1 /*
2 * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
3 *
4 * cm4000_cs.c support.linux@omnikey.com
5 *
6 * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
7 * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
8 * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
9 * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
10 * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
11 *
12 * current version: 2.4.0gm4
13 *
14 * (C) 2000,2001,2002,2003,2004 Omnikey AG
15 *
16 * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
17 * - Adhere to Kernel process/coding-style.rst
18 * - Port to 2.6.13 "new" style PCMCIA
19 * - Check for copy_{from,to}_user return values
20 * - Use nonseekable_open()
21 * - add class interface for udev device creation
22 *
23 * All rights reserved. Licensed under dual BSD/GPL license.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/fs.h>
31 #include <linux/delay.h>
32 #include <linux/bitrev.h>
33 #include <linux/mutex.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36
37 #include <pcmcia/cistpl.h>
38 #include <pcmcia/cisreg.h>
39 #include <pcmcia/ciscode.h>
40 #include <pcmcia/ds.h>
41
42 #include <linux/cm4000_cs.h>
43
44 /* #define ATR_CSUM */
45
46 #define reader_to_dev(x) (&x->p_dev->dev)
47
48 /* n (debug level) is ignored */
49 /* additional debug output may be enabled by re-compiling with
50 * CM4000_DEBUG set */
51 /* #define CM4000_DEBUG */
52 #define DEBUGP(n, rdr, x, args...) do { \
53 dev_dbg(reader_to_dev(rdr), "%s:" x, \
54 __func__ , ## args); \
55 } while (0)
56
57 static DEFINE_MUTEX(cmm_mutex);
58
59 #define T_1SEC (HZ)
60 #define T_10MSEC msecs_to_jiffies(10)
61 #define T_20MSEC msecs_to_jiffies(20)
62 #define T_40MSEC msecs_to_jiffies(40)
63 #define T_50MSEC msecs_to_jiffies(50)
64 #define T_100MSEC msecs_to_jiffies(100)
65 #define T_500MSEC msecs_to_jiffies(500)
66
67 static void cm4000_release(struct pcmcia_device *link);
68
69 static int major; /* major number we get from the kernel */
70
71 /* note: the first state has to have number 0 always */
72
73 #define M_FETCH_ATR 0
74 #define M_TIMEOUT_WAIT 1
75 #define M_READ_ATR_LEN 2
76 #define M_READ_ATR 3
77 #define M_ATR_PRESENT 4
78 #define M_BAD_CARD 5
79 #define M_CARDOFF 6
80
81 #define LOCK_IO 0
82 #define LOCK_MONITOR 1
83
84 #define IS_AUTOPPS_ACT 6
85 #define IS_PROCBYTE_PRESENT 7
86 #define IS_INVREV 8
87 #define IS_ANY_T0 9
88 #define IS_ANY_T1 10
89 #define IS_ATR_PRESENT 11
90 #define IS_ATR_VALID 12
91 #define IS_CMM_ABSENT 13
92 #define IS_BAD_LENGTH 14
93 #define IS_BAD_CSUM 15
94 #define IS_BAD_CARD 16
95
96 #define REG_FLAGS0(x) (x + 0)
97 #define REG_FLAGS1(x) (x + 1)
98 #define REG_NUM_BYTES(x) (x + 2)
99 #define REG_BUF_ADDR(x) (x + 3)
100 #define REG_BUF_DATA(x) (x + 4)
101 #define REG_NUM_SEND(x) (x + 5)
102 #define REG_BAUDRATE(x) (x + 6)
103 #define REG_STOPBITS(x) (x + 7)
104
105 struct cm4000_dev {
106 struct pcmcia_device *p_dev;
107
108 unsigned char atr[MAX_ATR];
109 unsigned char rbuf[512];
110 unsigned char sbuf[512];
111
112 wait_queue_head_t devq; /* when removing cardman must not be
113 zeroed! */
114
115 wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
116 wait_queue_head_t atrq; /* wait for ATR valid */
117 wait_queue_head_t readq; /* used by write to wake blk.read */
118
119 /* warning: do not move this struct group.
120 * initialising to zero depends on it - see ZERO_DEV below. */
121 struct_group(init,
122 unsigned char atr_csum;
123 unsigned char atr_len_retry;
124 unsigned short atr_len;
125 unsigned short rlen; /* bytes avail. after write */
126 unsigned short rpos; /* latest read pos. write zeroes */
127 unsigned char procbyte; /* T=0 procedure byte */
128 unsigned char mstate; /* state of card monitor */
129 unsigned char cwarn; /* slow down warning */
130 unsigned char flags0; /* cardman IO-flags 0 */
131 unsigned char flags1; /* cardman IO-flags 1 */
132 unsigned int mdelay; /* variable monitor speeds, in jiffies */
133
134 unsigned int baudv; /* baud value for speed */
135 unsigned char ta1;
136 unsigned char proto; /* T=0, T=1, ... */
137 unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
138 access */
139
140 unsigned char pts[4];
141
142 struct timer_list timer; /* used to keep monitor running */
143 int monitor_running;
144 );
145 };
146
147 #define ZERO_DEV(dev) memset(&((dev)->init), 0, sizeof((dev)->init))
148
149 static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
150 static struct class *cmm_class;
151
152 /* This table doesn't use spaces after the comma between fields and thus
153 * violates process/coding-style.rst. However, I don't really think wrapping it around will
154 * make it any clearer to read -HW */
155 static unsigned char fi_di_table[10][14] = {
156 /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
157 /*DI */
158 /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
159 /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
160 /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
161 /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
162 /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
163 /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
164 /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
165 /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
166 /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
167 /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
168 };
169
170 #ifndef CM4000_DEBUG
171 #define xoutb outb
172 #define xinb inb
173 #else
xoutb(unsigned char val,unsigned short port)174 static inline void xoutb(unsigned char val, unsigned short port)
175 {
176 pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
177 outb(val, port);
178 }
xinb(unsigned short port)179 static inline unsigned char xinb(unsigned short port)
180 {
181 unsigned char val;
182
183 val = inb(port);
184 pr_debug("%.2x=inb(%.4x)\n", val, port);
185
186 return val;
187 }
188 #endif
189
invert_revert(unsigned char ch)190 static inline unsigned char invert_revert(unsigned char ch)
191 {
192 return bitrev8(~ch);
193 }
194
str_invert_revert(unsigned char * b,int len)195 static void str_invert_revert(unsigned char *b, int len)
196 {
197 int i;
198
199 for (i = 0; i < len; i++)
200 b[i] = invert_revert(b[i]);
201 }
202
203 #define ATRLENCK(dev,pos) \
204 if (pos>=dev->atr_len || pos>=MAX_ATR) \
205 goto return_0;
206
calc_baudv(unsigned char fidi)207 static unsigned int calc_baudv(unsigned char fidi)
208 {
209 unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
210
211 fi_rfu = 372;
212 di_rfu = 1;
213
214 /* FI */
215 switch ((fidi >> 4) & 0x0F) {
216 case 0x00:
217 wcrcf = 372;
218 break;
219 case 0x01:
220 wcrcf = 372;
221 break;
222 case 0x02:
223 wcrcf = 558;
224 break;
225 case 0x03:
226 wcrcf = 744;
227 break;
228 case 0x04:
229 wcrcf = 1116;
230 break;
231 case 0x05:
232 wcrcf = 1488;
233 break;
234 case 0x06:
235 wcrcf = 1860;
236 break;
237 case 0x07:
238 wcrcf = fi_rfu;
239 break;
240 case 0x08:
241 wcrcf = fi_rfu;
242 break;
243 case 0x09:
244 wcrcf = 512;
245 break;
246 case 0x0A:
247 wcrcf = 768;
248 break;
249 case 0x0B:
250 wcrcf = 1024;
