1 /*
2 **
3 **  PCI Lower Bus Adapter (LBA) manager
4 **
5 **	(c) Copyright 1999,2000 Grant Grundler
6 **	(c) Copyright 1999,2000 Hewlett-Packard Company
7 **
8 **	This program is free software; you can redistribute it and/or modify
9 **	it under the terms of the GNU General Public License as published by
10 **      the Free Software Foundation; either version 2 of the License, or
11 **      (at your option) any later version.
12 **
13 **
14 ** This module primarily provides access to PCI bus (config/IOport
15 ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class
16 ** with 4 digit model numbers - eg C3000 (and A400...sigh).
17 **
18 ** LBA driver isn't as simple as the Dino driver because:
19 **   (a) this chip has substantial bug fixes between revisions
20 **       (Only one Dino bug has a software workaround :^(  )
21 **   (b) has more options which we don't (yet) support (DMA hints, OLARD)
22 **   (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver)
23 **   (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC).
24 **       (dino only deals with "Legacy" PDC)
25 **
26 ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver.
27 ** (I/O SAPIC is integratd in the LBA chip).
28 **
29 ** FIXME: Add support to SBA and LBA drivers for DMA hint sets
30 ** FIXME: Add support for PCI card hot-plug (OLARD).
31 */
32 
33 #include <linux/delay.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/spinlock.h>
37 #include <linux/init.h>		/* for __init and __devinit */
38 #include <linux/pci.h>
39 #include <linux/ioport.h>
40 #include <linux/slab.h>
41 
42 #include <asm/byteorder.h>
43 #include <asm/pdc.h>
44 #include <asm/pdcpat.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47 
48 #include <asm/ropes.h>
49 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
50 #include <asm/parisc-device.h>
51 #include <asm/io.h>		/* read/write stuff */
52 
53 #undef DEBUG_LBA	/* general stuff */
54 #undef DEBUG_LBA_PORT	/* debug I/O Port access */
55 #undef DEBUG_LBA_CFG	/* debug Config Space Access (ie PCI Bus walk) */
56 #undef DEBUG_LBA_PAT	/* debug PCI Resource Mgt code - PDC PAT only */
57 
58 #undef FBB_SUPPORT	/* Fast Back-Back xfers - NOT READY YET */
59 
60 
61 #ifdef DEBUG_LBA
62 #define DBG(x...)	printk(x)
63 #else
64 #define DBG(x...)
65 #endif
66 
67 #ifdef DEBUG_LBA_PORT
68 #define DBG_PORT(x...)	printk(x)
69 #else
70 #define DBG_PORT(x...)
71 #endif
72 
73 #ifdef DEBUG_LBA_CFG
74 #define DBG_CFG(x...)	printk(x)
75 #else
76 #define DBG_CFG(x...)
77 #endif
78 
79 #ifdef DEBUG_LBA_PAT
80 #define DBG_PAT(x...)	printk(x)
81 #else
82 #define DBG_PAT(x...)
83 #endif
84 
85 
86 /*
87 ** Config accessor functions only pass in the 8-bit bus number and not
88 ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus
89 ** number based on what firmware wrote into the scratch register.
90 **
91 ** The "secondary" bus number is set to this before calling
92 ** pci_register_ops(). If any PPB's are present, the scan will
93 ** discover them and update the "secondary" and "subordinate"
94 ** fields in the pci_bus structure.
95 **
96 ** Changes in the configuration *may* result in a different
97 ** bus number for each LBA depending on what firmware does.
98 */
99 
100 #define MODULE_NAME "LBA"
101 
102 /* non-postable I/O port space, densely packed */
103 #define LBA_PORT_BASE	(PCI_F_EXTEND | 0xfee00000UL)
104 static void __iomem *astro_iop_base __read_mostly;
105 
106 static u32 lba_t32;
107 
108 /* lba flags */
109 #define LBA_FLAG_SKIP_PROBE	0x10
110 
111 #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE)
112 
113 
114 /* Looks nice and keeps the compiler happy */
115 #define LBA_DEV(d) ((struct lba_device *) (d))
116 
117 
118 /*
119 ** Only allow 8 subsidiary busses per LBA
120 ** Problem is the PCI bus numbering is globally shared.
121 */
122 #define LBA_MAX_NUM_BUSES 8
123 
124 /************************************
125  * LBA register read and write support
126  *
127  * BE WARNED: register writes are posted.
128  *  (ie follow writes which must reach HW with a read)
129  */
130 #define READ_U8(addr)  __raw_readb(addr)
131 #define READ_U16(addr) __raw_readw(addr)
132 #define READ_U32(addr) __raw_readl(addr)
133 #define WRITE_U8(value, addr)  __raw_writeb(value, addr)
134 #define WRITE_U16(value, addr) __raw_writew(value, addr)
135 #define WRITE_U32(value, addr) __raw_writel(value, addr)
136 
137 #define READ_REG8(addr)  readb(addr)
138 #define READ_REG16(addr) readw(addr)
139 #define READ_REG32(addr) readl(addr)
140 #define READ_REG64(addr) readq(addr)
141 #define WRITE_REG8(value, addr)  writeb(value, addr)
142 #define WRITE_REG16(value, addr) writew(value, addr)
143 #define WRITE_REG32(value, addr) writel(value, addr)
144 
145 
146 #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8))
147 #define LBA_CFG_BUS(tok)  ((u8) ((tok)>>16))
148 #define LBA_CFG_DEV(tok)  ((u8) ((tok)>>11) & 0x1f)
149 #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7)
150 
151 
152 /*
153 ** Extract LBA (Rope) number from HPA
154 ** REVISIT: 16 ropes for Stretch/Ike?
155 */
156 #define ROPES_PER_IOC	8
157 #define LBA_NUM(x)    ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1))
158 
159 
160 static void
lba_dump_res(struct resource * r,int d)161 lba_dump_res(struct resource *r, int d)
162 {
163 	int i;
164 
165 	if (NULL == r)
166 		return;
167 
168 	printk(KERN_DEBUG "(%p)", r->parent);
169 	for (i = d; i ; --i) printk(" ");
170 	printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r,
171 		(long)r->start, (long)r->end, r->flags);
172 	lba_dump_res(r->child, d+2);
173 	lba_dump_res(r->sibling, d);
174 }
175 
176 
177 /*
178 ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex
179 ** workaround for cfg cycles:
180 **	-- preserve  LBA state
181 **	-- prevent any DMA from occurring
182 **	-- turn on smart mode
183 **	-- probe with config writes before doing config reads
184 **	-- check ERROR_STATUS
185 **	-- clear ERROR_STATUS
186 **	-- restore LBA state
187 **
188 ** The workaround is only used for device discovery.
