1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 /*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45
46 struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62 };
63
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n) ((n) > 0)
66
67 static const char driver_name[] = "rtc_cmos";
68
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
is_intr(u8 rtc_intr)75 static inline int is_intr(u8 rtc_intr)
76 {
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80 }
81
82 /*----------------------------------------------------------------*/
83
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97
is_hpet_enabled(void)98 static inline int is_hpet_enabled(void)
99 {
100 return 0;
101 }
102
hpet_mask_rtc_irq_bit(unsigned long mask)103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 return 0;
106 }
107
hpet_set_rtc_irq_bit(unsigned long mask)108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 return 0;
111 }
112
113 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 return 0;
117 }
118
hpet_set_periodic_freq(unsigned long freq)119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 return 0;
122 }
123
hpet_rtc_dropped_irq(void)124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 return 0;
127 }
128
hpet_rtc_timer_init(void)129 static inline int hpet_rtc_timer_init(void)
130 {
131 return 0;
132 }
133
134 extern irq_handler_t hpet_rtc_interrupt;
135
hpet_register_irq_handler(irq_handler_t handler)136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 return 0;
139 }
140
hpet_unregister_irq_handler(irq_handler_t handler)141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 return 0;
144 }
145
146 #endif
147
148 /*----------------------------------------------------------------*/
149
150 #ifdef RTC_PORT
151
152 /* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156 #define can_bank2 true
157
cmos_read_bank2(unsigned char addr)158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162 }
163
cmos_write_bank2(unsigned char val,unsigned char addr)164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(3));
168 }
169
170 #else
171
172 #define can_bank2 false
173
cmos_read_bank2(unsigned char addr)174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 return 0;
177 }
178
cmos_write_bank2(unsigned char val,unsigned char addr)179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182
183 #endif
184
185 /*----------------------------------------------------------------*/
186
cmos_read_time(struct device * dev,struct rtc_time * t)187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195 }
196
cmos_set_time(struct device * dev,struct rtc_time * t)197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206 }
207
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 else
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 else
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278 }
279
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312 }
313
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324 }
325
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378 }
379
380 /*
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382 */
383 static bool alarm_disable_quirk;
384
set_alarm_disable_quirk(const struct dmi_system_id * id)385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387 alarm_disable_quirk = true;
388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 pr_info("RTC alarms disabled\n");
390 return 0;
391 }
392
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 {
396 .callback = set_alarm_disable_quirk,
397 .ident = "IBM Truman",
398 .matches = {
399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 },
402 },
403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 {
405 .callback = set_alarm_disable_quirk,
406 .ident = "Gigabyte GA-990XA-UD3",
407 .matches = {
408 DMI_MATCH(DMI_SYS_VENDOR,
409 "Gigabyte Technology Co., Ltd."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 },
412 },
413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 {
415 .callback = set_alarm_disable_quirk,
416 .ident = "Toshiba Satellite L300",
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 },
421 },
422 {}
423 };
424
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427 struct cmos_rtc *cmos = dev_get_drvdata(dev);
428 unsigned long flags;
429
430 if (!is_valid_irq(cmos->irq))
431 return -EINVAL;
432
433 if (alarm_disable_quirk)
434 return 0;
435
436 spin_lock_irqsave(&rtc_lock, flags);
437
438 if (enabled)
439 cmos_irq_enable(cmos, RTC_AIE);
440 else
441 cmos_irq_disable(cmos, RTC_AIE);
442
443 spin_unlock_irqrestore(&rtc_lock, flags);
444 return 0;
445 }
446
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
cmos_procfs(struct device * dev,struct seq_file * seq)449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451 struct cmos_rtc *cmos = dev_get_drvdata(dev);
452 unsigned char rtc_control, valid;
453
454 spin_lock_irq(&rtc_lock);
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 valid = CMOS_READ(RTC_VALID);
457 spin_unlock_irq(&rtc_lock);
458
459 /* NOTE: at least ICH6 reports battery status using a different
460 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 */
462 return seq_printf(seq,
463 "periodic_IRQ\t: %s\n"
464 "update_IRQ\t: %s\n"
465 "HPET_emulated\t: %s\n"
466 // "square_wave\t: %s\n"
467 "BCD\t\t: %s\n"
468 "DST_enable\t: %s\n"
469 "periodic_freq\t: %d\n"
470 "batt_status\t: %s\n",
471 (rtc_control & RTC_PIE) ? "yes" : "no",
472 (rtc_control & RTC_UIE) ? "yes" : "no",
473 is_hpet_enabled() ? "yes" : "no",
474 // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 cmos->rtc->irq_freq,
478 (valid & RTC_VRT) ? "okay" : "dead");
479 }
480
481 #else
482 #define cmos_procfs NULL
483 #endif
484
485 static const struct rtc_class_ops cmos_rtc_ops = {
486 .read_time = cmos_read_time,
487 .set_time = cmos_set_time,
488 .read_alarm = cmos_read_alarm,
489 .set_alarm = cmos_set_alarm,
490 .proc = cmos_procfs,
491 .alarm_irq_enable = cmos_alarm_irq_enable,
492 };
493
494 /*----------------------------------------------------------------*/
495
496 /*
497 * All these chips have at least 64 bytes of address space, shared by
498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
499 * by boot firmware. Modern chips have 128 or 256 bytes.