251 break;
252 case 0x0C:
253 wcrcf = 1536;
254 break;
255 case 0x0D:
256 wcrcf = 2048;
257 break;
258 default:
259 wcrcf = fi_rfu;
260 break;
261 }
262
263 /* DI */
264 switch (fidi & 0x0F) {
265 case 0x00:
266 wbrcf = di_rfu;
267 break;
268 case 0x01:
269 wbrcf = 1;
270 break;
271 case 0x02:
272 wbrcf = 2;
273 break;
274 case 0x03:
275 wbrcf = 4;
276 break;
277 case 0x04:
278 wbrcf = 8;
279 break;
280 case 0x05:
281 wbrcf = 16;
282 break;
283 case 0x06:
284 wbrcf = 32;
285 break;
286 case 0x07:
287 wbrcf = di_rfu;
288 break;
289 case 0x08:
290 wbrcf = 12;
291 break;
292 case 0x09:
293 wbrcf = 20;
294 break;
295 default:
296 wbrcf = di_rfu;
297 break;
298 }
299
300 return (wcrcf / wbrcf);
301 }
302
io_read_num_rec_bytes(unsigned int iobase,unsigned short * s)303 static unsigned short io_read_num_rec_bytes(unsigned int iobase,
304 unsigned short *s)
305 {
306 unsigned short tmp;
307
308 tmp = *s = 0;
309 do {
310 *s = tmp;
311 tmp = inb(REG_NUM_BYTES(iobase)) |
312 (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
313 } while (tmp != *s);
314
315 return *s;
316 }
317
parse_atr(struct cm4000_dev * dev)318 static int parse_atr(struct cm4000_dev *dev)
319 {
320 unsigned char any_t1, any_t0;
321 unsigned char ch, ifno;
322 int ix, done;
323
324 DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
325
326 if (dev->atr_len < 3) {
327 DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
328 return 0;
329 }
330
331 if (dev->atr[0] == 0x3f)
332 set_bit(IS_INVREV, &dev->flags);
333 else
334 clear_bit(IS_INVREV, &dev->flags);
335 ix = 1;
336 ifno = 1;
337 ch = dev->atr[1];
338 dev->proto = 0; /* XXX PROTO */
339 any_t1 = any_t0 = done = 0;
340 dev->ta1 = 0x11; /* defaults to 9600 baud */
341 do {
342 if (ifno == 1 && (ch & 0x10)) {
343 /* read first interface byte and TA1 is present */
344 dev->ta1 = dev->atr[2];
345 DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
346 ifno++;
347 } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
348 dev->ta1 = 0x11;
349 ifno++;
350 }
351
352 DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
353 ix += ((ch & 0x10) >> 4) /* no of int.face chars */
354 +((ch & 0x20) >> 5)
355 + ((ch & 0x40) >> 6)
356 + ((ch & 0x80) >> 7);
357 /* ATRLENCK(dev,ix); */
358 if (ch & 0x80) { /* TDi */
359 ch = dev->atr[ix];
360 if ((ch & 0x0f)) {
361 any_t1 = 1;
362 DEBUGP(5, dev, "card is capable of T=1\n");
363 } else {
364 any_t0 = 1;
365 DEBUGP(5, dev, "card is capable of T=0\n");
366 }
367 } else
368 done = 1;
369 } while (!done);
370
371 DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
372 ix, dev->atr[1] & 15, any_t1);
373 if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
374 DEBUGP(5, dev, "length error\n");
375 return 0;
376 }
377 if (any_t0)
378 set_bit(IS_ANY_T0, &dev->flags);
379
380 if (any_t1) { /* compute csum */
381 dev->atr_csum = 0;
382 #ifdef ATR_CSUM
383 for (i = 1; i < dev->atr_len; i++)
384 dev->atr_csum ^= dev->atr[i];
385 if (dev->atr_csum) {
386 set_bit(IS_BAD_CSUM, &dev->flags);
387 DEBUGP(5, dev, "bad checksum\n");
388 goto return_0;
389 }
390 #endif
391 if (any_t0 == 0)
392 dev->proto = 1; /* XXX PROTO */
393 set_bit(IS_ANY_T1, &dev->flags);
394 }
395
396 return 1;
397 }
398
399 struct card_fixup {
400 char atr[12];
401 u_int8_t atr_len;
402 u_int8_t stopbits;
403 };
404
405 static struct card_fixup card_fixups[] = {
406 { /* ACOS */
407 .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
408 .atr_len = 7,
409 .stopbits = 0x03,
410 },
411 { /* Motorola */
412 .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
413 0x41, 0x81, 0x81 },
414 .atr_len = 11,
415 .stopbits = 0x04,
416 },
417 };
418
set_cardparameter(struct cm4000_dev * dev)419 static void set_cardparameter(struct cm4000_dev *dev)
420 {
421 int i;
422 unsigned int iobase = dev->p_dev->resource[0]->start;
423 u_int8_t stopbits = 0x02; /* ISO default */
424
425 DEBUGP(3, dev, "-> set_cardparameter\n");
426
427 dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
428 xoutb(dev->flags1, REG_FLAGS1(iobase));
429 DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
430
431 /* set baudrate */
432 xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
433
434 DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
435 ((dev->baudv - 1) & 0xFF));
436
437 /* set stopbits */
438 for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
439 if (!memcmp(dev->atr, card_fixups[i].atr,
440 card_fixups[i].atr_len))
441 stopbits = card_fixups[i].stopbits;
442 }
443 xoutb(stopbits, REG_STOPBITS(iobase));
444
445 DEBUGP(3, dev, "<- set_cardparameter\n");
446 }
447
set_protocol(struct cm4000_dev * dev,struct ptsreq * ptsreq)448 static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
449 {
450
451 unsigned long tmp, i;
452 unsigned short num_bytes_read;
453 unsigned char pts_reply[4];
454 ssize_t rc;
455 unsigned int iobase = dev->p_dev->resource[0]->start;
456
457 rc = 0;
458
459 DEBUGP(3, dev, "-> set_protocol\n");
460 DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
461 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
462 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
463 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
464 ptsreq->pts3);
465
466 /* Fill PTS structure */
467 dev->pts[0] = 0xff;
468 dev->pts[1] = 0x00;
469 tmp = ptsreq->protocol;
470 while ((tmp = (tmp >> 1)) > 0)
471 dev->pts[1]++;
472 dev->proto = dev->pts[1]; /* Set new protocol */
473 dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
474
475 /* Correct Fi/Di according to CM4000 Fi/Di table */
476 DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
477 /* set Fi/Di according to ATR TA(1) */
478 dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
479
480 /* Calculate PCK character */
481 dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
482
483 DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
484 dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
485
486 /* check card convention */
487 if (test_bit(IS_INVREV, &dev->flags))
488 str_invert_revert(dev->pts, 4);
489
490 /* reset SM */
491 xoutb(0x80, REG_FLAGS0(iobase));
492
493 /* Enable access to the message buffer */
494 DEBUGP(5, dev, "Enable access to the messages buffer\n");
495 dev->flags1 = 0x20 /* T_Active */
496 | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
497 | ((dev->baudv >> 8) & 0x01); /* MSB-baud */
498 xoutb(dev->flags1, REG_FLAGS1(iobase));
499
500 DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
501 dev->flags1);
502
503 /* write challenge to the buffer */
504 DEBUGP(5, dev, "Write challenge to buffer: ");
505 for (i = 0; i < 4; i++) {
506 xoutb(i, REG_BUF_ADDR(iobase));
507 xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
508 #ifdef CM4000_DEBUG
509 pr_debug("0x%.2x ", dev->pts[i]);
510 }
511 pr_debug("\n");
512 #else
513 }
514 #endif
515
516 /* set number of bytes to write */
517 DEBUGP(5, dev, "Set number of bytes to write\n");
518 xoutb(0x04, REG_NUM_SEND(iobase));
519
520 /* Trigger CARDMAN CONTROLLER */
521 xoutb(0x50, REG_FLAGS0(iobase));
522
523 /* Monitor progress */
524 /* wait for xmit done */
525 DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
