1 /*
2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
4 *
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
12 *
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
16 *
17 * Version: @(#)strip.c 1.3 July 1997
18 *
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
20 *
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
25 *
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
29 *
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
32 *
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
36 *
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
39 *
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
42 *
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
45 *
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
48 *
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
51 *
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
55 *
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
60 *
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
63 *
64 * v1.3 July 1997 (SC)
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
69 */
70
71 #ifdef MODULE
72 static const char StripVersion[] = "1.3-STUART.CHESHIRE-MODULAR";
73 #else
74 static const char StripVersion[] = "1.3-STUART.CHESHIRE";
75 #endif
76
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
79
80
81 /************************************************************************/
82 /* Header files */
83
84 #include <linux/config.h>
85 #include <linux/module.h>
86 #include <linux/version.h>
87 #include <linux/init.h>
88 #include <asm/system.h>
89 #include <asm/uaccess.h>
90 #include <asm/segment.h>
91 #include <asm/bitops.h>
92
93 /*
94 * isdigit() and isspace() use the ctype[] array, which is not available
95 * to kernel modules. If compiling as a module, use a local definition
96 * of isdigit() and isspace() until _ctype is added to ksyms.
97 */
98 #ifdef MODULE
99 # define isdigit(c) ('0' <= (c) && (c) <= '9')
100 # define isspace(c) ((c) == ' ' || (c) == '\t')
101 #else
102 # include <linux/ctype.h>
103 #endif
104
105 #include <linux/string.h>
106 #include <linux/mm.h>
107 #include <linux/interrupt.h>
108 #include <linux/in.h>
109 #include <linux/tty.h>
110 #include <linux/errno.h>
111 #include <linux/netdevice.h>
112 #include <linux/inetdevice.h>
113 #include <linux/etherdevice.h>
114 #include <linux/skbuff.h>
115 #include <linux/if_arp.h>
116 #include <linux/if_strip.h>
117 #include <linux/proc_fs.h>
118 #include <linux/serial.h>
119 #include <linux/serialP.h>
120 #include <net/arp.h>
121
122 #include <linux/ip.h>
123 #include <linux/tcp.h>
124 #include <linux/time.h>
125
126
127 /************************************************************************/
128 /* Useful structures and definitions */
129
130 /*
131 * A MetricomKey identifies the protocol being carried inside a Metricom
132 * Starmode packet.
133 */
134
135 typedef union
136 {
137 __u8 c[4];
138 __u32 l;
139 } MetricomKey;
140
141 /*
142 * An IP address can be viewed as four bytes in memory (which is what it is) or as
143 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
144 */
145
146 typedef union
147 {
148 __u8 b[4];
149 __u32 l;
150 } IPaddr;
151
152 /*
153 * A MetricomAddressString is used to hold a printable representation of
154 * a Metricom address.
155 */
156
157 typedef struct
158 {
159 __u8 c[24];
160 } MetricomAddressString;
161
162 /* Encapsulation can expand packet of size x to 65/64x + 1
163 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
164 * 1 1 1-18 1 4 ? 1
165 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
166 * We allow 31 bytes for the stars, the key, the address and the <CR>s
167 */
168 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
169
170 /*
171 * A STRIP_Header is never really sent over the radio, but making a dummy
172 * header for internal use within the kernel that looks like an Ethernet
173 * header makes certain other software happier. For example, tcpdump
174 * already understands Ethernet headers.
175 */
176
177 typedef struct
178 {
179 MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
180 MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
181 unsigned short protocol; /* The protocol type, using Ethernet codes */
182 } STRIP_Header;
183
184 typedef struct
185 {
186 char c[60];
187 } MetricomNode;
188
189 #define NODE_TABLE_SIZE 32
190 typedef struct
191 {
192 struct timeval timestamp;
193 int num_nodes;
194 MetricomNode node[NODE_TABLE_SIZE];
195 } MetricomNodeTable;
196
197 enum { FALSE = 0, TRUE = 1 };
198
199 /*
200 * Holds the radio's firmware version.
201 */
202 typedef struct
203 {
204 char c[50];
205 } FirmwareVersion;
206
207 /*
208 * Holds the radio's serial number.
209 */
210 typedef struct
211 {
212 char c[18];
213 } SerialNumber;
214
215 /*
216 * Holds the radio's battery voltage.
217 */
218 typedef struct
219 {
220 char c[11];
221 } BatteryVoltage;
222
223 typedef struct
224 {
225 char c[8];
226 } char8;
227
228 enum
229 {
230 NoStructure = 0, /* Really old firmware */
231 StructuredMessages = 1, /* Parsable AT response msgs */
232 ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
233 } FirmwareLevel;
234
235 struct strip
236 {
237 int magic;
238 /*
239 * These are pointers to the malloc()ed frame buffers.
240 */
241
242 unsigned char *rx_buff; /* buffer for received IP packet*/
243 unsigned char *sx_buff; /* buffer for received serial data*/
244 int sx_count; /* received serial data counter */
245 int sx_size; /* Serial buffer size */
246 unsigned char *tx_buff; /* transmitter buffer */
247 unsigned char *tx_head; /* pointer to next byte to XMIT */
248 int tx_left; /* bytes left in XMIT queue */
249 int tx_size; /* Serial buffer size */
250
251 /*
252 * STRIP interface statistics.
253 */
254
255 unsigned long rx_packets; /* inbound frames counter */
256 unsigned long tx_packets; /* outbound frames counter */
257 unsigned long rx_errors; /* Parity, etc. errors */
258 unsigned long tx_errors; /* Planned stuff */
259 unsigned long rx_dropped; /* No memory for skb */
260 unsigned long tx_dropped; /* When MTU change */
261 unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */
262
263 unsigned long pps_timer; /* Timer to determine pps */
264 unsigned long rx_pps_count; /* Counter to determine pps */
265 unsigned long tx_pps_count; /* Counter to determine pps */
266 unsigned long sx_pps_count; /* Counter to determine pps */
267 unsigned long rx_average_pps; /* rx packets per second * 8 */
268 unsigned long tx_average_pps; /* tx packets per second * 8 */
269 unsigned long sx_average_pps; /* sent packets per second * 8 */
270
271 #ifdef EXT_COUNTERS
272 unsigned long rx_bytes; /* total received bytes */
273 unsigned long tx_bytes; /* total received bytes */
274 unsigned long rx_rbytes; /* bytes thru radio i/f */
275 unsigned long tx_rbytes; /* bytes thru radio i/f */
276 unsigned long rx_sbytes; /* tot bytes thru serial i/f */
277 unsigned long tx_sbytes; /* tot bytes thru serial i/f */
278 unsigned long rx_ebytes; /* tot stat/err bytes */
279 unsigned long tx_ebytes; /* tot stat/err bytes */
280 #endif
281
282 /*
283 * Internal variables.
284 */
285
286 struct strip *next; /* The next struct in the list */
287 struct strip **referrer; /* The pointer that points to us*/
288 int discard; /* Set if serial error */
289 int working; /* Is radio working correctly? */
290 int firmware_level; /* Message structuring level */
291 int next_command; /* Next periodic command */
292 unsigned int user_baud; /* The user-selected baud rate */
293 int mtu; /* Our mtu (to spot changes!) */
294 long watchdog_doprobe; /* Next time to test the radio */
295 long watchdog_doreset; /* Time to do next reset */
296 long gratuitous_arp; /* Time to send next ARP refresh*/
297 long arp_interval; /* Next ARP interval */
298 struct timer_list idle_timer; /* For periodic wakeup calls */
299 MetricomAddress true_dev_addr; /* True address of radio */
300 int manual_dev_addr; /* Hack: See note below */
301
302 FirmwareVersion firmware_version; /* The radio's firmware version */
303 SerialNumber serial_number; /* The radio's serial number */
304 BatteryVoltage battery_voltage; /* The radio's battery voltage */
305
306 /*
307 * Other useful structures.
308 */
309
310 struct tty_struct *tty; /* ptr to TTY structure */
311 struct net_device dev; /* Our device structure */
312
313 /*
314 * Neighbour radio records
315 */
316
317 MetricomNodeTable portables;
318 MetricomNodeTable poletops;
319 };
320
321 /*
322 * Note: manual_dev_addr hack
323 *
324 * It is not possible to change the hardware address of a Metricom radio,
325 * or to send packets with a user-specified hardware source address, thus
326 * trying to manually set a hardware source address is a questionable
327 * thing to do. However, if the user *does* manually set the hardware
328 * source address of a STRIP interface, then the kernel will believe it,
329 * and use it in certain places. For example, the hardware address listed
330 * by ifconfig will be the manual address, not the true one.
331 * (Both addresses are listed in /proc/net/strip.)
332 * Also, ARP packets will be sent out giving the user-specified address as
333 * the source address, not the real address. This is dangerous, because
334 * it means you won't receive any replies -- the ARP replies will go to
335 * the specified address, which will be some other radio. The case where
336 * this is useful is when that other radio is also connected to the same
337 * machine. This allows you to connect a pair of radios to one machine,
338 * and to use one exclusively for inbound traffic, and the other
339 * exclusively for outbound traffic. Pretty neat, huh?
340 *
341 * Here's the full procedure to set this up:
342 *
343 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
344 * and st1 for incoming packets
345 *
346 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
347 * which is the real hardware address of st1 (inbound radio).
348 * Now when it sends out packets, it will masquerade as st1, and
349 * replies will be sent to that radio, which is exactly what we want.
350 *
351 * 3. Set the route table entry ("route add default ..." or
352 * "route add -net ...", as appropriate) to send packets via the st0
353 * interface (outbound radio). Do not add any route which sends packets
354 * out via the st1 interface -- that radio is for inbound traffic only.
355 *
356 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
357 * This tells the STRIP driver to "shut down" that interface and not
358 * send any packets through it. In particular, it stops sending the
359 * periodic gratuitous ARP packets that a STRIP interface normally sends.
360 * Also, when packets arrive on that interface, it will search the
361 * interface list to see if there is another interface who's manual
362 * hardware address matches its own real address (i.e. st0 in this
363 * example) and if so it will transfer ownership of the skbuff to
364 * that interface, so that it looks to the kernel as if the packet
365 * arrived on that interface. This is necessary because when the
366 * kernel sends an ARP packet on st0, it expects to get a reply on
367 * st0, and if it sees the reply come from st1 then it will ignore
368 * it (to be accurate, it puts the entry in the ARP table, but
369 * labelled in such a way that st0 can't use it).
370 *
371 * Thanks to Petros Maniatis for coming up with the idea of splitting
372 * inbound and outbound traffic between two interfaces, which turned
373 * out to be really easy to implement, even if it is a bit of a hack.
374 *
375 * Having set a manual address on an interface, you can restore it
376 * to automatic operation (where the address is automatically kept
377 * consistent with the real address of the radio) by setting a manual
378 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
379 * This 'turns off' manual override mode for the device address.
380 *
381 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
382 * radio addresses the packets were sent and received from, so that you
383 * can see what is really going on with packets, and which interfaces
384 * they are really going through.
385 */
386
387
388 /************************************************************************/
389 /* Constants */
390
391 /*
392 * CommandString1 works on all radios
393 * Other CommandStrings are only used with firmware that provides structured responses.
