1 /*
2  * IBM Accurate Mathematical Library
3  * Copyright (C) 2001-2022 Free Software Foundation, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU Lesser General Public License as published by
7  * the Free Software Foundation; either version 2.1 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with this program; if not, see <https://www.gnu.org/licenses/>.
17  */
18 
19 #include <math.h>
20 
21 /***********************************************************************/
22 /*MODULE_NAME: dla.h                                                   */
23 /*                                                                     */
24 /* This file holds C language macros for 'Double Length Floating Point */
25 /* Arithmetic'. The macros are based on the paper:                     */
26 /* T.J.Dekker, "A floating-point Technique for extending the           */
27 /* Available Precision", Number. Math. 18, 224-242 (1971).              */
28 /* A Double-Length number is defined by a pair (r,s), of IEEE double    */
29 /* precision floating point numbers that satisfy,                      */
30 /*                                                                     */
31 /*              abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)).              */
32 /*                                                                     */
33 /* The computer arithmetic assumed is IEEE double precision in         */
34 /* round to nearest mode. All variables in the macros must be of type  */
35 /* IEEE double.                                                        */
36 /***********************************************************************/
37 
38 /* CN = 1+2**27 = '41a0000002000000' IEEE double format.  Use it to split a
39    double for better accuracy.  */
40 #define  CN   134217729.0
41 
42 
43 /* Exact addition of two single-length floating point numbers, Dekker. */
44 /* The macro produces a double-length number (z,zz) that satisfies     */
45 /* z+zz = x+y exactly.                                                 */
46 
47 #define  EADD(x,y,z,zz)  \
48 	   z=(x)+(y);  zz=(fabs(x)>fabs(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
49 
50 
51 /* Exact subtraction of two single-length floating point numbers, Dekker. */
52 /* The macro produces a double-length number (z,zz) that satisfies        */
53 /* z+zz = x-y exactly.                                                    */
54 
55 #define  ESUB(x,y,z,zz)  \
56 	   z=(x)-(y);  zz=(fabs(x)>fabs(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
57 
58 
59 #ifdef __FP_FAST_FMA
60 # define DLA_FMS(x, y, z) __builtin_fma (x, y, -(z))
61 #endif
62 
63 /* Exact multiplication of two single-length floating point numbers,   */
64 /* Veltkamp. The macro produces a double-length number (z,zz) that     */
65 /* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary           */
66 /* storage variables of type double.                                   */
67 
68 #ifdef DLA_FMS
69 # define  EMULV(x, y, z, zz)          \
70   z = x * y; zz = DLA_FMS (x, y, z);
71 #else
72 # define  EMULV(x, y, z, zz)          \
73     ({  __typeof__ (x) __p, hx, tx, hy, ty;          \
74         __p = CN * (x);  hx = ((x) - __p) + __p;  tx = (x) - hx; \
75         __p = CN * (y);  hy = ((y) - __p) + __p;  ty = (y) - hy; \
76         z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty; \
77     })
78 #endif
79 
80 
81 /* Exact multiplication of two single-length floating point numbers, Dekker. */
82 /* The macro produces a nearly double-length number (z,zz) (see Dekker)      */
83 /* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary          */
84 /* storage variables of type double.                                         */
85 
86 #ifdef DLA_FMS
87 # define  MUL12(x, y, z, zz)        \
88 	   EMULV(x, y, z, zz)
89 #else
90 # define  MUL12(x, y, z, zz)        \
91     ({  __typeof__ (x) __p, hx, tx, hy, ty, __q; \
92 	   __p=CN*(x);  hx=((x)-__p)+__p;  tx=(x)-hx;  \
93 	   __p=CN*(y);  hy=((y)-__p)+__p;  ty=(y)-hy;  \
94 	   __p=hx*hy;  __q=hx*ty+tx*hy; z=__p+__q;  zz=((__p-z)+__q)+tx*ty; \
95     })
96 #endif
97 
98 
99 /* Double-length addition, Dekker. The macro produces a double-length   */
100 /* number (z,zz) which satisfies approximately   z+zz = x+xx + y+yy.    */
101 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy)       */
102 /* are assumed to be double-length numbers. r,s are temporary           */
103 /* storage variables of type double.                                    */
104 
105 #define  ADD2(x, xx, y, yy, z, zz, r, s)                   \
106   r = (x) + (y);  s = (fabs (x) > fabs (y)) ?                \
107 		      (((((x) - r) + (y)) + (yy)) + (xx)) : \
108 		      (((((y) - r) + (x)) + (xx)) + (yy));  \
109   z = r + s;  zz = (r - z) + s;
110 
111 