526
527 for (i = 0; i < 100; i++) {
528 if (inb(REG_FLAGS0(iobase)) & 0x08) {
529 DEBUGP(5, dev, "NumRecBytes is valid\n");
530 break;
531 }
532 usleep_range(10000, 11000);
533 }
534 if (i == 100) {
535 DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
536 "valid\n");
537 rc = -EIO;
538 goto exit_setprotocol;
539 }
540
541 DEBUGP(5, dev, "Reading NumRecBytes\n");
542 for (i = 0; i < 100; i++) {
543 io_read_num_rec_bytes(iobase, &num_bytes_read);
544 if (num_bytes_read >= 4) {
545 DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
546 if (num_bytes_read > 4) {
547 rc = -EIO;
548 goto exit_setprotocol;
549 }
550 break;
551 }
552 usleep_range(10000, 11000);
553 }
554
555 /* check whether it is a short PTS reply? */
556 if (num_bytes_read == 3)
557 i = 0;
558
559 if (i == 100) {
560 DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
561 rc = -EIO;
562 goto exit_setprotocol;
563 }
564
565 DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
566 xoutb(0x80, REG_FLAGS0(iobase));
567
568 /* Read PPS reply */
569 DEBUGP(5, dev, "Read PPS reply\n");
570 for (i = 0; i < num_bytes_read; i++) {
571 xoutb(i, REG_BUF_ADDR(iobase));
572 pts_reply[i] = inb(REG_BUF_DATA(iobase));
573 }
574
575 #ifdef CM4000_DEBUG
576 DEBUGP(2, dev, "PTSreply: ");
577 for (i = 0; i < num_bytes_read; i++) {
578 pr_debug("0x%.2x ", pts_reply[i]);
579 }
580 pr_debug("\n");
581 #endif /* CM4000_DEBUG */
582
583 DEBUGP(5, dev, "Clear Tactive in Flags1\n");
584 xoutb(0x20, REG_FLAGS1(iobase));
585
586 /* Compare ptsreq and ptsreply */
587 if ((dev->pts[0] == pts_reply[0]) &&
588 (dev->pts[1] == pts_reply[1]) &&
589 (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
590 /* setcardparameter according to PPS */
591 dev->baudv = calc_baudv(dev->pts[2]);
592 set_cardparameter(dev);
593 } else if ((dev->pts[0] == pts_reply[0]) &&
594 ((dev->pts[1] & 0xef) == pts_reply[1]) &&
595 ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
596 /* short PTS reply, set card parameter to default values */
597 dev->baudv = calc_baudv(0x11);
598 set_cardparameter(dev);
599 } else
600 rc = -EIO;
601
602 exit_setprotocol:
603 DEBUGP(3, dev, "<- set_protocol\n");
604 return rc;
605 }
606
io_detect_cm4000(unsigned int iobase,struct cm4000_dev * dev)607 static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
608 {
609
610 /* note: statemachine is assumed to be reset */
611 if (inb(REG_FLAGS0(iobase)) & 8) {
612 clear_bit(IS_ATR_VALID, &dev->flags);
613 set_bit(IS_CMM_ABSENT, &dev->flags);
614 return 0; /* detect CMM = 1 -> failure */
615 }
616 /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
617 xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
618 if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
619 clear_bit(IS_ATR_VALID, &dev->flags);
620 set_bit(IS_CMM_ABSENT, &dev->flags);
621 return 0; /* detect CMM=0 -> failure */
622 }
623 /* clear detectCMM again by restoring original flags1 */
624 xoutb(dev->flags1, REG_FLAGS1(iobase));
625 return 1;
626 }
627
terminate_monitor(struct cm4000_dev * dev)628 static void terminate_monitor(struct cm4000_dev *dev)
629 {
630
631 /* tell the monitor to stop and wait until
632 * it terminates.
633 */
634 DEBUGP(3, dev, "-> terminate_monitor\n");
635 wait_event_interruptible(dev->devq,
636 test_and_set_bit(LOCK_MONITOR,
637 (void *)&dev->flags));
638
639 /* now, LOCK_MONITOR has been set.
640 * allow a last cycle in the monitor.
641 * the monitor will indicate that it has
642 * finished by clearing this bit.
643 */
644 DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
645 while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
646 msleep(25);
647
648 DEBUGP(5, dev, "Delete timer\n");
649 del_timer_sync(&dev->timer);
650 #ifdef CM4000_DEBUG
651 dev->monitor_running = 0;
652 #endif
653
654 DEBUGP(3, dev, "<- terminate_monitor\n");
655 }
656
657 /*
658 * monitor the card every 50msec. as a side-effect, retrieve the
659 * atr once a card is inserted. another side-effect of retrieving the
660 * atr is that the card will be powered on, so there is no need to
661 * power on the card explicitly from the application: the driver
662 * is already doing that for you.
663 */
664
monitor_card(struct timer_list * t)665 static void monitor_card(struct timer_list *t)
666 {
667 struct cm4000_dev *dev = from_timer(dev, t, timer);
668 unsigned int iobase = dev->p_dev->resource[0]->start;
669 unsigned short s;
670 struct ptsreq ptsreq;
671 int i, atrc;
672
673 DEBUGP(7, dev, "-> monitor_card\n");
674
675 /* if someone has set the lock for us: we're done! */
676 if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
677 DEBUGP(4, dev, "About to stop monitor\n");
678 /* no */
679 dev->rlen =
680 dev->rpos =
681 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
682 dev->mstate = M_FETCH_ATR;
683 clear_bit(LOCK_MONITOR, &dev->flags);
684 /* close et al. are sleeping on devq, so wake it */
685 wake_up_interruptible(&dev->devq);
686 DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
687 return;
688 }
689
690 /* try to lock io: if it is already locked, just add another timer */
691 if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
692 DEBUGP(4, dev, "Couldn't get IO lock\n");
693 goto return_with_timer;
694 }
695
696 /* is a card/a reader inserted at all ? */
697 dev->flags0 = xinb(REG_FLAGS0(iobase));
698 DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
699 DEBUGP(7, dev, "smartcard present: %s\n",
700 dev->flags0 & 1 ? "yes" : "no");
701 DEBUGP(7, dev, "cardman present: %s\n",
702 dev->flags0 == 0xff ? "no" : "yes");
703
704 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
705 || dev->flags0 == 0xff) { /* no cardman inserted */
706 /* no */
707 dev->rlen =
708 dev->rpos =
709 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
710 dev->mstate = M_FETCH_ATR;
711
712 dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
713
714 if (dev->flags0 == 0xff) {
715 DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
716 set_bit(IS_CMM_ABSENT, &dev->flags);
717 } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
718 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
719 "(card is removed)\n");
720 clear_bit(IS_CMM_ABSENT, &dev->flags);
721 }
722
723 goto release_io;
724 } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
725 /* cardman and card present but cardman was absent before
726 * (after suspend with inserted card) */
727 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
728 clear_bit(IS_CMM_ABSENT, &dev->flags);
729 }
730
731 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
732 DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
733 goto release_io;
734 }
735
736 switch (dev->mstate) {
737 case M_CARDOFF: {
738 unsigned char flags0;
739
740 DEBUGP(4, dev, "M_CARDOFF\n");
741 flags0 = inb(REG_FLAGS0(iobase));
742 if (flags0 & 0x02) {
743 /* wait until Flags0 indicate power is off */
744 dev->mdelay = T_10MSEC;
745 } else {
746 /* Flags0 indicate power off and no card inserted now;
747 * Reset CARDMAN CONTROLLER */
748 xoutb(0x80, REG_FLAGS0(iobase));
749
750 /* prepare for fetching ATR again: after card off ATR
