hdr my_sshdr;
1581
1582 if (!scsi_device_online(sdp))
1583 return -ENODEV;
1584
1585 /* caller might not be interested in sense, but we need it */
1586 if (!sshdr)
1587 sshdr = &my_sshdr;
1588
1589 for (retries = 3; retries > 0; --retries) {
1590 unsigned char cmd[10] = { 0 };
1591
1592 cmd[0] = SYNCHRONIZE_CACHE;
1593 /*
1594 * Leave the rest of the command zero to indicate
1595 * flush everything.
1596 */
1597 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1598 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1599 if (res == 0)
1600 break;
1601 }
1602
1603 if (res) {
1604 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1605
1606 if (res < 0)
1607 return res;
1608
1609 if (scsi_status_is_check_condition(res) &&
1610 scsi_sense_valid(sshdr)) {
1611 sd_print_sense_hdr(sdkp, sshdr);
1612
1613 /* we need to evaluate the error return */
1614 if (sshdr->asc == 0x3a || /* medium not present */
1615 sshdr->asc == 0x20 || /* invalid command */
1616 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1617 /* this is no error here */
1618 return 0;
1619 }
1620
1621 switch (host_byte(res)) {
1622 /* ignore errors due to racing a disconnection */
1623 case DID_BAD_TARGET:
1624 case DID_NO_CONNECT:
1625 return 0;
1626 /* signal the upper layer it might try again */
1627 case DID_BUS_BUSY:
1628 case DID_IMM_RETRY:
1629 case DID_REQUEUE:
1630 case DID_SOFT_ERROR:
1631 return -EBUSY;
1632 default:
1633 return -EIO;
1634 }
1635 }
1636 return 0;
1637 }
1638
sd_rescan(struct device * dev)1639 static void sd_rescan(struct device *dev)
1640 {
1641 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1642
1643 sd_revalidate_disk(sdkp->disk);
1644 }
1645
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1647 enum blk_unique_id type)
1648 {
1649 struct scsi_device *sdev = scsi_disk(disk)->device;
1650 const struct scsi_vpd *vpd;
1651 const unsigned char *d;
1652 int ret = -ENXIO, len;
1653
1654 rcu_read_lock();
1655 vpd = rcu_dereference(sdev->vpd_pg83);
1656 if (!vpd)
1657 goto out_unlock;
1658
1659 ret = -EINVAL;
1660 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1661 /* we only care about designators with LU association */
1662 if (((d[1] >> 4) & 0x3) != 0x00)
1663 continue;
1664 if ((d[1] & 0xf) != type)
1665 continue;
1666
1667 /*
1668 * Only exit early if a 16-byte descriptor was found. Otherwise
1669 * keep looking as one with more entropy might still show up.
1670 */
1671 len = d[3];
1672 if (len != 8 && len != 12 && len != 16)
1673 continue;
1674 ret = len;
1675 memcpy(id, d + 4, len);
1676 if (len == 16)
1677 break;
1678 }
1679 out_unlock:
1680 rcu_read_unlock();
1681 return ret;
1682 }
1683
sd_pr_type(enum pr_type type)1684 static char sd_pr_type(enum pr_type type)
1685 {
1686 switch (type) {
1687 case PR_WRITE_EXCLUSIVE:
1688 return 0x01;
1689 case PR_EXCLUSIVE_ACCESS:
1690 return 0x03;
1691 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1692 return 0x05;
1693 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1694 return 0x06;
1695 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1696 return 0x07;
1697 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1698 return 0x08;
1699 default:
1700 return 0;
1701 }
1702 };
1703
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1704 static int sd_pr_command(struct block_device *bdev, u8 sa,
1705 u64 key, u64 sa_key, u8 type, u8 flags)
1706 {
1707 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1708 struct scsi_device *sdev = sdkp->device;
1709 struct scsi_sense_hdr sshdr;
1710 int result;
1711 u8 cmd[16] = { 0, };
1712 u8 data[24] = { 0, };
1713
1714 cmd[0] = PERSISTENT_RESERVE_OUT;
1715 cmd[1] = sa;
1716 cmd[2] = type;
1717 put_unaligned_be32(sizeof(data), &cmd[5]);
1718
1719 put_unaligned_be64(key, &data[0]);
1720 put_unaligned_be64(sa_key, &data[8]);
1721 data[20] = flags;
1722
1723 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1724 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1725
1726 if (scsi_status_is_check_condition(result) &&
1727 scsi_sense_valid(&sshdr)) {
1728 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1729 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1730 }
1731
1732 return result;
1733 }
1734
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1735 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1736 u32 flags)
1737 {
1738 if (flags & ~PR_FL_IGNORE_KEY)
1739 return -EOPNOTSUPP;
1740 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1741 old_key, new_key, 0,
1742 (1 << 0) /* APTPL */);
1743 }
1744
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1745 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1746 u32 flags)
1747 {
1748 if (flags)
1749 return -EOPNOTSUPP;
1750 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1751 }
1752
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1753 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1754 {
1755 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1756 }
1757
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1758 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1759 enum pr_type type, bool abort)
1760 {
1761 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1762 sd_pr_type(type), 0);
1763 }
1764
sd_pr_clear(struct block_device * bdev,u64 key)1765 static int sd_pr_clear(struct block_device *bdev, u64 key)
1766 {
1767 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1768 }
1769
1770 static const struct pr_ops sd_pr_ops = {
1771 .pr_register = sd_pr_register,
1772 .pr_reserve = sd_pr_reserve,
1773 .pr_release = sd_pr_release,
1774 .pr_preempt = sd_pr_preempt,
1775 .pr_clear = sd_pr_clear,
1776 };
1777
scsi_disk_free_disk(struct gendisk * disk)1778 static void scsi_disk_free_disk(struct gendisk *disk)
1779 {
1780 struct scsi_disk *sdkp = scsi_disk(disk);
1781
1782 put_device(&sdkp->disk_dev);
1783 }
1784
1785 static const struct block_device_operations sd_fops = {
1786 .owner = THIS_MODULE,
1787 .open = sd_open,
1788 .release = sd_release,
1789 .ioctl = sd_ioctl,
1790 .getgeo = sd_getgeo,
1791 .compat_ioctl = blkdev_compat_ptr_ioctl,
1792 .check_events = sd_check_events,
1793 .unlock_native_capacity = sd_unlock_native_capacity,
1794 .report_zones = sd_zbc_report_zones,
1795 .get_unique_id = sd_get_unique_id,
1796 .free_disk = scsi_disk_free_disk,
1797 .pr_ops = &sd_pr_ops,
1798 };
1799
1800 /**
1801 * sd_eh_reset - reset error handling callback
1802 * @scmd: sd-issued command that has failed
1803 *
1804 * This function is called by the SCSI midlayer before starting
1805 * SCSI EH. When counting medium access failures we have to be
1806 * careful to register it only only once per device and SCSI EH run;
1807 * there might be several timed out commands which will cause the
1808 * 'max_medium_access_timeouts' counter to trigger after the first
1809 * SCSI EH run already and set the device to offline.
1810 * So this function resets the internal counter before starting SCSI EH.
1811 **/
sd_eh_reset(struct scsi_cmnd * scmd)1812 static void sd_eh_reset(struct scsi_cmnd *scmd)
1813 {
1814 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1815
1816 /* New SCSI EH run, reset gate variable */
1817 sdkp->ignore_medium_access_errors = false;
1818 }
1819
1820 /**
1821 * sd_eh_action - error handling callback
1822 * @scmd: sd-issued command that has failed
1823 * @eh_disp: The recovery disposition suggested by the midlayer
1824 *
1825 * This function is called by the SCSI midlayer upon completion of an
1826 * error test command (currently TEST UNIT READY). The result of sending
1827 * the eh command is passed in eh_disp. We're looking for devices that
1828 * fail medium access commands but are OK with non access commands like
1829 * test unit ready (so wrongly see the device as having a successful
1830 * recovery)
1831 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1833 {
1834 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1835 struct scsi_device *sdev = scmd->device;
1836
1837 if (!scsi_device_online(sdev) ||
1838 !scsi_medium_access_command(scmd) ||
1839 host_byte(scmd->result) != DID_TIME_OUT ||
1840 eh_disp != SUCCESS)
1841 return eh_disp;
1842
1843 /*
1844 * The device has timed out executing a medium access command.
1845 * However, the TEST UNIT READY command sent during error
1846 * handling completed successfully. Either the device is in the
1847 * process of recovering or has it suffered an internal failure
1848 * that prevents access to the storage medium.
1849 */
1850 if (!sdkp->ignore_medium_access_errors) {
1851 sdkp->medium_access_timed_out++;
1852 sdkp->ignore_medium_access_errors = true;
1853 }
1854
1855 /*
1856 * If the device keeps failing read/write commands but TEST UNIT
1857 * READY always completes successfully we assume that medium
1858 * access is no longer possible and take the device offline.