189 */
190 
lba_device_present(u8 bus,u8 dfn,struct lba_device * d)191 static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d)
192 {
193 	u8 first_bus = d->hba.hba_bus->secondary;
194 	u8 last_sub_bus = d->hba.hba_bus->subordinate;
195 
196 	if ((bus < first_bus) ||
197 	    (bus > last_sub_bus) ||
198 	    ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) {
199 		return 0;
200 	}
201 
202 	return 1;
203 }
204 
205 
206 
207 #define LBA_CFG_SETUP(d, tok) {				\
208     /* Save contents of error config register.  */			\
209     error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);		\
210 \
211     /* Save contents of status control register.  */			\
212     status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);		\
213 \
214     /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA		\
215     ** arbitration for full bus walks.					\
216     */									\
217 	/* Save contents of arb mask register. */			\
218 	arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK);		\
219 \
220 	/*								\
221 	 * Turn off all device arbitration bits (i.e. everything	\
222 	 * except arbitration enable bit).				\
223 	 */								\
224 	WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK);		\
225 \
226     /*									\
227      * Set the smart mode bit so that master aborts don't cause		\
228      * LBA to go into PCI fatal mode (required).			\
229      */									\
230     WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG);	\
231 }
232 
233 
234 #define LBA_CFG_PROBE(d, tok) {				\
235     /*									\
236      * Setup Vendor ID write and read back the address register		\
237      * to make sure that LBA is the bus master.				\
238      */									\
239     WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\
240     /*									\
241      * Read address register to ensure that LBA is the bus master,	\
242      * which implies that DMA traffic has stopped when DMA arb is off.	\
243      */									\
244     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
245     /*									\
246      * Generate a cfg write cycle (will have no affect on		\
247      * Vendor ID register since read-only).				\
248      */									\
249     WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA);		\
250     /*									\
251      * Make sure write has completed before proceeding further,		\
252      * i.e. before setting clear enable.				\
253      */									\
254     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
255 }
256 
257 
258 /*
259  * HPREVISIT:
260  *   -- Can't tell if config cycle got the error.
261  *
262  *		OV bit is broken until rev 4.0, so can't use OV bit and
263  *		LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle.
264  *
265  *		As of rev 4.0, no longer need the error check.
266  *
267  *   -- Even if we could tell, we still want to return -1
268  *	for **ANY** error (not just master abort).
269  *
270  *   -- Only clear non-fatal errors (we don't want to bring
271  *	LBA out of pci-fatal mode).
272  *
273  *		Actually, there is still a race in which
274  *		we could be clearing a fatal error.  We will
275  *		live with this during our initial bus walk
276  *		until rev 4.0 (no driver activity during
277  *		initial bus walk).  The initial bus walk
278  *		has race conditions concerning the use of
279  *		smart mode as well.
280  */
281 
282 #define LBA_MASTER_ABORT_ERROR 0xc
283 #define LBA_FATAL_ERROR 0x10
284 
285 #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) {		\
286     u32 error_status = 0;						\
287     /*									\
288      * Set clear enable (CE) bit. Unset by HW when new			\
289      * errors are logged -- LBA HW ERS section 14.3.3).		\
290      */									\
291     WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \
292     error_status = READ_REG32(base + LBA_ERROR_STATUS);		\
293     if ((error_status & 0x1f) != 0) {					\
294 	/*								\
295 	 * Fail the config read request.				\
296 	 */								\
297 	error = 1;							\
298 	if ((error_status & LBA_FATAL_ERROR) == 0) {			\
299 	    /*								\
300 	     * Clear error status (if fatal bit not set) by setting	\
301 	     * clear error log bit (CL).				\
302 	     */								\
303 	    WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \
304 	}								\
305     }									\
306 }
307 
308 #define LBA_CFG_TR4_ADDR_SETUP(d, addr)					\
309 	WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);
310 
311 #define LBA_CFG_ADDR_SETUP(d, addr) {					\
312     WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
313     /*									\
314      * Read address register to ensure that LBA is the bus master,	\
315      * which implies that DMA traffic has stopped when DMA arb is off.	\
316      */									\
317     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
318 }
319 
320 
321 #define LBA_CFG_RESTORE(d, base) {					\
322     /*									\
323      * Restore status control register (turn off clear enable).		\
324      */									\
325     WRITE_REG32(status_control, base + LBA_STAT_CTL);			\
326     /*									\
327      * Restore error config register (turn off smart mode).		\
328      */									\
329     WRITE_REG32(error_config, base + LBA_ERROR_CONFIG);			\
330 	/*								\
331 	 * Restore arb mask register (reenables DMA arbitration).	\
332 	 */								\
333 	WRITE_REG32(arb_mask, base + LBA_ARB_MASK);			\
334 }
335 
336 
337 
338 static unsigned int
lba_rd_cfg(struct lba_device * d,u32 tok,u8 reg,u32 size)339 lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size)
340 {
341 	u32 data = ~0U;
342 	int error = 0;
343 	u32 arb_mask = 0;	/* used by LBA_CFG_SETUP/RESTORE */
344 	u32 error_config = 0;	/* used by LBA_CFG_SETUP/RESTORE */
345 	u32 status_control = 0;	/* used by LBA_CFG_SETUP/RESTORE */
346 
347 	LBA_CFG_SETUP(d, tok);
348 	LBA_CFG_PROBE(d, tok);
349 	LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
350 	if (!error) {
351 		void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
352 
353 		LBA_CFG_ADDR_SETUP(d, tok | reg);
354 		switch (size) {
355 		case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break;
356 		case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break;
357 		case 4: data = READ_REG32(data_reg); break;
358 		}
359 	}
360 	LBA_CFG_RESTORE(d, d->hba.base_addr);
361 	return(data);
362 }
363 
364 
elroy_cfg_read(struct pci_bus * bus,unsigned int devfn,int pos,int size,u32 * data)365 static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
366 {
367 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
368 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
369 	u32 tok = LBA_CFG_TOK(local_bus, devfn);
370 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
371 
372 	if ((pos > 255) || (devfn > 255))
373 		return -EINVAL;
374 
375 /* FIXME: B2K/C3600 workaround is always use old method... */
376 	/* if (!LBA_SKIP_PROBE(d)) */ {
377 		/* original - Generate config cycle on broken elroy
378 		  with risk we will miss PCI bus errors. */
379 		*data = lba_rd_cfg(d, tok, pos, size);
380 		DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data);
381 		return 0;
382 	}
383 
384 	if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) {
385 		DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos);
386 		/* either don't want to look or know device isn't present. */
387 		*data = ~0U;
388 		return(0);
389 	}
390 
391 	/* Basic Algorithm
392 	** Should only get here on fully working LBA rev.
393 	** This is how simple the code should have been.
394 	*/
395 	LBA_CFG_ADDR_SETUP(d, tok | pos);
396 	switch(size) {
397 	case 1: *data = READ_REG8 (data_reg + (pos & 3)); break;
398 	case 2: *data = READ_REG16(data_reg + (pos & 2)); break;
399 	case 4: *data = READ_REG32(data_reg); break;
400 	}
401 	DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data);
402 	return 0;
403 }
404 
405 
406 static void
lba_wr_cfg(struct lba_device * d,u32 tok,u8 reg,u32 data,u32 size)407 lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size)
408 {
409 	int error = 0;
410 	u32 arb_mask = 0;
411 	u32 error_config = 0;
412 	u32 status_control = 0;
413 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
414 
415 	LBA_CFG_SETUP(d, tok);
416 	LBA_CFG_ADDR_SETUP(d, tok | reg);
417 	switch (size) {
418 	case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break;
419 	case 2: WRITE_REG16(data, data_reg + (reg & 2)); break;
420 	case 4: WRITE_REG32(data, data_reg);             break;
421 	}
422 	LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
423 	LBA_CFG_RESTORE(d, d->hba.base_addr);
424 }
425 
426 
427 /*
428  * LBA 4.0 config write code implements non-postable semantics
429  * by doing a read of CONFIG ADDR after the write.