500 */
501
502 #define NVRAM_OFFSET (RTC_REG_D + 1)
503
504 static ssize_t
cmos_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 struct bin_attribute *attr,
507 char *buf, loff_t off, size_t count)
508 {
509 int retval;
510
511 if (unlikely(off >= attr->size))
512 return 0;
513 if (unlikely(off < 0))
514 return -EINVAL;
515 if ((off + count) > attr->size)
516 count = attr->size - off;
517
518 off += NVRAM_OFFSET;
519 spin_lock_irq(&rtc_lock);
520 for (retval = 0; count; count--, off++, retval++) {
521 if (off < 128)
522 *buf++ = CMOS_READ(off);
523 else if (can_bank2)
524 *buf++ = cmos_read_bank2(off);
525 else
526 break;
527 }
528 spin_unlock_irq(&rtc_lock);
529
530 return retval;
531 }
532
533 static ssize_t
cmos_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 struct bin_attribute *attr,
536 char *buf, loff_t off, size_t count)
537 {
538 struct cmos_rtc *cmos;
539 int retval;
540
541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 if (unlikely(off >= attr->size))
543 return -EFBIG;
544 if (unlikely(off < 0))
545 return -EINVAL;
546 if ((off + count) > attr->size)
547 count = attr->size - off;
548
549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
550 * checksum on part of the NVRAM data. That's currently ignored
551 * here. If userspace is smart enough to know what fields of
552 * NVRAM to update, updating checksums is also part of its job.
553 */
554 off += NVRAM_OFFSET;
555 spin_lock_irq(&rtc_lock);
556 for (retval = 0; count; count--, off++, retval++) {
557 /* don't trash RTC registers */
558 if (off == cmos->day_alrm
559 || off == cmos->mon_alrm
560 || off == cmos->century)
561 buf++;
562 else if (off < 128)
563 CMOS_WRITE(*buf++, off);
564 else if (can_bank2)
565 cmos_write_bank2(*buf++, off);
566 else
567 break;
568 }
569 spin_unlock_irq(&rtc_lock);
570
571 return retval;
572 }
573
574 static struct bin_attribute nvram = {
575 .attr = {
576 .name = "nvram",
577 .mode = S_IRUGO | S_IWUSR,
578 },
579
580 .read = cmos_nvram_read,
581 .write = cmos_nvram_write,
582 /* size gets set up later */
583 };
584
585 /*----------------------------------------------------------------*/
586
587 static struct cmos_rtc cmos_rtc;
588
cmos_interrupt(int irq,void * p)589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591 u8 irqstat;
592 u8 rtc_control;
593
594 spin_lock(&rtc_lock);
595
596 /* When the HPET interrupt handler calls us, the interrupt
597 * status is passed as arg1 instead of the irq number. But
598 * always clear irq status, even when HPET is in the way.
599 *
600 * Note that HPET and RTC are almost certainly out of phase,
601 * giving different IRQ status ...
