1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  * 	void add_disk_randomness(struct gendisk *disk);
132  *
133  * add_input_randomness() uses the input layer interrupt timing, as well as
134  * the event type information from the hardware.
135  *
136  * add_interrupt_randomness() uses the inter-interrupt timing as random
137  * inputs to the entropy pool.  Note that not all interrupts are good
138  * sources of randomness!  For example, the timer interrupts is not a
139  * good choice, because the periodicity of the interrupts is too
140  * regular, and hence predictable to an attacker.  Network Interface
141  * Controller interrupts are a better measure, since the timing of the
142  * NIC interrupts are more unpredictable.
143  *
144  * add_disk_randomness() uses what amounts to the seek time of block
145  * layer request events, on a per-disk_devt basis, as input to the
146  * entropy pool. Note that high-speed solid state drives with very low
147  * seek times do not make for good sources of entropy, as their seek
148  * times are usually fairly consistent.
149  *
150  * All of these routines try to estimate how many bits of randomness a
151  * particular randomness source.  They do this by keeping track of the
152  * first and second order deltas of the event timings.
153  *
154  * Ensuring unpredictability at system startup
155  * ============================================
156  *
157  * When any operating system starts up, it will go through a sequence
158  * of actions that are fairly predictable by an adversary, especially
159  * if the start-up does not involve interaction with a human operator.
160  * This reduces the actual number of bits of unpredictability in the
161  * entropy pool below the value in entropy_count.  In order to
162  * counteract this effect, it helps to carry information in the
163  * entropy pool across shut-downs and start-ups.  To do this, put the
164  * following lines an appropriate script which is run during the boot
165  * sequence:
166  *
167  *	echo "Initializing random number generator..."
168  *	random_seed=/var/run/random-seed
169  *	# Carry a random seed from start-up to start-up
170  *	# Load and then save the whole entropy pool
171  *	if [ -f $random_seed ]; then
172  *		cat $random_seed >/dev/urandom
173  *	else
174  *		touch $random_seed
175  *	fi
176  *	chmod 600 $random_seed
177  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
178  *
179  * and the following lines in an appropriate script which is run as
180  * the system is shutdown:
181  *
182  *	# Carry a random seed from shut-down to start-up
183  *	# Save the whole entropy pool
184  *	echo "Saving random seed..."
185  *	random_seed=/var/run/random-seed
186  *	touch $random_seed
187  *	chmod 600 $random_seed
188  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
189  *
190  * For example, on most modern systems using the System V init
191  * scripts, such code fragments would be found in
192  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
193  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
194  *
195  * Effectively, these commands cause the contents of the entropy pool
196  * to be saved at shut-down time and reloaded into the entropy pool at
197  * start-up.  (The 'dd' in the addition to the bootup script is to
198  * make sure that /etc/random-seed is different for every start-up,
199  * even if the system crashes without executing rc.0.)  Even with
200  * complete knowledge of the start-up activities, predicting the state
201  * of the entropy pool requires knowledge of the previous history of
202  * the system.
203  *
204  * Configuring the /dev/random driver under Linux
205  * ==============================================
206  *
207  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
208  * the /dev/mem major number (#1).  So if your system does not have
209  * /dev/random and /dev/urandom created already, they can be created
210  * by using the commands:
211  *
212  * 	mknod /dev/random c 1 8
213  * 	mknod /dev/urandom c 1 9
214  *
215  * Acknowledgements:
216  * =================
217  *
218  * Ideas for constructing this random number generator were derived
219  * from Pretty Good Privacy's random number generator, and from private
220  * discussions with Phil Karn.  Colin Plumb provided a faster random
221  * number generator, which speed up the mixing function of the entropy
222  * pool, taken from PGPfone.  Dale Worley has also contributed many
223  * useful ideas and suggestions to improve this driver.
224  *
225  * Any flaws in the design are solely my responsibility, and should
226  * not be attributed to the Phil, Colin, or any of authors of PGP.
227  *
228  * Further background information on this topic may be obtained from
229  * RFC 1750, "Randomness Recommendations for Security", by Donald
230  * Eastlake, Steve Crocker, and Jeff Schiller.
231  */
232 
233 #include <linux/utsname.h>
234 #include <linux/module.h>
235 #include <linux/kernel.h>
236 #include <linux/major.h>
237 #include <linux/string.h>
238 #include <linux/fcntl.h>
239 #include <linux/slab.h>
240 #include <linux/random.h>
241 #include <linux/poll.h>
242 #include <linux/init.h>
243 #include <linux/fs.h>
244 #include <linux/genhd.h>
245 #include <linux/interrupt.h>
246 #include <linux/mm.h>
247 #include <linux/spinlock.h>
248 #include <linux/percpu.h>
249 #include <linux/cryptohash.h>
250 #include <linux/fips.h>
251 
252 #ifdef CONFIG_GENERIC_HARDIRQS
253 # include <linux/irq.h>
254 #endif
255 
256 #include <asm/processor.h>
257 #include <asm/uaccess.h>
258 #include <asm/irq.h>
259 #include <asm/io.h>
260 
261 /*
262  * Configuration information
263  */
264 #define INPUT_POOL_WORDS 128
265 #define OUTPUT_POOL_WORDS 32
266 #define SEC_XFER_SIZE 512
267 #define EXTRACT_SIZE 10
268 
269 /*
270  * The minimum number of bits of entropy before we wake up a read on
271  * /dev/random.  Should be enough to do a significant reseed.
272  */
273 static int random_read_wakeup_thresh = 64;
274 
275 /*
276  * If the entropy count falls under this number of bits, then we
277  * should wake up processes which are selecting or polling on write
278  * access to /dev/random.
279  */
280 static int random_write_wakeup_thresh = 128;
281 
282 /*
283  * When the input pool goes over trickle_thresh, start dropping most
284  * samples to avoid wasting CPU time and reduce lock contention.
285  */
286 
287 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
288 
289 static DEFINE_PER_CPU(int, trickle_count);
290 
291 /*
292  * A pool of size .poolwords is stirred with a primitive polynomial
293  * of degree .poolwords over GF(2).  The taps for various sizes are
294  * defined below.  They are chosen to be evenly spaced (minimum RMS
295  * distance from evenly spaced; the numbers in the comments are a
296  * scaled squared error sum) except for the last tap, which is 1 to
297  * get the twisting happening as fast as possible.
