1 /* cs89x0.c: A Crystal Semiconductor (Now Cirrus Logic) CS89[02]0
2 * driver for linux.
3 * Written 1996 by Russell Nelson, with reference to skeleton.c
4 * written 1993-1994 by Donald Becker.
5 *
6 * This software may be used and distributed according to the terms
7 * of the GNU General Public License, incorporated herein by reference.
8 *
9 * The author may be reached at nelson@crynwr.com, Crynwr
10 * Software, 521 Pleasant Valley Rd., Potsdam, NY 13676
11 *
12 * Other contributors:
13 * Mike Cruse : mcruse@cti-ltd.com
14 * Russ Nelson
15 * Melody Lee : ethernet@crystal.cirrus.com
16 * Alan Cox
17 * Andrew Morton
18 * Oskar Schirmer : oskar@scara.com
19 * Deepak Saxena : dsaxena@plexity.net
20 * Dmitry Pervushin : dpervushin@ru.mvista.com
21 * Deepak Saxena : dsaxena@plexity.net
22 * Domenico Andreoli : cavokz@gmail.com
23 */
24
25
26 /*
27 * Set this to zero to disable DMA code
28 *
29 * Note that even if DMA is turned off we still support the 'dma' and 'use_dma'
30 * module options so we don't break any startup scripts.
31 */
32 #ifndef CONFIG_ISA_DMA_API
33 #define ALLOW_DMA 0
34 #else
35 #define ALLOW_DMA 1
36 #endif
37
38 /*
39 * Set this to zero to remove all the debug statements via
40 * dead code elimination
41 */
42 #define DEBUGGING 1
43
44 /* Sources:
45 * Crynwr packet driver epktisa.
46 * Crystal Semiconductor data sheets.
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #include <linux/module.h>
52 #include <linux/printk.h>
53 #include <linux/errno.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/platform_device.h>
59 #include <linux/kernel.h>
60 #include <linux/types.h>
61 #include <linux/fcntl.h>
62 #include <linux/interrupt.h>
63 #include <linux/ioport.h>
64 #include <linux/in.h>
65 #include <linux/jiffies.h>
66 #include <linux/skbuff.h>
67 #include <linux/spinlock.h>
68 #include <linux/string.h>
69 #include <linux/init.h>
70 #include <linux/bitops.h>
71 #include <linux/delay.h>
72 #include <linux/gfp.h>
73 #include <linux/io.h>
74
75 #include <asm/irq.h>
76 #include <linux/atomic.h>
77 #if ALLOW_DMA
78 #include <asm/dma.h>
79 #endif
80
81 #include "cs89x0.h"
82
83 #define cs89_dbg(val, level, fmt, ...) \
84 do { \
85 if (val <= net_debug) \
86 pr_##level(fmt, ##__VA_ARGS__); \
87 } while (0)
88
89 static char version[] __initdata =
90 "v2.4.3-pre1 Russell Nelson <nelson@crynwr.com>, Andrew Morton";
91
92 #define DRV_NAME "cs89x0"
93
94 /* First, a few definitions that the brave might change.
95 * A zero-terminated list of I/O addresses to be probed. Some special flags..
96 * Addr & 1 = Read back the address port, look for signature and reset
97 * the page window before probing
98 * Addr & 3 = Reset the page window and probe
99 * The CLPS eval board has the Cirrus chip at 0x80090300, in ARM IO space,
100 * but it is possible that a Cirrus board could be plugged into the ISA
101 * slots.
102 */
103 /* The cs8900 has 4 IRQ pins, software selectable. cs8900_irq_map maps
104 * them to system IRQ numbers. This mapping is card specific and is set to
105 * the configuration of the Cirrus Eval board for this chip.