602 */
603 irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 rtc_control = CMOS_READ(RTC_CONTROL);
605 if (is_hpet_enabled())
606 irqstat = (unsigned long)irq & 0xF0;
607 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
608
609 /* All Linux RTC alarms should be treated as if they were oneshot.
610 * Similar code may be needed in system wakeup paths, in case the
611 * alarm woke the system.
612 */
613 if (irqstat & RTC_AIE) {
614 rtc_control &= ~RTC_AIE;
615 CMOS_WRITE(rtc_control, RTC_CONTROL);
616 hpet_mask_rtc_irq_bit(RTC_AIE);
617
618 CMOS_READ(RTC_INTR_FLAGS);
619 }
620 spin_unlock(&rtc_lock);
621
622 if (is_intr(irqstat)) {
623 rtc_update_irq(p, 1, irqstat);
624 return IRQ_HANDLED;
625 } else
626 return IRQ_NONE;
627 }
628
629 #ifdef CONFIG_PNP
630 #define INITSECTION
631
632 #else
633 #define INITSECTION __init
634 #endif
635
636 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)637 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
638 {
639 struct cmos_rtc_board_info *info = dev->platform_data;
640 int retval = 0;
641 unsigned char rtc_control;
642 unsigned address_space;
643
644 /* there can be only one ... */
645 if (cmos_rtc.dev)
646 return -EBUSY;
647
648 if (!ports)
649 return -ENODEV;
650
651 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
652 *
653 * REVISIT non-x86 systems may instead use memory space resources
654 * (needing ioremap etc), not i/o space resources like this ...
655 */
656 ports = request_region(ports->start,
657 resource_size(ports),
658 driver_name);
659 if (!ports) {
660 dev_dbg(dev, "i/o registers already in use\n");
661 return -EBUSY;
662 }
663
664 cmos_rtc.irq = rtc_irq;
665 cmos_rtc.iomem = ports;
666
667 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
668 * driver did, but don't reject unknown configs. Old hardware
669 * won't address 128 bytes. Newer chips have multiple banks,
670 * though they may not be listed in one I/O resource.
671 */
672 #if defined(CONFIG_ATARI)
673 address_space = 64;
674 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
675 || defined(__sparc__) || defined(__mips__) \
676 || defined(__powerpc__)
677 address_space = 128;
678 #else
679 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
680 address_space = 128;
681 #endif
682 if (can_bank2 && ports->end > (ports->start + 1))
683 address_space = 256;
684
685 /* For ACPI systems extension info comes from the FADT. On others,
686 * board specific setup provides it as appropriate. Systems where
687 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
688 * some almost-clones) can provide hooks to make that behave.
689 *
690 * Note that ACPI doesn't preclude putting these registers into
691 * "extended" areas of the chip, including some that we won't yet
692 * expect CMOS_READ and friends to handle.
693 */
694 if (info) {
695 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
696 cmos_rtc.day_alrm = info->rtc_day_alarm;
697 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
698 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
699 if (info->rtc_century && info->rtc_century < 128)
700 cmos_rtc.century = info->rtc_century;
701
702 if (info->wake_on && info->wake_off) {
703 cmos_rtc.wake_on = info->wake_on;
704 cmos_rtc.wake_off = info->wake_off;
705 }
706 }
707
708 cmos_rtc.dev = dev;
709 dev_set_drvdata(dev, &cmos_rtc);
710
711 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
712 &cmos_rtc_ops, THIS_MODULE);
713 if (IS_ERR(cmos_rtc.rtc)) {
714 retval = PTR_ERR(cmos_rtc.rtc);
715 goto cleanup0;
716 }
717
718 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
719
720 spin_lock_irq(&rtc_lock);
721
722 /* force periodic irq to CMOS reset default of 1024Hz;
723 *
724 * REVISIT it's been reported that at least one x86_64 ALI mobo
725 * doesn't use 32KHz here ... for portability we might need to
726 * do something about other clock frequencies.