1859 */
1860 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1861 scmd_printk(KERN_ERR, scmd,
1862 "Medium access timeout failure. Offlining disk!\n");
1863 mutex_lock(&sdev->state_mutex);
1864 scsi_device_set_state(sdev, SDEV_OFFLINE);
1865 mutex_unlock(&sdev->state_mutex);
1866
1867 return SUCCESS;
1868 }
1869
1870 return eh_disp;
1871 }
1872
sd_completed_bytes(struct scsi_cmnd * scmd)1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1874 {
1875 struct request *req = scsi_cmd_to_rq(scmd);
1876 struct scsi_device *sdev = scmd->device;
1877 unsigned int transferred, good_bytes;
1878 u64 start_lba, end_lba, bad_lba;
1879
1880 /*
1881 * Some commands have a payload smaller than the device logical
1882 * block size (e.g. INQUIRY on a 4K disk).
1883 */
1884 if (scsi_bufflen(scmd) <= sdev->sector_size)
1885 return 0;
1886
1887 /* Check if we have a 'bad_lba' information */
1888 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1889 SCSI_SENSE_BUFFERSIZE,
1890 &bad_lba))
1891 return 0;
1892
1893 /*
1894 * If the bad lba was reported incorrectly, we have no idea where
1895 * the error is.
1896 */
1897 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1898 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1899 if (bad_lba < start_lba || bad_lba >= end_lba)
1900 return 0;
1901
1902 /*
1903 * resid is optional but mostly filled in. When it's unused,
1904 * its value is zero, so we assume the whole buffer transferred
1905 */
1906 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1907
1908 /* This computation should always be done in terms of the
1909 * resolution of the device's medium.
1910 */
1911 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1912
1913 return min(good_bytes, transferred);
1914 }
1915
1916 /**
1917 * sd_done - bottom half handler: called when the lower level
1918 * driver has completed (successfully or otherwise) a scsi command.
1919 * @SCpnt: mid-level's per command structure.
1920 *
1921 * Note: potentially run from within an ISR. Must not block.
1922 **/
sd_done(struct scsi_cmnd * SCpnt)1923 static int sd_done(struct scsi_cmnd *SCpnt)
1924 {
1925 int result = SCpnt->result;
1926 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1927 unsigned int sector_size = SCpnt->device->sector_size;
1928 unsigned int resid;
1929 struct scsi_sense_hdr sshdr;
1930 struct request *req = scsi_cmd_to_rq(SCpnt);
1931 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1932 int sense_valid = 0;
1933 int sense_deferred = 0;
1934
1935 switch (req_op(req)) {
1936 case REQ_OP_DISCARD:
1937 case REQ_OP_WRITE_ZEROES:
1938 case REQ_OP_ZONE_RESET:
1939 case REQ_OP_ZONE_RESET_ALL:
1940 case REQ_OP_ZONE_OPEN:
1941 case REQ_OP_ZONE_CLOSE:
1942 case REQ_OP_ZONE_FINISH:
1943 if (!result) {
1944 good_bytes = blk_rq_bytes(req);
1945 scsi_set_resid(SCpnt, 0);
1946 } else {
1947 good_bytes = 0;
1948 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1949 }
1950 break;
1951 default:
1952 /*
1953 * In case of bogus fw or device, we could end up having
1954 * an unaligned partial completion. Check this here and force
1955 * alignment.
1956 */
1957 resid = scsi_get_resid(SCpnt);
1958 if (resid & (sector_size - 1)) {
1959 sd_printk(KERN_INFO, sdkp,
1960 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1961 resid, sector_size);
1962 scsi_print_command(SCpnt);
1963 resid = min(scsi_bufflen(SCpnt),
1964 round_up(resid, sector_size));
1965 scsi_set_resid(SCpnt, resid);
1966 }
1967 }
1968
1969 if (result) {
1970 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1971 if (sense_valid)
1972 sense_deferred = scsi_sense_is_deferred(&sshdr);
1973 }
1974 sdkp->medium_access_timed_out = 0;
1975
1976 if (!scsi_status_is_check_condition(result) &&
1977 (!sense_valid || sense_deferred))
1978 goto out;
1979
1980 switch (sshdr.sense_key) {
1981 case HARDWARE_ERROR:
1982 case MEDIUM_ERROR:
1983 good_bytes = sd_completed_bytes(SCpnt);
1984 break;
1985 case RECOVERED_ERROR:
1986 good_bytes = scsi_bufflen(SCpnt);
1987 break;
1988 case NO_SENSE:
1989 /* This indicates a false check condition, so ignore it. An
1990 * unknown amount of data was transferred so treat it as an
1991 * error.
1992 */
1993 SCpnt->result = 0;
1994 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1995 break;
1996 case ABORTED_COMMAND:
1997 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1998 good_bytes = sd_completed_bytes(SCpnt);
1999 break;
2000 case ILLEGAL_REQUEST:
2001 switch (sshdr.asc) {
2002 case 0x10: /* DIX: Host detected corruption */
2003 good_bytes = sd_completed_bytes(SCpnt);
2004 break;
2005 case 0x20: /* INVALID COMMAND OPCODE */
2006 case 0x24: /* INVALID FIELD IN CDB */
2007 switch (SCpnt->cmnd[0]) {
2008 case UNMAP:
2009 sd_config_discard(sdkp, SD_LBP_DISABLE);
2010 break;
2011 case WRITE_SAME_16:
2012 case WRITE_SAME:
2013 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2014 sd_config_discard(sdkp, SD_LBP_DISABLE);
2015 } else {
2016 sdkp->device->no_write_same = 1;
2017 sd_config_write_same(sdkp);
2018 req->rq_flags |= RQF_QUIET;
2019 }
2020 break;
2021 }
2022 }
2023 break;
2024 default:
2025 break;
2026 }
2027
2028 out:
2029 if (sd_is_zoned(sdkp))
2030 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2031
2032 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2033 "sd_done: completed %d of %d bytes\n",
2034 good_bytes, scsi_bufflen(SCpnt)));
2035
2036 return good_bytes;
2037 }
2038
2039 /*
2040 * spinup disk - called only in sd_revalidate_disk()
2041 */
2042 static void
sd_spinup_disk(struct scsi_disk * sdkp)2043 sd_spinup_disk(struct scsi_disk *sdkp)
2044 {
2045 unsigned char cmd[10];
2046 unsigned long spintime_expire = 0;
2047 int retries, spintime;
2048 unsigned int the_result;
2049 struct scsi_sense_hdr sshdr;
2050 int sense_valid = 0;
2051
2052 spintime = 0;
2053
2054 /* Spin up drives, as required. Only do this at boot time */
2055 /* Spinup needs to be done for module loads too. */
2056 do {
2057 retries = 0;
2058
2059 do {
2060 bool media_was_present = sdkp->media_present;
2061
2062 cmd[0] = TEST_UNIT_READY;
2063 memset((void *) &cmd[1], 0, 9);
2064
2065 the_result = scsi_execute_req(sdkp->device, cmd,
2066 DMA_NONE, NULL, 0,
2067 &sshdr, SD_TIMEOUT,
2068 sdkp->max_retries, NULL);
2069
2070 /*
2071 * If the drive has indicated to us that it
2072 * doesn't have any media in it, don't bother
2073 * with any more polling.
2074 */
2075 if (media_not_present(sdkp, &sshdr)) {
2076 if (media_was_present)
2077 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2078 return;
2079 }
2080
2081 if (the_result)
2082 sense_valid = scsi_sense_valid(&sshdr);
2083 retries++;
2084 } while (retries < 3 &&
2085 (!scsi_status_is_good(the_result) ||
2086 (scsi_status_is_check_condition(the_result) &&
2087 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2088
2089 if (!scsi_status_is_check_condition(the_result)) {
2090 /* no sense, TUR either succeeded or failed
2091 * with a status error */
2092 if(!spintime && !scsi_status_is_good(the_result)) {
2093 sd_print_result(sdkp, "Test Unit Ready failed",
2094 the_result);
2095 }
2096 break;
2097 }
2098
2099 /*
2100 * The device does not want the automatic start to be issued.