751 * is read again automatically */
752 dev->rlen =
753 dev->rpos =
754 dev->atr_csum =
755 dev->atr_len_retry = dev->cwarn = 0;
756 dev->mstate = M_FETCH_ATR;
757
758 /* minimal gap between CARDOFF and read ATR is 50msec */
759 dev->mdelay = T_50MSEC;
760 }
761 break;
762 }
763 case M_FETCH_ATR:
764 DEBUGP(4, dev, "M_FETCH_ATR\n");
765 xoutb(0x80, REG_FLAGS0(iobase));
766 DEBUGP(4, dev, "Reset BAUDV to 9600\n");
767 dev->baudv = 0x173; /* 9600 */
768 xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
769 xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
770 xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
771 value */
772 /* warm start vs. power on: */
773 xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
774 dev->mdelay = T_40MSEC;
775 dev->mstate = M_TIMEOUT_WAIT;
776 break;
777 case M_TIMEOUT_WAIT:
778 DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
779 /* numRecBytes */
780 io_read_num_rec_bytes(iobase, &dev->atr_len);
781 dev->mdelay = T_10MSEC;
782 dev->mstate = M_READ_ATR_LEN;
783 break;
784 case M_READ_ATR_LEN:
785 DEBUGP(4, dev, "M_READ_ATR_LEN\n");
786 /* infinite loop possible, since there is no timeout */
787
788 #define MAX_ATR_LEN_RETRY 100
789
790 if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
791 if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
792 dev->mdelay = T_10MSEC;
793 dev->mstate = M_READ_ATR;
794 }
795 } else {
796 dev->atr_len = s;
797 dev->atr_len_retry = 0; /* set new timeout */
798 }
799
800 DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
801 break;
802 case M_READ_ATR:
803 DEBUGP(4, dev, "M_READ_ATR\n");
804 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
805 for (i = 0; i < dev->atr_len; i++) {
806 xoutb(i, REG_BUF_ADDR(iobase));
807 dev->atr[i] = inb(REG_BUF_DATA(iobase));
808 }
809 /* Deactivate T_Active flags */
810 DEBUGP(4, dev, "Deactivate T_Active flags\n");
811 dev->flags1 = 0x01;
812 xoutb(dev->flags1, REG_FLAGS1(iobase));
813
814 /* atr is present (which doesn't mean it's valid) */
815 set_bit(IS_ATR_PRESENT, &dev->flags);
816 if (dev->atr[0] == 0x03)
817 str_invert_revert(dev->atr, dev->atr_len);
818 atrc = parse_atr(dev);
819 if (atrc == 0) { /* atr invalid */
820 dev->mdelay = 0;
821 dev->mstate = M_BAD_CARD;
822 } else {
823 dev->mdelay = T_50MSEC;
824 dev->mstate = M_ATR_PRESENT;
825 set_bit(IS_ATR_VALID, &dev->flags);
826 }
827
828 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
829 DEBUGP(4, dev, "monitor_card: ATR valid\n");
830 /* if ta1 == 0x11, no PPS necessary (default values) */
831 /* do not do PPS with multi protocol cards */
832 if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
833 (dev->ta1 != 0x11) &&
834 !(test_bit(IS_ANY_T0, &dev->flags) &&
835 test_bit(IS_ANY_T1, &dev->flags))) {
836 DEBUGP(4, dev, "Perform AUTOPPS\n");
837 set_bit(IS_AUTOPPS_ACT, &dev->flags);
838 ptsreq.protocol = (0x01 << dev->proto);
839 ptsreq.flags = 0x01;
840 ptsreq.pts1 = 0x00;
841 ptsreq.pts2 = 0x00;
842 ptsreq.pts3 = 0x00;
843 if (set_protocol(dev, &ptsreq) == 0) {
844 DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
845 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
846 wake_up_interruptible(&dev->atrq);
847 } else {
848 DEBUGP(4, dev, "AUTOPPS failed: "
849 "repower using defaults\n");
850 /* prepare for repowering */
851 clear_bit(IS_ATR_PRESENT, &dev->flags);
852 clear_bit(IS_ATR_VALID, &dev->flags);
853 dev->rlen =
854 dev->rpos =
855 dev->atr_csum =
856 dev->atr_len_retry = dev->cwarn = 0;
857 dev->mstate = M_FETCH_ATR;
858
859 dev->mdelay = T_50MSEC;
860 }
861 } else {
862 /* for cards which use slightly different
863 * params (extra guard time) */
864 set_cardparameter(dev);
865 if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
866 DEBUGP(4, dev, "AUTOPPS already active "
867 "2nd try:use default values\n");
868 if (dev->ta1 == 0x11)
869 DEBUGP(4, dev, "No AUTOPPS necessary "
870 "TA(1)==0x11\n");
871 if (test_bit(IS_ANY_T0, &dev->flags)
872 && test_bit(IS_ANY_T1, &dev->flags))
873 DEBUGP(4, dev, "Do NOT perform AUTOPPS "
874 "with multiprotocol cards\n");
875 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
876 wake_up_interruptible(&dev->atrq);
877 }
878 } else {
879 DEBUGP(4, dev, "ATR invalid\n");
880 wake_up_interruptible(&dev->atrq);
881 }
882 break;
883 case M_BAD_CARD:
884 DEBUGP(4, dev, "M_BAD_CARD\n");
885 /* slow down warning, but prompt immediately after insertion */
886 if (dev->cwarn == 0 || dev->cwarn == 10) {
887 set_bit(IS_BAD_CARD, &dev->flags);
888 dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
889 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
890 DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
891 "be zero) failed\n", dev->atr_csum);
892 }
893 #ifdef CM4000_DEBUG
894 else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
895 DEBUGP(4, dev, "ATR length error\n");
896 } else {
897 DEBUGP(4, dev, "card damaged or wrong way "
898 "inserted\n");
899 }
900 #endif
901 dev->cwarn = 0;
902 wake_up_interruptible(&dev->atrq); /* wake open */
903 }
904 dev->cwarn++;
905 dev->mdelay = T_100MSEC;
906 dev->mstate = M_FETCH_ATR;
907 break;
908 default:
909 DEBUGP(7, dev, "Unknown action\n");
910 break; /* nothing */
911 }
912
913 release_io:
914 DEBUGP(7, dev, "release_io\n");
915 clear_bit(LOCK_IO, &dev->flags);
916 wake_up_interruptible(&dev->ioq); /* whoever needs IO */
917
918 return_with_timer:
919 DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
920 mod_timer(&dev->timer, jiffies + dev->mdelay);
921 clear_bit(LOCK_MONITOR, &dev->flags);
922 }
923
924 /* Interface to userland (file_operations) */
925
cmm_read(struct file * filp,__user char * buf,size_t count,loff_t * ppos)926 static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
927 loff_t *ppos)
928 {
929 struct cm4000_dev *dev = filp->private_data;
930 unsigned int iobase = dev->p_dev->resource[0]->start;
931 ssize_t rc;
932 int i, j, k;
933
934 DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
935
936 if (count == 0) /* according to manpage */
937 return 0;
938
939 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
940 test_bit(IS_CMM_ABSENT, &dev->flags))
941 return -ENODEV;
942
943 if (test_bit(IS_BAD_CSUM, &dev->flags))
944 return -EIO;
945
946 /* also see the note about this in cmm_write */
947 if (wait_event_interruptible
948 (dev->atrq,
949 ((filp->f_flags & O_NONBLOCK)
950 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
951 if (filp->f_flags & O_NONBLOCK)
952 return -EAGAIN;
953 return -ERESTARTSYS;
954 }
955
956 if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
957 return -EIO;
958
959 /* this one implements blocking IO */
960 if (wait_event_interruptible
961 (dev->readq,
962 ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
963 if (filp->f_flags & O_NONBLOCK)
964 return -EAGAIN;
965 return -ERESTARTSYS;
966 }
967
968 /* lock io */
969 if (wait_event_interruptible
970 (dev->ioq,
971 ((filp->f_flags & O_NONBLOCK)
972 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
973 if (filp->f_flags & O_NONBLOCK)
974 return -EAGAIN;
975 return -ERESTARTSYS;
976 }
977
978 rc = 0;
979 dev->flags0 = inb(REG_FLAGS0(iobase));
