1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 struct cmos_rtc {
47 	struct rtc_device	*rtc;
48 	struct device		*dev;
49 	int			irq;
50 	struct resource		*iomem;
51 
52 	void			(*wake_on)(struct device *);
53 	void			(*wake_off)(struct device *);
54 
55 	u8			enabled_wake;
56 	u8			suspend_ctrl;
57 
58 	/* newer hardware extends the original register set */
59 	u8			day_alrm;
60 	u8			mon_alrm;
61 	u8			century;
62 };
63 
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)		((n) > 0)
66 
67 static const char driver_name[] = "rtc_cmos";
68 
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74 
is_intr(u8 rtc_intr)75 static inline int is_intr(u8 rtc_intr)
76 {
77 	if (!(rtc_intr & RTC_IRQF))
78 		return 0;
79 	return rtc_intr & RTC_IRQMASK;
80 }
81 
82 /*----------------------------------------------------------------*/
83 
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97 
is_hpet_enabled(void)98 static inline int is_hpet_enabled(void)
99 {
100 	return 0;
101 }
102 
hpet_mask_rtc_irq_bit(unsigned long mask)103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 	return 0;
106 }
107 
hpet_set_rtc_irq_bit(unsigned long mask)108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 	return 0;
117 }
118 
hpet_set_periodic_freq(unsigned long freq)119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 	return 0;
122 }
123 
hpet_rtc_dropped_irq(void)124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 	return 0;
127 }
128 
hpet_rtc_timer_init(void)129 static inline int hpet_rtc_timer_init(void)
130 {
131 	return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
hpet_register_irq_handler(irq_handler_t handler)136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 	return 0;
139 }
140 
hpet_unregister_irq_handler(irq_handler_t handler)141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2	true
157 
cmos_read_bank2(unsigned char addr)158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 	outb(addr, RTC_PORT(2));
161 	return inb(RTC_PORT(3));
162 }
163 
cmos_write_bank2(unsigned char val,unsigned char addr)164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2	false
173 
cmos_read_bank2(unsigned char addr)174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 	return 0;
177 }
178 
cmos_write_bank2(unsigned char val,unsigned char addr)179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
cmos_read_time(struct device * dev,struct rtc_time * t)187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 	/* REVISIT:  if the clock has a "century" register, use
190 	 * that instead of the heuristic in get_rtc_time().
191 	 * That'll make Y3K compatility (year > 2070) easy!
192 	 */
193 	get_rtc_time(t);
194 	return 0;
195 }
196 
cmos_set_time(struct device * dev,struct rtc_time * t)197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 	/* REVISIT:  set the "century" register if available
200 	 *
201 	 * NOTE: this ignores the issue whereby updating the seconds
202 	 * takes effect exactly 500ms after we write the register.
203 	 * (Also queueing and other delays before we get this far.)
204 	 */
205 	return set_rtc_time(t);
206 }
207 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211 	unsigned char	rtc_control;
212 
213 	if (!is_valid_irq(cmos->irq))
214 		return -EIO;
215 
216 	/* Basic alarms only support hour, minute, and seconds fields.
217 	 * Some also support day and month, for alarms up to a year in
218 	 * the future.