106 */
107 #if IS_ENABLED(CONFIG_CS89x0_ISA)
108 static unsigned int netcard_portlist[] __used __initdata = {
109 0x300, 0x320, 0x340, 0x360, 0x200, 0x220, 0x240,
110 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0
111 };
112 static unsigned int cs8900_irq_map[] = {
113 10, 11, 12, 5
114 };
115 #endif
116
117 #if DEBUGGING
118 static unsigned int net_debug = DEBUGGING;
119 #else
120 #define net_debug 0 /* gcc will remove all the debug code for us */
121 #endif
122
123 /* The number of low I/O ports used by the ethercard. */
124 #define NETCARD_IO_EXTENT 16
125
126 /* we allow the user to override various values normally set in the EEPROM */
127 #define FORCE_RJ45 0x0001 /* pick one of these three */
128 #define FORCE_AUI 0x0002
129 #define FORCE_BNC 0x0004
130
131 #define FORCE_AUTO 0x0010 /* pick one of these three */
132 #define FORCE_HALF 0x0020
133 #define FORCE_FULL 0x0030
134
135 /* Information that need to be kept for each board. */
136 struct net_local {
137 int chip_type; /* one of: CS8900, CS8920, CS8920M */
138 char chip_revision; /* revision letter of the chip ('A'...) */
139 int send_cmd; /* the proper send command: TX_NOW, TX_AFTER_381, or TX_AFTER_ALL */
140 int auto_neg_cnf; /* auto-negotiation word from EEPROM */
141 int adapter_cnf; /* adapter configuration from EEPROM */
142 int isa_config; /* ISA configuration from EEPROM */
143 int irq_map; /* IRQ map from EEPROM */
144 int rx_mode; /* what mode are we in? 0, RX_MULTCAST_ACCEPT, or RX_ALL_ACCEPT */
145 int curr_rx_cfg; /* a copy of PP_RxCFG */
146 int linectl; /* either 0 or LOW_RX_SQUELCH, depending on configuration. */
147 int send_underrun; /* keep track of how many underruns in a row we get */
148 int force; /* force various values; see FORCE* above. */
149 spinlock_t lock;
150 void __iomem *virt_addr;/* CS89x0 virtual address. */
151 #if ALLOW_DMA
152 int use_dma; /* Flag: we're using dma */
153 int dma; /* DMA channel */
154 int dmasize; /* 16 or 64 */
155 unsigned char *dma_buff; /* points to the beginning of the buffer */
156 unsigned char *end_dma_buff; /* points to the end of the buffer */
157 unsigned char *rx_dma_ptr; /* points to the next packet */
158 #endif
159 };
160
161 /* Example routines you must write ;->. */
162 #define tx_done(dev) 1
163
164 /*
165 * Permit 'cs89x0_dma=N' in the kernel boot environment
166 */
167 #if !defined(MODULE)
168 #if ALLOW_DMA
169 static int g_cs89x0_dma;
170
dma_fn(char * str)171 static int __init dma_fn(char *str)
172 {
173 g_cs89x0_dma = simple_strtol(str, NULL, 0);
174 return 1;
175 }
176
177 __setup("cs89x0_dma=", dma_fn);
178 #endif /* ALLOW_DMA */
179
180 static int g_cs89x0_media__force;
181
media_fn(char * str)182 static int __init media_fn(char *str)
183 {
184 if (!strcmp(str, "rj45"))
185 g_cs89x0_media__force = FORCE_RJ45;
186 else if (!strcmp(str, "aui"))
187 g_cs89x0_media__force = FORCE_AUI;
188 else if (!strcmp(str, "bnc"))
189 g_cs89x0_media__force = FORCE_BNC;
190
191 return 1;
192 }
193
194 __setup("cs89x0_media=", media_fn);
195 #endif
196
readwords(struct net_local * lp,int portno,void * buf,int length)197 static void readwords(struct net_local *lp, int portno, void *buf, int length)
198 {
199 u8 *buf8 = (u8 *)buf;
200
201 do {
202 u16 tmp16;
203
204 tmp16 = ioread16(lp->virt_addr + portno);
205 *buf8++ = (u8)tmp16;
206 *buf8++ = (u8)(tmp16 >> 8);
207 } while (--length);
208 }
209
writewords(struct net_local * lp,int portno,void * buf,int length)210 static void writewords(struct net_local *lp, int portno, void *buf, int length)