980 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
981 || dev->flags0 == 0xff) { /* no cardman inserted */
982 clear_bit(IS_ATR_VALID, &dev->flags);
983 if (dev->flags0 & 1) {
984 set_bit(IS_CMM_ABSENT, &dev->flags);
985 rc = -ENODEV;
986 } else {
987 rc = -EIO;
988 }
989 goto release_io;
990 }
991
992 DEBUGP(4, dev, "begin read answer\n");
993 j = min(count, (size_t)(dev->rlen - dev->rpos));
994 k = dev->rpos;
995 if (k + j > 255)
996 j = 256 - k;
997 DEBUGP(4, dev, "read1 j=%d\n", j);
998 for (i = 0; i < j; i++) {
999 xoutb(k++, REG_BUF_ADDR(iobase));
1000 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1001 }
1002 j = min(count, (size_t)(dev->rlen - dev->rpos));
1003 if (k + j > 255) {
1004 DEBUGP(4, dev, "read2 j=%d\n", j);
1005 dev->flags1 |= 0x10; /* MSB buf addr set */
1006 xoutb(dev->flags1, REG_FLAGS1(iobase));
1007 for (; i < j; i++) {
1008 xoutb(k++, REG_BUF_ADDR(iobase));
1009 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1010 }
1011 }
1012
1013 if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
1014 DEBUGP(4, dev, "T=0 and count > buffer\n");
1015 dev->rbuf[i] = dev->rbuf[i - 1];
1016 dev->rbuf[i - 1] = dev->procbyte;
1017 j++;
1018 }
1019 count = j;
1020
1021 dev->rpos = dev->rlen + 1;
1022
1023 /* Clear T1Active */
1024 DEBUGP(4, dev, "Clear T1Active\n");
1025 dev->flags1 &= 0xdf;
1026 xoutb(dev->flags1, REG_FLAGS1(iobase));
1027
1028 xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
1029 /* last check before exit */
1030 if (!io_detect_cm4000(iobase, dev)) {
1031 rc = -ENODEV;
1032 goto release_io;
1033 }
1034
1035 if (test_bit(IS_INVREV, &dev->flags) && count > 0)
1036 str_invert_revert(dev->rbuf, count);
1037
1038 if (copy_to_user(buf, dev->rbuf, count))
1039 rc = -EFAULT;
1040
1041 release_io:
1042 clear_bit(LOCK_IO, &dev->flags);
1043 wake_up_interruptible(&dev->ioq);
1044
1045 DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
1046 (rc < 0 ? rc : count));
1047 return rc < 0 ? rc : count;
1048 }
1049
cmm_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1050 static ssize_t cmm_write(struct file *filp, const char __user *buf,
1051 size_t count, loff_t *ppos)
1052 {
1053 struct cm4000_dev *dev = filp->private_data;
1054 unsigned int iobase = dev->p_dev->resource[0]->start;
1055 unsigned short s;
1056 unsigned char infolen;
1057 unsigned char sendT0;
1058 unsigned short nsend;
1059 unsigned short nr;
1060 ssize_t rc;
1061 int i;
1062
1063 DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
1064
1065 if (count == 0) /* according to manpage */
1066 return 0;
1067
1068 if (dev->proto == 0 && count < 4) {
1069 /* T0 must have at least 4 bytes */
1070 DEBUGP(4, dev, "T0 short write\n");
1071 return -EIO;
1072 }
1073
1074 nr = count & 0x1ff; /* max bytes to write */
1075
1076 sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
1077
1078 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
1079 test_bit(IS_CMM_ABSENT, &dev->flags))
1080 return -ENODEV;
1081
1082 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
1083 DEBUGP(4, dev, "bad csum\n");
1084 return -EIO;
1085 }
1086
1087 /*
1088 * wait for atr to become valid.
1089 * note: it is important to lock this code. if we dont, the monitor
1090 * could be run between test_bit and the call to sleep on the
1091 * atr-queue. if *then* the monitor detects atr valid, it will wake up
1092 * any process on the atr-queue, *but* since we have been interrupted,
1093 * we do not yet sleep on this queue. this would result in a missed
1094 * wake_up and the calling process would sleep forever (until
1095 * interrupted). also, do *not* restore_flags before sleep_on, because
1096 * this could result in the same situation!
1097 */
1098 if (wait_event_interruptible
1099 (dev->atrq,
1100 ((filp->f_flags & O_NONBLOCK)
1101 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
1102 if (filp->f_flags & O_NONBLOCK)
1103 return -EAGAIN;
1104 return -ERESTARTSYS;
1105 }
1106
1107 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
1108 DEBUGP(4, dev, "invalid ATR\n");
1109 return -EIO;
1110 }
1111
1112 /* lock io */
1113 if (wait_event_interruptible
1114 (dev->ioq,
1115 ((filp->f_flags & O_NONBLOCK)
1116 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
1117 if (filp->f_flags & O_NONBLOCK)
1118 return -EAGAIN;
1119 return -ERESTARTSYS;
1120 }
1121
1122 if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
1123 return -EFAULT;
1124
1125 rc = 0;
1126 dev->flags0 = inb(REG_FLAGS0(iobase));
1127 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
1128 || dev->flags0 == 0xff) { /* no cardman inserted */
1129 clear_bit(IS_ATR_VALID, &dev->flags);
1130 if (dev->flags0 & 1) {
1131 set_bit(IS_CMM_ABSENT, &dev->flags);
1132 rc = -ENODEV;
1133 } else {
1134 DEBUGP(4, dev, "IO error\n");
1135 rc = -EIO;
1136 }
1137 goto release_io;
1138 }
1139
1140 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1141
1142 if (!io_detect_cm4000(iobase, dev)) {
1143 rc = -ENODEV;
1144 goto release_io;
1145 }
1146
1147 /* reflect T=0 send/read mode in flags1 */
1148 dev->flags1 |= (sendT0);
1149
1150 set_cardparameter(dev);
1151
1152 /* dummy read, reset flag procedure received */
1153 inb(REG_FLAGS1(iobase));
1154
1155 dev->flags1 = 0x20 /* T_Active */
1156 | (sendT0)
1157 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
1158 | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
1159 DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
1160 xoutb(dev->flags1, REG_FLAGS1(iobase));
1161
1162 /* xmit data */
1163 DEBUGP(4, dev, "Xmit data\n");
1164 for (i = 0; i < nr; i++) {
1165 if (i >= 256) {
1166 dev->flags1 = 0x20 /* T_Active */
1167 | (sendT0) /* SendT0 */
1168 /* inverse parity: */
1169 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
1170 | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
1171 | 0x10; /* set address high */
1172 DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
1173 "high\n", dev->flags1);
1174 xoutb(dev->flags1, REG_FLAGS1(iobase));
1175 }
1176 if (test_bit(IS_INVREV, &dev->flags)) {
1177 DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
1178 "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
1179 invert_revert(dev->sbuf[i]));
1180 xoutb(i, REG_BUF_ADDR(iobase));
1181 xoutb(invert_revert(dev->sbuf[i]),
1182 REG_BUF_DATA(iobase));
1183 } else {
1184 xoutb(i, REG_BUF_ADDR(iobase));
1185 xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
1186 }
1187 }
1188 DEBUGP(4, dev, "Xmit done\n");
1189
1190 if (dev->proto == 0) {
1191 /* T=0 proto: 0 byte reply */
1192 if (nr == 4) {
1193 DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
1194 xoutb(i, REG_BUF_ADDR(iobase));
1195 if (test_bit(IS_INVREV, &dev->flags))
1196 xoutb(0xff, REG_BUF_DATA(iobase));
1197 else
1198 xoutb(0x00, REG_BUF_DATA(iobase));
1199 }
1200
1201 /* numSendBytes */
1202 if (sendT0)
1203 nsend = nr;
1204 else {
1205 if (nr == 4)
1206 nsend = 5;
1207 else {
1208 nsend = 5 + (unsigned char)dev->sbuf[4];
1209 if (dev->sbuf[4] == 0)
1210 nsend += 0x100;
1211 }
1212 }
1213 } else
1214 nsend = nr;
1215
1216 /* T0: output procedure byte */
1217 if (test_bit(IS_INVREV, &dev->flags)) {