2101 */
2102 if (sdkp->device->no_start_on_add)
2103 break;
2104
2105 if (sense_valid && sshdr.sense_key == NOT_READY) {
2106 if (sshdr.asc == 4 && sshdr.ascq == 3)
2107 break; /* manual intervention required */
2108 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2109 break; /* standby */
2110 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2111 break; /* unavailable */
2112 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2113 break; /* sanitize in progress */
2114 /*
2115 * Issue command to spin up drive when not ready
2116 */
2117 if (!spintime) {
2118 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2119 cmd[0] = START_STOP;
2120 cmd[1] = 1; /* Return immediately */
2121 memset((void *) &cmd[2], 0, 8);
2122 cmd[4] = 1; /* Start spin cycle */
2123 if (sdkp->device->start_stop_pwr_cond)
2124 cmd[4] |= 1 << 4;
2125 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2126 NULL, 0, &sshdr,
2127 SD_TIMEOUT, sdkp->max_retries,
2128 NULL);
2129 spintime_expire = jiffies + 100 * HZ;
2130 spintime = 1;
2131 }
2132 /* Wait 1 second for next try */
2133 msleep(1000);
2134 printk(KERN_CONT ".");
2135
2136 /*
2137 * Wait for USB flash devices with slow firmware.
2138 * Yes, this sense key/ASC combination shouldn't
2139 * occur here. It's characteristic of these devices.
2140 */
2141 } else if (sense_valid &&
2142 sshdr.sense_key == UNIT_ATTENTION &&
2143 sshdr.asc == 0x28) {
2144 if (!spintime) {
2145 spintime_expire = jiffies + 5 * HZ;
2146 spintime = 1;
2147 }
2148 /* Wait 1 second for next try */
2149 msleep(1000);
2150 } else {
2151 /* we don't understand the sense code, so it's
2152 * probably pointless to loop */
2153 if(!spintime) {
2154 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2155 sd_print_sense_hdr(sdkp, &sshdr);
2156 }
2157 break;
2158 }
2159
2160 } while (spintime && time_before_eq(jiffies, spintime_expire));
2161
2162 if (spintime) {
2163 if (scsi_status_is_good(the_result))
2164 printk(KERN_CONT "ready\n");
2165 else
2166 printk(KERN_CONT "not responding...\n");
2167 }
2168 }
2169
2170 /*
2171 * Determine whether disk supports Data Integrity Field.
2172 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2174 {
2175 struct scsi_device *sdp = sdkp->device;
2176 u8 type;
2177
2178 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2179 sdkp->protection_type = 0;
2180 return 0;
2181 }
2182
2183 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2184
2185 if (type > T10_PI_TYPE3_PROTECTION) {
2186 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2187 " protection type %u. Disabling disk!\n",
2188 type);
2189 sdkp->protection_type = 0;
2190 return -ENODEV;
2191 }
2192
2193 sdkp->protection_type = type;
2194
2195 return 0;
2196 }
2197
sd_config_protection(struct scsi_disk * sdkp)2198 static void sd_config_protection(struct scsi_disk *sdkp)
2199 {
2200 struct scsi_device *sdp = sdkp->device;
2201
2202 if (!sdkp->first_scan)
2203 return;
2204
2205 sd_dif_config_host(sdkp);
2206
2207 if (!sdkp->protection_type)
2208 return;
2209
2210 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2211 sd_printk(KERN_NOTICE, sdkp,
2212 "Disabling DIF Type %u protection\n",
2213 sdkp->protection_type);
2214 sdkp->protection_type = 0;
2215 }
2216
2217 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2218 sdkp->protection_type);
2219 }
2220
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2222 struct scsi_sense_hdr *sshdr, int sense_valid,
2223 int the_result)
2224 {
2225 if (sense_valid)
2226 sd_print_sense_hdr(sdkp, sshdr);
2227 else
2228 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2229
2230 /*
2231 * Set dirty bit for removable devices if not ready -
2232 * sometimes drives will not report this properly.
2233 */
2234 if (sdp->removable &&
2235 sense_valid && sshdr->sense_key == NOT_READY)
2236 set_media_not_present(sdkp);
2237
2238 /*
2239 * We used to set media_present to 0 here to indicate no media
2240 * in the drive, but some drives fail read capacity even with
2241 * media present, so we can't do that.
2242 */
2243 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2244 }
2245
2246 #define RC16_LEN 32
2247 #if RC16_LEN > SD_BUF_SIZE
2248 #error RC16_LEN must not be more than SD_BUF_SIZE
2249 #endif
2250
2251 #define READ_CAPACITY_RETRIES_ON_RESET 10
2252
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2253 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2254 unsigned char *buffer)
2255 {
2256 unsigned char cmd[16];
2257 struct scsi_sense_hdr sshdr;
2258 int sense_valid = 0;
2259 int the_result;
2260 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2261 unsigned int alignment;
2262 unsigned long long lba;
2263 unsigned sector_size;
2264
2265 if (sdp->no_read_capacity_16)
2266 return -EINVAL;
2267
2268 do {
2269 memset(cmd, 0, 16);
2270 cmd[0] = SERVICE_ACTION_IN_16;
2271 cmd[1] = SAI_READ_CAPACITY_16;
2272 cmd[13] = RC16_LEN;
2273 memset(buffer, 0, RC16_LEN);
2274
2275 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2276 buffer, RC16_LEN, &sshdr,
2277 SD_TIMEOUT, sdkp->max_retries, NULL);
2278
2279 if (media_not_present(sdkp, &sshdr))
2280 return -ENODEV;
2281
2282 if (the_result > 0) {
2283 sense_valid = scsi_sense_valid(&sshdr);
2284 if (sense_valid &&
2285 sshdr.sense_key == ILLEGAL_REQUEST &&
2286 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2287 sshdr.ascq == 0x00)
2288 /* Invalid Command Operation Code or
2289 * Invalid Field in CDB, just retry
2290 * silently with RC10 */
2291 return -EINVAL;
2292 if (sense_valid &&
2293 sshdr.sense_key == UNIT_ATTENTION &&
2294 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2295 /* Device reset might occur several times,
2296 * give it one more chance */
2297 if (--reset_retries > 0)
2298 continue;
2299 }
2300 retries--;
2301
2302 } while (the_result && retries);
2303
2304 if (the_result) {
2305 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2306 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2307 return -EINVAL;
2308 }
2309
2310 sector_size = get_unaligned_be32(&buffer[8]);
2311 lba = get_unaligned_be64(&buffer[0]);
2312
2313 if (sd_read_protection_type(sdkp, buffer) < 0) {
2314 sdkp->capacity = 0;
2315 return -ENODEV;
2316 }
2317
2318 /* Logical blocks per physical block exponent */
2319 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2320
2321 /* RC basis */
2322 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2323
2324 /* Lowest aligned logical block */
2325 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2326 blk_queue_alignment_offset(sdp->request_queue, alignment);
2327 if (alignment && sdkp->first_scan)
2328 sd_printk(KERN_NOTICE, sdkp,
2329 "physical block alignment offset: %u\n", alignment);
2330
2331 if (buffer[14] & 0x80) { /* LBPME */
2332 sdkp->lbpme = 1;
2333
2334 if (buffer[14] & 0x40) /* LBPRZ */
2335 sdkp->lbprz = 1;
2336
2337 sd_config_discard(sdkp, SD_LBP_WS16);
2338 }
2339
2340 sdkp->capacity = lba + 1;
2341 return sector_size;
2342 }
2343
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2345 unsigned char *buffer)
2346 {
2347 unsigned char cmd[16];
2348 struct scsi_sense_hdr sshdr;
2349 int sense_valid = 0;
2350 int the_result;
2351 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2352 sector_t lba;
2353 unsigned sector_size;
2354
2355 do {
2356 cmd[0] = READ_CAPACITY;
2357 memset(&cmd[1], 0, 9);
2358 memset(buffer, 0, 8);
2359
2360 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2361 buffer, 8, &sshdr,
2362 SD_TIMEOUT, sdkp->max_retries, NULL);
2363
2364 if (media_not_present(sdkp, &sshdr))
2365 return -ENODEV;
2366
2367 if (the_result > 0) {
2368 sense_valid = scsi_sense_valid(&sshdr);
2369 if (sense_valid &&
2370 sshdr.sense_key == UNIT_ATTENTION &&
2371 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2372 /* Device reset might occur several times,
2373 * give it one more chance */
2374 if (--reset_retries > 0)
2375 continue;
2376 }
2377 retries--;
2378
2379 } while (the_result && retries);
2380
2381 if (the_result) {
2382 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2383 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2384 return -EINVAL;
2385 }
2386
2387 sector_size = get_unaligned_be32(&buffer[4]);
2388 lba = get_unaligned_be32(&buffer[0]);
2389
2390 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2391 /* Some buggy (usb cardreader) devices return an lba of
2392 0xffffffff when the want to report a size of 0 (with
2393 which they really mean no media is present) */
2394 sdkp->capacity = 0;
2395 sdkp->physical_block_size = sector_size;
2396 return sector_size;
2397 }
2398
2399 sdkp->capacity = lba + 1;
2400 sdkp->physical_block_size = sector_size;
2401 return sector_size;
2402 }
2403
sd_try_rc16_first(struct scsi_device * sdp)2404 static int sd_try_rc16_first(struct scsi_device *sdp)
2405 {
2406 if (sdp->host->max_cmd_len < 16)
2407 return 0;
2408 if (sdp->try_rc_10_first)
2409 return 0;
2410 if (sdp->scsi_level > SCSI_SPC_2)
2411 return 1;
2412 if (scsi_device_protection(sdp))
2413 return 1;
2414 return 0;
2415 }
2416
2417 /*
2418 * read disk capacity
2419 */
2420 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2421 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2422 {
2423 int sector_size;
2424 struct scsi_device *sdp = sdkp->device;
2425
2426 if (sd_try_rc16_first(sdp)) {
2427 sector_size = read_capacity_16(sdkp, sdp, buffer);
2428 if (sector_size == -EOVERFLOW)
2429 goto got_data;
2430 if (sector_size == -ENODEV)
2431 return;
2432 if (sector_size < 0)
2433 sector_size = read_capacity_10(sdkp, sdp, buffer);
2434 if (sector_size < 0)
2435 return;
2436 } else {
2437 sector_size = read_capacity_10(sdkp, sdp, buffer);
2438 if (sector_size == -EOVERFLOW)
2439 goto got_data;
2440 if (sector_size < 0)
2441 return;
2442 if ((sizeof(sdkp->capacity) > 4) &&
2443 (sdkp->capacity > 0xffffffffULL)) {
2444 int old_sector_size = sector_size;
2445 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2446 "Trying to use READ CAPACITY(16).\n");
2447 sector_size = read_capacity_16(sdkp, sdp, buffer);
2448 if (sector_size < 0) {
2449 sd_printk(KERN_NOTICE, sdkp,
2450 "Using 0xffffffff as device size\n");
2451 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2452 sector_size = old_sector_size;
2453 goto got_data;
2454 }
2455 /* Remember that READ CAPACITY(16) succeeded */
2456 sdp->try_rc_10_first = 0;
2457 }
2458 }
2459
2460 /* Some devices are known to return the total number of blocks,
2461 * not the highest block number. Some devices have versions
2462 * which do this and others which do not. Some devices we might
2463 * suspect of doing this but we don't know for certain.