394 *
395 * ats319=1 Enables Info message for node additions and deletions
396 * ats319=2 Enables Info message for a new best node
397 * ats319=4 Enables checksums
398 * ats319=8 Enables ACK messages
399 */
400
401 static const int MaxCommandStringLength = 32;
402 static const int CompatibilityCommand = 1;
403
404 static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
405 static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
406 static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
407 static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
408 static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
409 static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
410 typedef struct { const char *string; long length; } StringDescriptor;
411
412 static const StringDescriptor CommandString[] =
413 {
414 { CommandString0, sizeof(CommandString0)-1 },
415 { CommandString1, sizeof(CommandString1)-1 },
416 { CommandString2, sizeof(CommandString2)-1 },
417 { CommandString3, sizeof(CommandString3)-1 },
418 { CommandString4, sizeof(CommandString4)-1 },
419 { CommandString5, sizeof(CommandString5)-1 }
420 };
421
422 #define GOT_ALL_RADIO_INFO(S) \
423 ((S)->firmware_version.c[0] && \
424 (S)->battery_voltage.c[0] && \
425 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
426
427 static const char hextable[16] = "0123456789ABCDEF";
428
429 static const MetricomAddress zero_address;
430 static const MetricomAddress broadcast_address = { { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF } };
431
432 static const MetricomKey SIP0Key = { { "SIP0" } };
433 static const MetricomKey ARP0Key = { { "ARP0" } };
434 static const MetricomKey ATR_Key = { { "ATR " } };
435 static const MetricomKey ACK_Key = { { "ACK_" } };
436 static const MetricomKey INF_Key = { { "INF_" } };
437 static const MetricomKey ERR_Key = { { "ERR_" } };
438
439 static const long MaxARPInterval = 60 * HZ; /* One minute */
440
441 /*
442 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
443 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
444 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
445 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
446 * long, including IP header, UDP header, and NFS header. Setting the STRIP
447 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
448 */
449 static const unsigned short MAX_SEND_MTU = 1152;
450 static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
451 static const unsigned short DEFAULT_STRIP_MTU = 1152;
452 static const int STRIP_MAGIC = 0x5303;
453 static const long LongTime = 0x7FFFFFFF;
454
455
456 /************************************************************************/
457 /* Global variables */
458
459 static struct strip *struct_strip_list;
460
461
462 /************************************************************************/
463 /* Macros */
464
465 /* Returns TRUE if text T begins with prefix P */
466 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
467
468 /* Returns TRUE if text T of length L is equal to string S */
469 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
470
471 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
472 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
473 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
474
475 #define READHEX16(X) ((__u16)(READHEX(X)))
476
477 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
478
479 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
480 #define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
481 #define ELEMENTS_OF(X) (sizeof(X) / sizeof((X)[0]))
482 #define ARRAY_END(X) (&((X)[ELEMENTS_OF(X)]))
483
484 #define JIFFIE_TO_SEC(X) ((X) / HZ)
485
486
487 /************************************************************************/
488 /* Utility routines */
489
490 typedef unsigned long InterruptStatus;
491
DisableInterrupts(void)492 static inline InterruptStatus DisableInterrupts(void)
493 {
494 InterruptStatus x;
495 save_flags(x);
496 cli();
497 return(x);
498 }
499
RestoreInterrupts(InterruptStatus x)500 static inline void RestoreInterrupts(InterruptStatus x)
501 {
502 restore_flags(x);
503 }
504
arp_query(unsigned char * haddr,u32 paddr,struct net_device * dev)505 static int arp_query(unsigned char *haddr, u32 paddr, struct net_device * dev)
506 {
507 struct neighbour *neighbor_entry;
508
509 neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
510
511 if (neighbor_entry != NULL)
512 {
513 neighbor_entry->used = jiffies;
514 if (neighbor_entry->nud_state & NUD_VALID)
515 {
516 memcpy(haddr, neighbor_entry->ha, dev->addr_len);
517 return 1;
518 }
519 }
520 return 0;
521 }
522
DumpData(char * msg,struct strip * strip_info,__u8 * ptr,__u8 * end)523 static void DumpData(char *msg, struct strip *strip_info, __u8 *ptr, __u8 *end)
524 {
525 static const int MAX_DumpData = 80;
526 __u8 pkt_text[MAX_DumpData], *p = pkt_text;
527
528 *p++ = '\"';
529
530 while (ptr<end && p < &pkt_text[MAX_DumpData-4])
531 {
532 if (*ptr == '\\')
533 {
534 *p++ = '\\';
535 *p++ = '\\';
536 }
537 else
538 {
539 if (*ptr >= 32 && *ptr <= 126)
540 {
541 *p++ = *ptr;
542 }
543 else
544 {
545 sprintf(p, "\\%02X", *ptr);
546 p+= 3;
547 }
548 }
549 ptr++;
550 }
551
552 if (ptr == end)
553 {
554 *p++ = '\"';
555 }
556
557 *p++ = 0;
558
559 printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev.name, msg, pkt_text);
560 }
561
562 #if 0
563 static void HexDump(char *msg, struct strip *strip_info, __u8 *start, __u8 *end)
564 {
565 __u8 *ptr = start;
566 printk(KERN_INFO "%s: %s: %d bytes\n", strip_info->dev.name, msg, end-ptr);
567
568 while (ptr < end)
569 {
570 long offset = ptr - start;
571 __u8 text[80], *p = text;
572 while (ptr < end && p < &text[16*3])
573 {
574 *p++ = hextable[*ptr >> 4];
575 *p++ = hextable[*ptr++ & 0xF];
576 *p++ = ' ';
577 }
578 p[-1] = 0;
579 printk(KERN_INFO "%s: %4lX %s\n", strip_info->dev.name, offset, text);
580 }
581 }
582 #endif
583
584
585 /************************************************************************/
586 /* Byte stuffing/unstuffing routines */
587
588 /* Stuffing scheme:
589 * 00 Unused (reserved character)
590 * 01-3F Run of 2-64 different characters
591 * 40-7F Run of 1-64 different characters plus a single zero at the end
592 * 80-BF Run of 1-64 of the same character
593 * C0-FF Run of 1-64 zeroes (ASCII 0)
594 */
595
596 typedef enum
597 {
598 Stuff_Diff = 0x00,
599 Stuff_DiffZero = 0x40,
600 Stuff_Same = 0x80,
601 Stuff_Zero = 0xC0,
602 Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
603
604 Stuff_CodeMask = 0xC0,
605 Stuff_CountMask = 0x3F,
606 Stuff_MaxCount = 0x3F,
607 Stuff_Magic = 0x0D /* The value we are eliminating */
608 } StuffingCode;
609
610 /* StuffData encodes the data starting at "src" for "length" bytes.
611 * It writes it to the buffer pointed to by "dst" (which must be at least
612 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
613 * larger than the input for pathological input, but will usually be smaller.
614 * StuffData returns the new value of the dst pointer as its result.
615 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
616 * between calls, allowing an encoded packet to be incrementally built up
617 * from small parts. On the first call, the "__u8 *" pointed to should be
618 * initialized to NULL; between subsequent calls the calling routine should
619 * leave the value alone and simply pass it back unchanged so that the
620 * encoder can recover its current state.
621 */
622
623 #define StuffData_FinishBlock(X) \
624 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
625
StuffData(__u8 * src,__u32 length,__u8 * dst,__u8 ** code_ptr_ptr)626 static __u8 *StuffData(__u8 *src, __u32 length, __u8 *dst, __u8 **code_ptr_ptr)
627 {
628 __u8 *end = src + length;
629 __u8 *code_ptr = *code_ptr_ptr;
630 __u8 code = Stuff_NoCode, count = 0;
631
632 if (!length)
633 return(dst);
634
635 if (code_ptr)
636 {
637 /*
638 * Recover state from last call, if applicable
639 */
640 code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
641 count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
642 }
643
644 while (src < end)
645 {
646 switch (code)
647 {
648 /* Stuff_NoCode: If no current code, select one */
649 case Stuff_NoCode:
650 /* Record where we're going to put this code */
651 code_ptr = dst++;
652 count = 0; /* Reset the count (zero means one instance) */
653 /* Tentatively start a new block */
654 if (*src == 0)
655 {
656 code = Stuff_Zero;
657 src++;
658 }
659 else
660 {
661 code = Stuff_Same;
662 *dst++ = *src++ ^ Stuff_Magic;
663 }
664 /* Note: We optimistically assume run of same -- */
665 /* which will be fixed later in Stuff_Same */
666 /* if it turns out not to be true. */
667 break;
668
669 /* Stuff_Zero: We already have at least one zero encoded */
670 case Stuff_Zero:
671 /* If another zero, count it, else finish this code block */
672 if (*src == 0)
673 {
674 count++;
675 src++;
676 }
677 else
678 {
679 StuffData_FinishBlock(Stuff_Zero + count);
680 }
681 break;
682
683 /* Stuff_Same: We already have at least one byte encoded */
684 case Stuff_Same:
685 /* If another one the same, count it */
686 if ((*src ^ Stuff_Magic) == code_ptr[1])
687 {
688 count++;
689 src++;
690 break;
691 }
692 /* else, this byte does not match this block. */
693 /* If we already have two or more bytes encoded, finish this code block */
694 if (count)
695 {
696 StuffData_FinishBlock(Stuff_Same + count);
697 break;
698 }
699 /* else, we only have one so far, so switch to Stuff_Diff code */
700 code = Stuff_Diff;
701 /* and fall through to Stuff_Diff case below
702 * Note cunning cleverness here: case Stuff_Diff compares
703 * the current character with the previous two to see if it
704 * has a run of three the same. Won't this be an error if
705 * there aren't two previous characters stored to compare with?
706 * No. Because we know the current character is *not* the same
707 * as the previous one, the first test below will necessarily
708 * fail and the send half of the "if" won't be executed.
709 */
710
711 /* Stuff_Diff: We have at least two *different* bytes encoded */
712 case Stuff_Diff:
713 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
714 if (*src == 0)
715 {
716 StuffData_FinishBlock(Stuff_DiffZero + count);
717 }
718 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
719 else if ((*src ^ Stuff_Magic)==dst[-1] && dst[-1]==dst[-2])
720 {
721 /* Back off the last two characters we encoded */
722 code += count-2;
723 /* Note: "Stuff_Diff + 0" is an illegal code */
724 if (code == Stuff_Diff + 0)
725 {
726 code = Stuff_Same + 0;
727 }
728 StuffData_FinishBlock(code);
729 code_ptr = dst-2;
730 /* dst[-1] already holds the correct value */
731 count = 2; /* 2 means three bytes encoded */
732 code = Stuff_Same;
733 }
734 /* else, another different byte, so add it to the block */
735 else
736 {
737 *dst++ = *src ^ Stuff_Magic;
738 count++;
739 }
740 src++; /* Consume the byte */
741 break;
742 }
743 if (count == Stuff_MaxCount)
744 {
745 StuffData_FinishBlock(code + count);
746 }
747 }
748 if (code == Stuff_NoCode)
749 {
750 *code_ptr_ptr = NULL;
751 }
752 else
753 {
754 *code_ptr_ptr = code_ptr;
755 StuffData_FinishBlock(code + count);
756 }
757 return(dst);
758 }
759
760 /*
761 * UnStuffData decodes the data at "src", up to (but not including) "end".
762 * It writes the decoded data into the buffer pointed to by "dst", up to a
763 * maximum of "dst_length", and returns the new value of "src" so that a
764 * follow-on call can read more data, continuing from where the first left off.
765 *
766 * There are three types of results:
767 * 1. The source data runs out before extracting "dst_length" bytes:
768 * UnStuffData returns NULL to indicate failure.
769 * 2. The source data produces exactly "dst_length" bytes:
770 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
771 * 3. "dst_length" bytes are extracted, with more remaining.
772 * UnStuffData returns new_src < end to indicate that there are more bytes
773 * to be read.
774 *
775 * Note: The decoding may be destructive, in that it may alter the source
776 * data in the process of decoding it (this is necessary to allow a follow-on
777 * call to resume correctly).
778 */
779
UnStuffData(__u8 * src,__u8 * end,__u8 * dst,__u32 dst_length)780 static __u8 *UnStuffData(__u8 *src, __u8 *end, __u8 *dst, __u32 dst_length)
781 {
782 __u8 *dst_end = dst + dst_length;
783 /* Sanity check */
784 if (!src || !end || !dst || !dst_length)
785 return(NULL);
786 while (src < end && dst < dst_end)
787 {
788 int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
789 switch ((*src ^ Stuff_Magic) & Stuff_CodeMask)
790 {
791 case Stuff_Diff:
792 if (src+1+count >= end)
793 return(NULL);
794 do
795 {
796 *dst++ = *++src ^ Stuff_Magic;
797 }
798 while(--count >= 0 && dst < dst_end);
799 if (count < 0)
800 src += 1;
801 else
802 {
803 if (count == 0)
804 *src = Stuff_Same ^ Stuff_Magic;
805 else
806 *src = (Stuff_Diff + count) ^ Stuff_Magic;
807 }
808 break;
809 case Stuff_DiffZero:
810 if (src+1+count >= end)
811 return(NULL);
812 do
813 {
814 *dst++ = *++src ^ Stuff_Magic;
815 }
816 while(--count >= 0 && dst < dst_end);
817 if (count < 0)
818 *src = Stuff_Zero ^ Stuff_Magic;
819 else
820 *src = (Stuff_DiffZero + count) ^ Stuff_Magic;
821 break;
822 case Stuff_Same:
823 if (src+1 >= end)
824 return(NULL);
825 do
826 {
827 *dst++ = src[1] ^ Stuff_Magic;
828 }
829 while(--count >= 0 && dst < dst_end);
830 if (count < 0)
831 src += 2;
832 else
833 *src = (Stuff_Same + count) ^ Stuff_Magic;
834 break;
835 case Stuff_Zero:
836 do
837 {
838 *dst++ = 0;
839 }
840 while(--count >= 0 && dst < dst_end);
841 if (count < 0)
842 src += 1;
843 else
844 *src = (Stuff_Zero + count) ^ Stuff_Magic;
845 break;
846 }
847 }
848 if (dst < dst_end)
849 return(NULL);
850 else
851 return(src);
852 }
853
854
855 /************************************************************************/
856 /* General routines for STRIP */
857
858 /*
859 * get_baud returns the current baud rate, as one of the constants defined in
860 * termbits.h
861 * If the user has issued a baud rate override using the 'setserial' command
862 * and the logical current rate is set to 38.4, then the true baud rate
863 * currently in effect (57.6 or 115.2) is returned.