298  */
299 static struct poolinfo {
300 	int poolwords;
301 	int tap1, tap2, tap3, tap4, tap5;
302 } poolinfo_table[] = {
303 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
304 	{ 128,	103,	76,	51,	25,	1 },
305 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
306 	{ 32,	26,	20,	14,	7,	1 },
307 #if 0
308 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
309 	{ 2048,	1638,	1231,	819,	411,	1 },
310 
311 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
312 	{ 1024,	817,	615,	412,	204,	1 },
313 
314 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
315 	{ 1024,	819,	616,	410,	207,	2 },
316 
317 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
318 	{ 512,	411,	308,	208,	104,	1 },
319 
320 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
321 	{ 512,	409,	307,	206,	102,	2 },
322 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
323 	{ 512,	409,	309,	205,	103,	2 },
324 
325 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
326 	{ 256,	205,	155,	101,	52,	1 },
327 
328 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
329 	{ 128,	103,	78,	51,	27,	2 },
330 
331 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
332 	{ 64,	52,	39,	26,	14,	1 },
333 #endif
334 };
335 
336 #define POOLBITS	poolwords*32
337 #define POOLBYTES	poolwords*4
338 
339 /*
340  * For the purposes of better mixing, we use the CRC-32 polynomial as
341  * well to make a twisted Generalized Feedback Shift Reigster
342  *
343  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
344  * Transactions on Modeling and Computer Simulation 2(3):179-194.
345  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
346  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
347  *
348  * Thanks to Colin Plumb for suggesting this.
349  *
350  * We have not analyzed the resultant polynomial to prove it primitive;
351  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
352  * of a random large-degree polynomial over GF(2) are more than large enough
353  * that periodicity is not a concern.
354  *
355  * The input hash is much less sensitive than the output hash.  All
356  * that we want of it is that it be a good non-cryptographic hash;
357  * i.e. it not produce collisions when fed "random" data of the sort
358  * we expect to see.  As long as the pool state differs for different
359  * inputs, we have preserved the input entropy and done a good job.
360  * The fact that an intelligent attacker can construct inputs that
361  * will produce controlled alterations to the pool's state is not
362  * important because we don't consider such inputs to contribute any
363  * randomness.  The only property we need with respect to them is that
364  * the attacker can't increase his/her knowledge of the pool's state.
365  * Since all additions are reversible (knowing the final state and the
366  * input, you can reconstruct the initial state), if an attacker has
367  * any uncertainty about the initial state, he/she can only shuffle
368  * that uncertainty about, but never cause any collisions (which would
369  * decrease the uncertainty).
370  *
371  * The chosen system lets the state of the pool be (essentially) the input
372  * modulo the generator polymnomial.  Now, for random primitive polynomials,
373  * this is a universal class of hash functions, meaning that the chance
374  * of a collision is limited by the attacker's knowledge of the generator
375  * polynomail, so if it is chosen at random, an attacker can never force
376  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
377  * ###--> it is unknown to the processes generating the input entropy. <-###
378  * Because of this important property, this is a good, collision-resistant
379  * hash; hash collisions will occur no more often than chance.
380  */
381 
382 /*
383  * Static global variables
384  */
385 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
386 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
387 static struct fasync_struct *fasync;
388 
389 #if 0
390 static int debug;
391 module_param(debug, bool, 0644);
392 #define DEBUG_ENT(fmt, arg...) do { \
393 	if (debug) \
394 		printk(KERN_DEBUG "random %04d %04d %04d: " \
395 		fmt,\
396 		input_pool.entropy_count,\
397 		blocking_pool.entropy_count,\
398 		nonblocking_pool.entropy_count,\
399 		## arg); } while (0)
400 #else
401 #define DEBUG_ENT(fmt, arg...) do {} while (0)
402 #endif
403 
404 /**********************************************************************
405  *
406  * OS independent entropy store.   Here are the functions which handle
407  * storing entropy in an entropy pool.
408  *
409  **********************************************************************/
410 
411 struct entropy_store;
412 struct entropy_store {
413 	/* read-only data: */
414 	struct poolinfo *poolinfo;
415 	__u32 *pool;
416 	const char *name;
417 	struct entropy_store *pull;
418 	int limit;
419 
420 	/* read-write data: */
421 	spinlock_t lock;
422 	unsigned add_ptr;
423 	int entropy_count;
424 	int input_rotate;
425 	__u8 last_data[EXTRACT_SIZE];
426 };
427 
428 static __u32 input_pool_data[INPUT_POOL_WORDS];
429 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
430 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
431 
432 static struct entropy_store input_pool = {
433 	.poolinfo = &poolinfo_table[0],
434 	.name = "input",
435 	.limit = 1,
436 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
437 	.pool = input_pool_data
438 };
439 
440 static struct entropy_store blocking_pool = {
441 	.poolinfo = &poolinfo_table[1],
442 	.name = "blocking",
443 	.limit = 1,
444 	.pull = &input_pool,
445 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
446 	.pool = blocking_pool_data
447 };
448 
449 static struct entropy_store nonblocking_pool = {
450 	.poolinfo = &poolinfo_table[1],
451 	.name = "nonblocking",
452 	.pull = &input_pool,
453 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
454 	.pool = nonblocking_pool_data
455 };
456 
457 /*
458  * This function adds bytes into the entropy "pool".  It does not
459  * update the entropy estimate.  The caller should call
460  * credit_entropy_bits if this is appropriate.
461  *
462  * The pool is stirred with a primitive polynomial of the appropriate
463  * degree, and then twisted.  We twist by three bits at a time because
464  * it's cheap to do so and helps slightly in the expected case where
465  * the entropy is concentrated in the low-order bits.