219 	 */
220 	t->time.tm_mday = -1;
221 	t->time.tm_mon = -1;
222 
223 	spin_lock_irq(&rtc_lock);
224 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228 	if (cmos->day_alrm) {
229 		/* ignore upper bits on readback per ACPI spec */
230 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 		if (!t->time.tm_mday)
232 			t->time.tm_mday = -1;
233 
234 		if (cmos->mon_alrm) {
235 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 			if (!t->time.tm_mon)
237 				t->time.tm_mon = -1;
238 		}
239 	}
240 
241 	rtc_control = CMOS_READ(RTC_CONTROL);
242 	spin_unlock_irq(&rtc_lock);
243 
244 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 		if (((unsigned)t->time.tm_sec) < 0x60)
246 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 		else
248 			t->time.tm_sec = -1;
249 		if (((unsigned)t->time.tm_min) < 0x60)
250 			t->time.tm_min = bcd2bin(t->time.tm_min);
251 		else
252 			t->time.tm_min = -1;
253 		if (((unsigned)t->time.tm_hour) < 0x24)
254 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 		else
256 			t->time.tm_hour = -1;
257 
258 		if (cmos->day_alrm) {
259 			if (((unsigned)t->time.tm_mday) <= 0x31)
260 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 			else
262 				t->time.tm_mday = -1;
263 
264 			if (cmos->mon_alrm) {
265 				if (((unsigned)t->time.tm_mon) <= 0x12)
266 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 				else
268 					t->time.tm_mon = -1;
269 			}
270 		}
271 	}
272 	t->time.tm_year = -1;
273 
274 	t->enabled = !!(rtc_control & RTC_AIE);
275 	t->pending = 0;
276 
277 	return 0;
278 }
279 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 	unsigned char	rtc_intr;
283 
284 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 	 * allegedly some older rtcs need that to handle irqs properly
286 	 */
287 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289 	if (is_hpet_enabled())
290 		return;
291 
292 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 	if (is_intr(rtc_intr))
294 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 	unsigned char	rtc_control;
300 
301 	/* flush any pending IRQ status, notably for update irqs,
302 	 * before we enable new IRQs
303 	 */
304 	rtc_control = CMOS_READ(RTC_CONTROL);
305 	cmos_checkintr(cmos, rtc_control);
306 
307 	rtc_control |= mask;
308 	CMOS_WRITE(rtc_control, RTC_CONTROL);
309 	hpet_set_rtc_irq_bit(mask);
310 
311 	cmos_checkintr(cmos, rtc_control);
312 }
313 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 	unsigned char	rtc_control;
317 
318 	rtc_control = CMOS_READ(RTC_CONTROL);
319 	rtc_control &= ~mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_mask_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329        unsigned char   mon, mday, hrs, min, sec, rtc_control;
330 
331 	if (!is_valid_irq(cmos->irq))
332 		return -EIO;
333 
334 	mon = t->time.tm_mon + 1;
335 	mday = t->time.tm_mday;
336 	hrs = t->time.tm_hour;
337 	min = t->time.tm_min;
338 	sec = t->time.tm_sec;
339 
340 	rtc_control = CMOS_READ(RTC_CONTROL);
341 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 		/* Writing 0xff means "don't care" or "match all".  */
343 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 		min = (min < 60) ? bin2bcd(min) : 0xff;
347 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 	}
349 
350 	spin_lock_irq(&rtc_lock);
351 
352 	/* next rtc irq must not be from previous alarm setting */
353 	cmos_irq_disable(cmos, RTC_AIE);
354 
355 	/* update alarm */
356 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360 	/* the system may support an "enhanced" alarm */
361 	if (cmos->day_alrm) {
362 		CMOS_WRITE(mday, cmos->day_alrm);
363 		if (cmos->mon_alrm)
364 			CMOS_WRITE(mon, cmos->mon_alrm);
365 	}
366 
367 	/* FIXME the HPET alarm glue currently ignores day_alrm
368 	 * and mon_alrm ...
369 	 */
370 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372 	if (t->enabled)
373 		cmos_irq_enable(cmos, RTC_AIE);
374 
375 	spin_unlock_irq(&rtc_lock);
376 
377 	return 0;
378 }
379 
380 /*
381  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382  */
383 static bool alarm_disable_quirk;
384 
set_alarm_disable_quirk(const struct dmi_system_id * id)385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387 	alarm_disable_quirk = true;
388 	pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 	pr_info("RTC alarms disabled\n");
390 	return 0;
391 }
392 
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 	{
396 		.callback = set_alarm_disable_quirk,
397 		.ident    = "IBM Truman",
398 		.matches  = {
399 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 		},
402 	},
403 	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 	{
405 		.callback = set_alarm_disable_quirk,
406 		.ident    = "Gigabyte GA-990XA-UD3",
407 		.matches  = {
408 			DMI_MATCH(DMI_SYS_VENDOR,
409 					"Gigabyte Technology Co., Ltd."),
410 			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 		},
412 	},
413 	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 	{