1218 DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
1219 "0x%.2x\n", invert_revert(dev->sbuf[1]));
1220 xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
1221 } else {
1222 DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
1223 xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
1224 }
1225
1226 DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
1227 (unsigned char)(nsend & 0xff));
1228 xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
1229
1230 DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
1231 0x40 /* SM_Active */
1232 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1233 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1234 |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
1235 xoutb(0x40 /* SM_Active */
1236 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1237 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1238 |(nsend & 0x100) >> 8, /* MSB numSendBytes */
1239 REG_FLAGS0(iobase));
1240
1241 /* wait for xmit done */
1242 if (dev->proto == 1) {
1243 DEBUGP(4, dev, "Wait for xmit done\n");
1244 for (i = 0; i < 1000; i++) {
1245 if (inb(REG_FLAGS0(iobase)) & 0x08)
1246 break;
1247 msleep_interruptible(10);
1248 }
1249 if (i == 1000) {
1250 DEBUGP(4, dev, "timeout waiting for xmit done\n");
1251 rc = -EIO;
1252 goto release_io;
1253 }
1254 }
1255
1256 /* T=1: wait for infoLen */
1257
1258 infolen = 0;
1259 if (dev->proto) {
1260 /* wait until infoLen is valid */
1261 for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
1262 io_read_num_rec_bytes(iobase, &s);
1263 if (s >= 3) {
1264 infolen = inb(REG_FLAGS1(iobase));
1265 DEBUGP(4, dev, "infolen=%d\n", infolen);
1266 break;
1267 }
1268 msleep_interruptible(10);
1269 }
1270 if (i == 6000) {
1271 DEBUGP(4, dev, "timeout waiting for infoLen\n");
1272 rc = -EIO;
1273 goto release_io;
1274 }
1275 } else
1276 clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
1277
1278 /* numRecBytes | bit9 of numRecytes */
1279 io_read_num_rec_bytes(iobase, &dev->rlen);
1280 for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
1281 if (dev->proto) {
1282 if (dev->rlen >= infolen + 4)
1283 break;
1284 }
1285 msleep_interruptible(10);
1286 /* numRecBytes | bit9 of numRecytes */
1287 io_read_num_rec_bytes(iobase, &s);
1288 if (s > dev->rlen) {
1289 DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
1290 i = 0; /* reset timeout */
1291 dev->rlen = s;
1292 }
1293 /* T=0: we are done when numRecBytes doesn't
1294 * increment any more and NoProcedureByte
1295 * is set and numRecBytes == bytes sent + 6
1296 * (header bytes + data + 1 for sw2)
1297 * except when the card replies an error
1298 * which means, no data will be sent back.
1299 */
1300 else if (dev->proto == 0) {
1301 if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
1302 /* no procedure byte received since last read */
1303 DEBUGP(1, dev, "NoProcedure byte set\n");
1304 /* i=0; */
1305 } else {
1306 /* procedure byte received since last read */
1307 DEBUGP(1, dev, "NoProcedure byte unset "
1308 "(reset timeout)\n");
1309 dev->procbyte = inb(REG_FLAGS1(iobase));
1310 DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
1311 dev->procbyte);
1312 i = 0; /* resettimeout */
1313 }
1314 if (inb(REG_FLAGS0(iobase)) & 0x08) {
1315 DEBUGP(1, dev, "T0Done flag (read reply)\n");
1316 break;
1317 }
1318 }
1319 if (dev->proto)
1320 infolen = inb(REG_FLAGS1(iobase));
1321 }
1322 if (i == 600) {
1323 DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
1324 rc = -EIO;
1325 goto release_io;
1326 } else {
1327 if (dev->proto == 0) {
1328 DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
1329 for (i = 0; i < 1000; i++) {
1330 if (inb(REG_FLAGS0(iobase)) & 0x08)
1331 break;
1332 msleep_interruptible(10);
1333 }
1334 if (i == 1000) {
1335 DEBUGP(1, dev, "timeout waiting for T0Done\n");
1336 rc = -EIO;
1337 goto release_io;
1338 }
1339
1340 dev->procbyte = inb(REG_FLAGS1(iobase));
1341 DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
1342 dev->procbyte);
1343
1344 io_read_num_rec_bytes(iobase, &dev->rlen);
1345 DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
1346
1347 }
1348 }
1349 /* T=1: read offset=zero, T=0: read offset=after challenge */
1350 dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
1351 DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
1352 dev->rlen, dev->rpos, nr);
1353
1354 release_io:
1355 DEBUGP(4, dev, "Reset SM\n");
1356 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1357
1358 if (rc < 0) {
1359 DEBUGP(4, dev, "Write failed but clear T_Active\n");
1360 dev->flags1 &= 0xdf;
1361 xoutb(dev->flags1, REG_FLAGS1(iobase));
1362 }
1363
1364 clear_bit(LOCK_IO, &dev->flags);
1365 wake_up_interruptible(&dev->ioq);
1366 wake_up_interruptible(&dev->readq); /* tell read we have data */
1367
1368 /* ITSEC E2: clear write buffer */
1369 memset((char *)dev->sbuf, 0, 512);
1370
1371 /* return error or actually written bytes */
1372 DEBUGP(2, dev, "<- cmm_write\n");
1373 return rc < 0 ? rc : nr;
1374 }
1375
start_monitor(struct cm4000_dev * dev)1376 static void start_monitor(struct cm4000_dev *dev)
1377 {
1378 DEBUGP(3, dev, "-> start_monitor\n");
1379 if (!dev->monitor_running) {
1380 DEBUGP(5, dev, "create, init and add timer\n");
1381 timer_setup(&dev->timer, monitor_card, 0);
1382 dev->monitor_running = 1;
1383 mod_timer(&dev->timer, jiffies);
1384 } else
1385 DEBUGP(5, dev, "monitor already running\n");
1386 DEBUGP(3, dev, "<- start_monitor\n");
1387 }
1388
stop_monitor(struct cm4000_dev * dev)1389 static void stop_monitor(struct cm4000_dev *dev)
1390 {
1391 DEBUGP(3, dev, "-> stop_monitor\n");
1392 if (dev->monitor_running) {
1393 DEBUGP(5, dev, "stopping monitor\n");
1394 terminate_monitor(dev);
1395 /* reset monitor SM */
1396 clear_bit(IS_ATR_VALID, &dev->flags);
1397 clear_bit(IS_ATR_PRESENT, &dev->flags);
1398 } else
1399 DEBUGP(5, dev, "monitor already stopped\n");
1400 DEBUGP(3, dev, "<- stop_monitor\n");
1401 }
1402
cmm_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1403 static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1404 {
1405 struct cm4000_dev *dev = filp->private_data;
1406 unsigned int iobase = dev->p_dev->resource[0]->start;
1407 struct inode *inode = file_inode(filp);
1408 struct pcmcia_device *link;
1409 int rc;
1410 void __user *argp = (void __user *)arg;
1411 #ifdef CM4000_DEBUG
1412 char *ioctl_names[CM_IOC_MAXNR + 1] = {
1413 [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
1414 [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
1415 [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
1416 [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
1417 [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
1418 };
1419 DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
1420 iminor(inode), ioctl_names[_IOC_NR(cmd)]);
1421 #endif
1422
1423 mutex_lock(&cmm_mutex);
1424 rc = -ENODEV;
1425 link = dev_table[iminor(inode)];
1426 if (!pcmcia_dev_present(link)) {
1427 DEBUGP(4, dev, "DEV_OK false\n");
1428 goto out;
1429 }
1430
1431 if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
1432 DEBUGP(4, dev, "CMM_ABSENT flag set\n");