2464 *
2465 * If we know the reported capacity is wrong, decrement it. If
2466 * we can only guess, then assume the number of blocks is even
2467 * (usually true but not always) and err on the side of lowering
2468 * the capacity.
2469 */
2470 if (sdp->fix_capacity ||
2471 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2472 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2473 "from its reported value: %llu\n",
2474 (unsigned long long) sdkp->capacity);
2475 --sdkp->capacity;
2476 }
2477
2478 got_data:
2479 if (sector_size == 0) {
2480 sector_size = 512;
2481 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2482 "assuming 512.\n");
2483 }
2484
2485 if (sector_size != 512 &&
2486 sector_size != 1024 &&
2487 sector_size != 2048 &&
2488 sector_size != 4096) {
2489 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2490 sector_size);
2491 /*
2492 * The user might want to re-format the drive with
2493 * a supported sectorsize. Once this happens, it
2494 * would be relatively trivial to set the thing up.
2495 * For this reason, we leave the thing in the table.
2496 */
2497 sdkp->capacity = 0;
2498 /*
2499 * set a bogus sector size so the normal read/write
2500 * logic in the block layer will eventually refuse any
2501 * request on this device without tripping over power
2502 * of two sector size assumptions
2503 */
2504 sector_size = 512;
2505 }
2506 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2507 blk_queue_physical_block_size(sdp->request_queue,
2508 sdkp->physical_block_size);
2509 sdkp->device->sector_size = sector_size;
2510
2511 if (sdkp->capacity > 0xffffffff)
2512 sdp->use_16_for_rw = 1;
2513
2514 }
2515
2516 /*
2517 * Print disk capacity
2518 */
2519 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2520 sd_print_capacity(struct scsi_disk *sdkp,
2521 sector_t old_capacity)
2522 {
2523 int sector_size = sdkp->device->sector_size;
2524 char cap_str_2[10], cap_str_10[10];
2525
2526 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2527 return;
2528
2529 string_get_size(sdkp->capacity, sector_size,
2530 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2531 string_get_size(sdkp->capacity, sector_size,
2532 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2533
2534 sd_printk(KERN_NOTICE, sdkp,
2535 "%llu %d-byte logical blocks: (%s/%s)\n",
2536 (unsigned long long)sdkp->capacity,
2537 sector_size, cap_str_10, cap_str_2);
2538
2539 if (sdkp->physical_block_size != sector_size)
2540 sd_printk(KERN_NOTICE, sdkp,
2541 "%u-byte physical blocks\n",
2542 sdkp->physical_block_size);
2543 }
2544
2545 /* called with buffer of length 512 */
2546 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2547 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2548 unsigned char *buffer, int len, struct scsi_mode_data *data,
2549 struct scsi_sense_hdr *sshdr)
2550 {
2551 /*
2552 * If we must use MODE SENSE(10), make sure that the buffer length
2553 * is at least 8 bytes so that the mode sense header fits.
2554 */
2555 if (sdkp->device->use_10_for_ms && len < 8)
2556 len = 8;
2557
2558 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2559 SD_TIMEOUT, sdkp->max_retries, data,
2560 sshdr);
2561 }
2562
2563 /*
2564 * read write protect setting, if possible - called only in sd_revalidate_disk()
2565 * called with buffer of length SD_BUF_SIZE
2566 */
2567 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2569 {
2570 int res;
2571 struct scsi_device *sdp = sdkp->device;
2572 struct scsi_mode_data data;
2573 int old_wp = sdkp->write_prot;
2574
2575 set_disk_ro(sdkp->disk, 0);
2576 if (sdp->skip_ms_page_3f) {
2577 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2578 return;
2579 }
2580
2581 if (sdp->use_192_bytes_for_3f) {
2582 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2583 } else {
2584 /*
2585 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2586 * We have to start carefully: some devices hang if we ask
2587 * for more than is available.
2588 */
2589 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2590
2591 /*
2592 * Second attempt: ask for page 0 When only page 0 is
2593 * implemented, a request for page 3F may return Sense Key
2594 * 5: Illegal Request, Sense Code 24: Invalid field in
2595 * CDB.
2596 */
2597 if (res < 0)
2598 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2599
2600 /*
2601 * Third attempt: ask 255 bytes, as we did earlier.
2602 */
2603 if (res < 0)
2604 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2605 &data, NULL);
2606 }
2607
2608 if (res < 0) {
2609 sd_first_printk(KERN_WARNING, sdkp,
2610 "Test WP failed, assume Write Enabled\n");
2611 } else {
2612 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2613 set_disk_ro(sdkp->disk, sdkp->write_prot);
2614 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2615 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2616 sdkp->write_prot ? "on" : "off");
2617 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2618 }
2619 }
2620 }
2621
2622 /*
2623 * sd_read_cache_type - called only from sd_revalidate_disk()
2624 * called with buffer of length SD_BUF_SIZE
2625 */
2626 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2628 {
2629 int len = 0, res;
2630 struct scsi_device *sdp = sdkp->device;
2631
2632 int dbd;
2633 int modepage;
2634 int first_len;
2635 struct scsi_mode_data data;
2636 struct scsi_sense_hdr sshdr;
2637 int old_wce = sdkp->WCE;
2638 int old_rcd = sdkp->RCD;
2639 int old_dpofua = sdkp->DPOFUA;
2640
2641
2642 if (sdkp->cache_override)
2643 return;
2644
2645 first_len = 4;
2646 if (sdp->skip_ms_page_8) {
2647 if (sdp->type == TYPE_RBC)
2648 goto defaults;
2649 else {
2650 if (sdp->skip_ms_page_3f)
2651 goto defaults;
2652 modepage = 0x3F;
2653 if (sdp->use_192_bytes_for_3f)
2654 first_len = 192;
2655 dbd = 0;
2656 }
2657 } else if (sdp->type == TYPE_RBC) {
2658 modepage = 6;
2659 dbd = 8;
2660 } else {
2661 modepage = 8;
2662 dbd = 0;
2663 }
2664
2665 /* cautiously ask */
2666 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2667 &data, &sshdr);
2668
2669 if (res < 0)
2670 goto bad_sense;
2671
2672 if (!data.header_length) {
2673 modepage = 6;
2674 first_len = 0;
2675 sd_first_printk(KERN_ERR, sdkp,
2676 "Missing header in MODE_SENSE response\n");
2677 }
2678
2679 /* that went OK, now ask for the proper length */
2680 len = data.length;
2681
2682 /*
2683 * We're only interested in the first three bytes, actually.
2684 * But the data cache page is defined for the first 20.