415 		.callback = set_alarm_disable_quirk,
416 		.ident    = "Toshiba Satellite L300",
417 		.matches  = {
418 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 		},
421 	},
422 	{}
423 };
424 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
428 	unsigned long	flags;
429 
430 	if (!is_valid_irq(cmos->irq))
431 		return -EINVAL;
432 
433 	if (alarm_disable_quirk)
434 		return 0;
435 
436 	spin_lock_irqsave(&rtc_lock, flags);
437 
438 	if (enabled)
439 		cmos_irq_enable(cmos, RTC_AIE);
440 	else
441 		cmos_irq_disable(cmos, RTC_AIE);
442 
443 	spin_unlock_irqrestore(&rtc_lock, flags);
444 	return 0;
445 }
446 
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448 
cmos_procfs(struct device * dev,struct seq_file * seq)449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
452 	unsigned char	rtc_control, valid;
453 
454 	spin_lock_irq(&rtc_lock);
455 	rtc_control = CMOS_READ(RTC_CONTROL);
456 	valid = CMOS_READ(RTC_VALID);
457 	spin_unlock_irq(&rtc_lock);
458 
459 	/* NOTE:  at least ICH6 reports battery status using a different
460 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 	 */
462 	return seq_printf(seq,
463 			"periodic_IRQ\t: %s\n"
464 			"update_IRQ\t: %s\n"
465 			"HPET_emulated\t: %s\n"
466 			// "square_wave\t: %s\n"
467 			"BCD\t\t: %s\n"
468 			"DST_enable\t: %s\n"
469 			"periodic_freq\t: %d\n"
470 			"batt_status\t: %s\n",
471 			(rtc_control & RTC_PIE) ? "yes" : "no",
472 			(rtc_control & RTC_UIE) ? "yes" : "no",
473 			is_hpet_enabled() ? "yes" : "no",
474 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
475 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
477 			cmos->rtc->irq_freq,
478 			(valid & RTC_VRT) ? "okay" : "dead");
479 }
480 
481 #else
482 #define	cmos_procfs	NULL
483 #endif
484 
485 static const struct rtc_class_ops cmos_rtc_ops = {
486 	.read_time		= cmos_read_time,
487 	.set_time		= cmos_set_time,
488 	.read_alarm		= cmos_read_alarm,
489 	.set_alarm		= cmos_set_alarm,
490 	.proc			= cmos_procfs,
491 	.alarm_irq_enable	= cmos_alarm_irq_enable,
492 };
493 
494 /*----------------------------------------------------------------*/
495 
496 /*
497  * All these chips have at least 64 bytes of address space, shared by
498  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
499  * by boot firmware.  Modern chips have 128 or 256 bytes.
500  */
501 
502 #define NVRAM_OFFSET	(RTC_REG_D + 1)
503 
504 static ssize_t
cmos_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 		struct bin_attribute *attr,
507 		char *buf, loff_t off, size_t count)
508 {
509 	int	retval;
510 
511 	if (unlikely(off >= attr->size))
512 		return 0;
513 	if (unlikely(off < 0))
514 		return -EINVAL;
515 	if ((off + count) > attr->size)
516 		count = attr->size - off;
517 
518 	off += NVRAM_OFFSET;
519 	spin_lock_irq(&rtc_lock);
520 	for (retval = 0; count; count--, off++, retval++) {
521 		if (off < 128)
522 			*buf++ = CMOS_READ(off);
523 		else if (can_bank2)
524 			*buf++ = cmos_read_bank2(off);
525 		else
526 			break;
527 	}
528 	spin_unlock_irq(&rtc_lock);
529 
530 	return retval;
531 }
532 
533 static ssize_t
cmos_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 		struct bin_attribute *attr,
536 		char *buf, loff_t off, size_t count)
537 {
538 	struct cmos_rtc	*cmos;
539 	int		retval;
540 
541 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 	if (unlikely(off >= attr->size))
543 		return -EFBIG;
544 	if (unlikely(off < 0))
545 		return -EINVAL;
546 	if ((off + count) > attr->size)
547 		count = attr->size - off;
548 
549 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
550 	 * checksum on part of the NVRAM data.  That's currently ignored
551 	 * here.  If userspace is smart enough to know what fields of
552 	 * NVRAM to update, updating checksums is also part of its job.
553 	 */
554 	off += NVRAM_OFFSET;
555 	spin_lock_irq(&rtc_lock);
556 	for (retval = 0; count; count--, off++, retval++) {
557 		/* don't trash RTC registers */
558 		if (off == cmos->day_alrm
559 				|| off == cmos->mon_alrm
560 				|| off == cmos->century)
561 			buf++;
562 		else if (off < 128)
563 			CMOS_WRITE(*buf++, off);
564 		else if (can_bank2)
565 			cmos_write_bank2(*buf++, off);
566 		else
567 			break;
568 	}
569 	spin_unlock_irq(&rtc_lock);
570 
571 	return retval;
572 }
573 
574 static struct bin_attribute nvram = {
575 	.attr = {
576 		.name	= "nvram",
577 		.mode	= S_IRUGO | S_IWUSR,
578 	},
579 
580 	.read	= cmos_nvram_read,
581 	.write	= cmos_nvram_write,
582 	/* size gets set up later */
583 };
584 
585 /*----------------------------------------------------------------*/
586 
587 static struct cmos_rtc	cmos_rtc;
588 
cmos_interrupt(int irq,void * p)589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591 	u8		irqstat;
592 	u8		rtc_control;
593 
594 	spin_lock(&rtc_lock);
595 
596 	/* When the HPET interrupt handler calls us, the interrupt
597 	 * status is passed as arg1 instead of the irq number.  But
598 	 * always clear irq status, even when HPET is in the way.