864 */
get_baud(struct tty_struct * tty)865 static unsigned int get_baud(struct tty_struct *tty)
866 {
867 if (!tty || !tty->termios) return(0);
868 if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data)
869 {
870 struct async_struct *info = (struct async_struct *)tty->driver_data;
871 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI ) return(B57600);
872 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) return(B115200);
873 }
874 return(tty->termios->c_cflag & CBAUD);
875 }
876
877 /*
878 * set_baud sets the baud rate to the rate defined by baudcode
879 * Note: The rate B38400 should be avoided, because the user may have
880 * issued a 'setserial' speed override to map that to a different speed.
881 * We could achieve a true rate of 38400 if we needed to by cancelling
882 * any user speed override that is in place, but that might annoy the
883 * user, so it is simplest to just avoid using 38400.
884 */
set_baud(struct tty_struct * tty,unsigned int baudcode)885 static void set_baud(struct tty_struct *tty, unsigned int baudcode)
886 {
887 struct termios old_termios = *(tty->termios);
888 tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */
889 tty->termios->c_cflag |= baudcode; /* Set the new baud setting */
890 tty->driver.set_termios(tty, &old_termios);
891 }
892
893 /*
894 * Convert a string to a Metricom Address.
895 */
896
897 #define IS_RADIO_ADDRESS(p) ( \
898 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
899 (p)[4] == '-' && \
900 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
901
string_to_radio_address(MetricomAddress * addr,__u8 * p)902 static int string_to_radio_address(MetricomAddress *addr, __u8 *p)
903 {
904 if (!IS_RADIO_ADDRESS(p)) return(1);
905 addr->c[0] = 0;
906 addr->c[1] = 0;
907 addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
908 addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
909 addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
910 addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
911 return(0);
912 }
913
914 /*
915 * Convert a Metricom Address to a string.
916 */
917
radio_address_to_string(const MetricomAddress * addr,MetricomAddressString * p)918 static __u8 *radio_address_to_string(const MetricomAddress *addr, MetricomAddressString *p)
919 {
920 sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], addr->c[4], addr->c[5]);
921 return(p->c);
922 }
923
924 /*
925 * Note: Must make sure sx_size is big enough to receive a stuffed
926 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
927 * big enough to receive a large radio neighbour list (currently 4K).
928 */
929
allocate_buffers(struct strip * strip_info)930 static int allocate_buffers(struct strip *strip_info)
931 {
932 struct net_device *dev = &strip_info->dev;
933 int sx_size = MAX(STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
934 int tx_size = STRIP_ENCAP_SIZE(dev->mtu) + MaxCommandStringLength;
935 __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
936 __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
937 __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
938 if (r && s && t)
939 {
940 strip_info->rx_buff = r;
941 strip_info->sx_buff = s;
942 strip_info->tx_buff = t;
943 strip_info->sx_size = sx_size;
944 strip_info->tx_size = tx_size;
945 strip_info->mtu = dev->mtu;
946 return(1);
947 }
948 if (r) kfree(r);
949 if (s) kfree(s);
950 if (t) kfree(t);
951 return(0);
952 }
953
954 /*
955 * MTU has been changed by the IP layer. Unfortunately we are not told
956 * about this, but we spot it ourselves and fix things up. We could be in
957 * an upcall from the tty driver, or in an ip packet queue.
958 */
959
strip_changedmtu(struct strip * strip_info)960 static void strip_changedmtu(struct strip *strip_info)
961 {
962 int old_mtu = strip_info->mtu;
963 struct net_device *dev = &strip_info->dev;
964 unsigned char *orbuff = strip_info->rx_buff;
965 unsigned char *osbuff = strip_info->sx_buff;
966 unsigned char *otbuff = strip_info->tx_buff;
967 InterruptStatus intstat;
968
969 if (dev->mtu > MAX_SEND_MTU)
970 {
971 printk(KERN_ERR "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
972 strip_info->dev.name, MAX_SEND_MTU);
973 dev->mtu = old_mtu;
974 return;
975 }
976
977 /*
978 * Have to disable interrupts here because we're reallocating and resizing
979 * the serial buffers, and we can't have data arriving in them while we're
980 * moving them around in memory. This may cause data to be lost on the serial
981 * port, but hopefully people won't change MTU that often.
982 * Also note, this may not work on a symmetric multi-processor system.
983 */
984 intstat = DisableInterrupts();
985
986 if (!allocate_buffers(strip_info))
987 {
988 RestoreInterrupts(intstat);
989 printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
990 strip_info->dev.name);
991 dev->mtu = old_mtu;
992 return;
993 }
994
995 if (strip_info->sx_count)
996 {
997 if (strip_info->sx_count <= strip_info->sx_size)
998 memcpy(strip_info->sx_buff, osbuff, strip_info->sx_count);
999 else
1000 {
1001 strip_info->discard = strip_info->sx_count;
1002 strip_info->rx_over_errors++;
1003 }
1004 }
1005
1006 if (strip_info->tx_left)
1007 {
1008 if (strip_info->tx_left <= strip_info->tx_size)
1009 memcpy(strip_info->tx_buff, strip_info->tx_head, strip_info->tx_left);
1010 else
1011 {
1012 strip_info->tx_left = 0;
1013 strip_info->tx_dropped++;
1014 }
1015 }
1016 strip_info->tx_head = strip_info->tx_buff;
1017
1018 RestoreInterrupts(intstat);
1019
1020 printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
1021 strip_info->dev.name, old_mtu, strip_info->mtu);
1022
1023 if (orbuff) kfree(orbuff);
1024 if (osbuff) kfree(osbuff);
1025 if (otbuff) kfree(otbuff);
1026 }
1027
strip_unlock(struct strip * strip_info)1028 static void strip_unlock(struct strip *strip_info)
1029 {
1030 /*
1031 * Set the timer to go off in one second.
1032 */
1033 strip_info->idle_timer.expires = jiffies + 1*HZ;
1034 add_timer(&strip_info->idle_timer);
1035 netif_wake_queue(&strip_info->dev);
1036 }
1037
1038
1039 /************************************************************************/
1040 /* Callback routines for exporting information through /proc */
1041
1042 /*
1043 * This function updates the total amount of data printed so far. It then
1044 * determines if the amount of data printed into a buffer has reached the
1045 * offset requested. If it hasn't, then the buffer is shifted over so that
1046 * the next bit of data can be printed over the old bit. If the total
1047 * amount printed so far exceeds the total amount requested, then this
1048 * function returns 1, otherwise 0.
1049 */
1050 static int
shift_buffer(char * buffer,int requested_offset,int requested_len,int * total,int * slop,char ** buf)1051 shift_buffer(char *buffer, int requested_offset, int requested_len,
1052 int *total, int *slop, char **buf)
1053 {
1054 int printed;
1055
1056 /* printk(KERN_DEBUG "shift: buffer: %d o: %d l: %d t: %d buf: %d\n",
1057 (int) buffer, requested_offset, requested_len, *total,
1058 (int) *buf); */
1059 printed = *buf - buffer;
1060 if (*total + printed <= requested_offset) {
1061 *total += printed;
1062 *buf = buffer;
1063 }
1064 else {
1065 if (*total < requested_offset) {
1066 *slop = requested_offset - *total;
1067 }
1068 *total = requested_offset + printed - *slop;
1069 }
1070 if (*total > requested_offset + requested_len) {
1071 return 1;
1072 }
1073 else {
1074 return 0;
1075 }
1076 }
1077
1078 /*
1079 * This function calculates the actual start of the requested data
1080 * in the buffer. It also calculates actual length of data returned,
1081 * which could be less that the amount of data requested.
1082 */
1083 static int
calc_start_len(char * buffer,char ** start,int requested_offset,int requested_len,int total,char * buf)1084 calc_start_len(char *buffer, char **start, int requested_offset,
1085 int requested_len, int total, char *buf)
1086 {
1087 int return_len, buffer_len;
1088
1089 buffer_len = buf - buffer;
1090 if (buffer_len >= 4095) {
1091 printk(KERN_ERR "STRIP: exceeded /proc buffer size\n");
1092 }
1093
1094 /*
1095 * There may be bytes before and after the
1096 * chunk that was actually requested.
1097 */
1098 return_len = total - requested_offset;
1099 if (return_len < 0) {
1100 return_len = 0;
1101 }
1102 *start = buf - return_len;
1103 if (return_len > requested_len) {
1104 return_len = requested_len;
1105 }
1106 /* printk(KERN_DEBUG "return_len: %d\n", return_len); */
1107 return return_len;
1108 }
1109
1110 /*
1111 * If the time is in the near future, time_delta prints the number of
1112 * seconds to go into the buffer and returns the address of the buffer.
1113 * If the time is not in the near future, it returns the address of the
1114 * string "Not scheduled" The buffer must be long enough to contain the
1115 * ascii representation of the number plus 9 charactes for the " seconds"
1116 * and the null character.
1117 */
time_delta(char buffer[],long time)1118 static char *time_delta(char buffer[], long time)
1119 {
1120 time -= jiffies;
1121 if (time > LongTime / 2) return("Not scheduled");
1122 if(time < 0) time = 0; /* Don't print negative times */
1123 sprintf(buffer, "%ld seconds", time / HZ);
1124 return(buffer);
1125 }
1126
sprintf_neighbours(char * buffer,MetricomNodeTable * table,char * title)1127 static int sprintf_neighbours(char *buffer, MetricomNodeTable *table, char *title)
1128 {
1129 /* We wrap this in a do/while loop, so if the table changes */
1130 /* while we're reading it, we just go around and try again. */
1131 struct timeval t;
1132 char *ptr;
1133 do
1134 {
1135 int i;
1136 t = table->timestamp;
1137 ptr = buffer;
1138 if (table->num_nodes) ptr += sprintf(ptr, "\n %s\n", title);
1139 for (i=0; i<table->num_nodes; i++)
1140 {
1141 InterruptStatus intstat = DisableInterrupts();
1142 MetricomNode node = table->node[i];
1143 RestoreInterrupts(intstat);
1144 ptr += sprintf(ptr, " %s\n", node.c);
1145 }
1146 } while (table->timestamp.tv_sec != t.tv_sec || table->timestamp.tv_usec != t.tv_usec);
1147 return ptr - buffer;
1148 }
1149
1150 /*
1151 * This function prints radio status information into the specified buffer.
1152 * I think the buffer size is 4K, so this routine should never print more
1153 * than 4K of data into it. With the maximum of 32 portables and 32 poletops
1154 * reported, the routine outputs 3107 bytes into the buffer.