2685 */
2686 if (len < 3)
2687 goto bad_sense;
2688 else if (len > SD_BUF_SIZE) {
2689 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2690 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2691 len = SD_BUF_SIZE;
2692 }
2693 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2694 len = 192;
2695
2696 /* Get the data */
2697 if (len > first_len)
2698 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2699 &data, &sshdr);
2700
2701 if (!res) {
2702 int offset = data.header_length + data.block_descriptor_length;
2703
2704 while (offset < len) {
2705 u8 page_code = buffer[offset] & 0x3F;
2706 u8 spf = buffer[offset] & 0x40;
2707
2708 if (page_code == 8 || page_code == 6) {
2709 /* We're interested only in the first 3 bytes.
2710 */
2711 if (len - offset <= 2) {
2712 sd_first_printk(KERN_ERR, sdkp,
2713 "Incomplete mode parameter "
2714 "data\n");
2715 goto defaults;
2716 } else {
2717 modepage = page_code;
2718 goto Page_found;
2719 }
2720 } else {
2721 /* Go to the next page */
2722 if (spf && len - offset > 3)
2723 offset += 4 + (buffer[offset+2] << 8) +
2724 buffer[offset+3];
2725 else if (!spf && len - offset > 1)
2726 offset += 2 + buffer[offset+1];
2727 else {
2728 sd_first_printk(KERN_ERR, sdkp,
2729 "Incomplete mode "
2730 "parameter data\n");
2731 goto defaults;
2732 }
2733 }
2734 }
2735
2736 sd_first_printk(KERN_WARNING, sdkp,
2737 "No Caching mode page found\n");
2738 goto defaults;
2739
2740 Page_found:
2741 if (modepage == 8) {
2742 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744 } else {
2745 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746 sdkp->RCD = 0;
2747 }
2748
2749 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750 if (sdp->broken_fua) {
2751 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752 sdkp->DPOFUA = 0;
2753 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754 !sdkp->device->use_16_for_rw) {
2755 sd_first_printk(KERN_NOTICE, sdkp,
2756 "Uses READ/WRITE(6), disabling FUA\n");
2757 sdkp->DPOFUA = 0;
2758 }
2759
2760 /* No cache flush allowed for write protected devices */
2761 if (sdkp->WCE && sdkp->write_prot)
2762 sdkp->WCE = 0;
2763
2764 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766 sd_printk(KERN_NOTICE, sdkp,
2767 "Write cache: %s, read cache: %s, %s\n",
2768 sdkp->WCE ? "enabled" : "disabled",
2769 sdkp->RCD ? "disabled" : "enabled",
2770 sdkp->DPOFUA ? "supports DPO and FUA"
2771 : "doesn't support DPO or FUA");
2772
2773 return;
2774 }
2775
2776 bad_sense:
2777 if (scsi_sense_valid(&sshdr) &&
2778 sshdr.sense_key == ILLEGAL_REQUEST &&
2779 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780 /* Invalid field in CDB */
2781 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782 else
2783 sd_first_printk(KERN_ERR, sdkp,
2784 "Asking for cache data failed\n");
2785
2786 defaults:
2787 if (sdp->wce_default_on) {
2788 sd_first_printk(KERN_NOTICE, sdkp,
2789 "Assuming drive cache: write back\n");
2790 sdkp->WCE = 1;
2791 } else {
2792 sd_first_printk(KERN_WARNING, sdkp,
2793 "Assuming drive cache: write through\n");
2794 sdkp->WCE = 0;
2795 }
2796 sdkp->RCD = 0;
2797 sdkp->DPOFUA = 0;
2798 }
2799
2800 /*
2801 * The ATO bit indicates whether the DIF application tag is available
2802 * for use by the operating system.
2803 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805 {
2806 int res, offset;
2807 struct scsi_device *sdp = sdkp->device;
2808 struct scsi_mode_data data;
2809 struct scsi_sense_hdr sshdr;
2810
2811 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812 return;
2813
2814 if (sdkp->protection_type == 0)
2815 return;
2816
2817 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818 sdkp->max_retries, &data, &sshdr);
2819
2820 if (res < 0 || !data.header_length ||
2821 data.length < 6) {
2822 sd_first_printk(KERN_WARNING, sdkp,
2823 "getting Control mode page failed, assume no ATO\n");
2824
2825 if (scsi_sense_valid(&sshdr))
2826 sd_print_sense_hdr(sdkp, &sshdr);
2827
2828 return;
2829 }
2830
2831 offset = data.header_length + data.block_descriptor_length;
2832
2833 if ((buffer[offset] & 0x3f) != 0x0a) {
2834 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835 return;
2836 }
2837
2838 if ((buffer[offset + 5] & 0x80) == 0)
2839 return;
2840
2841 sdkp->ATO = 1;
2842
2843 return;
2844 }
2845
2846 /**
2847 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848 * @sdkp: disk to query
2849 */
sd_read_block_limits(struct scsi_disk * sdkp)2850 static void sd_read_block_limits(struct scsi_disk *sdkp)
2851 {
2852 struct scsi_vpd *vpd;
2853
2854 rcu_read_lock();
2855
2856 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2857 if (!vpd || vpd->len < 16)
2858 goto out;
2859
2860 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2861 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2862 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2863
2864 if (vpd->len >= 64) {
2865 unsigned int lba_count, desc_count;
2866
2867 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2868
2869 if (!sdkp->lbpme)
2870 goto out;
2871
2872 lba_count = get_unaligned_be32(&vpd->data[20]);
2873 desc_count = get_unaligned_be32(&vpd->data[24]);
2874
2875 if (lba_count && desc_count)
2876 sdkp->max_unmap_blocks = lba_count;
2877
2878 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2879
2880 if (vpd->data[32] & 0x80)
2881 sdkp->unmap_alignment =
2882 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2883
2884 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2885
2886 if (sdkp->max_unmap_blocks)
2887 sd_config_discard(sdkp, SD_LBP_UNMAP);
2888 else
2889 sd_config_discard(sdkp, SD_LBP_WS16);
2890
2891 } else { /* LBP VPD page tells us what to use */
2892 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2893 sd_config_discard(sdkp, SD_LBP_UNMAP);
2894 else if (sdkp->lbpws)
2895 sd_config_discard(sdkp, SD_LBP_WS16);
2896 else if (sdkp->lbpws10)
2897 sd_config_discard(sdkp, SD_LBP_WS10);
2898 else
2899 sd_config_discard(sdkp, SD_LBP_DISABLE);
2900 }
2901 }
2902
2903 out:
2904 rcu_read_unlock();
2905 }
2906
2907 /**
2908 * sd_read_block_characteristics - Query block dev. characteristics
2909 * @sdkp: disk to query
2910 */
sd_read_block_characteristics(struct scsi_disk * sdkp)2911 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2912 {
2913 struct request_queue *q = sdkp->disk->queue;
2914 struct scsi_vpd *vpd;
2915 u16 rot;
2916 u8 zoned;
2917
2918 rcu_read_lock();
2919 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2920
2921 if (!vpd || vpd->len < 8) {
2922 rcu_read_unlock();
2923 return;
2924 }
2925
2926 rot = get_unaligned_be16(&vpd->data[4]);
2927 zoned = (vpd->data[8] >> 4) & 3;
2928 rcu_read_unlock();
2929
2930 if (rot == 1) {
2931 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933 }
2934
2935 if (sdkp->device->type == TYPE_ZBC) {
2936 /* Host-managed */
2937 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2938 } else {
2939 sdkp->zoned = zoned;
2940 if (sdkp->zoned == 1) {
2941 /* Host-aware */
2942 disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2943 } else {
2944 /* Regular disk or drive managed disk */
2945 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2946 }
2947 }
2948
2949 if (!sdkp->first_scan)
2950 return;
2951
2952 if (blk_queue_is_zoned(q)) {
2953 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2954 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2955 } else {
2956 if (sdkp->zoned == 1)
2957 sd_printk(KERN_NOTICE, sdkp,
2958 "Host-aware SMR disk used as regular disk\n");
2959 else if (sdkp->zoned == 2)
2960 sd_printk(KERN_NOTICE, sdkp,
2961 "Drive-managed SMR disk\n");
2962 }
2963 }
2964
2965 /**
2966 * sd_read_block_provisioning - Query provisioning VPD page
2967 * @sdkp: disk to query
2968 */
sd_read_block_provisioning(struct scsi_disk * sdkp)2969 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2970 {
2971 struct scsi_vpd *vpd;
2972
2973 if (sdkp->lbpme == 0)
2974 return;
2975
2976 rcu_read_lock();
2977 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
2978
2979 if (!vpd || vpd->len < 8) {
2980 rcu_read_unlock();
2981 return;
2982 }
2983
2984 sdkp->lbpvpd = 1;
2985 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
2986 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
2987 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
2988 rcu_read_unlock();
2989 }
2990
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)2991 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2992 {
2993 struct scsi_device *sdev = sdkp->device;
2994
2995 if (sdev->host->no_write_same) {
2996 sdev->no_write_same = 1;
2997
2998 return;
2999 }
3000
3001 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3002 struct scsi_vpd *vpd;
3003
3004 sdev->no_report_opcodes = 1;
3005
3006 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3007 * CODES is unsupported and the device has an ATA
3008 * Information VPD page (SAT).