599 	 *
600 	 * Note that HPET and RTC are almost certainly out of phase,
601 	 * giving different IRQ status ...
602 	 */
603 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 	rtc_control = CMOS_READ(RTC_CONTROL);
605 	if (is_hpet_enabled())
606 		irqstat = (unsigned long)irq & 0xF0;
607 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
608 
609 	/* All Linux RTC alarms should be treated as if they were oneshot.
610 	 * Similar code may be needed in system wakeup paths, in case the
611 	 * alarm woke the system.
612 	 */
613 	if (irqstat & RTC_AIE) {
614 		rtc_control &= ~RTC_AIE;
615 		CMOS_WRITE(rtc_control, RTC_CONTROL);
616 		hpet_mask_rtc_irq_bit(RTC_AIE);
617 
618 		CMOS_READ(RTC_INTR_FLAGS);
619 	}
620 	spin_unlock(&rtc_lock);
621 
622 	if (is_intr(irqstat)) {
623 		rtc_update_irq(p, 1, irqstat);
624 		return IRQ_HANDLED;
625 	} else
626 		return IRQ_NONE;
627 }
628 
629 #ifdef	CONFIG_PNP
630 #define	INITSECTION
631 
632 #else
633 #define	INITSECTION	__init
634 #endif
635 
636 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)637 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
638 {
639 	struct cmos_rtc_board_info	*info = dev->platform_data;
640 	int				retval = 0;
641 	unsigned char			rtc_control;
642 	unsigned			address_space;
643 
644 	/* there can be only one ... */
645 	if (cmos_rtc.dev)
646 		return -EBUSY;
647 
648 	if (!ports)
649 		return -ENODEV;
650 
651 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
652 	 *
653 	 * REVISIT non-x86 systems may instead use memory space resources
654 	 * (needing ioremap etc), not i/o space resources like this ...
655 	 */
656 	ports = request_region(ports->start,
657 			resource_size(ports),
658 			driver_name);
659 	if (!ports) {
660 		dev_dbg(dev, "i/o registers already in use\n");
661 		return -EBUSY;
662 	}
663 
664 	cmos_rtc.irq = rtc_irq;
665 	cmos_rtc.iomem = ports;
666 
667 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
668 	 * driver did, but don't reject unknown configs.   Old hardware
669 	 * won't address 128 bytes.  Newer chips have multiple banks,
670 	 * though they may not be listed in one I/O resource.
671 	 */
672 #if	defined(CONFIG_ATARI)
673 	address_space = 64;
674 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
675 			|| defined(__sparc__) || defined(__mips__) \
676 			|| defined(__powerpc__)
677 	address_space = 128;
678 #else
679 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
680 	address_space = 128;
681 #endif
682 	if (can_bank2 && ports->end > (ports->start + 1))
683 		address_space = 256;
684 
685 	/* For ACPI systems extension info comes from the FADT.  On others,
686 	 * board specific setup provides it as appropriate.  Systems where
687 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
688 	 * some almost-clones) can provide hooks to make that behave.
689 	 *
690 	 * Note that ACPI doesn't preclude putting these registers into
691 	 * "extended" areas of the chip, including some that we won't yet
692 	 * expect CMOS_READ and friends to handle.
693 	 */
694 	if (info) {
695 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
696 			cmos_rtc.day_alrm = info->rtc_day_alarm;
697 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
698 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
699 		if (info->rtc_century && info->rtc_century < 128)
700 			cmos_rtc.century = info->rtc_century;
701 
702 		if (info->wake_on && info->wake_off) {
703 			cmos_rtc.wake_on = info->wake_on;
704 			cmos_rtc.wake_off = info->wake_off;
705 		}
706 	}
707 
708 	cmos_rtc.dev = dev;
709 	dev_set_drvdata(dev, &cmos_rtc);
710 
711 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
712 				&cmos_rtc_ops, THIS_MODULE);
713 	if (IS_ERR(cmos_rtc.rtc)) {
714 		retval = PTR_ERR(cmos_rtc.rtc);
715 		goto cleanup0;
716 	}
717 
718 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
719 
720 	spin_lock_irq(&rtc_lock);
721 
722 	/* force periodic irq to CMOS reset default of 1024Hz;
723 	 *
724 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
725 	 * doesn't use 32KHz here ... for portability we might need to
726 	 * do something about other clock frequencies.