1433 goto out;
1434 }
1435 rc = -EINVAL;
1436
1437 if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
1438 DEBUGP(4, dev, "ioctype mismatch\n");
1439 goto out;
1440 }
1441 if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
1442 DEBUGP(4, dev, "iocnr mismatch\n");
1443 goto out;
1444 }
1445 rc = 0;
1446
1447 switch (cmd) {
1448 case CM_IOCGSTATUS:
1449 DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
1450 {
1451 int status;
1452
1453 /* clear other bits, but leave inserted & powered as
1454 * they are */
1455 status = dev->flags0 & 3;
1456 if (test_bit(IS_ATR_PRESENT, &dev->flags))
1457 status |= CM_ATR_PRESENT;
1458 if (test_bit(IS_ATR_VALID, &dev->flags))
1459 status |= CM_ATR_VALID;
1460 if (test_bit(IS_CMM_ABSENT, &dev->flags))
1461 status |= CM_NO_READER;
1462 if (test_bit(IS_BAD_CARD, &dev->flags))
1463 status |= CM_BAD_CARD;
1464 if (copy_to_user(argp, &status, sizeof(int)))
1465 rc = -EFAULT;
1466 }
1467 break;
1468 case CM_IOCGATR:
1469 DEBUGP(4, dev, "... in CM_IOCGATR\n");
1470 {
1471 struct atreq __user *atreq = argp;
1472 int tmp;
1473 /* allow nonblocking io and being interrupted */
1474 if (wait_event_interruptible
1475 (dev->atrq,
1476 ((filp->f_flags & O_NONBLOCK)
1477 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1478 != 0)))) {
1479 if (filp->f_flags & O_NONBLOCK)
1480 rc = -EAGAIN;
1481 else
1482 rc = -ERESTARTSYS;
1483 break;
1484 }
1485
1486 rc = -EFAULT;
1487 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
1488 tmp = -1;
1489 if (copy_to_user(&(atreq->atr_len), &tmp,
1490 sizeof(int)))
1491 break;
1492 } else {
1493 if (copy_to_user(atreq->atr, dev->atr,
1494 dev->atr_len))
1495 break;
1496
1497 tmp = dev->atr_len;
1498 if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
1499 break;
1500 }
1501 rc = 0;
1502 break;
1503 }
1504 case CM_IOCARDOFF:
1505
1506 #ifdef CM4000_DEBUG
1507 DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
1508 if (dev->flags0 & 0x01) {
1509 DEBUGP(4, dev, " Card inserted\n");
1510 } else {
1511 DEBUGP(2, dev, " No card inserted\n");
1512 }
1513 if (dev->flags0 & 0x02) {
1514 DEBUGP(4, dev, " Card powered\n");
1515 } else {
1516 DEBUGP(2, dev, " Card not powered\n");
1517 }
1518 #endif
1519
1520 /* is a card inserted and powered? */
1521 if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
1522
1523 /* get IO lock */
1524 if (wait_event_interruptible
1525 (dev->ioq,
1526 ((filp->f_flags & O_NONBLOCK)
1527 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1528 == 0)))) {
1529 if (filp->f_flags & O_NONBLOCK)
1530 rc = -EAGAIN;
1531 else
1532 rc = -ERESTARTSYS;
1533 break;
1534 }
1535 /* Set Flags0 = 0x42 */
1536 DEBUGP(4, dev, "Set Flags0=0x42 \n");
1537 xoutb(0x42, REG_FLAGS0(iobase));
1538 clear_bit(IS_ATR_PRESENT, &dev->flags);
1539 clear_bit(IS_ATR_VALID, &dev->flags);
1540 dev->mstate = M_CARDOFF;
1541 clear_bit(LOCK_IO, &dev->flags);
1542 if (wait_event_interruptible
1543 (dev->atrq,
1544 ((filp->f_flags & O_NONBLOCK)
1545 || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
1546 0)))) {
1547 if (filp->f_flags & O_NONBLOCK)
1548 rc = -EAGAIN;
1549 else
1550 rc = -ERESTARTSYS;
1551 break;
1552 }
1553 }
1554 /* release lock */
1555 clear_bit(LOCK_IO, &dev->flags);
1556 wake_up_interruptible(&dev->ioq);
1557
1558 rc = 0;
1559 break;
1560 case CM_IOCSPTS:
1561 {
1562 struct ptsreq krnptsreq;
1563
1564 if (copy_from_user(&krnptsreq, argp,
1565 sizeof(struct ptsreq))) {
1566 rc = -EFAULT;
1567 break;
1568 }
1569
1570 rc = 0;
1571 DEBUGP(4, dev, "... in CM_IOCSPTS\n");
1572 /* wait for ATR to get valid */
1573 if (wait_event_interruptible
1574 (dev->atrq,
1575 ((filp->f_flags & O_NONBLOCK)
1576 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1577 != 0)))) {
1578 if (filp->f_flags & O_NONBLOCK)
1579 rc = -EAGAIN;
1580 else
1581 rc = -ERESTARTSYS;
1582 break;
1583 }
1584 /* get IO lock */
1585 if (wait_event_interruptible
1586 (dev->ioq,
1587 ((filp->f_flags & O_NONBLOCK)
1588 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1589 == 0)))) {
1590 if (filp->f_flags & O_NONBLOCK)
1591 rc = -EAGAIN;
1592 else
1593 rc = -ERESTARTSYS;
1594 break;
1595 }
1596
1597 if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
1598 /* auto power_on again */
1599 dev->mstate = M_FETCH_ATR;
1600 clear_bit(IS_ATR_VALID, &dev->flags);
1601 }
1602 /* release lock */
1603 clear_bit(LOCK_IO, &dev->flags);
1604 wake_up_interruptible(&dev->ioq);
1605
1606 }
1607 break;
1608 #ifdef CM4000_DEBUG
1609 case CM_IOSDBGLVL:
1610 rc = -ENOTTY;
1611 break;
1612 #endif
1613 default:
1614 DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
1615 rc = -ENOTTY;
1616 }
1617 out:
1618 mutex_unlock(&cmm_mutex);
1619 return rc;
1620 }
1621
cmm_open(struct inode * inode,struct file * filp)1622 static int cmm_open(struct inode *inode, struct file *filp)
1623 {
1624 struct cm4000_dev *dev;
1625 struct pcmcia_device *link;
1626 int minor = iminor(inode);
1627 int ret;
1628
1629 if (minor >= CM4000_MAX_DEV)
1630 return -ENODEV;
1631
1632 mutex_lock(&cmm_mutex);
1633 link = dev_table[minor];
1634 if (link == NULL || !pcmcia_dev_present(link)) {
1635 ret = -ENODEV;
1636 goto out;
1637 }
1638
1639 if (link->open) {
1640 ret = -EBUSY;
1641 goto out;
1642 }
1643
1644 dev = link->priv;
1645 filp->private_data = dev;
1646
1647 DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
1648 imajor(inode), minor, current->comm, current->pid);
1649
1650 /* init device variables, they may be "polluted" after close
1651 * or, the device may never have been closed (i.e. open failed)
1652 */
1653
1654 ZERO_DEV(dev);
1655
1656 /* opening will always block since the
1657 * monitor will be started by open, which
1658 * means we have to wait for ATR becoming
1659 * valid = block until valid (or card
1660 * inserted)
1661 */
1662 if (filp->f_flags & O_NONBLOCK) {
1663 ret = -EAGAIN;
1664 goto out;
1665 }
1666
1667 dev->mdelay = T_50MSEC;
1668
1669 /* start monitoring the cardstatus */
1670 start_monitor(dev);
1671
1672 link->open = 1; /* only one open per device */
1673
1674 DEBUGP(2, dev, "<- cmm_open\n");
1675 ret = stream_open(inode, filp);
1676 out:
1677 mutex_unlock(&cmm_mutex);
1678 return ret;
1679 }
1680
cmm_close(struct inode * inode,struct file * filp)1681 static int cmm_close(struct inode *inode, struct file *filp)
1682 {
1683 struct cm4000_dev *dev;
1684 struct pcmcia_device *link;
1685 int minor = iminor(inode);
1686
1687 if (minor >= CM4000_MAX_DEV)
1688 return -ENODEV;
1689
1690 link = dev_table[minor];
1691 if (link == NULL)
1692 return -ENODEV;
1693
1694 dev = link->priv;
1695
1696 DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
1697 imajor(inode), minor);
1698
1699 stop_monitor(dev);
1700
1701 ZERO_DEV(dev);
1702
1703 link->open = 0; /* only one open per device */
1704 wake_up(&dev->devq); /* socket removed? */
1705
1706 DEBUGP(2, dev, "cmm_close\n");
1707 return 0;
1708 }
1709
cmm_cm4000_release(struct pcmcia_device * link)1710 static void cmm_cm4000_release(struct pcmcia_device * link)
1711 {
1712 struct cm4000_dev *dev = link->priv;
1713
1714 /* dont terminate the monitor, rather rely on
1715 * close doing that for us.