1155 */
1156 static int
sprintf_status_info(char * buffer,struct strip * strip_info)1157 sprintf_status_info(char *buffer, struct strip *strip_info)
1158 {
1159 char temp[32];
1160 char *p = buffer;
1161 MetricomAddressString addr_string;
1162
1163 /* First, we must copy all of our data to a safe place, */
1164 /* in case a serial interrupt comes in and changes it. */
1165 InterruptStatus intstat = DisableInterrupts();
1166 int tx_left = strip_info->tx_left;
1167 unsigned long rx_average_pps = strip_info->rx_average_pps;
1168 unsigned long tx_average_pps = strip_info->tx_average_pps;
1169 unsigned long sx_average_pps = strip_info->sx_average_pps;
1170 int working = strip_info->working;
1171 int firmware_level = strip_info->firmware_level;
1172 long watchdog_doprobe = strip_info->watchdog_doprobe;
1173 long watchdog_doreset = strip_info->watchdog_doreset;
1174 long gratuitous_arp = strip_info->gratuitous_arp;
1175 long arp_interval = strip_info->arp_interval;
1176 FirmwareVersion firmware_version = strip_info->firmware_version;
1177 SerialNumber serial_number = strip_info->serial_number;
1178 BatteryVoltage battery_voltage = strip_info->battery_voltage;
1179 char* if_name = strip_info->dev.name;
1180 MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1181 MetricomAddress dev_dev_addr = *(MetricomAddress*)strip_info->dev.dev_addr;
1182 int manual_dev_addr = strip_info->manual_dev_addr;
1183 #ifdef EXT_COUNTERS
1184 unsigned long rx_bytes = strip_info->rx_bytes;
1185 unsigned long tx_bytes = strip_info->tx_bytes;
1186 unsigned long rx_rbytes = strip_info->rx_rbytes;
1187 unsigned long tx_rbytes = strip_info->tx_rbytes;
1188 unsigned long rx_sbytes = strip_info->rx_sbytes;
1189 unsigned long tx_sbytes = strip_info->tx_sbytes;
1190 unsigned long rx_ebytes = strip_info->rx_ebytes;
1191 unsigned long tx_ebytes = strip_info->tx_ebytes;
1192 #endif
1193 RestoreInterrupts(intstat);
1194
1195 p += sprintf(p, "\nInterface name\t\t%s\n", if_name);
1196 p += sprintf(p, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1197 radio_address_to_string(&true_dev_addr, &addr_string);
1198 p += sprintf(p, " Radio address:\t\t%s\n", addr_string.c);
1199 if (manual_dev_addr)
1200 {
1201 radio_address_to_string(&dev_dev_addr, &addr_string);
1202 p += sprintf(p, " Device address:\t%s\n", addr_string.c);
1203 }
1204 p += sprintf(p, " Firmware version:\t%s", !working ? "Unknown" :
1205 !firmware_level ? "Should be upgraded" :
1206 firmware_version.c);
1207 if (firmware_level >= ChecksummedMessages) p += sprintf(p, " (Checksums Enabled)");
1208 p += sprintf(p, "\n");
1209 p += sprintf(p, " Serial number:\t\t%s\n", serial_number.c);
1210 p += sprintf(p, " Battery voltage:\t%s\n", battery_voltage.c);
1211 p += sprintf(p, " Transmit queue (bytes):%d\n", tx_left);
1212 p += sprintf(p, " Receive packet rate: %ld packets per second\n", rx_average_pps / 8);
1213 p += sprintf(p, " Transmit packet rate: %ld packets per second\n", tx_average_pps / 8);
1214 p += sprintf(p, " Sent packet rate: %ld packets per second\n", sx_average_pps / 8);
1215 p += sprintf(p, " Next watchdog probe:\t%s\n", time_delta(temp, watchdog_doprobe));
1216 p += sprintf(p, " Next watchdog reset:\t%s\n", time_delta(temp, watchdog_doreset));
1217 p += sprintf(p, " Next gratuitous ARP:\t");
1218
1219 if (!memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)))
1220 p += sprintf(p, "Disabled\n");
1221 else
1222 {
1223 p += sprintf(p, "%s\n", time_delta(temp, gratuitous_arp));
1224 p += sprintf(p, " Next ARP interval:\t%ld seconds\n", JIFFIE_TO_SEC(arp_interval));
1225 }
1226
1227 if (working)
1228 {
1229 #ifdef EXT_COUNTERS
1230 p += sprintf(p, "\n");
1231 p += sprintf(p, " Total bytes: \trx:\t%lu\ttx:\t%lu\n", rx_bytes, tx_bytes);
1232 p += sprintf(p, " thru radio: \trx:\t%lu\ttx:\t%lu\n", rx_rbytes, tx_rbytes);
1233 p += sprintf(p, " thru serial port: \trx:\t%lu\ttx:\t%lu\n", rx_sbytes, tx_sbytes);
1234 p += sprintf(p, " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", rx_ebytes, tx_ebytes);
1235 #endif
1236 p += sprintf_neighbours(p, &strip_info->poletops, "Poletops:");
1237 p += sprintf_neighbours(p, &strip_info->portables, "Portables:");
1238 }
1239
1240 return p - buffer;
1241 }
1242
1243 /*
1244 * This function is exports status information from the STRIP driver through
1245 * the /proc file system.
1246 */
1247
get_status_info(char * buffer,char ** start,off_t req_offset,int req_len)1248 static int get_status_info(char *buffer, char **start, off_t req_offset, int req_len)
1249 {
1250 int total = 0, slop = 0;
1251 struct strip *strip_info = struct_strip_list;
1252 char *buf = buffer;
1253
1254 buf += sprintf(buf, "strip_version: %s\n", StripVersion);
1255 if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) goto exit;
1256
1257 while (strip_info != NULL)
1258 {
1259 buf += sprintf_status_info(buf, strip_info);
1260 if (shift_buffer(buffer, req_offset, req_len, &total, &slop, &buf)) break;
1261 strip_info = strip_info->next;
1262 }
1263 exit:
1264 return(calc_start_len(buffer, start, req_offset, req_len, total, buf));
1265 }
1266
1267 /************************************************************************/
1268 /* Sending routines */
1269
ResetRadio(struct strip * strip_info)1270 static void ResetRadio(struct strip *strip_info)
1271 {
1272 struct tty_struct *tty = strip_info->tty;
1273 static const char init[] = "ate0q1dt**starmode\r**";
1274 StringDescriptor s = { init, sizeof(init)-1 };
1275
1276 /*
1277 * If the radio isn't working anymore,
1278 * we should clear the old status information.
1279 */
1280 if (strip_info->working)
1281 {
1282 printk(KERN_INFO "%s: No response: Resetting radio.\n", strip_info->dev.name);
1283 strip_info->firmware_version.c[0] = '\0';
1284 strip_info->serial_number.c[0] = '\0';
1285 strip_info->battery_voltage.c[0] = '\0';
1286 strip_info->portables.num_nodes = 0;
1287 do_gettimeofday(&strip_info->portables.timestamp);
1288 strip_info->poletops.num_nodes = 0;
1289 do_gettimeofday(&strip_info->poletops.timestamp);
1290 }
1291
1292 strip_info->pps_timer = jiffies;
1293 strip_info->rx_pps_count = 0;
1294 strip_info->tx_pps_count = 0;
1295 strip_info->sx_pps_count = 0;
1296 strip_info->rx_average_pps = 0;
1297 strip_info->tx_average_pps = 0;
1298 strip_info->sx_average_pps = 0;
1299
1300 /* Mark radio address as unknown */
1301 *(MetricomAddress*)&strip_info->true_dev_addr = zero_address;
1302 if (!strip_info->manual_dev_addr)
1303 *(MetricomAddress*)strip_info->dev.dev_addr = zero_address;
1304 strip_info->working = FALSE;
1305 strip_info->firmware_level = NoStructure;
1306 strip_info->next_command = CompatibilityCommand;
1307 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1308 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1309
1310 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1311 if (strip_info->user_baud > B38400)
1312 {
1313 /*
1314 * Subtle stuff: Pay attention :-)
1315 * If the serial port is currently at the user's selected (>38.4) rate,
1316 * then we temporarily switch to 19.2 and issue the ATS304 command
1317 * to tell the radio to switch to the user's selected rate.
1318 * If the serial port is not currently at that rate, that means we just
1319 * issued the ATS304 command last time through, so this time we restore
1320 * the user's selected rate and issue the normal starmode reset string.
1321 */
1322 if (strip_info->user_baud == get_baud(tty))
1323 {
1324 static const char b0[] = "ate0q1s304=57600\r";
1325 static const char b1[] = "ate0q1s304=115200\r";
1326 static const StringDescriptor baudstring[2] =
1327 { { b0, sizeof(b0)-1 }, { b1, sizeof(b1)-1 } };
1328 set_baud(tty, B19200);
1329 if (strip_info->user_baud == B57600 ) s = baudstring[0];
1330 else if (strip_info->user_baud == B115200) s = baudstring[1];
1331 else s = baudstring[1]; /* For now */
1332 }
1333 else set_baud(tty, strip_info->user_baud);
1334 }
1335
1336 tty->driver.write(tty, 0, s.string, s.length);
1337 #ifdef EXT_COUNTERS
1338 strip_info->tx_ebytes += s.length;
1339 #endif
1340 }
1341
1342 /*
1343 * Called by the driver when there's room for more data. If we have
1344 * more packets to send, we send them here.
1345 */
1346
strip_write_some_more(struct tty_struct * tty)1347 static void strip_write_some_more(struct tty_struct *tty)
1348 {
1349 struct strip *strip_info = (struct strip *) tty->disc_data;
1350
1351 /* First make sure we're connected. */
1352 if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1353 !netif_running(&strip_info->dev))
1354 return;
1355
1356 if (strip_info->tx_left > 0)
1357 {
1358 /*
1359 * If some data left, send it
1360 * Note: There's a kernel design bug here. The write_wakeup routine has to
1361 * know how many bytes were written in the previous call, but the number of
1362 * bytes written is returned as the result of the tty->driver.write call,
1363 * and there's no guarantee that the tty->driver.write routine will have
1364 * returned before the write_wakeup routine is invoked. If the PC has fast
1365 * Serial DMA hardware, then it's quite possible that the write could complete
1366 * almost instantaneously, meaning that my write_wakeup routine could be
1367 * called immediately, before tty->driver.write has had a chance to return
1368 * the number of bytes that it wrote. In an attempt to guard against this,
1369 * I disable interrupts around the call to tty->driver.write, although even
1370 * this might not work on a symmetric multi-processor system.
1371 */
1372 InterruptStatus intstat = DisableInterrupts();
1373 int num_written = tty->driver.write(tty, 0, strip_info->tx_head, strip_info->tx_left);
1374 strip_info->tx_left -= num_written;
1375 strip_info->tx_head += num_written;
1376 #ifdef EXT_COUNTERS
1377 strip_info->tx_sbytes += num_written;
1378 #endif
1379 RestoreInterrupts(intstat);
1380 }
1381 else /* Else start transmission of another packet */
1382 {
1383 tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1384 strip_unlock(strip_info);
1385 }
1386 }
1387
add_checksum(__u8 * buffer,__u8 * end)1388 static __u8 *add_checksum(__u8 *buffer, __u8 *end)
1389 {
1390 __u16 sum = 0;
1391 __u8 *p = buffer;
1392 while (p < end) sum += *p++;
1393 end[3] = hextable[sum & 0xF]; sum >>= 4;
1394 end[2] = hextable[sum & 0xF]; sum >>= 4;
1395 end[1] = hextable[sum & 0xF]; sum >>= 4;
1396 end[0] = hextable[sum & 0xF];
1397 return(end+4);
1398 }
1399
strip_make_packet(unsigned char * buffer,struct strip * strip_info,struct sk_buff * skb)1400 static unsigned char *strip_make_packet(unsigned char *buffer, struct strip *strip_info, struct sk_buff *skb)
1401 {
1402 __u8 *ptr = buffer;
1403 __u8 *stuffstate = NULL;
1404 STRIP_Header *header = (STRIP_Header *)skb->data;
1405 MetricomAddress haddr = header->dst_addr;
1406 int len = skb->len - sizeof(STRIP_Header);
1407 MetricomKey key;
1408
1409 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len);*/
1410
1411 if (header->protocol == htons(ETH_P_IP)) key = SIP0Key;
1412 else if (header->protocol == htons(ETH_P_ARP)) key = ARP0Key;
1413 else
1414 {
1415 printk(KERN_ERR "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1416 strip_info->dev.name, ntohs(header->protocol));
1417 return(NULL);
1418 }
1419
1420 if (len > strip_info->mtu)
1421 {
1422 printk(KERN_ERR "%s: Dropping oversized transmit packet: %d bytes\n",
1423 strip_info->dev.name, len);
1424 return(NULL);
1425 }
1426
1427 /*
1428 * If we're sending to ourselves, discard the packet.
1429 * (Metricom radios choke if they try to send a packet to their own address.)
1430 */
1431 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1432 {
1433 printk(KERN_ERR "%s: Dropping packet addressed to self\n", strip_info->dev.name);
1434 return(NULL);
1435 }
1436
1437 /*
1438 * If this is a broadcast packet, send it to our designated Metricom
1439 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1440 */
1441 if (haddr.c[0] == 0xFF)
1442 {
1443 u32 brd = 0;
1444 struct in_device *in_dev = in_dev_get(&strip_info->dev);
1445 if (in_dev == NULL)
1446 return NULL;
1447 read_lock(&in_dev->lock);
1448 if (in_dev->ifa_list)
1449 brd = in_dev->ifa_list->ifa_broadcast;
1450 read_unlock(&in_dev->lock);
1451 in_dev_put(in_dev);
1452
1453 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1454 if (!arp_query(haddr.c, brd, &strip_info->dev))
1455 {
1456 printk(KERN_ERR "%s: Unable to send packet (no broadcast hub configured)\n",
1457 strip_info->dev.name);
1458 return(NULL);
1459 }
1460 /*
1461 * If we are the broadcast hub, don't bother sending to ourselves.
1462 * (Metricom radios choke if they try to send a packet to their own address.)