3009 */
3010 rcu_read_lock();
3011 vpd = rcu_dereference(sdev->vpd_pg89);
3012 if (vpd)
3013 sdev->no_write_same = 1;
3014 rcu_read_unlock();
3015 }
3016
3017 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3018 sdkp->ws16 = 1;
3019
3020 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3021 sdkp->ws10 = 1;
3022 }
3023
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3024 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3025 {
3026 struct scsi_device *sdev = sdkp->device;
3027
3028 if (!sdev->security_supported)
3029 return;
3030
3031 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3032 SECURITY_PROTOCOL_IN) == 1 &&
3033 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3034 SECURITY_PROTOCOL_OUT) == 1)
3035 sdkp->security = 1;
3036 }
3037
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3038 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3039 {
3040 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3041 }
3042
3043 /**
3044 * sd_read_cpr - Query concurrent positioning ranges
3045 * @sdkp: disk to query
3046 */
sd_read_cpr(struct scsi_disk * sdkp)3047 static void sd_read_cpr(struct scsi_disk *sdkp)
3048 {
3049 struct blk_independent_access_ranges *iars = NULL;
3050 unsigned char *buffer = NULL;
3051 unsigned int nr_cpr = 0;
3052 int i, vpd_len, buf_len = SD_BUF_SIZE;
3053 u8 *desc;
3054
3055 /*
3056 * We need to have the capacity set first for the block layer to be
3057 * able to check the ranges.
3058 */
3059 if (sdkp->first_scan)
3060 return;
3061
3062 if (!sdkp->capacity)
3063 goto out;
3064
3065 /*
3066 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3067 * leading to a maximum page size of 64 + 256*32 bytes.
3068 */
3069 buf_len = 64 + 256*32;
3070 buffer = kmalloc(buf_len, GFP_KERNEL);
3071 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3072 goto out;
3073
3074 /* We must have at least a 64B header and one 32B range descriptor */
3075 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3076 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3077 sd_printk(KERN_ERR, sdkp,
3078 "Invalid Concurrent Positioning Ranges VPD page\n");
3079 goto out;
3080 }
3081
3082 nr_cpr = (vpd_len - 64) / 32;
3083 if (nr_cpr == 1) {
3084 nr_cpr = 0;
3085 goto out;
3086 }
3087
3088 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3089 if (!iars) {
3090 nr_cpr = 0;
3091 goto out;
3092 }
3093
3094 desc = &buffer[64];
3095 for (i = 0; i < nr_cpr; i++, desc += 32) {
3096 if (desc[0] != i) {
3097 sd_printk(KERN_ERR, sdkp,
3098 "Invalid Concurrent Positioning Range number\n");
3099 nr_cpr = 0;
3100 break;
3101 }
3102
3103 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3104 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3105 }
3106
3107 out:
3108 disk_set_independent_access_ranges(sdkp->disk, iars);
3109 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3110 sd_printk(KERN_NOTICE, sdkp,
3111 "%u concurrent positioning ranges\n", nr_cpr);
3112 sdkp->nr_actuators = nr_cpr;
3113 }
3114
3115 kfree(buffer);
3116 }
3117
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3118 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3119 {
3120 struct scsi_device *sdp = sdkp->device;
3121 unsigned int min_xfer_bytes =
3122 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3123
3124 if (sdkp->min_xfer_blocks == 0)
3125 return false;
3126
3127 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3128 sd_first_printk(KERN_WARNING, sdkp,
3129 "Preferred minimum I/O size %u bytes not a " \
3130 "multiple of physical block size (%u bytes)\n",
3131 min_xfer_bytes, sdkp->physical_block_size);
3132 sdkp->min_xfer_blocks = 0;
3133 return false;
3134 }
3135
3136 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3137 min_xfer_bytes);
3138 return true;
3139 }
3140
3141 /*
3142 * Determine the device's preferred I/O size for reads and writes
3143 * unless the reported value is unreasonably small, large, not a
3144 * multiple of the physical block size, or simply garbage.
3145 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3146 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3147 unsigned int dev_max)
3148 {
3149 struct scsi_device *sdp = sdkp->device;
3150 unsigned int opt_xfer_bytes =
3151 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3152 unsigned int min_xfer_bytes =
3153 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3154
3155 if (sdkp->opt_xfer_blocks == 0)
3156 return false;
3157
3158 if (sdkp->opt_xfer_blocks > dev_max) {
3159 sd_first_printk(KERN_WARNING, sdkp,
3160 "Optimal transfer size %u logical blocks " \
3161 "> dev_max (%u logical blocks)\n",
3162 sdkp->opt_xfer_blocks, dev_max);
3163 return false;
3164 }
3165
3166 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3167 sd_first_printk(KERN_WARNING, sdkp,
3168 "Optimal transfer size %u logical blocks " \
3169 "> sd driver limit (%u logical blocks)\n",
3170 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3171 return false;
3172 }
3173
3174 if (opt_xfer_bytes < PAGE_SIZE) {
3175 sd_first_printk(KERN_WARNING, sdkp,
3176 "Optimal transfer size %u bytes < " \
3177 "PAGE_SIZE (%u bytes)\n",
3178 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3179 return false;
3180 }
3181
3182 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3183 sd_first_printk(KERN_WARNING, sdkp,
3184 "Optimal transfer size %u bytes not a " \
3185 "multiple of preferred minimum block " \
3186 "size (%u bytes)\n",
3187 opt_xfer_bytes, min_xfer_bytes);
3188 return false;
3189 }
3190
3191 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3192 sd_first_printk(KERN_WARNING, sdkp,
3193 "Optimal transfer size %u bytes not a " \
3194 "multiple of physical block size (%u bytes)\n",
3195 opt_xfer_bytes, sdkp->physical_block_size);
3196 return false;
3197 }
3198
3199 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3200 opt_xfer_bytes);
3201 return true;
3202 }
3203
3204 /**
3205 * sd_revalidate_disk - called the first time a new disk is seen,
3206 * performs disk spin up, read_capacity, etc.
3207 * @disk: struct gendisk we care about
3208 **/
sd_revalidate_disk(struct gendisk * disk)3209 static int sd_revalidate_disk(struct gendisk *disk)
3210 {
3211 struct scsi_disk *sdkp = scsi_disk(disk);
3212 struct scsi_device *sdp = sdkp->device;
3213 struct request_queue *q = sdkp->disk->queue;
3214 sector_t old_capacity = sdkp->capacity;
3215 unsigned char *buffer;
3216 unsigned int dev_max, rw_max;
3217
3218 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3219 "sd_revalidate_disk\n"));
3220
3221 /*
3222 * If the device is offline, don't try and read capacity or any
3223 * of the other niceties.
3224 */
3225 if (!scsi_device_online(sdp))
3226 goto out;
3227
3228 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3229 if (!buffer) {
3230 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3231 "allocation failure.\n");
3232 goto out;
3233 }
3234
3235 sd_spinup_disk(sdkp);
3236
3237 /*
3238 * Without media there is no reason to ask; moreover, some devices
3239 * react badly if we do.
3240 */
3241 if (sdkp->media_present) {
3242 sd_read_capacity(sdkp, buffer);
3243
3244 /*
3245 * set the default to rotational. All non-rotational devices
3246 * support the block characteristics VPD page, which will
3247 * cause this to be updated correctly and any device which
3248 * doesn't support it should be treated as rotational.
3249 */
3250 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3251 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3252
3253 if (scsi_device_supports_vpd(sdp)) {
3254 sd_read_block_provisioning(sdkp);
3255 sd_read_block_limits(sdkp);
3256 sd_read_block_characteristics(sdkp);
3257 sd_zbc_read_zones(sdkp, buffer);
3258 sd_read_cpr(sdkp);
3259 }
3260
3261 sd_print_capacity(sdkp, old_capacity);
3262
3263 sd_read_write_protect_flag(sdkp, buffer);
3264 sd_read_cache_type(sdkp, buffer);
3265 sd_read_app_tag_own(sdkp, buffer);
3266 sd_read_write_same(sdkp, buffer);
3267 sd_read_security(sdkp, buffer);
3268 sd_config_protection(sdkp);
3269 }
3270
3271 /*
3272 * We now have all cache related info, determine how we deal
3273 * with flush requests.