466  */
mix_pool_bytes_extract(struct entropy_store * r,const void * in,int nbytes,__u8 out[64])467 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
468 				   int nbytes, __u8 out[64])
469 {
470 	static __u32 const twist_table[8] = {
471 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
472 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
473 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
474 	int input_rotate;
475 	int wordmask = r->poolinfo->poolwords - 1;
476 	const char *bytes = in;
477 	__u32 w;
478 	unsigned long flags;
479 
480 	/* Taps are constant, so we can load them without holding r->lock.  */
481 	tap1 = r->poolinfo->tap1;
482 	tap2 = r->poolinfo->tap2;
483 	tap3 = r->poolinfo->tap3;
484 	tap4 = r->poolinfo->tap4;
485 	tap5 = r->poolinfo->tap5;
486 
487 	spin_lock_irqsave(&r->lock, flags);
488 	input_rotate = r->input_rotate;
489 	i = r->add_ptr;
490 
491 	/* mix one byte at a time to simplify size handling and churn faster */
492 	while (nbytes--) {
493 		w = rol32(*bytes++, input_rotate & 31);
494 		i = (i - 1) & wordmask;
495 
496 		/* XOR in the various taps */
497 		w ^= r->pool[i];
498 		w ^= r->pool[(i + tap1) & wordmask];
499 		w ^= r->pool[(i + tap2) & wordmask];
500 		w ^= r->pool[(i + tap3) & wordmask];
501 		w ^= r->pool[(i + tap4) & wordmask];
502 		w ^= r->pool[(i + tap5) & wordmask];
503 
504 		/* Mix the result back in with a twist */
505 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
506 
507 		/*
508 		 * Normally, we add 7 bits of rotation to the pool.
509 		 * At the beginning of the pool, add an extra 7 bits
510 		 * rotation, so that successive passes spread the
511 		 * input bits across the pool evenly.
512 		 */
513 		input_rotate += i ? 7 : 14;
514 	}
515 
516 	r->input_rotate = input_rotate;
517 	r->add_ptr = i;
518 
519 	if (out)
520 		for (j = 0; j < 16; j++)
521 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
522 
523 	spin_unlock_irqrestore(&r->lock, flags);
524 }
525 
mix_pool_bytes(struct entropy_store * r,const void * in,int bytes)526 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
527 {
528        mix_pool_bytes_extract(r, in, bytes, NULL);
529 }
530 
531 /*
532  * Credit (or debit) the entropy store with n bits of entropy
533  */
credit_entropy_bits(struct entropy_store * r,int nbits)534 static void credit_entropy_bits(struct entropy_store *r, int nbits)
535 {
536 	unsigned long flags;
537 	int entropy_count;
538 
539 	if (!nbits)
540 		return;
541 
542 	spin_lock_irqsave(&r->lock, flags);
543 
544 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
545 	entropy_count = r->entropy_count;
546 	entropy_count += nbits;
547 	if (entropy_count < 0) {
548 		DEBUG_ENT("negative entropy/overflow\n");
549 		entropy_count = 0;
550 	} else if (entropy_count > r->poolinfo->POOLBITS)
551 		entropy_count = r->poolinfo->POOLBITS;
552 	r->entropy_count = entropy_count;
553 
554 	/* should we wake readers? */
555 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
556 		wake_up_interruptible(&random_read_wait);
557 		kill_fasync(&fasync, SIGIO, POLL_IN);
558 	}
559 	spin_unlock_irqrestore(&r->lock, flags);
560 }
561 
562 /*********************************************************************
563  *
564  * Entropy input management
565  *
566  *********************************************************************/
567 
568 /* There is one of these per entropy source */
569 struct timer_rand_state {
570 	cycles_t last_time;
571 	long last_delta, last_delta2;
572 	unsigned dont_count_entropy:1;
573 };
574 
575 #ifndef CONFIG_GENERIC_HARDIRQS
576 
577 static struct timer_rand_state *irq_timer_state[NR_IRQS];
578 
get_timer_rand_state(unsigned int irq)579 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
580 {
581 	return irq_timer_state[irq];
582 }
583 
set_timer_rand_state(unsigned int irq,struct timer_rand_state * state)584 static void set_timer_rand_state(unsigned int irq,
585 				 struct timer_rand_state *state)
586 {
587 	irq_timer_state[irq] = state;
588 }
589 
590 #else
591 
get_timer_rand_state(unsigned int irq)592 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
593 {
594 	struct irq_desc *desc;
595 
596 	desc = irq_to_desc(irq);
597 
598 	return desc->timer_rand_state;
599 }
600 
set_timer_rand_state(unsigned int irq,struct timer_rand_state * state)601 static void set_timer_rand_state(unsigned int irq,
602 				 struct timer_rand_state *state)
603 {
604 	struct irq_desc *desc;
605 
606 	desc = irq_to_desc(irq);
607 
608 	desc->timer_rand_state = state;
609 }
610 #endif
611 
612 static struct timer_rand_state input_timer_state;
613 
614 /*
615  * This function adds entropy to the entropy "pool" by using timing
616  * delays.  It uses the timer_rand_state structure to make an estimate
617  * of how many bits of entropy this call has added to the pool.
618  *
619  * The number "num" is also added to the pool - it should somehow describe
620  * the type of event which just happened.  This is currently 0-255 for
621  * keyboard scan codes, and 256 upwards for interrupts.
622  *
623  */
add_timer_randomness(struct timer_rand_state * state,unsigned num)624 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
625 {
626 	struct {
627 		cycles_t cycles;
628 		long jiffies;
629 		unsigned num;
630 	} sample;
631 	long delta, delta2, delta3;
632 
633 	preempt_disable();
634 	/* if over the trickle threshold, use only 1 in 4096 samples */
635 	if (input_pool.entropy_count > trickle_thresh &&
636 	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
637 		goto out;
638 
639 	sample.jiffies = jiffies;
640 	sample.cycles = get_cycles();
641 	sample.num = num;
642 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
643 
644 	/*
645 	 * Calculate number of bits of randomness we probably added.
646 	 * We take into account the first, second and third-order deltas
647 	 * in order to make our estimate.
648 	 */
649 
650 	if (!state->dont_count_entropy) {
651 		delta = sample.jiffies - state->last_time;
652 		state->last_time = sample.jiffies;
653 
654 		delta2 = delta - state->last_delta;
655 		state->last_delta = delta;
656 
657 		delta3 = delta2 - state->last_delta2;
658 		state->last_delta2 = delta2;
659 
660 		if (delta < 0)
661 			delta = -delta;
662 		if (delta2 < 0)
663 			delta2 = -delta2;
664 		if (delta3 < 0)
665 			delta3 = -delta3;
666 		if (delta > delta2)
667 			delta = delta2;
668 		if (delta > delta3)
669 			delta = delta3;
670 
671 		/*
672 		 * delta is now minimum absolute delta.