727 	 */
728 	cmos_rtc.rtc->irq_freq = 1024;
729 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
730 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
731 
732 	/* disable irqs */
733 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
734 
735 	rtc_control = CMOS_READ(RTC_CONTROL);
736 
737 	spin_unlock_irq(&rtc_lock);
738 
739 	/* FIXME:
740 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
741 	 */
742        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
743 		dev_warn(dev, "only 24-hr supported\n");
744 		retval = -ENXIO;
745 		goto cleanup1;
746 	}
747 
748 	if (is_valid_irq(rtc_irq)) {
749 		irq_handler_t rtc_cmos_int_handler;
750 
751 		if (is_hpet_enabled()) {
752 			int err;
753 
754 			rtc_cmos_int_handler = hpet_rtc_interrupt;
755 			err = hpet_register_irq_handler(cmos_interrupt);
756 			if (err != 0) {
757 				printk(KERN_WARNING "hpet_register_irq_handler "
758 						" failed in rtc_init().");
759 				goto cleanup1;
760 			}
761 		} else
762 			rtc_cmos_int_handler = cmos_interrupt;
763 
764 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
765 				0, dev_name(&cmos_rtc.rtc->dev),
766 				cmos_rtc.rtc);
767 		if (retval < 0) {
768 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
769 			goto cleanup1;
770 		}
771 	}
772 	hpet_rtc_timer_init();
773 
774 	/* export at least the first block of NVRAM */
775 	nvram.size = address_space - NVRAM_OFFSET;
776 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
777 	if (retval < 0) {
778 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
779 		goto cleanup2;
780 	}
781 
782 	pr_info("%s: %s%s, %zd bytes nvram%s\n",
783 		dev_name(&cmos_rtc.rtc->dev),
784 		!is_valid_irq(rtc_irq) ? "no alarms" :
785 			cmos_rtc.mon_alrm ? "alarms up to one year" :
786 			cmos_rtc.day_alrm ? "alarms up to one month" :
787 			"alarms up to one day",
788 		cmos_rtc.century ? ", y3k" : "",
789 		nvram.size,
790 		is_hpet_enabled() ? ", hpet irqs" : "");
791 
792 	return 0;
793 
794 cleanup2:
795 	if (is_valid_irq(rtc_irq))
796 		free_irq(rtc_irq, cmos_rtc.rtc);
797 cleanup1:
798 	cmos_rtc.dev = NULL;
799 	rtc_device_unregister(cmos_rtc.rtc);
800 cleanup0:
801 	release_region(ports->start, resource_size(ports));
802 	return retval;
803 }
804 
cmos_do_shutdown(void)805 static void cmos_do_shutdown(void)
806 {
807 	spin_lock_irq(&rtc_lock);
808 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
809 	spin_unlock_irq(&rtc_lock);
810 }
811 
cmos_do_remove(struct device * dev)812 static void __exit cmos_do_remove(struct device *dev)
813 {
814 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
815 	struct resource *ports;
816 
817 	cmos_do_shutdown();
818 
819 	sysfs_remove_bin_file(&dev->kobj, &nvram);
820 
821 	if (is_valid_irq(cmos->irq)) {
822 		free_irq(cmos->irq, cmos->rtc);
823 		hpet_unregister_irq_handler(cmos_interrupt);
824 	}
825 
826 	rtc_device_unregister(cmos->rtc);
827 	cmos->rtc = NULL;
828 
829 	ports = cmos->iomem;
830 	release_region(ports->start, resource_size(ports));
831 	cmos->iomem = NULL;
832 
833 	cmos->dev = NULL;
834 	dev_set_drvdata(dev, NULL);
835 }
836 
837 #ifdef	CONFIG_PM
838 
cmos_suspend(struct device * dev)839 static int cmos_suspend(struct device *dev)
840 {
841 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
842 	unsigned char	tmp;
843 
844 	/* only the alarm might be a wakeup event source */
845 	spin_lock_irq(&rtc_lock);
846 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
847 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
848 		unsigned char	mask;
849 
850 		if (device_may_wakeup(dev))
851 			mask = RTC_IRQMASK & ~RTC_AIE;
852 		else
853 			mask = RTC_IRQMASK;
854 		tmp &= ~mask;
855 		CMOS_WRITE(tmp, RTC_CONTROL);
856 		hpet_mask_rtc_irq_bit(mask);
857 
858 		cmos_checkintr(cmos, tmp);
859 	}
860 	spin_unlock_irq(&rtc_lock);
861 
862 	if (tmp & RTC_AIE) {
863 		cmos->enabled_wake = 1;
864 		if (cmos->wake_on)
865 			cmos->wake_on(dev);
866 		else
867 			enable_irq_wake(cmos->irq);
868 	}
869 
870 	pr_debug("%s: suspend%s, ctrl %02x\n",
871 			dev_name(&cmos_rtc.rtc->dev),
872 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
873 			tmp);
874 
875 	return 0;
876 }
877 
878 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
879  * after a detour through G3 "mechanical off", although the ACPI spec
880  * says wakeup should only work from G1/S4 "hibernate".  To most users,
881  * distinctions between S4 and S5 are pointless.  So when the hardware
882  * allows, don't draw that distinction.