727 */
728 cmos_rtc.rtc->irq_freq = 1024;
729 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
730 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
731
732 /* disable irqs */
733 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
734
735 rtc_control = CMOS_READ(RTC_CONTROL);
736
737 spin_unlock_irq(&rtc_lock);
738
739 /* FIXME:
740 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
741 */
742 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
743 dev_warn(dev, "only 24-hr supported\n");
744 retval = -ENXIO;
745 goto cleanup1;
746 }
747
748 if (is_valid_irq(rtc_irq)) {
749 irq_handler_t rtc_cmos_int_handler;
750
751 if (is_hpet_enabled()) {
752 int err;
753
754 rtc_cmos_int_handler = hpet_rtc_interrupt;
755 err = hpet_register_irq_handler(cmos_interrupt);
756 if (err != 0) {
757 printk(KERN_WARNING "hpet_register_irq_handler "
758 " failed in rtc_init().");
759 goto cleanup1;
760 }
761 } else
762 rtc_cmos_int_handler = cmos_interrupt;
763
764 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
765 0, dev_name(&cmos_rtc.rtc->dev),
766 cmos_rtc.rtc);
767 if (retval < 0) {
768 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
769 goto cleanup1;
770 }
771 }
772 hpet_rtc_timer_init();
773
774 /* export at least the first block of NVRAM */
775 nvram.size = address_space - NVRAM_OFFSET;
776 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
777 if (retval < 0) {
778 dev_dbg(dev, "can't create nvram file? %d\n", retval);
779 goto cleanup2;
780 }
781
782 pr_info("%s: %s%s, %zd bytes nvram%s\n",
783 dev_name(&cmos_rtc.rtc->dev),
784 !is_valid_irq(rtc_irq) ? "no alarms" :
785 cmos_rtc.mon_alrm ? "alarms up to one year" :
786 cmos_rtc.day_alrm ? "alarms up to one month" :
787 "alarms up to one day",
788 cmos_rtc.century ? ", y3k" : "",
789 nvram.size,
790 is_hpet_enabled() ? ", hpet irqs" : "");
791
792 return 0;
793
794 cleanup2:
795 if (is_valid_irq(rtc_irq))
796 free_irq(rtc_irq, cmos_rtc.rtc);
797 cleanup1:
798 cmos_rtc.dev = NULL;
799 rtc_device_unregister(cmos_rtc.rtc);
800 cleanup0:
801 release_region(ports->start, resource_size(ports));
802 return retval;
803 }
804
cmos_do_shutdown(void)805 static void cmos_do_shutdown(void)
806 {
807 spin_lock_irq(&rtc_lock);
808 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
809 spin_unlock_irq(&rtc_lock);
810 }
811
cmos_do_remove(struct device * dev)812 static void __exit cmos_do_remove(struct device *dev)
813 {
814 struct cmos_rtc *cmos = dev_get_drvdata(dev);
815 struct resource *ports;
816
817 cmos_do_shutdown();
818
819 sysfs_remove_bin_file(&dev->kobj, &nvram);
820
821 if (is_valid_irq(cmos->irq)) {
822 free_irq(cmos->irq, cmos->rtc);
823 hpet_unregister_irq_handler(cmos_interrupt);
824 }
825
826 rtc_device_unregister(cmos->rtc);
827 cmos->rtc = NULL;
828
829 ports = cmos->iomem;
830 release_region(ports->start, resource_size(ports));
831 cmos->iomem = NULL;
832
833 cmos->dev = NULL;
834 dev_set_drvdata(dev, NULL);
835 }
836
837 #ifdef CONFIG_PM
838
cmos_suspend(struct device * dev)839 static int cmos_suspend(struct device *dev)
840 {
841 struct cmos_rtc *cmos = dev_get_drvdata(dev);
842 unsigned char tmp;
843
844 /* only the alarm might be a wakeup event source */
845 spin_lock_irq(&rtc_lock);
846 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
847 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
848 unsigned char mask;
849
850 if (device_may_wakeup(dev))
851 mask = RTC_IRQMASK & ~RTC_AIE;
852 else
853 mask = RTC_IRQMASK;
854 tmp &= ~mask;
855 CMOS_WRITE(tmp, RTC_CONTROL);
856 hpet_mask_rtc_irq_bit(mask);
857
858 cmos_checkintr(cmos, tmp);
859 }
860 spin_unlock_irq(&rtc_lock);
861
862 if (tmp & RTC_AIE) {
863 cmos->enabled_wake = 1;
864 if (cmos->wake_on)
865 cmos->wake_on(dev);
866 else
867 enable_irq_wake(cmos->irq);
868 }
869
870 pr_debug("%s: suspend%s, ctrl %02x\n",
871 dev_name(&cmos_rtc.rtc->dev),
872 (tmp & RTC_AIE) ? ", alarm may wake" : "",
873 tmp);
874
875 return 0;
876 }
877
878 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
879 * after a detour through G3 "mechanical off", although the ACPI spec
880 * says wakeup should only work from G1/S4 "hibernate". To most users,
881 * distinctions between S4 and S5 are pointless. So when the hardware
882 * allows, don't draw that distinction.