430  */
431 
elroy_cfg_write(struct pci_bus * bus,unsigned int devfn,int pos,int size,u32 data)432 static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
433 {
434 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
435 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
436 	u32 tok = LBA_CFG_TOK(local_bus,devfn);
437 
438 	if ((pos > 255) || (devfn > 255))
439 		return -EINVAL;
440 
441 	if (!LBA_SKIP_PROBE(d)) {
442 		/* Original Workaround */
443 		lba_wr_cfg(d, tok, pos, (u32) data, size);
444 		DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data);
445 		return 0;
446 	}
447 
448 	if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) {
449 		DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data);
450 		return 1; /* New Workaround */
451 	}
452 
453 	DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data);
454 
455 	/* Basic Algorithm */
456 	LBA_CFG_ADDR_SETUP(d, tok | pos);
457 	switch(size) {
458 	case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3));
459 		   break;
460 	case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2));
461 		   break;
462 	case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA);
463 		   break;
464 	}
465 	/* flush posted write */
466 	lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
467 	return 0;
468 }
469 
470 
471 static struct pci_ops elroy_cfg_ops = {
472 	.read =		elroy_cfg_read,
473 	.write =	elroy_cfg_write,
474 };
475 
476 /*
477  * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy
478  * TR4.0 as no additional bugs were found in this areea between Elroy and
479  * Mercury
480  */
481 
mercury_cfg_read(struct pci_bus * bus,unsigned int devfn,int pos,int size,u32 * data)482 static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
483 {
484 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
485 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
486 	u32 tok = LBA_CFG_TOK(local_bus, devfn);
487 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
488 
489 	if ((pos > 255) || (devfn > 255))
490 		return -EINVAL;
491 
492 	LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
493 	switch(size) {
494 	case 1:
495 		*data = READ_REG8(data_reg + (pos & 3));
496 		break;
497 	case 2:
498 		*data = READ_REG16(data_reg + (pos & 2));
499 		break;
500 	case 4:
501 		*data = READ_REG32(data_reg);             break;
502 		break;
503 	}
504 
505 	DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data);
506 	return 0;
507 }
508 
509 /*
510  * LBA 4.0 config write code implements non-postable semantics
511  * by doing a read of CONFIG ADDR after the write.
512  */
513 
mercury_cfg_write(struct pci_bus * bus,unsigned int devfn,int pos,int size,u32 data)514 static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
515 {
516 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
517 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
518 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
519 	u32 tok = LBA_CFG_TOK(local_bus,devfn);
520 
521 	if ((pos > 255) || (devfn > 255))
522 		return -EINVAL;
523 
524 	DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data);
525 
526 	LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
527 	switch(size) {
528 	case 1:
529 		WRITE_REG8 (data, data_reg + (pos & 3));
530 		break;
531 	case 2:
532 		WRITE_REG16(data, data_reg + (pos & 2));
533 		break;
534 	case 4:
535 		WRITE_REG32(data, data_reg);
536 		break;
537 	}
538 
539 	/* flush posted write */
540 	lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
541 	return 0;
542 }
543 
544 static struct pci_ops mercury_cfg_ops = {
545 	.read =		mercury_cfg_read,
546 	.write =	mercury_cfg_write,
547 };
548 
549 
550 static void
lba_bios_init(void)551 lba_bios_init(void)
552 {
553 	DBG(MODULE_NAME ": lba_bios_init\n");
554 }
555 
556 
557 #ifdef CONFIG_64BIT
558 
559 /*
560  * truncate_pat_collision:  Deal with overlaps or outright collisions
561  *			between PAT PDC reported ranges.
562  *
563  *   Broken PA8800 firmware will report lmmio range that
564  *   overlaps with CPU HPA. Just truncate the lmmio range.
565  *
566  *   BEWARE: conflicts with this lmmio range may be an
567  *   elmmio range which is pointing down another rope.
568  *
569  *  FIXME: only deals with one collision per range...theoretically we
570  *  could have several. Supporting more than one collision will get messy.
571  */
572 static unsigned long
truncate_pat_collision(struct resource * root,struct resource * new)573 truncate_pat_collision(struct resource *root, struct resource *new)
574 {
575 	unsigned long start = new->start;
576 	unsigned long end = new->end;
577 	struct resource *tmp = root->child;
578 
579 	if (end <= start || start < root->start || !tmp)
580 		return 0;
581 
582 	/* find first overlap */
583 	while (tmp && tmp->end < start)
584 		tmp = tmp->sibling;
585 
586 	/* no entries overlap */
587 	if (!tmp)  return 0;
588 
589 	/* found one that starts behind the new one
590 	** Don't need to do anything.
591 	*/
592 	if (tmp->start >= end) return 0;
593 
594 	if (tmp->start <= start) {
595 		/* "front" of new one overlaps */
596 		new->start = tmp->end + 1;
597 
598 		if (tmp->end >= end) {
599 			/* AACCKK! totally overlaps! drop this range. */
600 			return 1;
601 		}
602 	}
603 
604 	if (tmp->end < end ) {
605 		/* "end" of new one overlaps */
606 		new->end = tmp->start - 1;
607 	}
608 
609 	printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] "
610 					"to [%lx,%lx]\n",
611 			start, end,
612 			(long)new->start, (long)new->end );
613 
614 	return 0;	/* truncation successful */
615 }
616 
617 #else
618 #define truncate_pat_collision(r,n)  (0)
619 #endif
620 
621 /*
622 ** The algorithm is generic code.
623 ** But it needs to access local data structures to get the IRQ base.
624 ** Could make this a "pci_fixup_irq(bus, region)" but not sure
625 ** it's worth it.
626 **
627 ** Called by do_pci_scan_bus() immediately after each PCI bus is walked.
628 ** Resources aren't allocated until recursive buswalk below HBA is completed.
629 */
630 static void
lba_fixup_bus(struct pci_bus * bus)631 lba_fixup_bus(struct pci_bus *bus)
632 {
633 	struct list_head *ln;
634 #ifdef FBB_SUPPORT
635 	u16 status;
636 #endif
637 	struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge));
638 	int lba_portbase = HBA_PORT_BASE(ldev->hba.hba_num);
639 
640 	DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n",
641 		bus, bus->secondary, bus->bridge->platform_data);
642 
643 	/*
644 	** Properly Setup MMIO resources for this bus.
645 	** pci_alloc_primary_bus() mangles this.