883  */
cmos_poweroff(struct device * dev)884 static inline int cmos_poweroff(struct device *dev)
885 {
886 	return cmos_suspend(dev);
887 }
888 
cmos_resume(struct device * dev)889 static int cmos_resume(struct device *dev)
890 {
891 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
892 	unsigned char	tmp = cmos->suspend_ctrl;
893 
894 	/* re-enable any irqs previously active */
895 	if (tmp & RTC_IRQMASK) {
896 		unsigned char	mask;
897 
898 		if (cmos->enabled_wake) {
899 			if (cmos->wake_off)
900 				cmos->wake_off(dev);
901 			else
902 				disable_irq_wake(cmos->irq);
903 			cmos->enabled_wake = 0;
904 		}
905 
906 		spin_lock_irq(&rtc_lock);
907 		do {
908 			CMOS_WRITE(tmp, RTC_CONTROL);
909 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
910 
911 			mask = CMOS_READ(RTC_INTR_FLAGS);
912 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
913 			if (!is_hpet_enabled() || !is_intr(mask))
914 				break;
915 
916 			/* force one-shot behavior if HPET blocked
917 			 * the wake alarm's irq
918 			 */
919 			rtc_update_irq(cmos->rtc, 1, mask);
920 			tmp &= ~RTC_AIE;
921 			hpet_mask_rtc_irq_bit(RTC_AIE);
922 			hpet_rtc_timer_init();
923 		} while (mask & RTC_AIE);
924 		spin_unlock_irq(&rtc_lock);
925 	}
926 
927 	pr_debug("%s: resume, ctrl %02x\n",
928 			dev_name(&cmos_rtc.rtc->dev),
929 			tmp);
930 
931 	return 0;
932 }
933 
934 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
935 
936 #else
937 
cmos_poweroff(struct device * dev)938 static inline int cmos_poweroff(struct device *dev)
939 {
940 	return -ENOSYS;
941 }
942 
943 #endif
944 
945 /*----------------------------------------------------------------*/
946 
947 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
948  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
949  * probably list them in similar PNPBIOS tables; so PNP is more common.
950  *
951  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
952  * predate even PNPBIOS should set up platform_bus devices.
953  */
954 
955 #ifdef	CONFIG_ACPI
956 
957 #include <linux/acpi.h>
958 
rtc_handler(void * context)959 static u32 rtc_handler(void *context)
960 {
961 	acpi_clear_event(ACPI_EVENT_RTC);
962 	acpi_disable_event(ACPI_EVENT_RTC, 0);
963 	return ACPI_INTERRUPT_HANDLED;
964 }
965 
rtc_wake_setup(void)966 static inline void rtc_wake_setup(void)
967 {
968 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
969 	/*
970 	 * After the RTC handler is installed, the Fixed_RTC event should
971 	 * be disabled. Only when the RTC alarm is set will it be enabled.