673 		 * Round down by 1 bit on general principles,
674 		 * and limit entropy entimate to 12 bits.
675 		 */
676 		credit_entropy_bits(&input_pool,
677 				    min_t(int, fls(delta>>1), 11));
678 	}
679 out:
680 	preempt_enable();
681 }
682 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)683 void add_input_randomness(unsigned int type, unsigned int code,
684 				 unsigned int value)
685 {
686 	static unsigned char last_value;
687 
688 	/* ignore autorepeat and the like */
689 	if (value == last_value)
690 		return;
691 
692 	DEBUG_ENT("input event\n");
693 	last_value = value;
694 	add_timer_randomness(&input_timer_state,
695 			     (type << 4) ^ code ^ (code >> 4) ^ value);
696 }
697 EXPORT_SYMBOL_GPL(add_input_randomness);
698 
add_interrupt_randomness(int irq)699 void add_interrupt_randomness(int irq)
700 {
701 	struct timer_rand_state *state;
702 
703 	state = get_timer_rand_state(irq);
704 
705 	if (state == NULL)
706 		return;
707 
708 	DEBUG_ENT("irq event %d\n", irq);
709 	add_timer_randomness(state, 0x100 + irq);
710 }
711 
712 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)713 void add_disk_randomness(struct gendisk *disk)
714 {
715 	if (!disk || !disk->random)
716 		return;
717 	/* first major is 1, so we get >= 0x200 here */
718 	DEBUG_ENT("disk event %d:%d\n",
719 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
720 
721 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
722 }
723 #endif
724 
725 /*********************************************************************
726  *
727  * Entropy extraction routines
728  *
729  *********************************************************************/
730 
731 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
732 			       size_t nbytes, int min, int rsvd);
733 
734 /*
735  * This utility inline function is responsible for transferring entropy
736  * from the primary pool to the secondary extraction pool. We make
737  * sure we pull enough for a 'catastrophic reseed'.
738  */
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)739 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
740 {
741 	__u32 tmp[OUTPUT_POOL_WORDS];
742 
743 	if (r->pull && r->entropy_count < nbytes * 8 &&
744 	    r->entropy_count < r->poolinfo->POOLBITS) {
745 		/* If we're limited, always leave two wakeup worth's BITS */
746 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
747 		int bytes = nbytes;
748 
749 		/* pull at least as many as BYTES as wakeup BITS */
750 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
751 		/* but never more than the buffer size */
752 		bytes = min_t(int, bytes, sizeof(tmp));
753 
754 		DEBUG_ENT("going to reseed %s with %d bits "
755 			  "(%d of %d requested)\n",
756 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
757 
758 		bytes = extract_entropy(r->pull, tmp, bytes,
759 					random_read_wakeup_thresh / 8, rsvd);
760 		mix_pool_bytes(r, tmp, bytes);
761 		credit_entropy_bits(r, bytes*8);
762 	}
763 }
764 
765 /*
766  * These functions extracts randomness from the "entropy pool", and
767  * returns it in a buffer.
768  *
769  * The min parameter specifies the minimum amount we can pull before
770  * failing to avoid races that defeat catastrophic reseeding while the
771  * reserved parameter indicates how much entropy we must leave in the
772  * pool after each pull to avoid starving other readers.
773  *
774  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
775  */
776 
account(struct entropy_store * r,size_t nbytes,int min,int reserved)777 static size_t account(struct entropy_store *r, size_t nbytes, int min,
778 		      int reserved)
779 {
780 	unsigned long flags;
781 
782 	/* Hold lock while accounting */
783 	spin_lock_irqsave(&r->lock, flags);
784 
785 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
786 	DEBUG_ENT("trying to extract %d bits from %s\n",
787 		  nbytes * 8, r->name);
788 
789 	/* Can we pull enough? */
790 	if (r->entropy_count / 8 < min + reserved) {
791 		nbytes = 0;
792 	} else {
793 		/* If limited, never pull more than available */
794 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
795 			nbytes = r->entropy_count/8 - reserved;
796 
797 		if (r->entropy_count / 8 >= nbytes + reserved)
798 			r->entropy_count -= nbytes*8;
799 		else
800 			r->entropy_count = reserved;
801 
802 		if (r->entropy_count < random_write_wakeup_thresh) {
803 			wake_up_interruptible(&random_write_wait);
804 			kill_fasync(&fasync, SIGIO, POLL_OUT);
805 		}
806 	}
807 
808 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
809 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
810 
811 	spin_unlock_irqrestore(&r->lock, flags);
812 
813 	return nbytes;
814 }
815 
extract_buf(struct entropy_store * r,__u8 * out)816 static void extract_buf(struct entropy_store *r, __u8 *out)
817 {
818 	int i;
819 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
820 	__u8 extract[64];
821 
822 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
823 	sha_init(hash);
824 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
825 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
826 
827 	/*
828 	 * We mix the hash back into the pool to prevent backtracking
829 	 * attacks (where the attacker knows the state of the pool
830 	 * plus the current outputs, and attempts to find previous
831 	 * ouputs), unless the hash function can be inverted. By
832 	 * mixing at least a SHA1 worth of hash data back, we make
833 	 * brute-forcing the feedback as hard as brute-forcing the
834 	 * hash.
835 	 */
836 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
837 
838 	/*
839 	 * To avoid duplicates, we atomically extract a portion of the
840 	 * pool while mixing, and hash one final time.
841 	 */
842 	sha_transform(hash, extract, workspace);
843 	memset(extract, 0, sizeof(extract));
844 	memset(workspace, 0, sizeof(workspace));
845 
846 	/*
847 	 * In case the hash function has some recognizable output
848 	 * pattern, we fold it in half. Thus, we always feed back
849 	 * twice as much data as we output.