646 	*/
647 	if (bus->parent) {
648 		int i;
649 		/* PCI-PCI Bridge */
650 		pci_read_bridge_bases(bus);
651 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
652 			pci_claim_resource(bus->self, i);
653 		}
654 	} else {
655 		/* Host-PCI Bridge */
656 		int err, i;
657 
658 		DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
659 			ldev->hba.io_space.name,
660 			ldev->hba.io_space.start, ldev->hba.io_space.end,
661 			ldev->hba.io_space.flags);
662 		DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
663 			ldev->hba.lmmio_space.name,
664 			ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end,
665 			ldev->hba.lmmio_space.flags);
666 
667 		err = request_resource(&ioport_resource, &(ldev->hba.io_space));
668 		if (err < 0) {
669 			lba_dump_res(&ioport_resource, 2);
670 			BUG();
671 		}
672 		/* advertize Host bridge resources to PCI bus */
673 		bus->resource[0] = &(ldev->hba.io_space);
674 		i = 1;
675 
676 		if (ldev->hba.elmmio_space.start) {
677 			err = request_resource(&iomem_resource,
678 					&(ldev->hba.elmmio_space));
679 			if (err < 0) {
680 
681 				printk("FAILED: lba_fixup_bus() request for "
682 						"elmmio_space [%lx/%lx]\n",
683 						(long)ldev->hba.elmmio_space.start,
684 						(long)ldev->hba.elmmio_space.end);
685 
686 				/* lba_dump_res(&iomem_resource, 2); */
687 				/* BUG(); */
688 			} else
689 				bus->resource[i++] = &(ldev->hba.elmmio_space);
690 		}
691 
692 
693 		/*   Overlaps with elmmio can (and should) fail here.
694 		 *   We will prune (or ignore) the distributed range.
695 		 *
696 		 *   FIXME: SBA code should register all elmmio ranges first.
697 		 *      that would take care of elmmio ranges routed
698 		 *	to a different rope (already discovered) from
699 		 *	getting registered *after* LBA code has already
700 		 *	registered it's distributed lmmio range.
701 		 */
702 		if (truncate_pat_collision(&iomem_resource,
703 				       	&(ldev->hba.lmmio_space))) {
704 
705 			printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n",
706 					(long)ldev->hba.lmmio_space.start,
707 					(long)ldev->hba.lmmio_space.end);
708 		} else {
709 			err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space));
710 			if (err < 0) {
711 				printk(KERN_ERR "FAILED: lba_fixup_bus() request for "
712 					"lmmio_space [%lx/%lx]\n",
713 					(long)ldev->hba.lmmio_space.start,
714 					(long)ldev->hba.lmmio_space.end);
715 			} else
716 				bus->resource[i++] = &(ldev->hba.lmmio_space);
717 		}
718 
719 #ifdef CONFIG_64BIT
720 		/* GMMIO is  distributed range. Every LBA/Rope gets part it. */
721 		if (ldev->hba.gmmio_space.flags) {
722 			err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space));
723 			if (err < 0) {
724 				printk("FAILED: lba_fixup_bus() request for "
725 					"gmmio_space [%lx/%lx]\n",
726 					(long)ldev->hba.gmmio_space.start,
727 					(long)ldev->hba.gmmio_space.end);
728 				lba_dump_res(&iomem_resource, 2);
729 				BUG();
730 			}
731 			bus->resource[i++] = &(ldev->hba.gmmio_space);
732 		}
733 #endif
734 
735 	}
736 
737 	list_for_each(ln, &bus->devices) {
738 		int i;
739 		struct pci_dev *dev = pci_dev_b(ln);
740 
741 		DBG("lba_fixup_bus() %s\n", pci_name(dev));
742 
743 		/* Virtualize Device/Bridge Resources. */
744 		for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
745 			struct resource *res = &dev->resource[i];
746 
747 			/* If resource not allocated - skip it */
748 			if (!res->start)
749 				continue;
750 
751 			if (res->flags & IORESOURCE_IO) {
752 				DBG("lba_fixup_bus() I/O Ports [%lx/%lx] -> ",
753 					res->start, res->end);
754 				res->start |= lba_portbase;
755 				res->end   |= lba_portbase;
756 				DBG("[%lx/%lx]\n", res->start, res->end);
757 			} else if (res->flags & IORESOURCE_MEM) {
758 				/*
759 				** Convert PCI (IO_VIEW) addresses to
760 				** processor (PA_VIEW) addresses
761 				 */
762 				DBG("lba_fixup_bus() MMIO [%lx/%lx] -> ",
763 					res->start, res->end);
764 				res->start = PCI_HOST_ADDR(HBA_DATA(ldev), res->start);
765 				res->end   = PCI_HOST_ADDR(HBA_DATA(ldev), res->end);
766 				DBG("[%lx/%lx]\n", res->start, res->end);
767 			} else {
768 				DBG("lba_fixup_bus() WTF? 0x%lx [%lx/%lx] XXX",
769 					res->flags, res->start, res->end);
770 			}
771 
772 			/*
773 			** FIXME: this will result in whinging for devices
774 			** that share expansion ROMs (think quad tulip), but
775 			** isn't harmful.
776 			*/
777 			pci_claim_resource(dev, i);
778 		}
779 
780 #ifdef FBB_SUPPORT
781 		/*
782 		** If one device does not support FBB transfers,
783 		** No one on the bus can be allowed to use them.
784 		*/
785 		(void) pci_read_config_word(dev, PCI_STATUS, &status);
786 		bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK);
787 #endif
788 
789                 /*
790 		** P2PB's have no IRQs. ignore them.
791 		*/
792 		if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
793 			continue;
794 
795 		/* Adjust INTERRUPT_LINE for this dev */
796 		iosapic_fixup_irq(ldev->iosapic_obj, dev);
797 	}
798 
799 #ifdef FBB_SUPPORT
800 /* FIXME/REVISIT - finish figuring out to set FBB on both
801 ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL.
802 ** Can't fixup here anyway....garr...
803 */
804 	if (fbb_enable) {
805 		if (bus->parent) {
806 			u8 control;
807 			/* enable on PPB */
808 			(void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control);
809 			(void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK);
810 
811 		} else {
812 			/* enable on LBA */
813 		}
814 		fbb_enable = PCI_COMMAND_FAST_BACK;
815 	}
816 
817 	/* Lastly enable FBB/PERR/SERR on all devices too */
818 	list_for_each(ln, &bus->devices) {
819 		(void) pci_read_config_word(dev, PCI_COMMAND, &status);
820 		status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable;
821 		(void) pci_write_config_word(dev, PCI_COMMAND, status);
822 	}
823 #endif
824 }
825 
826 
827 static struct pci_bios_ops lba_bios_ops = {
828 	.init =		lba_bios_init,
829 	.fixup_bus =	lba_fixup_bus,
830 };
831 
832 
833 
834 
835 /*******************************************************
836 **
837 ** LBA Sprockets "I/O Port" Space Accessor Functions
838 **
839 ** This set of accessor functions is intended for use with
840 ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes).
841 **
842 ** Many PCI devices don't require use of I/O port space (eg Tulip,
843 ** NCR720) since they export the same registers to both MMIO and
844 ** I/O port space. In general I/O port space is slower than
845 ** MMIO since drivers are designed so PIO writes can be posted.
846 **
847 ********************************************************/
848 
849 #define LBA_PORT_IN(size, mask) \
850 static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \
851 { \
852 	u##size t; \
853 	t = READ_REG##size(astro_iop_base + addr); \
854 	DBG_PORT(" 0x%x\n", t); \
855 	return (t); \
856 }
857 
858 LBA_PORT_IN( 8, 3)
859 LBA_PORT_IN(16, 2)
860 LBA_PORT_IN(32, 0)
861 
862 
863 
864 /*
865 ** BUG X4107:  Ordering broken - DMA RD return can bypass PIO WR
866 **
867 ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is
868 ** guarantee non-postable completion semantics - not avoid X4107.