883 */
cmos_poweroff(struct device * dev)884 static inline int cmos_poweroff(struct device *dev)
885 {
886 return cmos_suspend(dev);
887 }
888
cmos_resume(struct device * dev)889 static int cmos_resume(struct device *dev)
890 {
891 struct cmos_rtc *cmos = dev_get_drvdata(dev);
892 unsigned char tmp = cmos->suspend_ctrl;
893
894 /* re-enable any irqs previously active */
895 if (tmp & RTC_IRQMASK) {
896 unsigned char mask;
897
898 if (cmos->enabled_wake) {
899 if (cmos->wake_off)
900 cmos->wake_off(dev);
901 else
902 disable_irq_wake(cmos->irq);
903 cmos->enabled_wake = 0;
904 }
905
906 spin_lock_irq(&rtc_lock);
907 do {
908 CMOS_WRITE(tmp, RTC_CONTROL);
909 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
910
911 mask = CMOS_READ(RTC_INTR_FLAGS);
912 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
913 if (!is_hpet_enabled() || !is_intr(mask))
914 break;
915
916 /* force one-shot behavior if HPET blocked
917 * the wake alarm's irq
918 */
919 rtc_update_irq(cmos->rtc, 1, mask);
920 tmp &= ~RTC_AIE;
921 hpet_mask_rtc_irq_bit(RTC_AIE);
922 hpet_rtc_timer_init();
923 } while (mask & RTC_AIE);
924 spin_unlock_irq(&rtc_lock);
925 }
926
927 pr_debug("%s: resume, ctrl %02x\n",
928 dev_name(&cmos_rtc.rtc->dev),
929 tmp);
930
931 return 0;
932 }
933
934 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
935
936 #else
937
cmos_poweroff(struct device * dev)938 static inline int cmos_poweroff(struct device *dev)
939 {
940 return -ENOSYS;
941 }
942
943 #endif
944
945 /*----------------------------------------------------------------*/
946
947 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
948 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
949 * probably list them in similar PNPBIOS tables; so PNP is more common.
950 *
951 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
952 * predate even PNPBIOS should set up platform_bus devices.
953 */
954
955 #ifdef CONFIG_ACPI
956
957 #include <linux/acpi.h>
958
rtc_handler(void * context)959 static u32 rtc_handler(void *context)
960 {
961 acpi_clear_event(ACPI_EVENT_RTC);
962 acpi_disable_event(ACPI_EVENT_RTC, 0);
963 return ACPI_INTERRUPT_HANDLED;
964 }
965
rtc_wake_setup(void)966 static inline void rtc_wake_setup(void)
967 {
968 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
969 /*
970 * After the RTC handler is installed, the Fixed_RTC event should
971 * be disabled. Only when the RTC alarm is set will it be enabled.
972 */
973 acpi_clear_event(ACPI_EVENT_RTC);
974 acpi_disable_event(ACPI_EVENT_RTC, 0);
975 }
976
rtc_wake_on(struct device * dev)977 static void rtc_wake_on(struct device *dev)
978 {
979 acpi_clear_event(ACPI_EVENT_RTC);
980 acpi_enable_event(ACPI_EVENT_RTC, 0);
981 }
982
rtc_wake_off(struct device * dev)983 static void rtc_wake_off(struct device *dev)
984 {
985 acpi_disable_event(ACPI_EVENT_RTC, 0);
986 }
987
988 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
989 * its device node and pass extra config data. This helps its driver use
990 * capabilities that the now-obsolete mc146818 didn't have, and informs it
991 * that this board's RTC is wakeup-capable (per ACPI spec).