850 	 */
851 	hash[0] ^= hash[3];
852 	hash[1] ^= hash[4];
853 	hash[2] ^= rol32(hash[2], 16);
854 	memcpy(out, hash, EXTRACT_SIZE);
855 	memset(hash, 0, sizeof(hash));
856 }
857 
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)858 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
859 			       size_t nbytes, int min, int reserved)
860 {
861 	ssize_t ret = 0, i;
862 	__u8 tmp[EXTRACT_SIZE];
863 	unsigned long flags;
864 
865 	xfer_secondary_pool(r, nbytes);
866 	nbytes = account(r, nbytes, min, reserved);
867 
868 	while (nbytes) {
869 		extract_buf(r, tmp);
870 
871 		if (fips_enabled) {
872 			spin_lock_irqsave(&r->lock, flags);
873 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
874 				panic("Hardware RNG duplicated output!\n");
875 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
876 			spin_unlock_irqrestore(&r->lock, flags);
877 		}
878 		i = min_t(int, nbytes, EXTRACT_SIZE);
879 		memcpy(buf, tmp, i);
880 		nbytes -= i;
881 		buf += i;
882 		ret += i;
883 	}
884 
885 	/* Wipe data just returned from memory */
886 	memset(tmp, 0, sizeof(tmp));
887 
888 	return ret;
889 }
890 
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)891 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
892 				    size_t nbytes)
893 {
894 	ssize_t ret = 0, i;
895 	__u8 tmp[EXTRACT_SIZE];
896 
897 	xfer_secondary_pool(r, nbytes);
898 	nbytes = account(r, nbytes, 0, 0);
899 
900 	while (nbytes) {
901 		if (need_resched()) {
902 			if (signal_pending(current)) {
903 				if (ret == 0)
904 					ret = -ERESTARTSYS;
905 				break;
906 			}
907 			schedule();
908 		}
909 
910 		extract_buf(r, tmp);
911 		i = min_t(int, nbytes, EXTRACT_SIZE);
912 		if (copy_to_user(buf, tmp, i)) {
913 			ret = -EFAULT;
914 			break;
915 		}
916 
917 		nbytes -= i;
918 		buf += i;
919 		ret += i;
920 	}
921 
922 	/* Wipe data just returned from memory */
923 	memset(tmp, 0, sizeof(tmp));
924 
925 	return ret;
926 }
927 
928 /*
929  * This function is the exported kernel interface.  It returns some
930  * number of good random numbers, suitable for seeding TCP sequence
931  * numbers, etc.
932  */
get_random_bytes(void * buf,int nbytes)933 void get_random_bytes(void *buf, int nbytes)
934 {
935 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
936 }
937 EXPORT_SYMBOL(get_random_bytes);
938 
939 /*
940  * init_std_data - initialize pool with system data
941  *
942  * @r: pool to initialize
943  *
944  * This function clears the pool's entropy count and mixes some system
945  * data into the pool to prepare it for use. The pool is not cleared
946  * as that can only decrease the entropy in the pool.
947  */
init_std_data(struct entropy_store * r)948 static void init_std_data(struct entropy_store *r)
949 {
950 	ktime_t now;
951 	unsigned long flags;
952 
953 	spin_lock_irqsave(&r->lock, flags);
954 	r->entropy_count = 0;
955 	spin_unlock_irqrestore(&r->lock, flags);
956 
957 	now = ktime_get_real();
958 	mix_pool_bytes(r, &now, sizeof(now));
959 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
960 }
961 
rand_initialize(void)962 static int rand_initialize(void)
963 {
964 	init_std_data(&input_pool);
965 	init_std_data(&blocking_pool);
966 	init_std_data(&nonblocking_pool);
967 	return 0;
968 }
969 module_init(rand_initialize);
970 
rand_initialize_irq(int irq)971 void rand_initialize_irq(int irq)
972 {
973 	struct timer_rand_state *state;
974 
975 	state = get_timer_rand_state(irq);
976 
977 	if (state)
978 		return;
979 
980 	/*
981 	 * If kzalloc returns null, we just won't use that entropy
982 	 * source.
983 	 */
984 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
985 	if (state)
986 		set_timer_rand_state(irq, state);
987 }
988 
989 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)990 void rand_initialize_disk(struct gendisk *disk)
991 {
992 	struct timer_rand_state *state;
993 
994 	/*
995 	 * If kzalloc returns null, we just won't use that entropy
996 	 * source.
997 	 */
998 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
999 	if (state)
1000 		disk->random = state;
1001 }
1002 #endif
1003 
1004 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1005 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1006 {
1007 	ssize_t n, retval = 0, count = 0;
1008 
1009 	if (nbytes == 0)
1010 		return 0;
1011 
1012 	while (nbytes > 0) {
1013 		n = nbytes;
1014 		if (n > SEC_XFER_SIZE)
1015 			n = SEC_XFER_SIZE;
1016 
1017 		DEBUG_ENT("reading %d bits\n", n*8);
1018 
1019 		n = extract_entropy_user(&blocking_pool, buf, n);
1020 
1021 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1022 			  n*8, (nbytes-n)*8);
1023 
1024 		if (n == 0) {
1025 			if (file->f_flags & O_NONBLOCK) {
1026 				retval = -EAGAIN;
1027 				break;
1028 			}
1029 
1030 			DEBUG_ENT("sleeping?\n");
1031 
1032 			wait_event_interruptible(random_read_wait,
1033 				input_pool.entropy_count >=
1034 						 random_read_wakeup_thresh);
1035 
1036 			DEBUG_ENT("awake\n");
1037 
1038 			if (signal_pending(current)) {
1039 				retval = -ERESTARTSYS;
1040 				break;
1041 			}
1042 
1043 			continue;
1044 		}
1045 
1046 		if (n < 0) {
1047 			retval = n;
1048 			break;
1049 		}
1050 		count += n;
1051 		buf += n;
1052 		nbytes -= n;
1053 		break;		/* This break makes the device work */
1054 				/* like a named pipe */
1055 	}
1056 
1057 	return (count ? count : retval);
1058 }
1059 
1060 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1061 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062 {
1063 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1064 }
1065 
1066 static unsigned int
random_poll(struct file * file,poll_table * wait)1067 random_poll(struct file *file, poll_table * wait)
1068 {
1069 	unsigned int mask;
1070 
1071 	poll_wait(file, &random_read_wait, wait);
1072 	poll_wait(file, &random_write_wait, wait);
1073 	mask = 0;
1074 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075 		mask |= POLLIN | POLLRDNORM;
1076 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1077 		mask |= POLLOUT | POLLWRNORM;
1078 	return mask;
1079 }
1080 
1081 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1082 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083 {
1084 	size_t bytes;
1085 	__u32 buf[16];
1086 	const char __user *p = buffer;
1087 
1088 	while (count > 0) {
1089 		bytes = min(count, sizeof(buf));
1090 		if (copy_from_user(&buf, p, bytes))
1091 			return -EFAULT;
1092 
1093 		count -= bytes;
1094 		p += bytes;
1095 
1096 		mix_pool_bytes(r, buf, bytes);
1097 		cond_resched();
1098 	}
1099 
1100 	return 0;
1101 }
1102 