1463 */
1464 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) return(NULL);
1465 }
1466
1467 *ptr++ = 0x0D;
1468 *ptr++ = '*';
1469 *ptr++ = hextable[haddr.c[2] >> 4];
1470 *ptr++ = hextable[haddr.c[2] & 0xF];
1471 *ptr++ = hextable[haddr.c[3] >> 4];
1472 *ptr++ = hextable[haddr.c[3] & 0xF];
1473 *ptr++ = '-';
1474 *ptr++ = hextable[haddr.c[4] >> 4];
1475 *ptr++ = hextable[haddr.c[4] & 0xF];
1476 *ptr++ = hextable[haddr.c[5] >> 4];
1477 *ptr++ = hextable[haddr.c[5] & 0xF];
1478 *ptr++ = '*';
1479 *ptr++ = key.c[0];
1480 *ptr++ = key.c[1];
1481 *ptr++ = key.c[2];
1482 *ptr++ = key.c[3];
1483
1484 ptr = StuffData(skb->data + sizeof(STRIP_Header), len, ptr, &stuffstate);
1485
1486 if (strip_info->firmware_level >= ChecksummedMessages) ptr = add_checksum(buffer+1, ptr);
1487
1488 *ptr++ = 0x0D;
1489 return(ptr);
1490 }
1491
strip_send(struct strip * strip_info,struct sk_buff * skb)1492 static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1493 {
1494 MetricomAddress haddr;
1495 unsigned char *ptr = strip_info->tx_buff;
1496 int doreset = (long)jiffies - strip_info->watchdog_doreset >= 0;
1497 int doprobe = (long)jiffies - strip_info->watchdog_doprobe >= 0 && !doreset;
1498 u32 addr, brd;
1499
1500 /*
1501 * 1. If we have a packet, encapsulate it and put it in the buffer
1502 */
1503 if (skb)
1504 {
1505 char *newptr = strip_make_packet(ptr, strip_info, skb);
1506 strip_info->tx_pps_count++;
1507 if (!newptr) strip_info->tx_dropped++;
1508 else
1509 {
1510 ptr = newptr;
1511 strip_info->sx_pps_count++;
1512 strip_info->tx_packets++; /* Count another successful packet */
1513 #ifdef EXT_COUNTERS
1514 strip_info->tx_bytes += skb->len;
1515 strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1516 #endif
1517 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr);*/
1518 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr);*/
1519 }
1520 }
1521
1522 /*
1523 * 2. If it is time for another tickle, tack it on, after the packet
1524 */
1525 if (doprobe)
1526 {
1527 StringDescriptor ts = CommandString[strip_info->next_command];
1528 #if TICKLE_TIMERS
1529 {
1530 struct timeval tv;
1531 do_gettimeofday(&tv);
1532 printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
1533 strip_info->next_command, tv.tv_sec % 100, tv.tv_usec);
1534 }
1535 #endif
1536 if (ptr == strip_info->tx_buff) *ptr++ = 0x0D;
1537
1538 *ptr++ = '*'; /* First send "**" to provoke an error message */
1539 *ptr++ = '*';
1540
1541 /* Then add the command */
1542 memcpy(ptr, ts.string, ts.length);
1543
1544 /* Add a checksum ? */
1545 if (strip_info->firmware_level < ChecksummedMessages) ptr += ts.length;
1546 else ptr = add_checksum(ptr, ptr + ts.length);
1547
1548 *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1549
1550 /* Cycle to next periodic command? */
1551 if (strip_info->firmware_level >= StructuredMessages)
1552 if (++strip_info->next_command >= ELEMENTS_OF(CommandString))
1553 strip_info->next_command = 0;
1554 #ifdef EXT_COUNTERS
1555 strip_info->tx_ebytes += ts.length;
1556 #endif
1557 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1558 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1559 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev.name);*/
1560 }
1561
1562 /*
1563 * 3. Set up the strip_info ready to send the data (if any).
1564 */
1565 strip_info->tx_head = strip_info->tx_buff;
1566 strip_info->tx_left = ptr - strip_info->tx_buff;
1567 strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1568
1569 /*
1570 * 4. Debugging check to make sure we're not overflowing the buffer.
1571 */
1572 if (strip_info->tx_size - strip_info->tx_left < 20)
1573 printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", strip_info->dev.name,
1574 strip_info->tx_left, strip_info->tx_size - strip_info->tx_left);
1575
1576 /*
1577 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1578 * the buffer, strip_write_some_more will send it after the reset has finished
1579 */
1580 if (doreset) { ResetRadio(strip_info); return; }
1581
1582 if (1) {
1583 struct in_device *in_dev = in_dev_get(&strip_info->dev);
1584 brd = addr = 0;
1585 if (in_dev) {
1586 read_lock(&in_dev->lock);
1587 if (in_dev->ifa_list) {
1588 brd = in_dev->ifa_list->ifa_broadcast;
1589 addr = in_dev->ifa_list->ifa_local;
1590 }
1591 read_unlock(&in_dev->lock);
1592 in_dev_put(in_dev);
1593 }
1594 }
1595
1596
1597 /*
1598 * 6. If it is time for a periodic ARP, queue one up to be sent.
1599 * We only do this if:
1600 * 1. The radio is working
1601 * 2. It's time to send another periodic ARP
1602 * 3. We really know what our address is (and it is not manually set to zero)
1603 * 4. We have a designated broadcast address configured
1604 * If we queue up an ARP packet when we don't have a designated broadcast
1605 * address configured, then the packet will just have to be discarded in
1606 * strip_make_packet. This is not fatal, but it causes misleading information
1607 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1608 * being sent, when in fact they are not, because they are all being dropped
1609 * in the strip_make_packet routine.
1610 */
1611 if (strip_info->working && (long)jiffies - strip_info->gratuitous_arp >= 0 &&
1612 memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
1613 arp_query(haddr.c, brd, &strip_info->dev))
1614 {
1615 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1616 strip_info->dev.name, strip_info->arp_interval / HZ);*/
1617 strip_info->gratuitous_arp = jiffies + strip_info->arp_interval;
1618 strip_info->arp_interval *= 2;
1619 if (strip_info->arp_interval > MaxARPInterval)
1620 strip_info->arp_interval = MaxARPInterval;
1621 if (addr)
1622 arp_send(
1623 ARPOP_REPLY, ETH_P_ARP,
1624 addr, /* Target address of ARP packet is our address */
1625 &strip_info->dev, /* Device to send packet on */
1626 addr, /* Source IP address this ARP packet comes from */
1627 NULL, /* Destination HW address is NULL (broadcast it) */
1628 strip_info->dev.dev_addr, /* Source HW address is our HW address */
1629 strip_info->dev.dev_addr); /* Target HW address is our HW address (redundant) */
1630 }
1631
1632 /*
1633 * 7. All ready. Start the transmission
1634 */
1635 strip_write_some_more(strip_info->tty);
1636 }
1637
1638 /* Encapsulate a datagram and kick it into a TTY queue. */
strip_xmit(struct sk_buff * skb,struct net_device * dev)1639 static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1640 {
1641 struct strip *strip_info = (struct strip *)(dev->priv);
1642
1643 if (!netif_running(dev))
1644 {
1645 printk(KERN_ERR "%s: xmit call when iface is down\n", dev->name);
1646 return(1);
1647 }
1648
1649 netif_stop_queue(dev);
1650
1651 del_timer(&strip_info->idle_timer);
1652
1653 /* See if someone has been ifconfigging */
1654 if (strip_info->mtu != strip_info->dev.mtu)
1655 strip_changedmtu(strip_info);
1656
1657 if (jiffies - strip_info->pps_timer > HZ)
1658 {
1659 unsigned long t = jiffies - strip_info->pps_timer;
1660 unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t/2) / t;
1661 unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t/2) / t;
1662 unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t/2) / t;
1663
1664 strip_info->pps_timer = jiffies;
1665 strip_info->rx_pps_count = 0;
1666 strip_info->tx_pps_count = 0;
1667 strip_info->sx_pps_count = 0;
1668
1669 strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1670 strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1671 strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1672
1673 if (rx_pps_count / 8 >= 10)
1674 printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1675 strip_info->dev.name, rx_pps_count / 8);
1676 if (tx_pps_count / 8 >= 10)
1677 printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
1678 strip_info->dev.name, tx_pps_count / 8);
1679 if (sx_pps_count / 8 >= 10)
1680 printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
1681 strip_info->dev.name, sx_pps_count / 8);
1682 }
1683
1684 strip_send(strip_info, skb);
1685
1686 if (skb)
1687 dev_kfree_skb(skb);
1688 return(0);
1689 }
1690
1691 /*
1692 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1693 * to send for an extended period of time, the watchdog processing still gets
1694 * done to ensure that the radio stays in Starmode
1695 */
1696
strip_IdleTask(unsigned long parameter)1697 static void strip_IdleTask(unsigned long parameter)
1698 {
1699 strip_xmit(NULL, (struct net_device *)parameter);
1700 }
1701
1702 /*
1703 * Create the MAC header for an arbitrary protocol layer
1704 *
1705 * saddr!=NULL means use this specific address (n/a for Metricom)
1706 * saddr==NULL means use default device source address
1707 * daddr!=NULL means use this destination address
1708 * daddr==NULL means leave destination address alone
1709 * (e.g. unresolved arp -- kernel will call
1710 * rebuild_header later to fill in the address)
1711 */
1712
strip_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,void * daddr,void * saddr,unsigned len)1713 static int strip_header(struct sk_buff *skb, struct net_device *dev,
1714 unsigned short type, void *daddr, void *saddr, unsigned len)
1715 {
1716 struct strip *strip_info = (struct strip *)(dev->priv);
1717 STRIP_Header *header = (STRIP_Header *)skb_push(skb, sizeof(STRIP_Header));
1718
1719 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1720 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : "");*/
1721
1722 header->src_addr = strip_info->true_dev_addr;
1723 header->protocol = htons(type);
1724
1725 /*HexDump("strip_header", (struct strip *)(dev->priv), skb->data, skb->data + skb->len);*/
1726
1727 if (!daddr) return(-dev->hard_header_len);
1728
1729 header->dst_addr = *(MetricomAddress*)daddr;
1730 return(dev->hard_header_len);
1731 }
1732
1733 /*
1734 * Rebuild the MAC header. This is called after an ARP
1735 * (or in future other address resolution) has completed on this
1736 * sk_buff. We now let ARP fill in the other fields.
1737 * I think this should return zero if packet is ready to send,
1738 * or non-zero if it needs more time to do an address lookup
1739 */
1740
strip_rebuild_header(struct sk_buff * skb)1741 static int strip_rebuild_header(struct sk_buff *skb)
1742 {
1743 #ifdef CONFIG_INET
1744 STRIP_Header *header = (STRIP_Header *) skb->data;
1745
1746 /* Arp find returns zero if if knows the address, */
1747 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1748 return arp_find(header->dst_addr.c, skb)? 1 : 0;
1749 #else
1750 return 0;
1751 #endif
1752 }
1753
1754
1755 /************************************************************************/
1756 /* Receiving routines */
1757
strip_receive_room(struct tty_struct * tty)1758 static int strip_receive_room(struct tty_struct *tty)
1759 {
1760 return 0x10000; /* We can handle an infinite amount of data. :-) */
1761 }
1762
1763 /*
1764 * This function parses the response to the ATS300? command,
1765 * extracting the radio version and serial number.
1766 */
get_radio_version(struct strip * strip_info,__u8 * ptr,__u8 * end)1767 static void get_radio_version(struct strip *strip_info, __u8 *ptr, __u8 *end)
1768 {
1769 __u8 *p, *value_begin, *value_end;
1770 int len;
1771
1772 /* Determine the beginning of the second line of the payload */
1773 p = ptr;
1774 while (p < end && *p != 10) p++;
1775 if (p >= end) return;
1776 p++;
1777 value_begin = p;
1778
1779 /* Determine the end of line */
1780 while (p < end && *p != 10) p++;
1781 if (p >= end) return;
1782 value_end = p;
1783 p++;
1784
1785 len = value_end - value_begin;
1786 len = MIN(len, sizeof(FirmwareVersion) - 1);
1787 if (strip_info->firmware_version.c[0] == 0)
1788 printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1789 strip_info->dev.name, len, value_begin);
1790 sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1791
1792 /* Look for the first colon */
1793 while (p < end && *p != ':') p++;
1794 if (p >= end) return;
1795 /* Skip over the space */
1796 p += 2;
1797 len = sizeof(SerialNumber) - 1;
1798 if (p + len <= end) {
1799 sprintf(strip_info->serial_number.c, "%.*s", len, p);
1800 }
1801 else {
1802 printk(KERN_DEBUG "STRIP: radio serial number shorter (%d) than expected (%d)\n",
1803 end - p, len);
1804 }
1805 }
1806
1807 /*
1808 * This function parses the response to the ATS325? command,
1809 * extracting the radio battery voltage.
1810 */
get_radio_voltage(struct strip * strip_info,__u8 * ptr,__u8 * end)1811 static void get_radio_voltage(struct strip *strip_info, __u8 *ptr, __u8 *end)
1812 {
1813 int len;
1814
1815 len = sizeof(BatteryVoltage) - 1;
1816 if (ptr + len <= end) {
1817 sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1818 }
1819 else {
1820 printk(KERN_DEBUG "STRIP: radio voltage string shorter (%d) than expected (%d)\n",
1821 end - ptr, len);
1822 }
1823 }
1824
1825 /*
1826 * This function parses the responses to the AT~LA and ATS311 commands,
1827 * which list the radio's neighbours.
