xref: /DragonStub/inc/dragonstub/linux/div64.h (revision f412fd2a1a248b546b7085648dece8d908077fab)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_DIV64_H
3 #define _ASM_GENERIC_DIV64_H
4 /*
5  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
6  * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
7  *
8  * Optimization for constant divisors on 32-bit machines:
9  * Copyright (C) 2006-2015 Nicolas Pitre
10  *
11  * The semantics of do_div() is, in C++ notation, observing that the name
12  * is a function-like macro and the n parameter has the semantics of a C++
13  * reference:
14  *
15  * uint32_t do_div(uint64_t &n, uint32_t base)
16  * {
17  * 	uint32_t remainder = n % base;
18  * 	n = n / base;
19  * 	return remainder;
20  * }
21  *
22  * NOTE: macro parameter n is evaluated multiple times,
23  *       beware of side effects!
24  */
25 
26 #include "../types.h"
27 #include "compiler.h"
28 #include "bitsperlong.h"
29 #if BITS_PER_LONG == 64
30 
31 /**
32  * do_div - returns 2 values: calculate remainder and update new dividend
33  * @n: uint64_t dividend (will be updated)
34  * @base: uint32_t divisor
35  *
36  * Summary:
37  * ``uint32_t remainder = n % base;``
38  * ``n = n / base;``
39  *
40  * Return: (uint32_t)remainder
41  *
42  * NOTE: macro parameter @n is evaluated multiple times,
43  * beware of side effects!
44  */
45 #define do_div(n, base)                           \
46 	({                                        \
47 		uint32_t __base = (base);         \
48 		uint32_t __rem;                   \
49 		__rem = ((uint64_t)(n)) % __base; \
50 		(n) = ((uint64_t)(n)) / __base;   \
51 		__rem;                            \
52 	})
53 
54 #elif BITS_PER_LONG == 32
55 
56 // #include <linux/log2.h>
57 
58 // /*
59 //  * If the divisor happens to be constant, we determine the appropriate
60 //  * inverse at compile time to turn the division into a few inline
61 //  * multiplications which ought to be much faster.
62 //  *
63 //  * (It is unfortunate that gcc doesn't perform all this internally.)
64 //  */
65 
66 // #define __div64_const32(n, ___b)                                            \
67 // 	({                                                                  \
68 // 		/*								\
69 // 	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
70 // 	 *								\
71 // 	 * We rely on the fact that most of this code gets optimized	\
72 // 	 * away at compile time due to constant propagation and only	\
73 // 	 * a few multiplication instructions should remain.		\
74 // 	 * Hence this monstrous macro (static inline doesn't always	\
75 // 	 * do the trick here).						\
76 // 	 */                                                 \
77 // 		uint64_t ___res, ___x, ___t, ___m, ___n = (n);              \
78 // 		uint32_t ___p, ___bias;                                     \
79 //                                                                             \
80 // 		/* determine MSB of b */                                    \
81 // 		___p = 1 << ilog2(___b);                                    \
82 //                                                                             \
83 // 		/* compute m = ((p << 64) + b - 1) / b */                   \
84 // 		___m = (~0ULL / ___b) * ___p;                               \
85 // 		___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;    \
86 //                                                                             \
87 // 		/* one less than the dividend with highest result */        \
88 // 		___x = ~0ULL / ___b * ___b - 1;                             \
89 //                                                                             \
90 // 		/* test our ___m with res = m * x / (p << 64) */            \
91 // 		___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \
92 // 		___t = ___res += (___m & 0xffffffff) * (___x >> 32);        \
93 // 		___res += (___x & 0xffffffff) * (___m >> 32);               \
94 // 		___t = (___res < ___t) ? (1ULL << 32) : 0;                  \
95 // 		___res = (___res >> 32) + ___t;                             \
96 // 		___res += (___m >> 32) * (___x >> 32);                      \
97 // 		___res /= ___p;                                             \
98 //                                                                             \
99 // 		/* Now sanitize and optimize what we've got. */             \
100 // 		if (~0ULL % (___b / (___b & -___b)) == 0) {                 \
101 // 			/* special case, can be simplified to ... */        \
102 // 			___n /= (___b & -___b);                             \
103 // 			___m = ~0ULL / (___b / (___b & -___b));             \
104 // 			___p = 1;                                           \
105 // 			___bias = 1;                                        \
106 // 		} else if (___res != ___x / ___b) {                         \
107 // 			/*							\
108 // 		 * We can't get away without a bias to compensate	\
109 // 		 * for bit truncation errors.  To avoid it we'd need an	\
110 // 		 * additional bit to represent m which would overflow	\
111 // 		 * a 64-bit variable.					\
112 // 		 *							\
113 // 		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
114 // 		 */                                          \
115 // 			___bias = 1;                                        \
116 // 			/* Compute m = (p << 64) / b */                     \
117 // 			___m = (~0ULL / ___b) * ___p;                       \
118 // 			___m += ((~0ULL % ___b + 1) * ___p) / ___b;         \
119 // 		} else {                                                    \
120 // 			/*							\
121 // 		 * Reduce m / p, and try to clear bit 31 of m when	\
122 // 		 * possible, otherwise that'll need extra overflow	\