972 	 */
973 	acpi_clear_event(ACPI_EVENT_RTC);
974 	acpi_disable_event(ACPI_EVENT_RTC, 0);
975 }
976 
rtc_wake_on(struct device * dev)977 static void rtc_wake_on(struct device *dev)
978 {
979 	acpi_clear_event(ACPI_EVENT_RTC);
980 	acpi_enable_event(ACPI_EVENT_RTC, 0);
981 }
982 
rtc_wake_off(struct device * dev)983 static void rtc_wake_off(struct device *dev)
984 {
985 	acpi_disable_event(ACPI_EVENT_RTC, 0);
986 }
987 
988 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
989  * its device node and pass extra config data.  This helps its driver use
990  * capabilities that the now-obsolete mc146818 didn't have, and informs it
991  * that this board's RTC is wakeup-capable (per ACPI spec).
992  */
993 static struct cmos_rtc_board_info acpi_rtc_info;
994 
995 static void __devinit
cmos_wake_setup(struct device * dev)996 cmos_wake_setup(struct device *dev)
997 {
998 	if (acpi_disabled)
999 		return;
1000 
1001 	rtc_wake_setup();
1002 	acpi_rtc_info.wake_on = rtc_wake_on;
1003 	acpi_rtc_info.wake_off = rtc_wake_off;
1004 
1005 	/* workaround bug in some ACPI tables */
1006 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1007 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1008 			acpi_gbl_FADT.month_alarm);
1009 		acpi_gbl_FADT.month_alarm = 0;
1010 	}
1011 
1012 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1013 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1014 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1015 
1016 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1017 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1018 		dev_info(dev, "RTC can wake from S4\n");
1019 
1020 	dev->platform_data = &acpi_rtc_info;
1021 
1022 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1023 	device_init_wakeup(dev, 1);
1024 }
1025 
1026 #else
1027 
1028 static void __devinit
cmos_wake_setup(struct device * dev)1029 cmos_wake_setup(struct device *dev)
1030 {
1031 }
1032 
1033 #endif
1034 
1035 #ifdef	CONFIG_PNP
1036 
1037 #include <linux/pnp.h>
1038 
1039 static int __devinit
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1040 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1041 {
1042 	cmos_wake_setup(&pnp->dev);
1043 
1044 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1045 		/* Some machines contain a PNP entry for the RTC, but
1046 		 * don't define the IRQ. It should always be safe to
1047 		 * hardcode it in these cases
1048 		 */
1049 		return cmos_do_probe(&pnp->dev,
1050 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1051 	else
1052 		return cmos_do_probe(&pnp->dev,
1053 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1054 				pnp_irq(pnp, 0));
1055 }
1056 
cmos_pnp_remove(struct pnp_dev * pnp)1057 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1058 {
1059 	cmos_do_remove(&pnp->dev);
1060 }
1061 
1062 #ifdef	CONFIG_PM
1063 
cmos_pnp_suspend(struct pnp_dev * pnp,pm_message_t mesg)1064 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1065 {
1066 	return cmos_suspend(&pnp->dev);
1067 }
1068 
cmos_pnp_resume(struct pnp_dev * pnp)1069 static int cmos_pnp_resume(struct pnp_dev *pnp)
1070 {
1071 	return cmos_resume(&pnp->dev);
1072 }
1073 
1074 #else
1075 #define	cmos_pnp_suspend	NULL
1076 #define	cmos_pnp_resume		NULL
1077 #endif
1078 
cmos_pnp_shutdown(struct pnp_dev * pnp)1079 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080 {
1081 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1082 		return;
1083 
1084 	cmos_do_shutdown();
1085 }
1086 
1087 static const struct pnp_device_id rtc_ids[] = {
1088 	{ .id = "PNP0b00", },
1089 	{ .id = "PNP0b01", },
1090 	{ .id = "PNP0b02", },
1091 	{ },
1092 };
1093 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1094 
1095 static struct pnp_driver cmos_pnp_driver = {
1096 	.name		= (char *) driver_name,
1097 	.id_table	= rtc_ids,
1098 	.probe		= cmos_pnp_probe,
1099 	.remove		= __exit_p(cmos_pnp_remove),
1100 	.shutdown	= cmos_pnp_shutdown,
1101 
1102 	/* flag ensures resume() gets called, and stops syslog spam */
1103 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1104 	.suspend	= cmos_pnp_suspend,
1105 	.resume		= cmos_pnp_resume,
1106 };
1107 
1108 #endif	/* CONFIG_PNP */
1109 
1110 #ifdef CONFIG_OF
1111 static const struct of_device_id of_cmos_match[] = {
1112 	{
1113 		.compatible = "motorola,mc146818",
1114 	},
1115 	{ },
1116 };
1117 MODULE_DEVICE_TABLE(of, of_cmos_match);
1118 
cmos_of_init(struct platform_device * pdev)1119 static __init void cmos_of_init(struct platform_device *pdev)
1120 {
1121 	struct device_node *node = pdev->dev.of_node;
1122 	struct rtc_time time;
1123 	int ret;
1124 	const __be32 *val;
1125 
1126 	if (!node)
1127 		return;
1128 
1129 	val = of_get_property(node, "ctrl-reg", NULL);
1130 	if (val)
1131 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1132 
1133 	val = of_get_property(node, "freq-reg", NULL);
1134 	if (val)
1135 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1136 
1137 	get_rtc_time(&time);
1138 	ret = rtc_valid_tm(&time);
1139 	if (ret) {
1140 		struct rtc_time def_time = {
1141 			.tm_year = 1,
1142 			.tm_mday = 1,
1143 		};
1144 		set_rtc_time(&def_time);
1145 	}
1146 }
1147 #else
cmos_of_init(struct platform_device * pdev)1148 static inline void cmos_of_init(struct platform_device *pdev) {}
1149 #define of_cmos_match NULL
1150 #endif
1151 /*----------------------------------------------------------------*/
1152 
1153 /* Platform setup should have set up an RTC device, when PNP is
1154  * unavailable ... this could happen even on (older) PCs.