869 ** The READ_U32 only guarantees the write data gets to elroy but
870 ** out to the PCI bus. We can't read stuff from I/O port space
871 ** since we don't know what has side-effects. Attempting to read
872 ** from configuration space would be suicidal given the number of
873 ** bugs in that elroy functionality.
874 **
875 **      Description:
876 **          DMA read results can improperly pass PIO writes (X4107).  The
877 **          result of this bug is that if a processor modifies a location in
878 **          memory after having issued PIO writes, the PIO writes are not
879 **          guaranteed to be completed before a PCI device is allowed to see
880 **          the modified data in a DMA read.
881 **
882 **          Note that IKE bug X3719 in TR1 IKEs will result in the same
883 **          symptom.
884 **
885 **      Workaround:
886 **          The workaround for this bug is to always follow a PIO write with
887 **          a PIO read to the same bus before starting DMA on that PCI bus.
888 **
889 */
890 #define LBA_PORT_OUT(size, mask) \
891 static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
892 { \
893 	DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \
894 	WRITE_REG##size(val, astro_iop_base + addr); \
895 	if (LBA_DEV(d)->hw_rev < 3) \
896 		lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \
897 }
898 
899 LBA_PORT_OUT( 8, 3)
900 LBA_PORT_OUT(16, 2)
901 LBA_PORT_OUT(32, 0)
902 
903 
904 static struct pci_port_ops lba_astro_port_ops = {
905 	.inb =	lba_astro_in8,
906 	.inw =	lba_astro_in16,
907 	.inl =	lba_astro_in32,
908 	.outb =	lba_astro_out8,
909 	.outw =	lba_astro_out16,
910 	.outl =	lba_astro_out32
911 };
912 
913 
914 #ifdef CONFIG_64BIT
915 #define PIOP_TO_GMMIO(lba, addr) \
916 	((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3))
917 
918 /*******************************************************
919 **
920 ** LBA PAT "I/O Port" Space Accessor Functions
921 **
922 ** This set of accessor functions is intended for use with
923 ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes).
924 **
925 ** This uses the PIOP space located in the first 64MB of GMMIO.
926 ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way.
927 ** bits 1:0 stay the same.  bits 15:2 become 25:12.
928 ** Then add the base and we can generate an I/O Port cycle.
929 ********************************************************/
930 #undef LBA_PORT_IN
931 #define LBA_PORT_IN(size, mask) \
932 static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \
933 { \
934 	u##size t; \
935 	DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \
936 	t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \
937 	DBG_PORT(" 0x%x\n", t); \
938 	return (t); \
939 }
940 
941 LBA_PORT_IN( 8, 3)
942 LBA_PORT_IN(16, 2)
943 LBA_PORT_IN(32, 0)
944 
945 
946 #undef LBA_PORT_OUT
947 #define LBA_PORT_OUT(size, mask) \
948 static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \
949 { \
950 	void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \
951 	DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \
952 	WRITE_REG##size(val, where); \
953 	/* flush the I/O down to the elroy at least */ \
954 	lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \
955 }
956 
957 LBA_PORT_OUT( 8, 3)
958 LBA_PORT_OUT(16, 2)
959 LBA_PORT_OUT(32, 0)
960 
961 
962 static struct pci_port_ops lba_pat_port_ops = {
963 	.inb =	lba_pat_in8,
964 	.inw =	lba_pat_in16,
965 	.inl =	lba_pat_in32,
966 	.outb =	lba_pat_out8,
967 	.outw =	lba_pat_out16,
968 	.outl =	lba_pat_out32
969 };
970 
971 
972 
973 /*
974 ** make range information from PDC available to PCI subsystem.
975 ** We make the PDC call here in order to get the PCI bus range
976 ** numbers. The rest will get forwarded in pcibios_fixup_bus().
977 ** We don't have a struct pci_bus assigned to us yet.
978 */
979 static void
lba_pat_resources(struct parisc_device * pa_dev,struct lba_device * lba_dev)980 lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
981 {
982 	unsigned long bytecnt;
983 	long io_count;
984 	long status;	/* PDC return status */
985 	long pa_count;
986 	pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell;	/* PA_VIEW */
987 	pdc_pat_cell_mod_maddr_block_t *io_pdc_cell;	/* IO_VIEW */
988 	int i;
989 
990 	pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
991 	if (!pa_pdc_cell)
992 		return;
993 
994 	io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
995 	if (!io_pdc_cell) {
996 		kfree(pa_pdc_cell);
997 		return;
998 	}
999 
1000 	/* return cell module (IO view) */
1001 	status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
1002 				PA_VIEW, pa_pdc_cell);
1003 	pa_count = pa_pdc_cell->mod[1];
1004 
1005 	status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
1006 				IO_VIEW, io_pdc_cell);
1007 	io_count = io_pdc_cell->mod[1];
1008 
1009 	/* We've already done this once for device discovery...*/
1010 	if (status != PDC_OK) {
1011 		panic("pdc_pat_cell_module() call failed for LBA!\n");
1012 	}
1013 
1014 	if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) {
1015 		panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n");
1016 	}
1017 
1018 	/*
1019 	** Inspect the resources PAT tells us about
1020 	*/
1021 	for (i = 0; i < pa_count; i++) {
1022 		struct {
1023 			unsigned long type;
1024 			unsigned long start;
1025 			unsigned long end;	/* aka finish */
1026 		} *p, *io;
1027 		struct resource *r;
1028 
1029 		p = (void *) &(pa_pdc_cell->mod[2+i*3]);
1030 		io = (void *) &(io_pdc_cell->mod[2+i*3]);
1031 
1032 		/* Convert the PAT range data to PCI "struct resource" */
1033 		switch(p->type & 0xff) {
1034 		case PAT_PBNUM:
1035 			lba_dev->hba.bus_num.start = p->start;
1036 			lba_dev->hba.bus_num.end   = p->end;
1037 			break;
1038 
1039 		case PAT_LMMIO:
1040 			/* used to fix up pre-initialized MEM BARs */
1041 			if (!lba_dev->hba.lmmio_space.start) {
1042 				sprintf(lba_dev->hba.lmmio_name,
1043 						"PCI%02x LMMIO",
1044 						(int)lba_dev->hba.bus_num.start);
1045 				lba_dev->hba.lmmio_space_offset = p->start -
1046 					io->start;
1047 				r = &lba_dev->hba.lmmio_space;
1048 				r->name = lba_dev->hba.lmmio_name;
1049 			} else if (!lba_dev->hba.elmmio_space.start) {
1050 				sprintf(lba_dev->hba.elmmio_name,
1051 						"PCI%02x ELMMIO",
1052 						(int)lba_dev->hba.bus_num.start);
1053 				r = &lba_dev->hba.elmmio_space;
1054 				r->name = lba_dev->hba.elmmio_name;
1055 			} else {
1056 				printk(KERN_WARNING MODULE_NAME
1057 					" only supports 2 LMMIO resources!\n");
1058 				break;
1059 			}
1060 
1061 			r->start  = p->start;
1062 			r->end    = p->end;
1063 			r->flags  = IORESOURCE_MEM;
1064 			r->parent = r->sibling = r->child = NULL;
1065 			break;
1066 
1067 		case PAT_GMMIO:
1068 			/* MMIO space > 4GB phys addr; for 64-bit BAR */
1069 			sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO",
1070 					(int)lba_dev->hba.bus_num.start);
1071 			r = &lba_dev->hba.gmmio_space;
1072 			r->name  = lba_dev->hba.gmmio_name;
1073 			r->start  = p->start;
1074 			r->end    = p->end;
1075 			r->flags  = IORESOURCE_MEM;
1076 			r->parent = r->sibling = r->child = NULL;
1077 			break;
1078 
1079 		case PAT_NPIOP:
1080 			printk(KERN_WARNING MODULE_NAME
1081 				" range[%d] : ignoring NPIOP (0x%lx)\n",
1082 				i, p->start);
1083 			break;
1084 
1085 		case PAT_PIOP:
1086 			/*
1087 			** Postable I/O port space is per PCI host adapter.