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)1103 static ssize_t random_write(struct file *file, const char __user *buffer,
1104 			    size_t count, loff_t *ppos)
1105 {
1106 	size_t ret;
1107 
1108 	ret = write_pool(&blocking_pool, buffer, count);
1109 	if (ret)
1110 		return ret;
1111 	ret = write_pool(&nonblocking_pool, buffer, count);
1112 	if (ret)
1113 		return ret;
1114 
1115 	return (ssize_t)count;
1116 }
1117 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1118 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119 {
1120 	int size, ent_count;
1121 	int __user *p = (int __user *)arg;
1122 	int retval;
1123 
1124 	switch (cmd) {
1125 	case RNDGETENTCNT:
1126 		/* inherently racy, no point locking */
1127 		if (put_user(input_pool.entropy_count, p))
1128 			return -EFAULT;
1129 		return 0;
1130 	case RNDADDTOENTCNT:
1131 		if (!capable(CAP_SYS_ADMIN))
1132 			return -EPERM;
1133 		if (get_user(ent_count, p))
1134 			return -EFAULT;
1135 		credit_entropy_bits(&input_pool, ent_count);
1136 		return 0;
1137 	case RNDADDENTROPY:
1138 		if (!capable(CAP_SYS_ADMIN))
1139 			return -EPERM;
1140 		if (get_user(ent_count, p++))
1141 			return -EFAULT;
1142 		if (ent_count < 0)
1143 			return -EINVAL;
1144 		if (get_user(size, p++))
1145 			return -EFAULT;
1146 		retval = write_pool(&input_pool, (const char __user *)p,
1147 				    size);
1148 		if (retval < 0)
1149 			return retval;
1150 		credit_entropy_bits(&input_pool, ent_count);
1151 		return 0;
1152 	case RNDZAPENTCNT:
1153 	case RNDCLEARPOOL:
1154 		/* Clear the entropy pool counters. */
1155 		if (!capable(CAP_SYS_ADMIN))
1156 			return -EPERM;
1157 		rand_initialize();
1158 		return 0;
1159 	default:
1160 		return -EINVAL;
1161 	}
1162 }
1163 
random_fasync(int fd,struct file * filp,int on)1164 static int random_fasync(int fd, struct file *filp, int on)
1165 {
1166 	return fasync_helper(fd, filp, on, &fasync);
1167 }
1168 
1169 const struct file_operations random_fops = {
1170 	.read  = random_read,
1171 	.write = random_write,
1172 	.poll  = random_poll,
1173 	.unlocked_ioctl = random_ioctl,
1174 	.fasync = random_fasync,
1175 	.llseek = noop_llseek,
1176 };
1177 
1178 const struct file_operations urandom_fops = {
1179 	.read  = urandom_read,
1180 	.write = random_write,
1181 	.unlocked_ioctl = random_ioctl,
1182 	.fasync = random_fasync,
1183 	.llseek = noop_llseek,
1184 };
1185 
1186 /***************************************************************
1187  * Random UUID interface
1188  *
1189  * Used here for a Boot ID, but can be useful for other kernel
1190  * drivers.
1191  ***************************************************************/
1192 
1193 /*
1194  * Generate random UUID
1195  */
generate_random_uuid(unsigned char uuid_out[16])1196 void generate_random_uuid(unsigned char uuid_out[16])
1197 {
1198 	get_random_bytes(uuid_out, 16);
1199 	/* Set UUID version to 4 --- truly random generation */
1200 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201 	/* Set the UUID variant to DCE */
1202 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1203 }
1204 EXPORT_SYMBOL(generate_random_uuid);
1205 
1206 /********************************************************************
1207  *
1208  * Sysctl interface
1209  *
1210  ********************************************************************/
1211 
1212 #ifdef CONFIG_SYSCTL
1213 
1214 #include <linux/sysctl.h>
1215 
1216 static int min_read_thresh = 8, min_write_thresh;
1217 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1219 static char sysctl_bootid[16];
1220 
1221 /*
1222  * These functions is used to return both the bootid UUID, and random
1223  * UUID.  The difference is in whether table->data is NULL; if it is,
1224  * then a new UUID is generated and returned to the user.
1225  *
1226  * If the user accesses this via the proc interface, it will be returned
1227  * as an ASCII string in the standard UUID format.  If accesses via the
1228  * sysctl system call, it is returned as 16 bytes of binary data.
1229  */
proc_do_uuid(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1230 static int proc_do_uuid(ctl_table *table, int write,
1231 			void __user *buffer, size_t *lenp, loff_t *ppos)
1232 {
1233 	ctl_table fake_table;
1234 	unsigned char buf[64], tmp_uuid[16], *uuid;
1235 
1236 	uuid = table->data;
1237 	if (!uuid) {
1238 		uuid = tmp_uuid;
1239 		uuid[8] = 0;
1240 	}
1241 	if (uuid[8] == 0)
1242 		generate_random_uuid(uuid);
1243 
1244 	sprintf(buf, "%pU", uuid);
1245 
1246 	fake_table.data = buf;
1247 	fake_table.maxlen = sizeof(buf);
1248 
1249 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1250 }
1251 
1252 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253 ctl_table random_table[] = {
1254 	{
1255 		.procname	= "poolsize",
1256 		.data		= &sysctl_poolsize,
1257 		.maxlen		= sizeof(int),
1258 		.mode		= 0444,
1259 		.proc_handler	= proc_dointvec,
1260 	},
1261 	{
1262 		.procname	= "entropy_avail",
1263 		.maxlen		= sizeof(int),
1264 		.mode		= 0444,
1265 		.proc_handler	= proc_dointvec,
1266 		.data		= &input_pool.entropy_count,
1267 	},
1268 	{
1269 		.procname	= "read_wakeup_threshold",
1270 		.data		= &random_read_wakeup_thresh,
1271 		.maxlen		= sizeof(int),
1272 		.mode		= 0644,
1273 		.proc_handler	= proc_dointvec_minmax,
1274 		.extra1		= &min_read_thresh,
1275 		.extra2		= &max_read_thresh,
1276 	},
1277 	{
1278 		.procname	= "write_wakeup_threshold",
1279 		.data		= &random_write_wakeup_thresh,
1280 		.maxlen		= sizeof(int),
1281 		.mode		= 0644,
1282 		.proc_handler	= proc_dointvec_minmax,
1283 		.extra1		= &min_write_thresh,
1284 		.extra2		= &max_write_thresh,
1285 	},
1286 	{
1287 		.procname	= "boot_id",
1288 		.data		= &sysctl_bootid,
1289 		.maxlen		= 16,
1290 		.mode		= 0444,
1291 		.proc_handler	= proc_do_uuid,
1292 	},
1293 	{
1294 		.procname	= "uuid",
1295 		.maxlen		= 16,
1296 		.mode		= 0444,
1297 		.proc_handler	= proc_do_uuid,
1298 	},
1299 	{ }
1300 };
1301 #endif 	/* CONFIG_SYSCTL */
1302 
1303 /********************************************************************
1304  *
1305  * Random functions for networking
1306  *
1307  ********************************************************************/
1308 
1309 /*
1310  * TCP initial sequence number picking.  This uses the random number
1311  * generator to pick an initial secret value.  This value is hashed
1312  * along with the TCP endpoint information to provide a unique
1313  * starting point for each pair of TCP endpoints.  This defeats
1314  * attacks which rely on guessing the initial TCP sequence number.