1828 */
get_radio_neighbours(MetricomNodeTable * table,__u8 * ptr,__u8 * end)1829 static void get_radio_neighbours(MetricomNodeTable *table, __u8 *ptr, __u8 *end)
1830 {
1831 table->num_nodes = 0;
1832 while (ptr < end && table->num_nodes < NODE_TABLE_SIZE)
1833 {
1834 MetricomNode *node = &table->node[table->num_nodes++];
1835 char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1836 while (ptr < end && *ptr <= 32) ptr++;
1837 while (ptr < end && dst < limit && *ptr != 10) *dst++ = *ptr++;
1838 *dst++ = 0;
1839 while (ptr < end && ptr[-1] != 10) ptr++;
1840 }
1841 do_gettimeofday(&table->timestamp);
1842 }
1843
get_radio_address(struct strip * strip_info,__u8 * p)1844 static int get_radio_address(struct strip *strip_info, __u8 *p)
1845 {
1846 MetricomAddress addr;
1847
1848 if (string_to_radio_address(&addr, p)) return(1);
1849
1850 /* See if our radio address has changed */
1851 if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr)))
1852 {
1853 MetricomAddressString addr_string;
1854 radio_address_to_string(&addr, &addr_string);
1855 printk(KERN_INFO "%s: Radio address = %s\n", strip_info->dev.name, addr_string.c);
1856 strip_info->true_dev_addr = addr;
1857 if (!strip_info->manual_dev_addr) *(MetricomAddress*)strip_info->dev.dev_addr = addr;
1858 /* Give the radio a few seconds to get its head straight, then send an arp */
1859 strip_info->gratuitous_arp = jiffies + 15 * HZ;
1860 strip_info->arp_interval = 1 * HZ;
1861 }
1862 return(0);
1863 }
1864
verify_checksum(struct strip * strip_info)1865 static int verify_checksum(struct strip *strip_info)
1866 {
1867 __u8 *p = strip_info->sx_buff;
1868 __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1869 u_short sum = (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1870 (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1871 while (p < end) sum -= *p++;
1872 if (sum == 0 && strip_info->firmware_level == StructuredMessages)
1873 {
1874 strip_info->firmware_level = ChecksummedMessages;
1875 printk(KERN_INFO "%s: Radio provides message checksums\n", strip_info->dev.name);
1876 }
1877 return(sum == 0);
1878 }
1879
RecvErr(char * msg,struct strip * strip_info)1880 static void RecvErr(char *msg, struct strip *strip_info)
1881 {
1882 __u8 *ptr = strip_info->sx_buff;
1883 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1884 DumpData(msg, strip_info, ptr, end);
1885 strip_info->rx_errors++;
1886 }
1887
RecvErr_Message(struct strip * strip_info,__u8 * sendername,const __u8 * msg,u_long len)1888 static void RecvErr_Message(struct strip *strip_info, __u8 *sendername, const __u8 *msg, u_long len)
1889 {
1890 if (has_prefix(msg, len, "001")) /* Not in StarMode! */
1891 {
1892 RecvErr("Error Msg:", strip_info);
1893 printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1894 strip_info->dev.name, sendername);
1895 }
1896
1897 else if (has_prefix(msg, len, "002")) /* Remap handle */
1898 {
1899 /* We ignore "Remap handle" messages for now */
1900 }
1901
1902 else if (has_prefix(msg, len, "003")) /* Can't resolve name */
1903 {
1904 RecvErr("Error Msg:", strip_info);
1905 printk(KERN_INFO "%s: Destination radio name is unknown\n",
1906 strip_info->dev.name);
1907 }
1908
1909 else if (has_prefix(msg, len, "004")) /* Name too small or missing */
1910 {
1911 strip_info->watchdog_doreset = jiffies + LongTime;
1912 #if TICKLE_TIMERS
1913 {
1914 struct timeval tv;
1915 do_gettimeofday(&tv);
1916 printk(KERN_INFO "**** Got ERR_004 response at %02d.%06d\n",
1917 tv.tv_sec % 100, tv.tv_usec);
1918 }
1919 #endif
1920 if (!strip_info->working)
1921 {
1922 strip_info->working = TRUE;
1923 printk(KERN_INFO "%s: Radio now in starmode\n", strip_info->dev.name);
1924 /*
1925 * If the radio has just entered a working state, we should do our first
1926 * probe ASAP, so that we find out our radio address etc. without delay.
1927 */
1928 strip_info->watchdog_doprobe = jiffies;
1929 }
1930 if (strip_info->firmware_level == NoStructure && sendername)
1931 {
1932 strip_info->firmware_level = StructuredMessages;
1933 strip_info->next_command = 0; /* Try to enable checksums ASAP */
1934 printk(KERN_INFO "%s: Radio provides structured messages\n", strip_info->dev.name);
1935 }
1936 if (strip_info->firmware_level >= StructuredMessages)
1937 {
1938 /*
1939 * If this message has a valid checksum on the end, then the call to verify_checksum
1940 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1941 * code from verify_checksum is ignored here.)
1942 */
1943 verify_checksum(strip_info);
1944 /*
1945 * If the radio has structured messages but we don't yet have all our information about it,
1946 * we should do probes without delay, until we have gathered all the information
1947 */
1948 if (!GOT_ALL_RADIO_INFO(strip_info)) strip_info->watchdog_doprobe = jiffies;
1949 }
1950 }
1951
1952 else if (has_prefix(msg, len, "005")) /* Bad count specification */
1953 RecvErr("Error Msg:", strip_info);
1954
1955 else if (has_prefix(msg, len, "006")) /* Header too big */
1956 RecvErr("Error Msg:", strip_info);
1957
1958 else if (has_prefix(msg, len, "007")) /* Body too big */
1959 {
1960 RecvErr("Error Msg:", strip_info);
1961 printk(KERN_ERR "%s: Error! Packet size too big for radio.\n",
1962 strip_info->dev.name);
1963 }
1964
1965 else if (has_prefix(msg, len, "008")) /* Bad character in name */
1966 {
1967 RecvErr("Error Msg:", strip_info);
1968 printk(KERN_ERR "%s: Radio name contains illegal character\n",
1969 strip_info->dev.name);
1970 }
1971
1972 else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1973 RecvErr("Error Msg:", strip_info);
1974
1975 else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1976 RecvErr("Error Msg:", strip_info);
1977
1978 else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1979 RecvErr("Error Msg:", strip_info);
1980
1981 else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1982 RecvErr("Error Msg:", strip_info);
1983
1984 else
1985 RecvErr("Error Msg:", strip_info);
1986 }
1987
process_AT_response(struct strip * strip_info,__u8 * ptr,__u8 * end)1988 static void process_AT_response(struct strip *strip_info, __u8 *ptr, __u8 *end)
1989 {
1990 u_long len;
1991 __u8 *p = ptr;
1992 while (p < end && p[-1] != 10) p++; /* Skip past first newline character */
1993 /* Now ptr points to the AT command, and p points to the text of the response. */
1994 len = p-ptr;
1995
1996 #if TICKLE_TIMERS
1997 {
1998 struct timeval tv;
1999 do_gettimeofday(&tv);
2000 printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
2001 ptr, tv.tv_sec % 100, tv.tv_usec);
2002 }
2003 #endif
2004
2005 if (has_prefix(ptr, len, "ATS300?" )) get_radio_version(strip_info, p, end);
2006 else if (has_prefix(ptr, len, "ATS305?" )) get_radio_address(strip_info, p);
2007 else if (has_prefix(ptr, len, "ATS311?" )) get_radio_neighbours(&strip_info->poletops, p, end);
2008 else if (has_prefix(ptr, len, "ATS319=7")) verify_checksum(strip_info);
2009 else if (has_prefix(ptr, len, "ATS325?" )) get_radio_voltage(strip_info, p, end);
2010 else if (has_prefix(ptr, len, "AT~LA" )) get_radio_neighbours(&strip_info->portables, p, end);
2011 else RecvErr("Unknown AT Response:", strip_info);
2012 }
2013
process_ACK(struct strip * strip_info,__u8 * ptr,__u8 * end)2014 static void process_ACK(struct strip *strip_info, __u8 *ptr, __u8 *end)
2015 {
2016 /* Currently we don't do anything with ACKs from the radio */
2017 }
2018
process_Info(struct strip * strip_info,__u8 * ptr,__u8 * end)2019 static void process_Info(struct strip *strip_info, __u8 *ptr, __u8 *end)
2020 {
2021 if (ptr+16 > end) RecvErr("Bad Info Msg:", strip_info);
2022 }
2023
get_strip_dev(struct strip * strip_info)2024 static struct net_device *get_strip_dev(struct strip *strip_info)
2025 {
2026 /* If our hardware address is *manually set* to zero, and we know our */
2027 /* real radio hardware address, try to find another strip device that has been */
2028 /* manually set to that address that we can 'transfer ownership' of this packet to */
2029 if (strip_info->manual_dev_addr &&
2030 !memcmp(strip_info->dev.dev_addr, zero_address.c, sizeof(zero_address)) &&
2031 memcmp(&strip_info->true_dev_addr, zero_address.c, sizeof(zero_address)))
2032 {
2033 struct net_device *dev;
2034 read_lock_bh(&dev_base_lock);
2035 dev = dev_base;
2036 while (dev)
2037 {
2038 if (dev->type == strip_info->dev.type &&
2039 !memcmp(dev->dev_addr, &strip_info->true_dev_addr, sizeof(MetricomAddress)))
2040 {
2041 printk(KERN_INFO "%s: Transferred packet ownership to %s.\n",
2042 strip_info->dev.name, dev->name);
2043 read_unlock_bh(&dev_base_lock);
2044 return(dev);
2045 }
2046 dev = dev->next;
2047 }
2048 read_unlock_bh(&dev_base_lock);
2049 }
2050 return(&strip_info->dev);
2051 }
2052
2053 /*
2054 * Send one completely decapsulated datagram to the next layer.
2055 */
2056
deliver_packet(struct strip * strip_info,STRIP_Header * header,__u16 packetlen)2057 static void deliver_packet(struct strip *strip_info, STRIP_Header *header, __u16 packetlen)
2058 {
2059 struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
2060 if (!skb)
2061 {
2062 printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", strip_info->dev.name);
2063 strip_info->rx_dropped++;
2064 }
2065 else
2066 {
2067 memcpy(skb_put(skb, sizeof(STRIP_Header)), header, sizeof(STRIP_Header));
2068 memcpy(skb_put(skb, packetlen), strip_info->rx_buff, packetlen);
2069 skb->dev = get_strip_dev(strip_info);
2070 skb->protocol = header->protocol;
2071 skb->mac.raw = skb->data;
2072
2073 /* Having put a fake header on the front of the sk_buff for the */
2074 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
2075 /* fake header before we hand the packet up to the next layer. */
2076 skb_pull(skb, sizeof(STRIP_Header));
2077
2078 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2079 strip_info->rx_packets++;
2080 strip_info->rx_pps_count++;
2081 #ifdef EXT_COUNTERS
2082 strip_info->rx_bytes += packetlen;
2083 #endif
2084 netif_rx(skb);
2085 }
2086 }
2087
process_IP_packet(struct strip * strip_info,STRIP_Header * header,__u8 * ptr,__u8 * end)2088 static void process_IP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
2089 {
2090 __u16 packetlen;
2091
2092 /* Decode start of the IP packet header */
2093 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2094 if (!ptr)
2095 {
2096 RecvErr("IP Packet too short", strip_info);
2097 return;
2098 }
2099
2100 packetlen = ((__u16)strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2101
2102 if (packetlen > MAX_RECV_MTU)
2103 {
2104 printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2105 strip_info->dev.name, packetlen);
2106 strip_info->rx_dropped++;
2107 return;
2108 }
2109
2110 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev.name, packetlen);*/
2111
2112 /* Decode remainder of the IP packet */
2113 ptr = UnStuffData(ptr, end, strip_info->rx_buff+4, packetlen-4);
2114 if (!ptr)
2115 {
2116 RecvErr("IP Packet too short", strip_info);
2117 return;
2118 }
2119
2120 if (ptr < end)
2121 {
2122 RecvErr("IP Packet too long", strip_info);
2123 return;
2124 }
2125
2126 header->protocol = htons(ETH_P_IP);
2127
2128 deliver_packet(strip_info, header, packetlen);
2129 }
2130
process_ARP_packet(struct strip * strip_info,STRIP_Header * header,__u8 * ptr,__u8 * end)2131 static void process_ARP_packet(struct strip *strip_info, STRIP_Header *header, __u8 *ptr, __u8 *end)
2132 {
2133 __u16 packetlen;
2134 struct arphdr *arphdr = (struct arphdr *)strip_info->rx_buff;
2135
2136 /* Decode start of the ARP packet */
2137 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2138 if (!ptr)
2139 {
2140 RecvErr("ARP Packet too short", strip_info);
2141 return;
2142 }
2143
2144 packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2145
2146 if (packetlen > MAX_RECV_MTU)
2147 {
2148 printk(KERN_INFO "%s: Dropping oversized received ARP packet: %d bytes\n",
2149 strip_info->dev.name, packetlen);
2150 strip_info->rx_dropped++;
2151 return;
2152 }
2153
2154 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2155 strip_info->dev.name, packetlen,
2156 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply");*/
2157
2158 /* Decode remainder of the ARP packet */
2159 ptr = UnStuffData(ptr, end, strip_info->rx_buff+8, packetlen-8);
2160 if (!ptr)
2161 {
2162 RecvErr("ARP Packet too short", strip_info);
2163 return;
2164 }
2165
2166 if (ptr < end)
2167 {
2168 RecvErr("ARP Packet too long", strip_info);
2169 return;
2170 }
2171
2172 header->protocol = htons(ETH_P_ARP);
2173
2174 deliver_packet(strip_info, header, packetlen);
2175 }
2176
2177 /*
2178 * process_text_message processes a <CR>-terminated block of data received
2179 * from the radio that doesn't begin with a '*' character. All normal
2180 * Starmode communication messages with the radio begin with a '*',
2181 * so any text that does not indicates a serial port error, a radio that
2182 * is in Hayes command mode instead of Starmode, or a radio with really
2183 * old firmware that doesn't frame its Starmode responses properly.
