1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  dpcsup.c
27  *
28  * Abstract: All DPC processing routines for the cyclone board occur here.
29  *
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/blkdev.h>
40 #include <linux/semaphore.h>
41 
42 #include "aacraid.h"
43 
44 /**
45  *	aac_response_normal	-	Handle command replies
46  *	@q: Queue to read from
47  *
48  *	This DPC routine will be run when the adapter interrupts us to let us
49  *	know there is a response on our normal priority queue. We will pull off
50  *	all QE there are and wake up all the waiters before exiting. We will
51  *	take a spinlock out on the queue before operating on it.
52  */
53 
aac_response_normal(struct aac_queue * q)54 unsigned int aac_response_normal(struct aac_queue * q)
55 {
56 	struct aac_dev * dev = q->dev;
57 	struct aac_entry *entry;
58 	struct hw_fib * hwfib;
59 	struct fib * fib;
60 	int consumed = 0;
61 	unsigned long flags, mflags;
62 
63 	spin_lock_irqsave(q->lock, flags);
64 	/*
65 	 *	Keep pulling response QEs off the response queue and waking
66 	 *	up the waiters until there are no more QEs. We then return
67 	 *	back to the system. If no response was requesed we just
68 	 *	deallocate the Fib here and continue.
69 	 */
70 	while(aac_consumer_get(dev, q, &entry))
71 	{
72 		int fast;
73 		u32 index = le32_to_cpu(entry->addr);
74 		fast = index & 0x01;
75 		fib = &dev->fibs[index >> 2];
76 		hwfib = fib->hw_fib_va;
77 
78 		aac_consumer_free(dev, q, HostNormRespQueue);
79 		/*
80 		 *	Remove this fib from the Outstanding I/O queue.
81 		 *	But only if it has not already been timed out.
82 		 *
83 		 *	If the fib has been timed out already, then just
84 		 *	continue. The caller has already been notified that
85 		 *	the fib timed out.
86 		 */
87 		dev->queues->queue[AdapNormCmdQueue].numpending--;
88 
89 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90 			spin_unlock_irqrestore(q->lock, flags);
91 			aac_fib_complete(fib);
92 			aac_fib_free(fib);
93 			spin_lock_irqsave(q->lock, flags);
94 			continue;
95 		}
96 		spin_unlock_irqrestore(q->lock, flags);
97 
98 		if (fast) {
99 			/*
100 			 *	Doctor the fib
101 			 */
102 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104 		}
105 
106 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
107 
108 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
109 		{
110 			__le32 *pstatus = (__le32 *)hwfib->data;
111 			if (*pstatus & cpu_to_le32(0xffff0000))
112 				*pstatus = cpu_to_le32(ST_OK);
113 		}
114 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
115 		{
116 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
117 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
118 			else
119 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
120 			/*
121 			 *	NOTE:  we cannot touch the fib after this
122 			 *	    call, because it may have been deallocated.
123 			 */
124 			fib->flags = 0;
125 			fib->callback(fib->callback_data, fib);
126 		} else {
127 			unsigned long flagv;
128 			spin_lock_irqsave(&fib->event_lock, flagv);
129 			if (!fib->done) {
130 				fib->done = 1;
131 				up(&fib->event_wait);
132 			}
133 			spin_unlock_irqrestore(&fib->event_lock, flagv);
134 
135 			spin_lock_irqsave(&dev->manage_lock, mflags);
136 			dev->management_fib_count--;
137 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
138 
139 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
140 			if (fib->done == 2) {
141 				spin_lock_irqsave(&fib->event_lock, flagv);
142 				fib->done = 0;
143 				spin_unlock_irqrestore(&fib->event_lock, flagv);
144 				aac_fib_complete(fib);
145 				aac_fib_free(fib);
146 			}
147 		}
148 		consumed++;
149 		spin_lock_irqsave(q->lock, flags);
150 	}
151 
152 	if (consumed > aac_config.peak_fibs)
153 		aac_config.peak_fibs = consumed;
154 	if (consumed == 0)
155 		aac_config.zero_fibs++;
156 
157 	spin_unlock_irqrestore(q->lock, flags);
158 	return 0;
159 }
160 
161 
162 /**
163  *	aac_command_normal	-	handle commands
164  *	@q: queue to process
165  *
166  *	This DPC routine will be queued when the adapter interrupts us to
167  *	let us know there is a command on our normal priority queue. We will
168  *	pull off all QE there are and wake up all the waiters before exiting.