1315  * This algorithm was suggested by Steve Bellovin.
1316  *
1317  * Using a very strong hash was taking an appreciable amount of the total
1318  * TCP connection establishment time, so this is a weaker hash,
1319  * compensated for by changing the secret periodically.
1320  */
1321 
1322 /* F, G and H are basic MD4 functions: selection, majority, parity */
1323 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1324 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1325 #define H(x, y, z) ((x) ^ (y) ^ (z))
1326 
1327 /*
1328  * The generic round function.  The application is so specific that
1329  * we don't bother protecting all the arguments with parens, as is generally
1330  * good macro practice, in favor of extra legibility.
1331  * Rotation is separate from addition to prevent recomputation
1332  */
1333 #define ROUND(f, a, b, c, d, x, s)	\
1334 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1335 #define K1 0
1336 #define K2 013240474631UL
1337 #define K3 015666365641UL
1338 
1339 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1340 
twothirdsMD4Transform(__u32 const buf[4],__u32 const in[12])1341 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1342 {
1343 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1344 
1345 	/* Round 1 */
1346 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1347 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1348 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1349 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1350 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1351 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1352 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1353 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1354 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1355 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1356 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1357 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1358 
1359 	/* Round 2 */
1360 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1361 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1362 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1363 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1364 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1365 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1366 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1367 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1368 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1369 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1370 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1371 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1372 
1373 	/* Round 3 */
1374 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1375 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1376 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1377 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1378 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1379 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1380 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1381 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1382 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1383 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1384 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1385 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1386 
1387 	return buf[1] + b; /* "most hashed" word */
1388 	/* Alternative: return sum of all words? */
1389 }
1390 #endif
1391 
1392 #undef ROUND
1393 #undef F
1394 #undef G
1395 #undef H
1396 #undef K1
1397 #undef K2
1398 #undef K3
1399 
1400 /* This should not be decreased so low that ISNs wrap too fast. */
1401 #define REKEY_INTERVAL (300 * HZ)
1402 /*
1403  * Bit layout of the tcp sequence numbers (before adding current time):
1404  * bit 24-31: increased after every key exchange
1405  * bit 0-23: hash(source,dest)
1406  *
1407  * The implementation is similar to the algorithm described
1408  * in the Appendix of RFC 1185, except that
1409  * - it uses a 1 MHz clock instead of a 250 kHz clock
1410  * - it performs a rekey every 5 minutes, which is equivalent
1411  * 	to a (source,dest) tulple dependent forward jump of the
1412  * 	clock by 0..2^(HASH_BITS+1)
1413  *
1414  * Thus the average ISN wraparound time is 68 minutes instead of
1415  * 4.55 hours.
1416  *
1417  * SMP cleanup and lock avoidance with poor man's RCU.
1418  * 			Manfred Spraul <manfred@colorfullife.com>
1419  *
1420  */
1421 #define COUNT_BITS 8
1422 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1423 #define HASH_BITS 24
1424 #define HASH_MASK ((1 << HASH_BITS) - 1)
1425 
1426 static struct keydata {
1427 	__u32 count; /* already shifted to the final position */
1428 	__u32 secret[12];
1429 } ____cacheline_aligned ip_keydata[2];
1430 
1431 static unsigned int ip_cnt;
1432 
1433 static void rekey_seq_generator(struct work_struct *work);
1434 
1435 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1436 
1437 /*
1438  * Lock avoidance:
1439  * The ISN generation runs lockless - it's just a hash over random data.
1440  * State changes happen every 5 minutes when the random key is replaced.
1441  * Synchronization is performed by having two copies of the hash function
1442  * state and rekey_seq_generator always updates the inactive copy.
1443  * The copy is then activated by updating ip_cnt.
1444  * The implementation breaks down if someone blocks the thread
1445  * that processes SYN requests for more than 5 minutes. Should never
1446  * happen, and even if that happens only a not perfectly compliant
1447  * ISN is generated, nothing fatal.
1448  */
rekey_seq_generator(struct work_struct * work)1449 static void rekey_seq_generator(struct work_struct *work)
1450 {
1451 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1452 
1453 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1454 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1455 	smp_wmb();
1456 	ip_cnt++;
1457 	schedule_delayed_work(&rekey_work,
1458 			      round_jiffies_relative(REKEY_INTERVAL));
1459 }
1460 
get_keyptr(void)1461 static inline struct keydata *get_keyptr(void)
1462 {
1463 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1464 
1465 	smp_rmb();
1466 
1467 	return keyptr;
1468 }
1469 
seqgen_init(void)1470 static __init int seqgen_init(void)
1471 {
1472 	rekey_seq_generator(NULL);
1473 	return 0;
1474 }
1475 late_initcall(seqgen_init);
1476 
1477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
secure_tcpv6_sequence_number(__be32 * saddr,__be32 * daddr,__be16 sport,__be16 dport)1478 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1479 				   __be16 sport, __be16 dport)
1480 {
1481 	__u32 seq;
1482 	__u32 hash[12];
1483 	struct keydata *keyptr = get_keyptr();
1484 
1485 	/* The procedure is the same as for IPv4, but addresses are longer.