2184 */
process_text_message(struct strip * strip_info)2185 static void process_text_message(struct strip *strip_info)
2186 {
2187 __u8 *msg = strip_info->sx_buff;
2188 int len = strip_info->sx_count;
2189
2190 /* Check for anything that looks like it might be our radio name */
2191 /* (This is here for backwards compatibility with old firmware) */
2192 if (len == 9 && get_radio_address(strip_info, msg) == 0) return;
2193
2194 if (text_equal(msg, len, "OK" )) return; /* Ignore 'OK' responses from prior commands */
2195 if (text_equal(msg, len, "ERROR" )) return; /* Ignore 'ERROR' messages */
2196 if (has_prefix(msg, len, "ate0q1" )) return; /* Ignore character echo back from the radio */
2197
2198 /* Catch other error messages */
2199 /* (This is here for backwards compatibility with old firmware) */
2200 if (has_prefix(msg, len, "ERR_")) { RecvErr_Message(strip_info, NULL, &msg[4], len-4); return; }
2201
2202 RecvErr("No initial *", strip_info);
2203 }
2204
2205 /*
2206 * process_message processes a <CR>-terminated block of data received
2207 * from the radio. If the radio is not in Starmode or has old firmware,
2208 * it may be a line of text in response to an AT command. Ideally, with
2209 * a current radio that's properly in Starmode, all data received should
2210 * be properly framed and checksummed radio message blocks, containing
2211 * either a starmode packet, or a other communication from the radio
2212 * firmware, like "INF_" Info messages and &COMMAND responses.
2213 */
process_message(struct strip * strip_info)2214 static void process_message(struct strip *strip_info)
2215 {
2216 STRIP_Header header = { zero_address, zero_address, 0 };
2217 __u8 *ptr = strip_info->sx_buff;
2218 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2219 __u8 sendername[32], *sptr = sendername;
2220 MetricomKey key;
2221
2222 /*HexDump("Receiving", strip_info, ptr, end);*/
2223
2224 /* Check for start of address marker, and then skip over it */
2225 if (*ptr == '*') ptr++;
2226 else { process_text_message(strip_info); return; }
2227
2228 /* Copy out the return address */
2229 while (ptr < end && *ptr != '*' && sptr < ARRAY_END(sendername)-1) *sptr++ = *ptr++;
2230 *sptr = 0; /* Null terminate the sender name */
2231
2232 /* Check for end of address marker, and skip over it */
2233 if (ptr >= end || *ptr != '*')
2234 {
2235 RecvErr("No second *", strip_info);
2236 return;
2237 }
2238 ptr++; /* Skip the second '*' */
2239
2240 /* If the sender name is "&COMMAND", ignore this 'packet' */
2241 /* (This is here for backwards compatibility with old firmware) */
2242 if (!strcmp(sendername, "&COMMAND"))
2243 {
2244 strip_info->firmware_level = NoStructure;
2245 strip_info->next_command = CompatibilityCommand;
2246 return;
2247 }
2248
2249 if (ptr+4 > end)
2250 {
2251 RecvErr("No proto key", strip_info);
2252 return;
2253 }
2254
2255 /* Get the protocol key out of the buffer */
2256 key.c[0] = *ptr++;
2257 key.c[1] = *ptr++;
2258 key.c[2] = *ptr++;
2259 key.c[3] = *ptr++;
2260
2261 /* If we're using checksums, verify the checksum at the end of the packet */
2262 if (strip_info->firmware_level >= ChecksummedMessages)
2263 {
2264 end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2265 if (ptr > end)
2266 {
2267 RecvErr("Missing Checksum", strip_info);
2268 return;
2269 }
2270 if (!verify_checksum(strip_info))
2271 {
2272 RecvErr("Bad Checksum", strip_info);
2273 return;
2274 }
2275 }
2276
2277 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev.name, sendername);*/
2278
2279 /*
2280 * Fill in (pseudo) source and destination addresses in the packet.
2281 * We assume that the destination address was our address (the radio does not
2282 * tell us this). If the radio supplies a source address, then we use it.
2283 */
2284 header.dst_addr = strip_info->true_dev_addr;
2285 string_to_radio_address(&header.src_addr, sendername);
2286
2287 #ifdef EXT_COUNTERS
2288 if (key.l == SIP0Key.l) {
2289 strip_info->rx_rbytes += (end - ptr);
2290 process_IP_packet(strip_info, &header, ptr, end);
2291 } else if (key.l == ARP0Key.l) {
2292 strip_info->rx_rbytes += (end - ptr);
2293 process_ARP_packet(strip_info, &header, ptr, end);
2294 } else if (key.l == ATR_Key.l) {
2295 strip_info->rx_ebytes += (end - ptr);
2296 process_AT_response(strip_info, ptr, end);
2297 } else if (key.l == ACK_Key.l) {
2298 strip_info->rx_ebytes += (end - ptr);
2299 process_ACK(strip_info, ptr, end);
2300 } else if (key.l == INF_Key.l) {
2301 strip_info->rx_ebytes += (end - ptr);
2302 process_Info(strip_info, ptr, end);
2303 } else if (key.l == ERR_Key.l) {
2304 strip_info->rx_ebytes += (end - ptr);
2305 RecvErr_Message(strip_info, sendername, ptr, end-ptr);
2306 } else RecvErr("Unrecognized protocol key", strip_info);
2307 #else
2308 if (key.l == SIP0Key.l) process_IP_packet (strip_info, &header, ptr, end);
2309 else if (key.l == ARP0Key.l) process_ARP_packet (strip_info, &header, ptr, end);
2310 else if (key.l == ATR_Key.l) process_AT_response(strip_info, ptr, end);
2311 else if (key.l == ACK_Key.l) process_ACK (strip_info, ptr, end);
2312 else if (key.l == INF_Key.l) process_Info (strip_info, ptr, end);
2313 else if (key.l == ERR_Key.l) RecvErr_Message (strip_info, sendername, ptr, end-ptr);
2314 else RecvErr("Unrecognized protocol key", strip_info);
2315 #endif
2316 }
2317
2318 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2319 (X) == TTY_FRAME ? "Framing Error" : \
2320 (X) == TTY_PARITY ? "Parity Error" : \
2321 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2322
2323 /*
2324 * Handle the 'receiver data ready' interrupt.
2325 * This function is called by the 'tty_io' module in the kernel when
2326 * a block of STRIP data has been received, which can now be decapsulated
2327 * and sent on to some IP layer for further processing.
2328 */
2329
2330 static void
strip_receive_buf(struct tty_struct * tty,const unsigned char * cp,char * fp,int count)2331 strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count)
2332 {
2333 struct strip *strip_info = (struct strip *) tty->disc_data;
2334 const unsigned char *end = cp + count;
2335
2336 if (!strip_info || strip_info->magic != STRIP_MAGIC
2337 || !netif_running(&strip_info->dev))
2338 return;
2339
2340 /* Argh! mtu change time! - costs us the packet part received at the change */
2341 if (strip_info->mtu != strip_info->dev.mtu)
2342 strip_changedmtu(strip_info);
2343
2344 #if 0
2345 {
2346 struct timeval tv;
2347 do_gettimeofday(&tv);
2348 printk(KERN_INFO "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2349 count, tv.tv_sec % 100, tv.tv_usec);
2350 }
2351 #endif
2352
2353 #ifdef EXT_COUNTERS
2354 strip_info->rx_sbytes += count;
2355 #endif
2356
2357 /* Read the characters out of the buffer */
2358 while (cp < end)
2359 {
2360 if (fp && *fp) printk(KERN_INFO "%s: %s on serial port\n", strip_info->dev.name, TTYERROR(*fp));
2361 if (fp && *fp++ && !strip_info->discard) /* If there's a serial error, record it */
2362 {
2363 /* If we have some characters in the buffer, discard them */
2364 strip_info->discard = strip_info->sx_count;
2365 strip_info->rx_errors++;
2366 }
2367
2368 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2369 if (strip_info->sx_count > 0 || *cp >= ' ')
2370 {
2371 if (*cp == 0x0D) /* If end of packet, decide what to do with it */
2372 {
2373 if (strip_info->sx_count > 3000)
2374 printk(KERN_INFO "%s: Cut a %d byte packet (%d bytes remaining)%s\n",
2375 strip_info->dev.name, strip_info->sx_count, end-cp-1,
2376 strip_info->discard ? " (discarded)" : "");
2377 if (strip_info->sx_count > strip_info->sx_size)
2378 {
2379 strip_info->rx_over_errors++;
2380 printk(KERN_INFO "%s: sx_buff overflow (%d bytes total)\n",
2381 strip_info->dev.name, strip_info->sx_count);
2382 }
2383 else if (strip_info->discard)
2384 printk(KERN_INFO "%s: Discarding bad packet (%d/%d)\n",
2385 strip_info->dev.name, strip_info->discard, strip_info->sx_count);
2386 else process_message(strip_info);
2387 strip_info->discard = 0;
2388 strip_info->sx_count = 0;
2389 }
2390 else
2391 {
2392 /* Make sure we have space in the buffer */
2393 if (strip_info->sx_count < strip_info->sx_size)
2394 strip_info->sx_buff[strip_info->sx_count] = *cp;
2395 strip_info->sx_count++;
2396 }
2397 }
2398 cp++;
2399 }
2400 }
2401
2402
2403 /************************************************************************/
2404 /* General control routines */
2405
set_mac_address(struct strip * strip_info,MetricomAddress * addr)2406 static int set_mac_address(struct strip *strip_info, MetricomAddress *addr)
2407 {
2408 /*
2409 * We're using a manually specified address if the address is set
2410 * to anything other than all ones. Setting the address to all ones
2411 * disables manual mode and goes back to automatic address determination
2412 * (tracking the true address that the radio has).
2413 */
2414 strip_info->manual_dev_addr = memcmp(addr->c, broadcast_address.c, sizeof(broadcast_address));
2415 if (strip_info->manual_dev_addr)
2416 *(MetricomAddress*)strip_info->dev.dev_addr = *addr;
2417 else *(MetricomAddress*)strip_info->dev.dev_addr = strip_info->true_dev_addr;
2418 return 0;
2419 }
2420
dev_set_mac_address(struct net_device * dev,void * addr)2421 static int dev_set_mac_address(struct net_device *dev, void *addr)
2422 {
2423 struct strip *strip_info = (struct strip *)(dev->priv);
2424 struct sockaddr *sa = addr;
2425 printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2426 set_mac_address(strip_info, (MetricomAddress *)sa->sa_data);
2427 return 0;
2428 }
2429
strip_get_stats(struct net_device * dev)2430 static struct net_device_stats *strip_get_stats(struct net_device *dev)
2431 {
2432 static struct net_device_stats stats;
2433 struct strip *strip_info = (struct strip *)(dev->priv);
2434
2435 memset(&stats, 0, sizeof(struct net_device_stats));
2436
2437 stats.rx_packets = strip_info->rx_packets;
2438 stats.tx_packets = strip_info->tx_packets;
2439 stats.rx_dropped = strip_info->rx_dropped;
2440 stats.tx_dropped = strip_info->tx_dropped;
2441 stats.tx_errors = strip_info->tx_errors;
2442 stats.rx_errors = strip_info->rx_errors;
2443 stats.rx_over_errors = strip_info->rx_over_errors;
2444 return(&stats);
2445 }
2446
2447
2448 /************************************************************************/
2449 /* Opening and closing */
2450
2451 /*
2452 * Here's the order things happen:
2453 * When the user runs "slattach -p strip ..."
2454 * 1. The TTY module calls strip_open
2455 * 2. strip_open calls strip_alloc
2456 * 3. strip_alloc calls register_netdev
2457 * 4. register_netdev calls strip_dev_init
2458 * 5. then strip_open finishes setting up the strip_info
2459 *
2460 * When the user runs "ifconfig st<x> up address netmask ..."