3274 */
3275 sd_set_flush_flag(sdkp);
3276
3277 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3278 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3279
3280 /* Some devices report a maximum block count for READ/WRITE requests. */
3281 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3282 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3283
3284 if (sd_validate_min_xfer_size(sdkp))
3285 blk_queue_io_min(sdkp->disk->queue,
3286 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3287 else
3288 blk_queue_io_min(sdkp->disk->queue, 0);
3289
3290 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3291 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3292 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3293 } else {
3294 q->limits.io_opt = 0;
3295 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3296 (sector_t)BLK_DEF_MAX_SECTORS);
3297 }
3298
3299 /*
3300 * Limit default to SCSI host optimal sector limit if set. There may be
3301 * an impact on performance for when the size of a request exceeds this
3302 * host limit.
3303 */
3304 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3305
3306 /* Do not exceed controller limit */
3307 rw_max = min(rw_max, queue_max_hw_sectors(q));
3308
3309 /*
3310 * Only update max_sectors if previously unset or if the current value
3311 * exceeds the capabilities of the hardware.
3312 */
3313 if (sdkp->first_scan ||
3314 q->limits.max_sectors > q->limits.max_dev_sectors ||
3315 q->limits.max_sectors > q->limits.max_hw_sectors)
3316 q->limits.max_sectors = rw_max;
3317
3318 sdkp->first_scan = 0;
3319
3320 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3321 sd_config_write_same(sdkp);
3322 kfree(buffer);
3323
3324 /*
3325 * For a zoned drive, revalidating the zones can be done only once
3326 * the gendisk capacity is set. So if this fails, set back the gendisk
3327 * capacity to 0.
3328 */
3329 if (sd_zbc_revalidate_zones(sdkp))
3330 set_capacity_and_notify(disk, 0);
3331
3332 out:
3333 return 0;
3334 }
3335
3336 /**
3337 * sd_unlock_native_capacity - unlock native capacity
3338 * @disk: struct gendisk to set capacity for
3339 *
3340 * Block layer calls this function if it detects that partitions
3341 * on @disk reach beyond the end of the device. If the SCSI host
3342 * implements ->unlock_native_capacity() method, it's invoked to
3343 * give it a chance to adjust the device capacity.
3344 *
3345 * CONTEXT:
3346 * Defined by block layer. Might sleep.
3347 */
sd_unlock_native_capacity(struct gendisk * disk)3348 static void sd_unlock_native_capacity(struct gendisk *disk)
3349 {
3350 struct scsi_device *sdev = scsi_disk(disk)->device;
3351
3352 if (sdev->host->hostt->unlock_native_capacity)
3353 sdev->host->hostt->unlock_native_capacity(sdev);
3354 }
3355
3356 /**
3357 * sd_format_disk_name - format disk name
3358 * @prefix: name prefix - ie. "sd" for SCSI disks
3359 * @index: index of the disk to format name for
3360 * @buf: output buffer
3361 * @buflen: length of the output buffer
3362 *
3363 * SCSI disk names starts at sda. The 26th device is sdz and the
3364 * 27th is sdaa. The last one for two lettered suffix is sdzz
3365 * which is followed by sdaaa.
3366 *
3367 * This is basically 26 base counting with one extra 'nil' entry
3368 * at the beginning from the second digit on and can be
3369 * determined using similar method as 26 base conversion with the
3370 * index shifted -1 after each digit is computed.
3371 *
3372 * CONTEXT:
3373 * Don't care.
3374 *
3375 * RETURNS:
3376 * 0 on success, -errno on failure.
3377 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3378 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3379 {
3380 const int base = 'z' - 'a' + 1;
3381 char *begin = buf + strlen(prefix);
3382 char *end = buf + buflen;
3383 char *p;
3384 int unit;
3385
3386 p = end - 1;
3387 *p = '\0';
3388 unit = base;
3389 do {
3390 if (p == begin)
3391 return -EINVAL;
3392 *--p = 'a' + (index % unit);
3393 index = (index / unit) - 1;
3394 } while (index >= 0);
3395
3396 memmove(begin, p, end - p);
3397 memcpy(buf, prefix, strlen(prefix));
3398
3399 return 0;
3400 }
3401
3402 /**
3403 * sd_probe - called during driver initialization and whenever a
3404 * new scsi device is attached to the system. It is called once
3405 * for each scsi device (not just disks) present.
3406 * @dev: pointer to device object
3407 *
3408 * Returns 0 if successful (or not interested in this scsi device
3409 * (e.g. scanner)); 1 when there is an error.
3410 *
3411 * Note: this function is invoked from the scsi mid-level.
3412 * This function sets up the mapping between a given
3413 * <host,channel,id,lun> (found in sdp) and new device name
3414 * (e.g. /dev/sda). More precisely it is the block device major
3415 * and minor number that is chosen here.
3416 *
3417 * Assume sd_probe is not re-entrant (for time being)
3418 * Also think about sd_probe() and sd_remove() running coincidentally.
3419 **/
sd_probe(struct device * dev)3420 static int sd_probe(struct device *dev)
3421 {
3422 struct scsi_device *sdp = to_scsi_device(dev);
3423 struct scsi_disk *sdkp;
3424 struct gendisk *gd;
3425 int index;
3426 int error;
3427
3428 scsi_autopm_get_device(sdp);
3429 error = -ENODEV;
3430 if (sdp->type != TYPE_DISK &&
3431 sdp->type != TYPE_ZBC &&
3432 sdp->type != TYPE_MOD &&
3433 sdp->type != TYPE_RBC)
3434 goto out;
3435
3436 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3437 sdev_printk(KERN_WARNING, sdp,
3438 "Unsupported ZBC host-managed device.\n");
3439 goto out;
3440 }
3441
3442 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3443 "sd_probe\n"));
3444
3445 error = -ENOMEM;
3446 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3447 if (!sdkp)
3448 goto out;
3449
3450 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3451 &sd_bio_compl_lkclass);
3452 if (!gd)
3453 goto out_free;
3454
3455 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3456 if (index < 0) {
3457 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3458 goto out_put;
3459 }
3460
3461 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3462 if (error) {
3463 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3464 goto out_free_index;
3465 }
3466
3467 sdkp->device = sdp;
3468 sdkp->disk = gd;
3469 sdkp->index = index;
3470 sdkp->max_retries = SD_MAX_RETRIES;
3471 atomic_set(&sdkp->openers, 0);
3472 atomic_set(&sdkp->device->ioerr_cnt, 0);
3473
3474 if (!sdp->request_queue->rq_timeout) {
3475 if (sdp->type != TYPE_MOD)
3476 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3477 else
3478 blk_queue_rq_timeout(sdp->request_queue,
3479 SD_MOD_TIMEOUT);
3480 }
3481
3482 device_initialize(&sdkp->disk_dev);
3483 sdkp->disk_dev.parent = get_device(dev);
3484 sdkp->disk_dev.class = &sd_disk_class;
3485 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3486
3487 error = device_add(&sdkp->disk_dev);
3488 if (error) {
3489 put_device(&sdkp->disk_dev);
3490 goto out;
3491 }
3492
3493 dev_set_drvdata(dev, sdkp);
3494
3495 gd->major = sd_major((index & 0xf0) >> 4);
3496 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3497 gd->minors = SD_MINORS;
3498
3499 gd->fops = &sd_fops;
3500 gd->private_data = sdkp;
3501
3502 /* defaults, until the device tells us otherwise */
3503 sdp->sector_size = 512;
3504 sdkp->capacity = 0;
3505 sdkp->media_present = 1;
3506 sdkp->write_prot = 0;
3507 sdkp->cache_override = 0;
3508 sdkp->WCE = 0;
3509 sdkp->RCD = 0;
3510 sdkp->ATO = 0;
3511 sdkp->first_scan = 1;
3512 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3513
3514 sd_revalidate_disk(gd);
3515
3516 if (sdp->removable) {
3517 gd->flags |= GENHD_FL_REMOVABLE;
3518 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3519 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3520 }
3521
3522 blk_pm_runtime_init(sdp->request_queue, dev);
3523 if (sdp->rpm_autosuspend) {
3524 pm_runtime_set_autosuspend_delay(dev,
3525 sdp->host->hostt->rpm_autosuspend_delay);
3526 }
3527
3528 error = device_add_disk(dev, gd, NULL);
3529 if (error) {
3530 put_device(&sdkp->disk_dev);
3531 put_disk(gd);
3532 goto out;
3533 }
3534
3535 if (sdkp->security) {
3536 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3537 if (sdkp->opal_dev)
3538 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3539 }
3540
3541 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3542 sdp->removable ? "removable " : "");
3543 scsi_autopm_put_device(sdp);
3544
3545 return 0;
3546
3547 out_free_index:
3548 ida_free(&sd_index_ida, index);
3549 out_put:
3550 put_disk(gd);
3551 out_free:
3552 kfree(sdkp);
3553 out:
3554 scsi_autopm_put_device(sdp);
3555 return error;
3556 }
3557
3558 /**
3559 * sd_remove - called whenever a scsi disk (previously recognized by
3560 * sd_probe) is detached from the system. It is called (potentially
3561 * multiple times) during sd module unload.