1155  */
1156 
cmos_platform_probe(struct platform_device * pdev)1157 static int __init cmos_platform_probe(struct platform_device *pdev)
1158 {
1159 	cmos_of_init(pdev);
1160 	cmos_wake_setup(&pdev->dev);
1161 	return cmos_do_probe(&pdev->dev,
1162 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1163 			platform_get_irq(pdev, 0));
1164 }
1165 
cmos_platform_remove(struct platform_device * pdev)1166 static int __exit cmos_platform_remove(struct platform_device *pdev)
1167 {
1168 	cmos_do_remove(&pdev->dev);
1169 	return 0;
1170 }
1171 
cmos_platform_shutdown(struct platform_device * pdev)1172 static void cmos_platform_shutdown(struct platform_device *pdev)
1173 {
1174 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1175 		return;
1176 
1177 	cmos_do_shutdown();
1178 }
1179 
1180 /* work with hotplug and coldplug */
1181 MODULE_ALIAS("platform:rtc_cmos");
1182 
1183 static struct platform_driver cmos_platform_driver = {
1184 	.remove		= __exit_p(cmos_platform_remove),
1185 	.shutdown	= cmos_platform_shutdown,
1186 	.driver = {
1187 		.name		= (char *) driver_name,
1188 #ifdef CONFIG_PM
1189 		.pm		= &cmos_pm_ops,
1190 #endif
1191 		.of_match_table = of_cmos_match,
1192 	}
1193 };
1194 
1195 #ifdef CONFIG_PNP
1196 static bool pnp_driver_registered;
1197 #endif
1198 static bool platform_driver_registered;
1199 
cmos_init(void)1200 static int __init cmos_init(void)
1201 {
1202 	int retval = 0;
1203 
1204 #ifdef	CONFIG_PNP
1205 	retval = pnp_register_driver(&cmos_pnp_driver);
1206 	if (retval == 0)
1207 		pnp_driver_registered = true;
1208 #endif
1209 
1210 	if (!cmos_rtc.dev) {
1211 		retval = platform_driver_probe(&cmos_platform_driver,
1212 					       cmos_platform_probe);
1213 		if (retval == 0)
1214 			platform_driver_registered = true;
1215 	}
1216 
1217 	dmi_check_system(rtc_quirks);
1218 
1219 	if (retval == 0)
1220 		return 0;
1221 
1222 #ifdef	CONFIG_PNP
1223 	if (pnp_driver_registered)
1224 		pnp_unregister_driver(&cmos_pnp_driver);
1225 #endif
1226 	return retval;
1227 }
1228 module_init(cmos_init);
1229 
cmos_exit(void)1230 static void __exit cmos_exit(void)
1231 {
1232 #ifdef	CONFIG_PNP
1233 	if (pnp_driver_registered)
1234 		pnp_unregister_driver(&cmos_pnp_driver);
1235 #endif
1236 	if (platform_driver_registered)
1237 		platform_driver_unregister(&cmos_platform_driver);
1238 }
1239 module_exit(cmos_exit);
1240 
1241 
1242 MODULE_AUTHOR("David Brownell");
1243 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1244 MODULE_LICENSE("GPL");
1245