112 /* Double-length subtraction, Dekker. The macro produces a double-length  */
113 /* number (z,zz) which satisfies approximately   z+zz = x+xx - (y+yy).    */
114 /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy)         */
115 /* are assumed to be double-length numbers. r,s are temporary             */
116 /* storage variables of type double.                                      */
117 
118 #define  SUB2(x, xx, y, yy, z, zz, r, s)                   \
119   r = (x) - (y);  s = (fabs (x) > fabs (y)) ?                \
120 		      (((((x) - r) - (y)) - (yy)) + (xx)) : \
121 		      ((((x) - ((y) + r)) + (xx)) - (yy));  \
122   z = r + s;  zz = (r - z) + s;
123 
124 
125 /* Double-length multiplication, Dekker. The macro produces a double-length  */
126 /* number (z,zz) which satisfies approximately   z+zz = (x+xx)*(y+yy).       */
127 /* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy)               */
128 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are         */
129 /* temporary storage variables of type double.                               */
130 
131 #define  MUL2(x, xx, y, yy, z, zz, c, cc)  \
132   MUL12 (x, y, c, cc);                     \
133   cc = ((x) * (yy) + (xx) * (y)) + cc;   z = c + cc;   zz = (c - z) + cc;
134 
135 
136 /* Double-length division, Dekker. The macro produces a double-length        */
137 /* number (z,zz) which satisfies approximately   z+zz = (x+xx)/(y+yy).       */
138 /* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy)               */
139 /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu        */
140 /* are temporary storage variables of type double.                           */
141 
142 #define  DIV2(x, xx, y, yy, z, zz, c, cc, u, uu)  \
143 	   c=(x)/(y);   MUL12(c,y,u,uu);          \
144 	   cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y);   z=c+cc;   zz=(c-z)+cc;
145 
146 
147 /* Double-length addition, slower but more accurate than ADD2.               */
148 /* The macro produces a double-length                                        */
149 /* number (z,zz) which satisfies approximately   z+zz = (x+xx)+(y+yy).       */
150 /* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy)                 */
151 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w                 */
152 /* are temporary storage variables of type double.                           */
153 
154 #define  ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w)                 \
155   r = (x) + (y);                                                            \
156   if (fabs (x) > fabs (y)) { rr = ((x) - r) + (y);  s = (rr + (yy)) + (xx); } \
157   else               { rr = ((y) - r) + (x);  s = (rr + (xx)) + (yy); }     \
158   if (rr != 0.0) {                                                          \
159       z = r + s;  zz = (r - z) + s; }                                       \
160   else {                                                                    \
161       ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\
162       u = r + s;                                                            \
163       uu = (fabs (r) > fabs (s))   ? ((r - u) + s)   : ((s - u) + r);         \
164       w = uu + ss;  z = u + w;                                              \
165       zz = (fabs (u) > fabs (w))   ? ((u - z) + w)   : ((w - z) + u); }
166 
167 
168 /* Double-length subtraction, slower but more accurate than SUB2.            */
169 /* The macro produces a double-length                                        */
170 /* number (z,zz) which satisfies approximately   z+zz = (x+xx)-(y+yy).       */
171 /* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy)               */
172 /* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w                 */
173 /* are temporary storage variables of type double.                           */
174 
175 #define  SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w)                   \
176   r = (x) - (y);                                                              \
177   if (fabs (x) > fabs (y)) { rr = ((x) - r) - (y);  s = (rr - (yy)) + (xx); }   \
178   else               { rr = (x) - ((y) + r);  s = (rr + (xx)) - (yy); }       \
179   if (rr != 0.0) {                                                            \
180       z = r + s;  zz = (r - z) + s; }                                         \
181   else {                                                                      \
182       ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \
183       u = r + s;                                                              \
184       uu = (fabs (r) > fabs (s))   ? ((r - u) + s)   : ((s - u) + r);           \
185       w = uu + ss;  z = u + w;                                                \
186       zz = (fabs (u) > fabs (w))   ? ((u - z) + w)   : ((w - z) + u); }
187