2461 * 6. strip_open_low gets called
2462 *
2463 * When the user runs "ifconfig st<x> down"
2464 * 7. strip_close_low gets called
2465 *
2466 * When the user kills the slattach process
2467 * 8. strip_close gets called
2468 * 9. strip_close calls dev_close
2469 * 10. if the device is still up, then dev_close calls strip_close_low
2470 * 11. strip_close calls strip_free
2471 */
2472
2473 /* Open the low-level part of the STRIP channel. Easy! */
2474
strip_open_low(struct net_device * dev)2475 static int strip_open_low(struct net_device *dev)
2476 {
2477 struct strip *strip_info = (struct strip *)(dev->priv);
2478 #if 0
2479 struct in_device *in_dev = dev->ip_ptr;
2480 #endif
2481
2482 if (strip_info->tty == NULL)
2483 return(-ENODEV);
2484
2485 if (!allocate_buffers(strip_info))
2486 return(-ENOMEM);
2487
2488 strip_info->sx_count = 0;
2489 strip_info->tx_left = 0;
2490
2491 strip_info->discard = 0;
2492 strip_info->working = FALSE;
2493 strip_info->firmware_level = NoStructure;
2494 strip_info->next_command = CompatibilityCommand;
2495 strip_info->user_baud = get_baud(strip_info->tty);
2496
2497 #if 0
2498 /*
2499 * Needed because address '0' is special
2500 *
2501 * --ANK Needed it or not needed, it does not matter at all.
2502 * Make it at user level, guys.
2503 */
2504
2505 if (in_dev->ifa_list->ifa_address == 0)
2506 in_dev->ifa_list->ifa_address = ntohl(0xC0A80001);
2507 #endif
2508 printk(KERN_INFO "%s: Initializing Radio.\n", strip_info->dev.name);
2509 ResetRadio(strip_info);
2510 strip_info->idle_timer.expires = jiffies + 1*HZ;
2511 add_timer(&strip_info->idle_timer);
2512 netif_wake_queue(dev);
2513 return(0);
2514 }
2515
2516
2517 /*
2518 * Close the low-level part of the STRIP channel. Easy!
2519 */
2520
strip_close_low(struct net_device * dev)2521 static int strip_close_low(struct net_device *dev)
2522 {
2523 struct strip *strip_info = (struct strip *)(dev->priv);
2524
2525 if (strip_info->tty == NULL)
2526 return -EBUSY;
2527 strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2528
2529 netif_stop_queue(dev);
2530
2531 /*
2532 * Free all STRIP frame buffers.
2533 */
2534 if (strip_info->rx_buff)
2535 {
2536 kfree(strip_info->rx_buff);
2537 strip_info->rx_buff = NULL;
2538 }
2539 if (strip_info->sx_buff)
2540 {
2541 kfree(strip_info->sx_buff);
2542 strip_info->sx_buff = NULL;
2543 }
2544 if (strip_info->tx_buff)
2545 {
2546 kfree(strip_info->tx_buff);
2547 strip_info->tx_buff = NULL;
2548 }
2549 del_timer(&strip_info->idle_timer);
2550 return 0;
2551 }
2552
2553 /*
2554 * This routine is called by DDI when the
2555 * (dynamically assigned) device is registered
2556 */
2557
strip_dev_init(struct net_device * dev)2558 static int strip_dev_init(struct net_device *dev)
2559 {
2560 /*
2561 * Finish setting up the DEVICE info.
2562 */
2563
2564 dev->trans_start = 0;
2565 dev->last_rx = 0;
2566 dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2567
2568 dev->flags = 0;
2569 dev->mtu = DEFAULT_STRIP_MTU;
2570 dev->type = ARPHRD_METRICOM; /* dtang */
2571 dev->hard_header_len = sizeof(STRIP_Header);
2572 /*
2573 * dev->priv Already holds a pointer to our struct strip
2574 */
2575
2576 *(MetricomAddress*)&dev->broadcast = broadcast_address;
2577 dev->dev_addr[0] = 0;
2578 dev->addr_len = sizeof(MetricomAddress);
2579
2580 /*
2581 * Pointers to interface service routines.
2582 */
2583
2584 dev->open = strip_open_low;
2585 dev->stop = strip_close_low;
2586 dev->hard_start_xmit = strip_xmit;
2587 dev->hard_header = strip_header;
2588 dev->rebuild_header = strip_rebuild_header;
2589 dev->set_mac_address = dev_set_mac_address;
2590 dev->get_stats = strip_get_stats;
2591 return 0;
2592 }
2593
2594 /*
2595 * Free a STRIP channel.
2596 */
2597
strip_free(struct strip * strip_info)2598 static void strip_free(struct strip *strip_info)
2599 {
2600 *(strip_info->referrer) = strip_info->next;
2601 if (strip_info->next)
2602 strip_info->next->referrer = strip_info->referrer;
2603 strip_info->magic = 0;
2604 kfree(strip_info);
2605 }
2606
2607 /*
2608 * Allocate a new free STRIP channel
2609 */
2610
strip_alloc(void)2611 static struct strip *strip_alloc(void)
2612 {
2613 int channel_id = 0;
2614 struct strip **s = &struct_strip_list;
2615 struct strip *strip_info = (struct strip *)
2616 kmalloc(sizeof(struct strip), GFP_KERNEL);
2617
2618 if (!strip_info)
2619 return(NULL); /* If no more memory, return */
2620
2621 /*
2622 * Clear the allocated memory
2623 */
2624
2625 memset(strip_info, 0, sizeof(struct strip));
2626
2627 /*
2628 * Search the list to find where to put our new entry
2629 * (and in the process decide what channel number it is
2630 * going to be)
2631 */
2632
2633 while (*s && (*s)->dev.base_addr == channel_id)
2634 {
2635 channel_id++;
2636 s = &(*s)->next;
2637 }
2638
2639 /*
2640 * Fill in the link pointers
2641 */
2642
2643 strip_info->next = *s;
2644 if (*s)
2645 (*s)->referrer = &strip_info->next;
2646 strip_info->referrer = s;
2647 *s = strip_info;
2648
2649 strip_info->magic = STRIP_MAGIC;
2650 strip_info->tty = NULL;
2651
2652 strip_info->gratuitous_arp = jiffies + LongTime;
2653 strip_info->arp_interval = 0;
2654 init_timer(&strip_info->idle_timer);
2655 strip_info->idle_timer.data = (long)&strip_info->dev;
2656 strip_info->idle_timer.function = strip_IdleTask;
2657
2658 /* Note: strip_info->if_name is currently 8 characters long */
2659 sprintf(strip_info->dev.name, "st%d", channel_id);
2660 strip_info->dev.base_addr = channel_id;
2661 strip_info->dev.priv = (void*)strip_info;
2662 strip_info->dev.next = NULL;
2663 strip_info->dev.init = strip_dev_init;
2664
2665 return(strip_info);
2666 }
2667
2668 /*
2669 * Open the high-level part of the STRIP channel.
2670 * This function is called by the TTY module when the
2671 * STRIP line discipline is called for. Because we are
2672 * sure the tty line exists, we only have to link it to
2673 * a free STRIP channel...
2674 */
2675
strip_open(struct tty_struct * tty)2676 static int strip_open(struct tty_struct *tty)
2677 {
2678 struct strip *strip_info = (struct strip *) tty->disc_data;
2679
2680 /*
2681 * First make sure we're not already connected.
2682 */
2683
2684 if (strip_info && strip_info->magic == STRIP_MAGIC)
2685 return -EEXIST;
2686
2687 /*
2688 * OK. Find a free STRIP channel to use.
2689 */
2690 if ((strip_info = strip_alloc()) == NULL)
2691 return -ENFILE;
2692
2693 /*
2694 * Register our newly created device so it can be ifconfig'd
2695 * strip_dev_init() will be called as a side-effect
2696 */
2697
2698 if (register_netdev(&strip_info->dev) != 0)
2699 {
2700 printk(KERN_ERR "strip: register_netdev() failed.\n");
2701 strip_free(strip_info);
2702 return -ENFILE;
2703 }
2704
2705 strip_info->tty = tty;
2706 tty->disc_data = strip_info;
2707 if (tty->driver.flush_buffer)
2708 tty->driver.flush_buffer(tty);
2709 tty_ldisc_flush(tty);
2710
2711 /*
2712 * Restore default settings
2713 */
2714
2715 strip_info->dev.type = ARPHRD_METRICOM; /* dtang */
2716
2717 /*
2718 * Set tty options
2719 */
2720
2721 tty->termios->c_iflag |= IGNBRK |IGNPAR;/* Ignore breaks and parity errors. */
2722 tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
2723 tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
2724
2725 MOD_INC_USE_COUNT;
2726
2727 printk(KERN_INFO "STRIP: device \"%s\" activated\n", strip_info->dev.name);
2728
2729 /*
2730 * Done. We have linked the TTY line to a channel.
2731 */
2732 return(strip_info->dev.base_addr);
2733 }
2734
2735 /*
2736 * Close down a STRIP channel.
2737 * This means flushing out any pending queues, and then restoring the
2738 * TTY line discipline to what it was before it got hooked to STRIP
2739 * (which usually is TTY again).
2740 */
2741
strip_close(struct tty_struct * tty)2742 static void strip_close(struct tty_struct *tty)
2743 {
2744 struct strip *strip_info = (struct strip *) tty->disc_data;
2745
2746 /*
2747 * First make sure we're connected.
2748 */
2749
2750 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2751 return;
2752
2753 unregister_netdev(&strip_info->dev);
2754
2755 tty->disc_data = 0;
2756 strip_info->tty = NULL;
2757 printk(KERN_INFO "STRIP: device \"%s\" closed down\n", strip_info->dev.name);
2758 strip_free(strip_info);
2759 tty->disc_data = NULL;
2760 MOD_DEC_USE_COUNT;
2761 }
2762
2763
2764 /************************************************************************/
2765 /* Perform I/O control calls on an active STRIP channel. */
2766
strip_ioctl(struct tty_struct * tty,struct file * file,unsigned int cmd,unsigned long arg)2767 static int strip_ioctl(struct tty_struct *tty, struct file *file,
2768 unsigned int cmd, unsigned long arg)
2769 {
2770 struct strip *strip_info = (struct strip *) tty->disc_data;
2771
2772 /*
2773 * First make sure we're connected.
2774 */
2775
2776 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2777 return -EINVAL;
2778
2779 switch(cmd)
2780 {
2781 case SIOCGIFNAME:
2782 return copy_to_user((void*)arg, strip_info->dev.name,
2783 strlen(strip_info->dev.name) + 1) ?
2784 -EFAULT : 0;
2785 break;
2786 case SIOCSIFHWADDR:
2787 {
2788 MetricomAddress addr;
2789 printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev.name);
2790 return copy_from_user(&addr, (void*)arg, sizeof(MetricomAddress)) ?
2791 -EFAULT : set_mac_address(strip_info, &addr);
2792 break;
2793 }
2794 /*
2795 * Allow stty to read, but not set, the serial port
2796 */
2797
2798 case TCGETS:
2799 case TCGETA:
2800 return n_tty_ioctl(tty, (struct file *) file, cmd,
2801 (unsigned long) arg);
2802 break;
2803 default:
2804 return -ENOIOCTLCMD;
2805 break;
2806 }
2807 }
2808
2809
2810 /************************************************************************/
2811 /* Initialization */
2812
2813 static struct tty_ldisc strip_ldisc = {
2814 magic: TTY_LDISC_MAGIC,
2815 name: "strip",
2816 open: strip_open,
2817 close: strip_close,
2818 ioctl: strip_ioctl,
2819 receive_buf: strip_receive_buf,
2820 receive_room: strip_receive_room,
2821 write_wakeup: strip_write_some_more,
2822 };
2823
2824 /*
2825 * Initialize the STRIP driver.
2826 * This routine is called at boot time, to bootstrap the multi-channel
2827 * STRIP driver
2828 */
2829
2830 static char signon[] __initdata = KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2831
strip_init_driver(void)2832 static int __init strip_init_driver(void)
2833 {
2834 int status;
2835
2836 printk(signon, StripVersion);
2837
2838 /*
2839 * Fill in our line protocol discipline, and register it
2840 */
2841 if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2842 printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", status);
2843
2844 /*
2845 * Register the status file with /proc
2846 */
2847 proc_net_create("strip", S_IFREG | S_IRUGO, get_status_info);
2848
2849 return status;
2850 }
2851 module_init(strip_init_driver);
2852
2853 static const char signoff[] __exitdata = KERN_INFO "STRIP: Module Unloaded\n";
2854
strip_exit_driver(void)2855 static void __exit strip_exit_driver(void)
2856 {
2857 int i;
2858 while (struct_strip_list)
2859 strip_free(struct_strip_list);
2860
2861 /* Unregister with the /proc/net file here. */
2862 proc_net_remove("strip");
2863
2864 if ((i = tty_register_ldisc(N_STRIP, NULL)))
2865 printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2866
2867 printk(signoff);
2868 }
2869 module_exit(strip_exit_driver);
2870
2871 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2872 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2873 MODULE_LICENSE("Dual BSD/GPL");
2874
2875 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");
2876
2877