3562 * @dev: pointer to device object
3563 *
3564 * Note: this function is invoked from the scsi mid-level.
3565 * This function potentially frees up a device name (e.g. /dev/sdc)
3566 * that could be re-used by a subsequent sd_probe().
3567 * This function is not called when the built-in sd driver is "exit-ed".
3568 **/
sd_remove(struct device * dev)3569 static int sd_remove(struct device *dev)
3570 {
3571 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3572
3573 scsi_autopm_get_device(sdkp->device);
3574
3575 device_del(&sdkp->disk_dev);
3576 del_gendisk(sdkp->disk);
3577 sd_shutdown(dev);
3578
3579 put_disk(sdkp->disk);
3580 return 0;
3581 }
3582
scsi_disk_release(struct device * dev)3583 static void scsi_disk_release(struct device *dev)
3584 {
3585 struct scsi_disk *sdkp = to_scsi_disk(dev);
3586
3587 ida_free(&sd_index_ida, sdkp->index);
3588 sd_zbc_free_zone_info(sdkp);
3589 put_device(&sdkp->device->sdev_gendev);
3590 free_opal_dev(sdkp->opal_dev);
3591
3592 kfree(sdkp);
3593 }
3594
sd_start_stop_device(struct scsi_disk * sdkp,int start)3595 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3596 {
3597 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3598 struct scsi_sense_hdr sshdr;
3599 struct scsi_device *sdp = sdkp->device;
3600 int res;
3601
3602 if (start)
3603 cmd[4] |= 1; /* START */
3604
3605 if (sdp->start_stop_pwr_cond)
3606 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3607
3608 if (!scsi_device_online(sdp))
3609 return -ENODEV;
3610
3611 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3612 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3613 if (res) {
3614 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3615 if (res > 0 && scsi_sense_valid(&sshdr)) {
3616 sd_print_sense_hdr(sdkp, &sshdr);
3617 /* 0x3a is medium not present */
3618 if (sshdr.asc == 0x3a)
3619 res = 0;
3620 }
3621 }
3622
3623 /* SCSI error codes must not go to the generic layer */
3624 if (res)
3625 return -EIO;
3626
3627 return 0;
3628 }
3629
3630 /*
3631 * Send a SYNCHRONIZE CACHE instruction down to the device through
3632 * the normal SCSI command structure. Wait for the command to
3633 * complete.
3634 */
sd_shutdown(struct device * dev)3635 static void sd_shutdown(struct device *dev)
3636 {
3637 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3638
3639 if (!sdkp)
3640 return; /* this can happen */
3641
3642 if (pm_runtime_suspended(dev))
3643 return;
3644
3645 if (sdkp->WCE && sdkp->media_present) {
3646 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3647 sd_sync_cache(sdkp, NULL);
3648 }
3649
3650 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3651 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3652 sd_start_stop_device(sdkp, 0);
3653 }
3654 }
3655
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3656 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3657 {
3658 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3659 struct scsi_sense_hdr sshdr;
3660 int ret = 0;
3661
3662 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3663 return 0;
3664
3665 if (sdkp->WCE && sdkp->media_present) {
3666 if (!sdkp->device->silence_suspend)
3667 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3668 ret = sd_sync_cache(sdkp, &sshdr);
3669
3670 if (ret) {
3671 /* ignore OFFLINE device */
3672 if (ret == -ENODEV)
3673 return 0;
3674
3675 if (!scsi_sense_valid(&sshdr) ||
3676 sshdr.sense_key != ILLEGAL_REQUEST)
3677 return ret;
3678
3679 /*
3680 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3681 * doesn't support sync. There's not much to do and
3682 * suspend shouldn't fail.
3683 */
3684 ret = 0;
3685 }
3686 }
3687
3688 if (sdkp->device->manage_start_stop) {
3689 if (!sdkp->device->silence_suspend)
3690 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3691 /* an error is not worth aborting a system sleep */
3692 ret = sd_start_stop_device(sdkp, 0);
3693 if (ignore_stop_errors)
3694 ret = 0;
3695 }
3696
3697 return ret;
3698 }
3699
sd_suspend_system(struct device * dev)3700 static int sd_suspend_system(struct device *dev)
3701 {
3702 if (pm_runtime_suspended(dev))
3703 return 0;
3704
3705 return sd_suspend_common(dev, true);
3706 }
3707
sd_suspend_runtime(struct device * dev)3708 static int sd_suspend_runtime(struct device *dev)
3709 {
3710 return sd_suspend_common(dev, false);
3711 }
3712
sd_resume(struct device * dev)3713 static int sd_resume(struct device *dev)
3714 {
3715 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3716 int ret;
3717
3718 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3719 return 0;
3720
3721 if (!sdkp->device->manage_start_stop)
3722 return 0;
3723
3724 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3725 ret = sd_start_stop_device(sdkp, 1);
3726 if (!ret)
3727 opal_unlock_from_suspend(sdkp->opal_dev);
3728 return ret;
3729 }
3730
sd_resume_system(struct device * dev)3731 static int sd_resume_system(struct device *dev)
3732 {
3733 if (pm_runtime_suspended(dev))
3734 return 0;
3735
3736 return sd_resume(dev);
3737 }
3738
sd_resume_runtime(struct device * dev)3739 static int sd_resume_runtime(struct device *dev)
3740 {
3741 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3742 struct scsi_device *sdp;
3743
3744 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3745 return 0;
3746
3747 sdp = sdkp->device;
3748
3749 if (sdp->ignore_media_change) {
3750 /* clear the device's sense data */
3751 static const u8 cmd[10] = { REQUEST_SENSE };
3752
3753 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3754 NULL, sdp->request_queue->rq_timeout, 1, 0,
3755 RQF_PM, NULL))
3756 sd_printk(KERN_NOTICE, sdkp,
3757 "Failed to clear sense data\n");
3758 }
3759
3760 return sd_resume(dev);
3761 }
3762
3763 /**
3764 * init_sd - entry point for this driver (both when built in or when
3765 * a module).
3766 *
3767 * Note: this function registers this driver with the scsi mid-level.
3768 **/
init_sd(void)3769 static int __init init_sd(void)
3770 {
3771 int majors = 0, i, err;
3772
3773 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3774
3775 for (i = 0; i < SD_MAJORS; i++) {
3776 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3777 continue;
3778 majors++;
3779 }
3780
3781 if (!majors)
3782 return -ENODEV;
3783
3784 err = class_register(&sd_disk_class);
3785 if (err)
3786 goto err_out;
3787
3788 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3789 0, 0, NULL);
3790 if (!sd_cdb_cache) {
3791 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3792 err = -ENOMEM;
3793 goto err_out_class;
3794 }
3795
3796 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3797 if (!sd_page_pool) {
3798 printk(KERN_ERR "sd: can't init discard page pool\n");
3799 err = -ENOMEM;
3800 goto err_out_cache;
3801 }
3802
3803 err = scsi_register_driver(&sd_template.gendrv);
3804 if (err)
3805 goto err_out_driver;
3806
3807 return 0;
3808
3809 err_out_driver:
3810 mempool_destroy(sd_page_pool);
3811
3812 err_out_cache:
3813 kmem_cache_destroy(sd_cdb_cache);
3814
3815 err_out_class:
3816 class_unregister(&sd_disk_class);
3817 err_out:
3818 for (i = 0; i < SD_MAJORS; i++)
3819 unregister_blkdev(sd_major(i), "sd");
3820 return err;
3821 }
3822
3823 /**
3824 * exit_sd - exit point for this driver (when it is a module).
3825 *
3826 * Note: this function unregisters this driver from the scsi mid-level.
3827 **/
exit_sd(void)3828 static void __exit exit_sd(void)
3829 {
3830 int i;
3831
3832 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3833
3834 scsi_unregister_driver(&sd_template.gendrv);
3835 mempool_destroy(sd_page_pool);
3836 kmem_cache_destroy(sd_cdb_cache);
3837
3838 class_unregister(&sd_disk_class);
3839
3840 for (i = 0; i < SD_MAJORS; i++)
3841 unregister_blkdev(sd_major(i), "sd");
3842 }
3843
3844 module_init(init_sd);
3845 module_exit(exit_sd);
3846
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3847 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3848 {
3849 scsi_print_sense_hdr(sdkp->device,
3850 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3851 }
3852
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3853 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3854 {
3855 const char *hb_string = scsi_hostbyte_string(result);
3856
3857 if (hb_string)
3858 sd_printk(KERN_INFO, sdkp,
3859 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3860 hb_string ? hb_string : "invalid",
3861 "DRIVER_OK");
3862 else
3863 sd_printk(KERN_INFO, sdkp,
3864 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3865 msg, host_byte(result), "DRIVER_OK");
3866 }
3867