169  *	We will take a spinlock out on the queue before operating on it.
170  */
171 
aac_command_normal(struct aac_queue * q)172 unsigned int aac_command_normal(struct aac_queue *q)
173 {
174 	struct aac_dev * dev = q->dev;
175 	struct aac_entry *entry;
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(q->lock, flags);
179 
180 	/*
181 	 *	Keep pulling response QEs off the response queue and waking
182 	 *	up the waiters until there are no more QEs. We then return
183 	 *	back to the system.
184 	 */
185 	while(aac_consumer_get(dev, q, &entry))
186 	{
187 		struct fib fibctx;
188 		struct hw_fib * hw_fib;
189 		u32 index;
190 		struct fib *fib = &fibctx;
191 
192 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
193 		hw_fib = &dev->aif_base_va[index];
194 
195 		/*
196 		 *	Allocate a FIB at all costs. For non queued stuff
197 		 *	we can just use the stack so we are happy. We need
198 		 *	a fib object in order to manage the linked lists
199 		 */
200 		if (dev->aif_thread)
201 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
202 				fib = &fibctx;
203 
204 		memset(fib, 0, sizeof(struct fib));
205 		INIT_LIST_HEAD(&fib->fiblink);
206 		fib->type = FSAFS_NTC_FIB_CONTEXT;
207 		fib->size = sizeof(struct fib);
208 		fib->hw_fib_va = hw_fib;
209 		fib->data = hw_fib->data;
210 		fib->dev = dev;
211 
212 
213 		if (dev->aif_thread && fib != &fibctx) {
214 		        list_add_tail(&fib->fiblink, &q->cmdq);
215 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
216 		        wake_up_interruptible(&q->cmdready);
217 		} else {
218 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
219 			spin_unlock_irqrestore(q->lock, flags);
220 			/*
221 			 *	Set the status of this FIB
222 			 */
223 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
224 			aac_fib_adapter_complete(fib, sizeof(u32));
225 			spin_lock_irqsave(q->lock, flags);
226 		}
227 	}
228 	spin_unlock_irqrestore(q->lock, flags);
229 	return 0;
230 }
231 
232 /*
233  *
234  * aac_aif_callback
235  * @context: the context set in the fib - here it is scsi cmd
236  * @fibptr: pointer to the fib
237  *
238  * Handles the AIFs - new method (SRC)
239  *
240  */
241 
aac_aif_callback(void * context,struct fib * fibptr)242 static void aac_aif_callback(void *context, struct fib * fibptr)
243 {
244 	struct fib *fibctx;
245 	struct aac_dev *dev;
246 	struct aac_aifcmd *cmd;
247 	int status;
248 
249 	fibctx = (struct fib *)context;
250 	BUG_ON(fibptr == NULL);
251 	dev = fibptr->dev;
252 
253 	if (fibptr->hw_fib_va->header.XferState &
254 	    cpu_to_le32(NoMoreAifDataAvailable)) {
255 		aac_fib_complete(fibptr);
256 		aac_fib_free(fibptr);
257 		return;
258 	}
259 
260 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
261 
262 	aac_fib_init(fibctx);
263 	cmd = (struct aac_aifcmd *) fib_data(fibctx);
264 	cmd->command = cpu_to_le32(AifReqEvent);
265 
266 	status = aac_fib_send(AifRequest,
267 		fibctx,
268 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
269 		FsaNormal,
270 		0, 1,
271 		(fib_callback)aac_aif_callback, fibctx);
272 }
273 
274 
275 /**
276  *	aac_intr_normal	-	Handle command replies
277  *	@dev: Device
278  *	@index: completion reference
279  *
280  *	This DPC routine will be run when the adapter interrupts us to let us
281  *	know there is a response on our normal priority queue. We will pull off
282  *	all QE there are and wake up all the waiters before exiting.