123 // 		 * handling later.					\
124 // 		 */                                          \
125 // 			uint32_t ___bits = -(___m & -___m);                 \
126 // 			___bits |= ___m >> 32;                              \
127 // 			___bits = (~___bits) << 1;                          \
128 // 			/*							\
129 // 		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
130 // 		 * Simply apply the maximum possible reduction in that	\
131 // 		 * case. Otherwise the MSB of ___bits indicates the	\
132 // 		 * best reduction we should apply.			\
133 // 		 */                                          \
134 // 			if (!___bits) {                                     \
135 // 				___p /= (___m & -___m);                     \
136 // 				___m /= (___m & -___m);                     \
137 // 			} else {                                            \
138 // 				___p >>= ilog2(___bits);                    \
139 // 				___m >>= ilog2(___bits);                    \
140 // 			}                                                   \
141 // 			/* No bias needed. */                               \
142 // 			___bias = 0;                                        \
143 // 		}                                                           \
144 //                                                                             \
145 // 		/*								\
146 // 	 * Now we have a combination of 2 conditions:			\
147 // 	 *								\
148 // 	 * 1) whether or not we need to apply a bias, and		\
149 // 	 *								\
150 // 	 * 2) whether or not there might be an overflow in the cross	\
151 // 	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
152 // 	 *								\
153 // 	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
154 // 	 * From now on there will be actual runtime code generated.	\
155 // 	 */                                                 \
156 // 		___res = __arch_xprod_64(___m, ___n, ___bias);              \
157 //                                                                             \
158 // 		___res /= ___p;                                             \
159 // 	})
160 
161 // #ifndef __arch_xprod_64
162 // /*
163 //  * Default C implementation for __arch_xprod_64()
164 //  *
165 //  * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
166 //  * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
167 //  *
168 //  * The product is a 128-bit value, scaled down to 64 bits.
169 //  * Assuming constant propagation to optimize away unused conditional code.
170 //  * Architectures may provide their own optimized assembly implementation.
171 //  */
172 // static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
173 // {
174 // 	uint32_t m_lo = m;
175 // 	uint32_t m_hi = m >> 32;
176 // 	uint32_t n_lo = n;
177 // 	uint32_t n_hi = n >> 32;
178 // 	uint64_t res;
179 // 	uint32_t res_lo, res_hi, tmp;
180 
181 // 	if (!bias) {
182 // 		res = ((uint64_t)m_lo * n_lo) >> 32;
183 // 	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
184 // 		/* there can't be any overflow here */
185 // 		res = (m + (uint64_t)m_lo * n_lo) >> 32;
186 // 	} else {
187 // 		res = m + (uint64_t)m_lo * n_lo;
188 // 		res_lo = res >> 32;
189 // 		res_hi = (res_lo < m_hi);
190 // 		res = res_lo | ((uint64_t)res_hi << 32);
191 // 	}
192 
193 // 	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
194 // 		/* there can't be any overflow here */
195 // 		res += (uint64_t)m_lo * n_hi;
196 // 		res += (uint64_t)m_hi * n_lo;
197 // 		res >>= 32;
198 // 	} else {
199 // 		res += (uint64_t)m_lo * n_hi;
200 // 		tmp = res >> 32;
201 // 		res += (uint64_t)m_hi * n_lo;
202 // 		res_lo = res >> 32;
203 // 		res_hi = (res_lo < tmp);
204 // 		res = res_lo | ((uint64_t)res_hi << 32);
205 // 	}
206 
207 // 	res += (uint64_t)m_hi * n_hi;
208 
209 // 	return res;
210 // }
211 // #endif
212 
213 // #ifndef __div64_32
214 // extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
215 // #endif
216 
217 // /* The unnecessary pointer compare is there
218 //  * to check for type safety (n must be 64bit)
219 //  */
220 // #define do_div(n, base)                                                      \
221 // 	({                                                                   \
222 // 		uint32_t __base = (base);                                    \
223 // 		uint32_t __rem;                                              \
224 // 		(void)(((typeof((n)) *)0) == ((uint64_t *)0));               \
225 // 		if (__builtin_constant_p(__base) && is_power_of_2(__base)) { \
226 // 			__rem = (n) & (__base - 1);                          \
227 // 			(n) >>= ilog2(__base);                               \
228 // 		} else if (__builtin_constant_p(__base) && __base != 0) {    \
229 // 			uint32_t __res_lo, __n_lo = (n);                     \
230 // 			(n) = __div64_const32(n, __base);                    \
231 // 			/* the remainder can be computed with 32-bit regs */ \
232 // 			__res_lo = (n);                                      \
233 // 			__rem = __n_lo - __res_lo * __base;                  \
234 // 		} else if (likely(((n) >> 32) == 0)) {                       \
235 // 			__rem = (uint32_t)(n) % __base;                      \
236 // 			(n) = (uint32_t)(n) / __base;                        \
237 // 		} else {                                                     \
238 // 			__rem = __div64_32(&(n), __base);                    \
239 // 		}                                                            \
240 // 		__rem;                                                       \
241 // 	})
242 
243 
244 #else /* BITS_PER_LONG == ?? */
245 
246 #error do_div() does not yet support the C64
247 
248 #endif /* BITS_PER_LONG */
249 
250 #endif /* _ASM_GENERIC_DIV64_H */
251