211 {
212 u8 *buf8 = (u8 *)buf;
213
214 do {
215 u16 tmp16;
216
217 tmp16 = *buf8++;
218 tmp16 |= (*buf8++) << 8;
219 iowrite16(tmp16, lp->virt_addr + portno);
220 } while (--length);
221 }
222
223 static u16
readreg(struct net_device * dev,u16 regno)224 readreg(struct net_device *dev, u16 regno)
225 {
226 struct net_local *lp = netdev_priv(dev);
227
228 iowrite16(regno, lp->virt_addr + ADD_PORT);
229 return ioread16(lp->virt_addr + DATA_PORT);
230 }
231
232 static void
writereg(struct net_device * dev,u16 regno,u16 value)233 writereg(struct net_device *dev, u16 regno, u16 value)
234 {
235 struct net_local *lp = netdev_priv(dev);
236
237 iowrite16(regno, lp->virt_addr + ADD_PORT);
238 iowrite16(value, lp->virt_addr + DATA_PORT);
239 }
240
241 static int __init
wait_eeprom_ready(struct net_device * dev)242 wait_eeprom_ready(struct net_device *dev)
243 {
244 unsigned long timeout = jiffies;
245 /* check to see if the EEPROM is ready,
246 * a timeout is used just in case EEPROM is ready when
247 * SI_BUSY in the PP_SelfST is clear
248 */
249 while (readreg(dev, PP_SelfST) & SI_BUSY)
250 if (time_after_eq(jiffies, timeout + 40))
251 return -1;
252 return 0;
253 }
254
255 static int __init
get_eeprom_data(struct net_device * dev,int off,int len,int * buffer)256 get_eeprom_data(struct net_device *dev, int off, int len, int *buffer)
257 {
258 int i;
259
260 cs89_dbg(3, info, "EEPROM data from %x for %x:", off, len);
261 for (i = 0; i < len; i++) {
262 if (wait_eeprom_ready(dev) < 0)
263 return -1;
264 /* Now send the EEPROM read command and EEPROM location to read */
265 writereg(dev, PP_EECMD, (off + i) | EEPROM_READ_CMD);
266 if (wait_eeprom_ready(dev) < 0)
267 return -1;
268 buffer[i] = readreg(dev, PP_EEData);
269 cs89_dbg(3, cont, " %04x", buffer[i]);
270 }
271 cs89_dbg(3, cont, "\n");
272 return 0;
273 }
274
275 static int __init
get_eeprom_cksum(int off,int len,int * buffer)276 get_eeprom_cksum(int off, int len, int *buffer)
277 {
278 int i, cksum;
279
280 cksum = 0;
281 for (i = 0; i < len; i++)
282 cksum += buffer[i];
283 cksum &= 0xffff;
284 if (cksum == 0)
285 return 0;
286 return -1;
287 }
288
289 static void
write_irq(struct net_device * dev,int chip_type,int irq)290 write_irq(struct net_device *dev, int chip_type, int irq)
291 {
292 int i;
293
294 if (chip_type == CS8900) {
295 #if IS_ENABLED(CONFIG_CS89x0_ISA)
296 /* Search the mapping table for the corresponding IRQ pin. */
297 for (i = 0; i != ARRAY_SIZE(cs8900_irq_map); i++)
298 if (cs8900_irq_map[i] == irq)
299 break;
300 /* Not found */
301 if (i == ARRAY_SIZE(cs8900_irq_map))
302 i = 3;
303 #else
304 /* INTRQ0 pin is used for interrupt generation. */
305 i = 0;
306 #endif
307 writereg(dev, PP_CS8900_ISAINT, i);
308 } else {
309 writereg(dev, PP_CS8920_ISAINT, irq);
310 }
311 }
312
313 static void
count_rx_errors(int status,struct net_device * dev)314 count_rx_errors(int status, struct net_device *dev)
315 {
316 dev->stats.rx_errors++;
317 if (status & RX_RUNT)
318 dev->stats.rx_length_errors++;
319 if (status & RX_EXTRA_DATA)
320 dev->stats.rx_length_errors++;
321 if ((status & RX_CRC_ERROR) && !(status & (RX_EXTRA_DATA | RX_RUNT)))
322 /* per str 172 */
323 dev->stats.rx_crc_errors++;
324 if (status & RX_DRIBBLE)
325 dev->stats.rx_frame_errors++;
326 }
327
328 /*********************************
329 * This page contains DMA routines
330 *********************************/
331
332 #if ALLOW_DMA