1088 			** base of 64MB PIOP region
1089 			*/
1090 			lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024);
1091 
1092 			sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
1093 					(int)lba_dev->hba.bus_num.start);
1094 			r = &lba_dev->hba.io_space;
1095 			r->name  = lba_dev->hba.io_name;
1096 			r->start  = HBA_PORT_BASE(lba_dev->hba.hba_num);
1097 			r->end    = r->start + HBA_PORT_SPACE_SIZE - 1;
1098 			r->flags  = IORESOURCE_IO;
1099 			r->parent = r->sibling = r->child = NULL;
1100 			break;
1101 
1102 		default:
1103 			printk(KERN_WARNING MODULE_NAME
1104 				" range[%d] : unknown pat range type (0x%lx)\n",
1105 				i, p->type & 0xff);
1106 			break;
1107 		}
1108 	}
1109 
1110 	kfree(pa_pdc_cell);
1111 	kfree(io_pdc_cell);
1112 }
1113 #else
1114 /* keep compiler from complaining about missing declarations */
1115 #define lba_pat_port_ops lba_astro_port_ops
1116 #define lba_pat_resources(pa_dev, lba_dev)
1117 #endif	/* CONFIG_64BIT */
1118 
1119 
1120 extern void sba_distributed_lmmio(struct parisc_device *, struct resource *);
1121 extern void sba_directed_lmmio(struct parisc_device *, struct resource *);
1122 
1123 
1124 static void
lba_legacy_resources(struct parisc_device * pa_dev,struct lba_device * lba_dev)1125 lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
1126 {
1127 	struct resource *r;
1128 	int lba_num;
1129 
1130 	lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
1131 
1132 	/*
1133 	** With "legacy" firmware, the lowest byte of FW_SCRATCH
1134 	** represents bus->secondary and the second byte represents
1135 	** bus->subsidiary (i.e. highest PPB programmed by firmware).
1136 	** PCI bus walk *should* end up with the same result.
1137 	** FIXME: But we don't have sanity checks in PCI or LBA.
1138 	*/
1139 	lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH);
1140 	r = &(lba_dev->hba.bus_num);
1141 	r->name = "LBA PCI Busses";
1142 	r->start = lba_num & 0xff;
1143 	r->end = (lba_num>>8) & 0xff;
1144 
1145 	/* Set up local PCI Bus resources - we don't need them for
1146 	** Legacy boxes but it's nice to see in /proc/iomem.
1147 	*/
1148 	r = &(lba_dev->hba.lmmio_space);
1149 	sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO",
1150 					(int)lba_dev->hba.bus_num.start);
1151 	r->name  = lba_dev->hba.lmmio_name;
1152 
1153 #if 1
1154 	/* We want the CPU -> IO routing of addresses.
1155 	 * The SBA BASE/MASK registers control CPU -> IO routing.
1156 	 * Ask SBA what is routed to this rope/LBA.
1157 	 */
1158 	sba_distributed_lmmio(pa_dev, r);
1159 #else
1160 	/*
1161 	 * The LBA BASE/MASK registers control IO -> System routing.
1162 	 *
1163 	 * The following code works but doesn't get us what we want.
1164 	 * Well, only because firmware (v5.0) on C3000 doesn't program
1165 	 * the LBA BASE/MASE registers to be the exact inverse of
1166 	 * the corresponding SBA registers. Other Astro/Pluto
1167 	 * based platform firmware may do it right.
1168 	 *
1169 	 * Should someone want to mess with MSI, they may need to
1170 	 * reprogram LBA BASE/MASK registers. Thus preserve the code
1171 	 * below until MSI is known to work on C3000/A500/N4000/RP3440.
1172 	 *
1173 	 * Using the code below, /proc/iomem shows:
1174 	 * ...
1175 	 * f0000000-f0ffffff : PCI00 LMMIO
1176 	 *   f05d0000-f05d0000 : lcd_data
1177 	 *   f05d0008-f05d0008 : lcd_cmd
1178 	 * f1000000-f1ffffff : PCI01 LMMIO
1179 	 * f4000000-f4ffffff : PCI02 LMMIO
1180 	 *   f4000000-f4001fff : sym53c8xx
1181 	 *   f4002000-f4003fff : sym53c8xx
1182 	 *   f4004000-f40043ff : sym53c8xx
1183 	 *   f4005000-f40053ff : sym53c8xx
1184 	 *   f4007000-f4007fff : ohci_hcd
1185 	 *   f4008000-f40083ff : tulip
1186 	 * f6000000-f6ffffff : PCI03 LMMIO
1187 	 * f8000000-fbffffff : PCI00 ELMMIO
1188 	 *   fa100000-fa4fffff : stifb mmio
1189 	 *   fb000000-fb1fffff : stifb fb
1190 	 *
1191 	 * But everything listed under PCI02 actually lives under PCI00.
1192 	 * This is clearly wrong.
1193 	 *
1194 	 * Asking SBA how things are routed tells the correct story:
1195 	 * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000
1196 	 * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006
1197 	 * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004
1198 	 * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000
1199 	 * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000
1200 	 *
1201 	 * Which looks like this in /proc/iomem:
1202 	 * f4000000-f47fffff : PCI00 LMMIO
1203 	 *   f4000000-f4001fff : sym53c8xx
1204 	 *   ...[deteled core devices - same as above]...
1205 	 *   f4008000-f40083ff : tulip
1206 	 * f4800000-f4ffffff : PCI01 LMMIO
1207 	 * f6000000-f67fffff : PCI02 LMMIO
1208 	 * f7000000-f77fffff : PCI03 LMMIO
1209 	 * f9000000-f9ffffff : PCI02 ELMMIO
1210 	 * fa000000-fbffffff : PCI03 ELMMIO
1211 	 *   fa100000-fa4fffff : stifb mmio
1212 	 *   fb000000-fb1fffff : stifb fb
1213 	 *
1214 	 * ie all Built-in core are under now correctly under PCI00.
1215 	 * The "PCI02 ELMMIO" directed range is for:
1216 	 *  +-[02]---03.0  3Dfx Interactive, Inc. Voodoo 2
1217 	 *
1218 	 * All is well now.
1219 	 */
1220 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE);
1221 	if (r->start & 1) {
1222 		unsigned long rsize;
1223 
1224 		r->flags = IORESOURCE_MEM;
1225 		/* mmio_mask also clears Enable bit */
1226 		r->start &= mmio_mask;
1227 		r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
1228 		rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK);
1229 
1230 		/*
1231 		** Each rope only gets part of the distributed range.
1232 		** Adjust "window" for this rope.