992 */
993 static struct cmos_rtc_board_info acpi_rtc_info;
994
995 static void __devinit
cmos_wake_setup(struct device * dev)996 cmos_wake_setup(struct device *dev)
997 {
998 if (acpi_disabled)
999 return;
1000
1001 rtc_wake_setup();
1002 acpi_rtc_info.wake_on = rtc_wake_on;
1003 acpi_rtc_info.wake_off = rtc_wake_off;
1004
1005 /* workaround bug in some ACPI tables */
1006 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1007 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1008 acpi_gbl_FADT.month_alarm);
1009 acpi_gbl_FADT.month_alarm = 0;
1010 }
1011
1012 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1013 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1014 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1015
1016 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1017 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1018 dev_info(dev, "RTC can wake from S4\n");
1019
1020 dev->platform_data = &acpi_rtc_info;
1021
1022 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1023 device_init_wakeup(dev, 1);
1024 }
1025
1026 #else
1027
1028 static void __devinit
cmos_wake_setup(struct device * dev)1029 cmos_wake_setup(struct device *dev)
1030 {
1031 }
1032
1033 #endif
1034
1035 #ifdef CONFIG_PNP
1036
1037 #include <linux/pnp.h>
1038
1039 static int __devinit
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1040 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1041 {
1042 cmos_wake_setup(&pnp->dev);
1043
1044 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1045 /* Some machines contain a PNP entry for the RTC, but
1046 * don't define the IRQ. It should always be safe to
1047 * hardcode it in these cases
1048 */
1049 return cmos_do_probe(&pnp->dev,
1050 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1051 else
1052 return cmos_do_probe(&pnp->dev,
1053 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1054 pnp_irq(pnp, 0));
1055 }
1056
cmos_pnp_remove(struct pnp_dev * pnp)1057 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1058 {
1059 cmos_do_remove(&pnp->dev);
1060 }
1061
1062 #ifdef CONFIG_PM
1063
cmos_pnp_suspend(struct pnp_dev * pnp,pm_message_t mesg)1064 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1065 {
1066 return cmos_suspend(&pnp->dev);
1067 }
1068
cmos_pnp_resume(struct pnp_dev * pnp)1069 static int cmos_pnp_resume(struct pnp_dev *pnp)
1070 {
1071 return cmos_resume(&pnp->dev);
1072 }
1073
1074 #else
1075 #define cmos_pnp_suspend NULL
1076 #define cmos_pnp_resume NULL
1077 #endif
1078
cmos_pnp_shutdown(struct pnp_dev * pnp)1079 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080 {
1081 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1082 return;
1083
1084 cmos_do_shutdown();
1085 }
1086
1087 static const struct pnp_device_id rtc_ids[] = {
1088 { .id = "PNP0b00", },
1089 { .id = "PNP0b01", },
1090 { .id = "PNP0b02", },
1091 { },
1092 };
1093 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1094
1095 static struct pnp_driver cmos_pnp_driver = {
1096 .name = (char *) driver_name,
1097 .id_table = rtc_ids,
1098 .probe = cmos_pnp_probe,
1099 .remove = __exit_p(cmos_pnp_remove),
1100 .shutdown = cmos_pnp_shutdown,
1101
1102 /* flag ensures resume() gets called, and stops syslog spam */
1103 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1104 .suspend = cmos_pnp_suspend,
1105 .resume = cmos_pnp_resume,
1106 };
1107
1108 #endif /* CONFIG_PNP */
1109
1110 #ifdef CONFIG_OF
1111 static const struct of_device_id of_cmos_match[] = {
1112 {
1113 .compatible = "motorola,mc146818",
1114 },
1115 { },
1116 };
1117 MODULE_DEVICE_TABLE(of, of_cmos_match);
1118
cmos_of_init(struct platform_device * pdev)1119 static __init void cmos_of_init(struct platform_device *pdev)
1120 {
1121 struct device_node *node = pdev->dev.of_node;
1122 struct rtc_time time;
1123 int ret;
1124 const __be32 *val;
1125
1126 if (!node)
1127 return;
1128
1129 val = of_get_property(node, "ctrl-reg", NULL);
1130 if (val)
1131 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1132
1133 val = of_get_property(node, "freq-reg", NULL);
1134 if (val)
1135 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1136
1137 get_rtc_time(&time);
1138 ret = rtc_valid_tm(&time);
1139 if (ret) {
1140 struct rtc_time def_time = {
1141 .tm_year = 1,
1142 .tm_mday = 1,
1143 };
1144 set_rtc_time(&def_time);
1145 }
1146 }
1147 #else
cmos_of_init(struct platform_device * pdev)1148 static inline void cmos_of_init(struct platform_device *pdev) {}
1149 #define of_cmos_match NULL
1150 #endif
1151 /*----------------------------------------------------------------*/
1152
1153 /* Platform setup should have set up an RTC device, when PNP is
1154 * unavailable ... this could happen even on (older) PCs.