1486 	 * Thus we must use twothirdsMD4Transform.
1487 	 */
1488 
1489 	memcpy(hash, saddr, 16);
1490 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1491 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1492 
1493 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1494 	seq += keyptr->count;
1495 
1496 	seq += ktime_to_ns(ktime_get_real());
1497 
1498 	return seq;
1499 }
1500 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1501 #endif
1502 
1503 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1504  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1505  */
secure_ip_id(__be32 daddr)1506 __u32 secure_ip_id(__be32 daddr)
1507 {
1508 	struct keydata *keyptr;
1509 	__u32 hash[4];
1510 
1511 	keyptr = get_keyptr();
1512 
1513 	/*
1514 	 *  Pick a unique starting offset for each IP destination.
1515 	 *  The dest ip address is placed in the starting vector,
1516 	 *  which is then hashed with random data.
1517 	 */
1518 	hash[0] = (__force __u32)daddr;
1519 	hash[1] = keyptr->secret[9];
1520 	hash[2] = keyptr->secret[10];
1521 	hash[3] = keyptr->secret[11];
1522 
1523 	return half_md4_transform(hash, keyptr->secret);
1524 }
1525 
1526 #ifdef CONFIG_INET
1527 
secure_tcp_sequence_number(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport)1528 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1529 				 __be16 sport, __be16 dport)
1530 {
1531 	__u32 seq;
1532 	__u32 hash[4];
1533 	struct keydata *keyptr = get_keyptr();
1534 
1535 	/*
1536 	 *  Pick a unique starting offset for each TCP connection endpoints
1537 	 *  (saddr, daddr, sport, dport).
1538 	 *  Note that the words are placed into the starting vector, which is
1539 	 *  then mixed with a partial MD4 over random data.
1540 	 */
1541 	hash[0] = (__force u32)saddr;
1542 	hash[1] = (__force u32)daddr;
1543 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1544 	hash[3] = keyptr->secret[11];
1545 
1546 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1547 	seq += keyptr->count;
1548 	/*
1549 	 *	As close as possible to RFC 793, which
1550 	 *	suggests using a 250 kHz clock.
1551 	 *	Further reading shows this assumes 2 Mb/s networks.
1552 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1553 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1554 	 *	we also need to limit the resolution so that the u32 seq
1555 	 *	overlaps less than one time per MSL (2 minutes).
1556 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1557 	 */
1558 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1559 
1560 	return seq;
1561 }
1562 
1563 /* Generate secure starting point for ephemeral IPV4 transport port search */
secure_ipv4_port_ephemeral(__be32 saddr,__be32 daddr,__be16 dport)1564 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1565 {
1566 	struct keydata *keyptr = get_keyptr();
1567 	u32 hash[4];
1568 
1569 	/*
1570 	 *  Pick a unique starting offset for each ephemeral port search
1571 	 *  (saddr, daddr, dport) and 48bits of random data.
1572 	 */
1573 	hash[0] = (__force u32)saddr;
1574 	hash[1] = (__force u32)daddr;
1575 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1576 	hash[3] = keyptr->secret[11];
1577 
1578 	return half_md4_transform(hash, keyptr->secret);
1579 }
1580 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1581 
1582 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
secure_ipv6_port_ephemeral(const __be32 * saddr,const __be32 * daddr,__be16 dport)1583 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1584 			       __be16 dport)
1585 {
1586 	struct keydata *keyptr = get_keyptr();
1587 	u32 hash[12];
1588 
1589 	memcpy(hash, saddr, 16);
1590 	hash[4] = (__force u32)dport;
1591 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1592 
1593 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1594 }
1595 #endif
1596 
1597 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1598 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1599  * bit's 32-47 increase every key exchange
1600  *       0-31  hash(source, dest)
1601  */
secure_dccp_sequence_number(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport)1602 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1603 				__be16 sport, __be16 dport)
1604 {
1605 	u64 seq;
1606 	__u32 hash[4];
1607 	struct keydata *keyptr = get_keyptr();
1608 
1609 	hash[0] = (__force u32)saddr;
1610 	hash[1] = (__force u32)daddr;
1611 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1612 	hash[3] = keyptr->secret[11];
1613 
1614 	seq = half_md4_transform(hash, keyptr->secret);
1615 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1616 
1617 	seq += ktime_to_ns(ktime_get_real());
1618 	seq &= (1ull << 48) - 1;
1619 
1620 	return seq;
1621 }
1622 EXPORT_SYMBOL(secure_dccp_sequence_number);
1623 #endif
1624 
1625 #endif /* CONFIG_INET */
1626 
1627 
1628 /*
1629  * Get a random word for internal kernel use only. Similar to urandom but
1630  * with the goal of minimal entropy pool depletion. As a result, the random
1631  * value is not cryptographically secure but for several uses the cost of
1632  * depleting entropy is too high
1633  */
1634 DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
get_random_int(void)1635 unsigned int get_random_int(void)
1636 {
1637 	struct keydata *keyptr;
1638 	__u32 *hash = get_cpu_var(get_random_int_hash);
1639 	int ret;
1640 
1641 	keyptr = get_keyptr();
1642 	hash[0] += current->pid + jiffies + get_cycles();
1643 
1644 	ret = half_md4_transform(hash, keyptr->secret);
1645 	put_cpu_var(get_random_int_hash);
1646 
1647 	return ret;
1648 }
1649 
1650 /*
1651  * randomize_range() returns a start address such that
1652  *
1653  *    [...... <range> .....]
1654  *  start                  end
1655  *
1656  * a <range> with size "len" starting at the return value is inside in the
1657  * area defined by [start, end], but is otherwise randomized.
1658  */
1659 unsigned long
randomize_range(unsigned long start,unsigned long end,unsigned long len)1660 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1661 {
1662 	unsigned long range = end - len - start;
1663 
1664 	if (end <= start + len)
1665 		return 0;
1666 	return PAGE_ALIGN(get_random_int() % range + start);
1667 }
1668