1233 		*/
1234 		rsize /= ROPES_PER_IOC;
1235 		r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start);
1236 		r->end = r->start + rsize;
1237 	} else {
1238 		r->end = r->start = 0;	/* Not enabled. */
1239 	}
1240 #endif
1241 
1242 	/*
1243 	** "Directed" ranges are used when the "distributed range" isn't
1244 	** sufficient for all devices below a given LBA.  Typically devices
1245 	** like graphics cards or X25 may need a directed range when the
1246 	** bus has multiple slots (ie multiple devices) or the device
1247 	** needs more than the typical 4 or 8MB a distributed range offers.
1248 	**
1249 	** The main reason for ignoring it now frigging complications.
1250 	** Directed ranges may overlap (and have precedence) over
1251 	** distributed ranges. Or a distributed range assigned to a unused
1252 	** rope may be used by a directed range on a different rope.
1253 	** Support for graphics devices may require fixing this
1254 	** since they may be assigned a directed range which overlaps
1255 	** an existing (but unused portion of) distributed range.
1256 	*/
1257 	r = &(lba_dev->hba.elmmio_space);
1258 	sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO",
1259 					(int)lba_dev->hba.bus_num.start);
1260 	r->name  = lba_dev->hba.elmmio_name;
1261 
1262 #if 1
1263 	/* See comment which precedes call to sba_directed_lmmio() */
1264 	sba_directed_lmmio(pa_dev, r);
1265 #else
1266 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE);
1267 
1268 	if (r->start & 1) {
1269 		unsigned long rsize;
1270 		r->flags = IORESOURCE_MEM;
1271 		/* mmio_mask also clears Enable bit */
1272 		r->start &= mmio_mask;
1273 		r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
1274 		rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK);
1275 		r->end = r->start + ~rsize;
1276 	}
1277 #endif
1278 
1279 	r = &(lba_dev->hba.io_space);
1280 	sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
1281 					(int)lba_dev->hba.bus_num.start);
1282 	r->name  = lba_dev->hba.io_name;
1283 	r->flags = IORESOURCE_IO;
1284 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L;
1285 	r->end   = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1));
1286 
1287 	/* Virtualize the I/O Port space ranges */
1288 	lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num);
1289 	r->start |= lba_num;
1290 	r->end   |= lba_num;
1291 }
1292 
1293 
1294 /**************************************************************************
1295 **
1296 **   LBA initialization code (HW and SW)
1297 **
1298 **   o identify LBA chip itself
1299 **   o initialize LBA chip modes (HardFail)
1300 **   o FIXME: initialize DMA hints for reasonable defaults
1301 **   o enable configuration functions
1302 **   o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked)
1303 **
1304 **************************************************************************/
1305 
1306 static int __init
lba_hw_init(struct lba_device * d)1307 lba_hw_init(struct lba_device *d)
1308 {
1309 	u32 stat;
1310 	u32 bus_reset;	/* PDC_PAT_BUG */
1311 
1312 #if 0
1313 	printk(KERN_DEBUG "LBA %lx  STAT_CTL %Lx  ERROR_CFG %Lx  STATUS %Lx DMA_CTL %Lx\n",
1314 		d->hba.base_addr,
1315 		READ_REG64(d->hba.base_addr + LBA_STAT_CTL),
1316 		READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG),
1317 		READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS),
1318 		READ_REG64(d->hba.base_addr + LBA_DMA_CTL) );
1319 	printk(KERN_DEBUG "	ARB mask %Lx  pri %Lx  mode %Lx  mtlt %Lx\n",
1320 		READ_REG64(d->hba.base_addr + LBA_ARB_MASK),
1321 		READ_REG64(d->hba.base_addr + LBA_ARB_PRI),
1322 		READ_REG64(d->hba.base_addr + LBA_ARB_MODE),
1323 		READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) );
1324 	printk(KERN_DEBUG "	HINT cfg 0x%Lx\n",
1325 		READ_REG64(d->hba.base_addr + LBA_HINT_CFG));
1326 	printk(KERN_DEBUG "	HINT reg ");
1327 	{ int i;
1328 	for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8)
1329 		printk(" %Lx", READ_REG64(d->hba.base_addr + i));
1330 	}
1331 	printk("\n");
1332 #endif	/* DEBUG_LBA_PAT */
1333 
1334 #ifdef CONFIG_64BIT
1335 /*
1336  * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support
1337  * Only N-Class and up can really make use of Get slot status.
1338  * maybe L-class too but I've never played with it there.
1339  */
1340 #endif
1341 
1342 	/* PDC_PAT_BUG: exhibited in rev 40.48  on L2000 */
1343 	bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1;
1344 	if (bus_reset) {
1345 		printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n");
1346 	}
1347 
1348 	stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);
1349 	if (stat & LBA_SMART_MODE) {
1350 		printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n");
1351 		stat &= ~LBA_SMART_MODE;
1352 		WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
1353 	}
1354 
1355 	/* Set HF mode as the default (vs. -1 mode). */
1356         stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
1357 	WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
1358 
1359 	/*
1360 	** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
1361 	** if it's not already set. If we just cleared the PCI Bus Reset
1362 	** signal, wait a bit for the PCI devices to recover and setup.
1363 	*/
1364 	if (bus_reset)
1365 		mdelay(pci_post_reset_delay);
1366 
1367 	if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) {
1368 		/*
1369 		** PDC_PAT_BUG: PDC rev 40.48 on L2000.
1370 		** B2000/C3600/J6000 also have this problem?
1371 		**
1372 		** Elroys with hot pluggable slots don't get configured
1373 		** correctly if the slot is empty.  ARB_MASK is set to 0
1374 		** and we can't master transactions on the bus if it's
1375 		** not at least one. 0x3 enables elroy and first slot.
1376 		*/
1377 		printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n");
1378 		WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK);
1379 	}
1380 
1381 	/*
1382 	** FIXME: Hint registers are programmed with default hint
1383 	** values by firmware. Hints should be sane even if we
1384 	** can't reprogram them the way drivers want.
1385 	*/
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Unfortunately, when firmware numbers busses, it doesn't take into account
1391  * Cardbus bridges.  So we have to renumber the busses to suit ourselves.
1392  * Elroy/Mercury don't actually know what bus number they're attached to;
1393  * we use bus 0 to indicate the directly attached bus and any other bus
1394  * number will be taken care of by the PCI-PCI bridge.
1395  */
1396 static unsigned int lba_next_bus = 0;
1397 
1398 /*
1399  * Determine if lba should claim this chip (return 0) or not (return 1).
1400  * If so, initialize the chip and tell other partners in crime they
1401  * have work to do.