283  */
aac_intr_normal(struct aac_dev * dev,u32 index,int isAif,int isFastResponse,struct hw_fib * aif_fib)284 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
285 			int isAif, int isFastResponse, struct hw_fib *aif_fib)
286 {
287 	unsigned long mflags;
288 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
289 	if (isAif == 1) {	/* AIF - common */
290 		struct hw_fib * hw_fib;
291 		struct fib * fib;
292 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
293 		unsigned long flags;
294 
295 		/*
296 		 *	Allocate a FIB. For non queued stuff we can just use
297 		 * the stack so we are happy. We need a fib object in order to
298 		 * manage the linked lists.
299 		 */
300 		if ((!dev->aif_thread)
301 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
302 			return 1;
303 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
304 			kfree (fib);
305 			return 1;
306 		}
307 		if (aif_fib != NULL) {
308 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
309 		} else {
310 			memcpy(hw_fib,
311 				(struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
312 				index), sizeof(struct hw_fib));
313 		}
314 		INIT_LIST_HEAD(&fib->fiblink);
315 		fib->type = FSAFS_NTC_FIB_CONTEXT;
316 		fib->size = sizeof(struct fib);
317 		fib->hw_fib_va = hw_fib;
318 		fib->data = hw_fib->data;
319 		fib->dev = dev;
320 
321 		spin_lock_irqsave(q->lock, flags);
322 		list_add_tail(&fib->fiblink, &q->cmdq);
323 	        wake_up_interruptible(&q->cmdready);
324 		spin_unlock_irqrestore(q->lock, flags);
325 		return 1;
326 	} else if (isAif == 2) {	/* AIF - new (SRC) */
327 		struct fib *fibctx;
328 		struct aac_aifcmd *cmd;
329 
330 		fibctx = aac_fib_alloc(dev);
331 		if (!fibctx)
332 			return 1;
333 		aac_fib_init(fibctx);
334 
335 		cmd = (struct aac_aifcmd *) fib_data(fibctx);
336 		cmd->command = cpu_to_le32(AifReqEvent);
337 
338 		return aac_fib_send(AifRequest,
339 			fibctx,
340 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
341 			FsaNormal,
342 			0, 1,
343 			(fib_callback)aac_aif_callback, fibctx);
344 	} else {
345 		struct fib *fib = &dev->fibs[index];
346 		struct hw_fib * hwfib = fib->hw_fib_va;
347 
348 		/*
349 		 *	Remove this fib from the Outstanding I/O queue.
350 		 *	But only if it has not already been timed out.
351 		 *
352 		 *	If the fib has been timed out already, then just
353 		 *	continue. The caller has already been notified that
354 		 *	the fib timed out.
355 		 */
356 		dev->queues->queue[AdapNormCmdQueue].numpending--;
357 
358 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
359 			aac_fib_complete(fib);
360 			aac_fib_free(fib);
361 			return 0;
362 		}
363 
364 		if (isFastResponse) {
365 			/*
366 			 *	Doctor the fib
367 			 */
368 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
369 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
370 		}
371 
372 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
373 
374 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
375 		{
376 			__le32 *pstatus = (__le32 *)hwfib->data;
377 			if (*pstatus & cpu_to_le32(0xffff0000))
378 				*pstatus = cpu_to_le32(ST_OK);
379 		}
380 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
381 		{
382 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
383 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
384 			else
385 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
386 			/*
387 			 *	NOTE:  we cannot touch the fib after this
388 			 *	    call, because it may have been deallocated.
389 			 */
390 			fib->flags = 0;
391 			fib->callback(fib->callback_data, fib);
392 		} else {
393 			unsigned long flagv;
394 	  		dprintk((KERN_INFO "event_wait up\n"));
395 			spin_lock_irqsave(&fib->event_lock, flagv);
396 			if (!fib->done) {
397 				fib->done = 1;
398 				up(&fib->event_wait);
399 			}
400 			spin_unlock_irqrestore(&fib->event_lock, flagv);
401 
402 			spin_lock_irqsave(&dev->manage_lock, mflags);
403 			dev->management_fib_count--;
404 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
405 
406 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
407 			if (fib->done == 2) {
408 				spin_lock_irqsave(&fib->event_lock, flagv);
409 				fib->done = 0;
410 				spin_unlock_irqrestore(&fib->event_lock, flagv);
411 				aac_fib_complete(fib);
412 				aac_fib_free(fib);
413 			}
414 
415 		}
416 		return 0;
417 	}
418 }
419