1716 */
1717 DEBUGP(3, dev, "-> cmm_cm4000_release\n");
1718 while (link->open) {
1719 printk(KERN_INFO MODULE_NAME ": delaying release until "
1720 "process has terminated\n");
1721 /* note: don't interrupt us:
1722 * close the applications which own
1723 * the devices _first_ !
1724 */
1725 wait_event(dev->devq, (link->open == 0));
1726 }
1727 /* dev->devq=NULL; this cannot be zeroed earlier */
1728 DEBUGP(3, dev, "<- cmm_cm4000_release\n");
1729 return;
1730 }
1731
1732 /*==== Interface to PCMCIA Layer =======================================*/
1733
cm4000_config_check(struct pcmcia_device * p_dev,void * priv_data)1734 static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
1735 {
1736 return pcmcia_request_io(p_dev);
1737 }
1738
cm4000_config(struct pcmcia_device * link,int devno)1739 static int cm4000_config(struct pcmcia_device * link, int devno)
1740 {
1741 link->config_flags |= CONF_AUTO_SET_IO;
1742
1743 /* read the config-tuples */
1744 if (pcmcia_loop_config(link, cm4000_config_check, NULL))
1745 goto cs_release;
1746
1747 if (pcmcia_enable_device(link))
1748 goto cs_release;
1749
1750 return 0;
1751
1752 cs_release:
1753 cm4000_release(link);
1754 return -ENODEV;
1755 }
1756
cm4000_suspend(struct pcmcia_device * link)1757 static int cm4000_suspend(struct pcmcia_device *link)
1758 {
1759 struct cm4000_dev *dev;
1760
1761 dev = link->priv;
1762 stop_monitor(dev);
1763
1764 return 0;
1765 }
1766
cm4000_resume(struct pcmcia_device * link)1767 static int cm4000_resume(struct pcmcia_device *link)
1768 {
1769 struct cm4000_dev *dev;
1770
1771 dev = link->priv;
1772 if (link->open)
1773 start_monitor(dev);
1774
1775 return 0;
1776 }
1777
cm4000_release(struct pcmcia_device * link)1778 static void cm4000_release(struct pcmcia_device *link)
1779 {
1780 cmm_cm4000_release(link); /* delay release until device closed */
1781 pcmcia_disable_device(link);
1782 }
1783
cm4000_probe(struct pcmcia_device * link)1784 static int cm4000_probe(struct pcmcia_device *link)
1785 {
1786 struct cm4000_dev *dev;
1787 int i, ret;
1788
1789 for (i = 0; i < CM4000_MAX_DEV; i++)
1790 if (dev_table[i] == NULL)
1791 break;
1792
1793 if (i == CM4000_MAX_DEV) {
1794 printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
1795 return -ENODEV;
1796 }
1797
1798 /* create a new cm4000_cs device */
1799 dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
1800 if (dev == NULL)
1801 return -ENOMEM;
1802
1803 dev->p_dev = link;
1804 link->priv = dev;
1805 dev_table[i] = link;
1806
1807 init_waitqueue_head(&dev->devq);
1808 init_waitqueue_head(&dev->ioq);
1809 init_waitqueue_head(&dev->atrq);
1810 init_waitqueue_head(&dev->readq);
1811
1812 ret = cm4000_config(link, i);
1813 if (ret) {
1814 dev_table[i] = NULL;
1815 kfree(dev);
1816 return ret;
1817 }
1818
1819 device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
1820
1821 return 0;
1822 }
1823
cm4000_detach(struct pcmcia_device * link)1824 static void cm4000_detach(struct pcmcia_device *link)
1825 {
1826 struct cm4000_dev *dev = link->priv;
1827 int devno;
1828
1829 /* find device */
1830 for (devno = 0; devno < CM4000_MAX_DEV; devno++)
1831 if (dev_table[devno] == link)
1832 break;
1833 if (devno == CM4000_MAX_DEV)
1834 return;
1835
1836 stop_monitor(dev);
1837
1838 cm4000_release(link);
1839
1840 dev_table[devno] = NULL;
1841 kfree(dev);
1842
1843 device_destroy(cmm_class, MKDEV(major, devno));
1844
1845 return;
1846 }
1847
1848 static const struct file_operations cm4000_fops = {
1849 .owner = THIS_MODULE,
1850 .read = cmm_read,
1851 .write = cmm_write,
1852 .unlocked_ioctl = cmm_ioctl,
1853 .open = cmm_open,
1854 .release= cmm_close,
1855 .llseek = no_llseek,
1856 };
1857
1858 static const struct pcmcia_device_id cm4000_ids[] = {
1859 PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
1860 PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
1861 PCMCIA_DEVICE_NULL,
1862 };
1863 MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
1864
1865 static struct pcmcia_driver cm4000_driver = {
1866 .owner = THIS_MODULE,
1867 .name = "cm4000_cs",
1868 .probe = cm4000_probe,
1869 .remove = cm4000_detach,
1870 .suspend = cm4000_suspend,
1871 .resume = cm4000_resume,
1872 .id_table = cm4000_ids,
1873 };
1874
cmm_init(void)1875 static int __init cmm_init(void)
1876 {
1877 int rc;
1878
1879 cmm_class = class_create(THIS_MODULE, "cardman_4000");
1880 if (IS_ERR(cmm_class))
1881 return PTR_ERR(cmm_class);
1882
1883 major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
1884 if (major < 0) {
1885 printk(KERN_WARNING MODULE_NAME
1886 ": could not get major number\n");
1887 class_destroy(cmm_class);
1888 return major;
1889 }
1890
1891 rc = pcmcia_register_driver(&cm4000_driver);
1892 if (rc < 0) {
1893 unregister_chrdev(major, DEVICE_NAME);
1894 class_destroy(cmm_class);
1895 return rc;
1896 }
1897
1898 return 0;
1899 }
1900
cmm_exit(void)1901 static void __exit cmm_exit(void)
1902 {
1903 pcmcia_unregister_driver(&cm4000_driver);
1904 unregister_chrdev(major, DEVICE_NAME);
1905 class_destroy(cmm_class);
1906 };
1907
1908 module_init(cmm_init);
1909 module_exit(cmm_exit);
1910 MODULE_LICENSE("Dual BSD/GPL");
1911