1155 */
1156
cmos_platform_probe(struct platform_device * pdev)1157 static int __init cmos_platform_probe(struct platform_device *pdev)
1158 {
1159 cmos_of_init(pdev);
1160 cmos_wake_setup(&pdev->dev);
1161 return cmos_do_probe(&pdev->dev,
1162 platform_get_resource(pdev, IORESOURCE_IO, 0),
1163 platform_get_irq(pdev, 0));
1164 }
1165
cmos_platform_remove(struct platform_device * pdev)1166 static int __exit cmos_platform_remove(struct platform_device *pdev)
1167 {
1168 cmos_do_remove(&pdev->dev);
1169 return 0;
1170 }
1171
cmos_platform_shutdown(struct platform_device * pdev)1172 static void cmos_platform_shutdown(struct platform_device *pdev)
1173 {
1174 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1175 return;
1176
1177 cmos_do_shutdown();
1178 }
1179
1180 /* work with hotplug and coldplug */
1181 MODULE_ALIAS("platform:rtc_cmos");
1182
1183 static struct platform_driver cmos_platform_driver = {
1184 .remove = __exit_p(cmos_platform_remove),
1185 .shutdown = cmos_platform_shutdown,
1186 .driver = {
1187 .name = (char *) driver_name,
1188 #ifdef CONFIG_PM
1189 .pm = &cmos_pm_ops,
1190 #endif
1191 .of_match_table = of_cmos_match,
1192 }
1193 };
1194
1195 #ifdef CONFIG_PNP
1196 static bool pnp_driver_registered;
1197 #endif
1198 static bool platform_driver_registered;
1199
cmos_init(void)1200 static int __init cmos_init(void)
1201 {
1202 int retval = 0;
1203
1204 #ifdef CONFIG_PNP
1205 retval = pnp_register_driver(&cmos_pnp_driver);
1206 if (retval == 0)
1207 pnp_driver_registered = true;
1208 #endif
1209
1210 if (!cmos_rtc.dev) {
1211 retval = platform_driver_probe(&cmos_platform_driver,
1212 cmos_platform_probe);
1213 if (retval == 0)
1214 platform_driver_registered = true;
1215 }
1216
1217 dmi_check_system(rtc_quirks);
1218
1219 if (retval == 0)
1220 return 0;
1221
1222 #ifdef CONFIG_PNP
1223 if (pnp_driver_registered)
1224 pnp_unregister_driver(&cmos_pnp_driver);
1225 #endif
1226 return retval;
1227 }
1228 module_init(cmos_init);
1229
cmos_exit(void)1230 static void __exit cmos_exit(void)
1231 {
1232 #ifdef CONFIG_PNP
1233 if (pnp_driver_registered)
1234 pnp_unregister_driver(&cmos_pnp_driver);
1235 #endif
1236 if (platform_driver_registered)
1237 platform_driver_unregister(&cmos_platform_driver);
1238 }
1239 module_exit(cmos_exit);
1240
1241
1242 MODULE_AUTHOR("David Brownell");
1243 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1244 MODULE_LICENSE("GPL");
1245