1402  */
1403 static int __init
lba_driver_probe(struct parisc_device * dev)1404 lba_driver_probe(struct parisc_device *dev)
1405 {
1406 	struct lba_device *lba_dev;
1407 	struct pci_bus *lba_bus;
1408 	struct pci_ops *cfg_ops;
1409 	u32 func_class;
1410 	void *tmp_obj;
1411 	char *version;
1412 	void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096);
1413 
1414 	/* Read HW Rev First */
1415 	func_class = READ_REG32(addr + LBA_FCLASS);
1416 
1417 	if (IS_ELROY(dev)) {
1418 		func_class &= 0xf;
1419 		switch (func_class) {
1420 		case 0:	version = "TR1.0"; break;
1421 		case 1:	version = "TR2.0"; break;
1422 		case 2:	version = "TR2.1"; break;
1423 		case 3:	version = "TR2.2"; break;
1424 		case 4:	version = "TR3.0"; break;
1425 		case 5:	version = "TR4.0"; break;
1426 		default: version = "TR4+";
1427 		}
1428 
1429 		printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n",
1430 		       version, func_class & 0xf, (long)dev->hpa.start);
1431 
1432 		if (func_class < 2) {
1433 			printk(KERN_WARNING "Can't support LBA older than "
1434 				"TR2.1 - continuing under adversity.\n");
1435 		}
1436 
1437 #if 0
1438 /* Elroy TR4.0 should work with simple algorithm.
1439    But it doesn't.  Still missing something. *sigh*
1440 */
1441 		if (func_class > 4) {
1442 			cfg_ops = &mercury_cfg_ops;
1443 		} else
1444 #endif
1445 		{
1446 			cfg_ops = &elroy_cfg_ops;
1447 		}
1448 
1449 	} else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) {
1450 		int major, minor;
1451 
1452 		func_class &= 0xff;
1453 		major = func_class >> 4, minor = func_class & 0xf;
1454 
1455 		/* We could use one printk for both Elroy and Mercury,
1456                  * but for the mask for func_class.
1457                  */
1458 		printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n",
1459 		       IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major,
1460 		       minor, func_class, (long)dev->hpa.start);
1461 
1462 		cfg_ops = &mercury_cfg_ops;
1463 	} else {
1464 		printk(KERN_ERR "Unknown LBA found at 0x%lx\n",
1465 			(long)dev->hpa.start);
1466 		return -ENODEV;
1467 	}
1468 
1469 	/* Tell I/O SAPIC driver we have a IRQ handler/region. */
1470 	tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE);
1471 
1472 	/* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't
1473 	**	have an IRT entry will get NULL back from iosapic code.
1474 	*/
1475 
1476 	lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL);
1477 	if (!lba_dev) {
1478 		printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n");
1479 		return(1);
1480 	}
1481 
1482 
1483 	/* ---------- First : initialize data we already have --------- */
1484 
1485 	lba_dev->hw_rev = func_class;
1486 	lba_dev->hba.base_addr = addr;
1487 	lba_dev->hba.dev = dev;
1488 	lba_dev->iosapic_obj = tmp_obj;  /* save interrupt handle */
1489 	lba_dev->hba.iommu = sba_get_iommu(dev);  /* get iommu data */
1490 	parisc_set_drvdata(dev, lba_dev);
1491 
1492 	/* ------------ Second : initialize common stuff ---------- */
1493 	pci_bios = &lba_bios_ops;
1494 	pcibios_register_hba(HBA_DATA(lba_dev));
1495 	spin_lock_init(&lba_dev->lba_lock);
1496 
1497 	if (lba_hw_init(lba_dev))
1498 		return(1);
1499 
1500 	/* ---------- Third : setup I/O Port and MMIO resources  --------- */
1501 
1502 	if (is_pdc_pat()) {
1503 		/* PDC PAT firmware uses PIOP region of GMMIO space. */
1504 		pci_port = &lba_pat_port_ops;
1505 		/* Go ask PDC PAT what resources this LBA has */
1506 		lba_pat_resources(dev, lba_dev);
1507 	} else {
1508 		if (!astro_iop_base) {
1509 			/* Sprockets PDC uses NPIOP region */
1510 			astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024);
1511 			pci_port = &lba_astro_port_ops;
1512 		}
1513 
1514 		/* Poke the chip a bit for /proc output */
1515 		lba_legacy_resources(dev, lba_dev);
1516 	}
1517 
1518 	if (lba_dev->hba.bus_num.start < lba_next_bus)
1519 		lba_dev->hba.bus_num.start = lba_next_bus;
1520 
1521 	dev->dev.platform_data = lba_dev;
1522 	lba_bus = lba_dev->hba.hba_bus =
1523 		pci_scan_bus_parented(&dev->dev, lba_dev->hba.bus_num.start,
1524 				cfg_ops, NULL);
1525 
1526 	/* This is in lieu of calling pci_assign_unassigned_resources() */
1527 	if (is_pdc_pat()) {
1528 		/* assign resources to un-initialized devices */
1529 
1530 		DBG_PAT("LBA pci_bus_size_bridges()\n");
1531 		pci_bus_size_bridges(lba_bus);
1532 
1533 		DBG_PAT("LBA pci_bus_assign_resources()\n");
1534 		pci_bus_assign_resources(lba_bus);
1535 
1536 #ifdef DEBUG_LBA_PAT
1537 		DBG_PAT("\nLBA PIOP resource tree\n");
1538 		lba_dump_res(&lba_dev->hba.io_space, 2);
1539 		DBG_PAT("\nLBA LMMIO resource tree\n");
1540 		lba_dump_res(&lba_dev->hba.lmmio_space, 2);
1541 #endif
1542 	}
1543 	pci_enable_bridges(lba_bus);
1544 
1545 	/*
1546 	** Once PCI register ops has walked the bus, access to config
1547 	** space is restricted. Avoids master aborts on config cycles.
1548 	** Early LBA revs go fatal on *any* master abort.
1549 	*/
1550 	if (cfg_ops == &elroy_cfg_ops) {
1551 		lba_dev->flags |= LBA_FLAG_SKIP_PROBE;
1552 	}
1553 
1554 	if (lba_bus) {
1555 		lba_next_bus = lba_bus->subordinate + 1;
1556 		pci_bus_add_devices(lba_bus);
1557 	}
1558 
1559 	/* Whew! Finally done! Tell services we got this one covered. */
1560 	return 0;
1561 }
1562 
1563 static struct parisc_device_id lba_tbl[] = {
1564 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa },
1565 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa },
1566 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa },
1567 	{ 0, }
1568 };
1569 
1570 static struct parisc_driver lba_driver = {
1571 	.name =		MODULE_NAME,
1572 	.id_table =	lba_tbl,
1573 	.probe =	lba_driver_probe,
1574 };
1575 
1576 /*
1577 ** One time initialization to let the world know the LBA was found.
1578 ** Must be called exactly once before pci_init().
1579 */
lba_init(void)1580 void __init lba_init(void)
1581 {
1582 	register_parisc_driver(&lba_driver);
1583 }
1584 
1585 /*
1586 ** Initialize the IBASE/IMASK registers for LBA (Elroy).
1587 ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA).
1588 ** sba_iommu is responsible for locking (none needed at init time).
1589 */
lba_set_iregs(struct parisc_device * lba,u32 ibase,u32 imask)1590 void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask)
1591 {
1592 	void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096);
1593 
1594 	imask <<= 2;	/* adjust for hints - 2 more bits */
1595 
1596 	/* Make sure we aren't trying to set bits that aren't writeable. */
1597 	WARN_ON((ibase & 0x001fffff) != 0);
1598 	WARN_ON((imask & 0x001fffff) != 0);
1599 
1600 	DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask);
1601 	WRITE_REG32( imask, base_addr + LBA_IMASK);
1602 	WRITE_REG32( ibase, base_addr + LBA_IBASE);
1603 	iounmap(base_addr);
1604 }
1605 
1606