333
334 #define dma_page_eq(ptr1, ptr2) ((long)(ptr1) >> 17 == (long)(ptr2) >> 17)
335
336 static void
get_dma_channel(struct net_device * dev)337 get_dma_channel(struct net_device *dev)
338 {
339 struct net_local *lp = netdev_priv(dev);
340
341 if (lp->dma) {
342 dev->dma = lp->dma;
343 lp->isa_config |= ISA_RxDMA;
344 } else {
345 if ((lp->isa_config & ANY_ISA_DMA) == 0)
346 return;
347 dev->dma = lp->isa_config & DMA_NO_MASK;
348 if (lp->chip_type == CS8900)
349 dev->dma += 5;
350 if (dev->dma < 5 || dev->dma > 7) {
351 lp->isa_config &= ~ANY_ISA_DMA;
352 return;
353 }
354 }
355 }
356
357 static void
write_dma(struct net_device * dev,int chip_type,int dma)358 write_dma(struct net_device *dev, int chip_type, int dma)
359 {
360 struct net_local *lp = netdev_priv(dev);
361 if ((lp->isa_config & ANY_ISA_DMA) == 0)
362 return;
363 if (chip_type == CS8900)
364 writereg(dev, PP_CS8900_ISADMA, dma - 5);
365 else
366 writereg(dev, PP_CS8920_ISADMA, dma);
367 }
368
369 static void
set_dma_cfg(struct net_device * dev)370 set_dma_cfg(struct net_device *dev)
371 {
372 struct net_local *lp = netdev_priv(dev);
373
374 if (lp->use_dma) {
375 if ((lp->isa_config & ANY_ISA_DMA) == 0) {
376 cs89_dbg(3, err, "set_dma_cfg(): no DMA\n");
377 return;
378 }
379 if (lp->isa_config & ISA_RxDMA) {
380 lp->curr_rx_cfg |= RX_DMA_ONLY;
381 cs89_dbg(3, info, "set_dma_cfg(): RX_DMA_ONLY\n");
382 } else {
383 lp->curr_rx_cfg |= AUTO_RX_DMA; /* not that we support it... */
384 cs89_dbg(3, info, "set_dma_cfg(): AUTO_RX_DMA\n");
385 }
386 }
387 }
388
389 static int
dma_bufcfg(struct net_device * dev)390 dma_bufcfg(struct net_device *dev)
391 {
392 struct net_local *lp = netdev_priv(dev);
393 if (lp->use_dma)
394 return (lp->isa_config & ANY_ISA_DMA) ? RX_DMA_ENBL : 0;
395 else
396 return 0;
397 }
398
399 static int
dma_busctl(struct net_device * dev)400 dma_busctl(struct net_device *dev)
401 {
402 int retval = 0;
403 struct net_local *lp = netdev_priv(dev);
404 if (lp->use_dma) {
405 if (lp->isa_config & ANY_ISA_DMA)
406 retval |= RESET_RX_DMA; /* Reset the DMA pointer */
407 if (lp->isa_config & DMA_BURST)
408 retval |= DMA_BURST_MODE; /* Does ISA config specify DMA burst ? */
409 if (lp->dmasize == 64)
410 retval |= RX_DMA_SIZE_64K; /* did they ask for 64K? */
411 retval |= MEMORY_ON; /* we need memory enabled to use DMA. */
412 }
413 return retval;
414 }
415
416 static void
dma_rx(struct net_device * dev)417 dma_rx(struct net_device *dev)
418 {
419 struct net_local *lp = netdev_priv(dev);
420 struct sk_buff *skb;
421 int status, length;
422 unsigned char *bp = lp->rx_dma_ptr;
423
424 status = bp[0] + (bp[1] << 8);
425 length = bp[2] + (bp[3] << 8);
426 bp += 4;
427
428 cs89_dbg(5, debug, "%s: receiving DMA packet at %lx, status %x, length %x\n",
429 dev->name, (unsigned long)bp, status, length);
430
431 if ((status & RX_OK) == 0) {
432 count_rx_errors(status, dev);
433 goto skip_this_frame;
434 }
435
436 /* Malloc up new buffer. */
437 skb = netdev_alloc_skb(dev, length + 2);
438 if (skb == NULL) {
439 dev->stats.rx_dropped++;
440
441 /* AKPM: advance bp to the next frame */
442 skip_this_frame:
443 bp += (length + 3) & ~3;
444 if (bp >= lp->end_dma_buff)
445 bp -= lp->dmasize * 1024;
446 lp->rx_dma_ptr = bp;
447 return;
448 }
449 skb_reserve(skb, 2); /* longword align L3 header */
450
451 if (bp + length > lp->end_dma_buff) {
452 int semi_cnt = lp->end_dma_buff - bp;
453 skb_put_data(skb, bp, semi_cnt);
454 skb_put_data(skb, lp->dma_buff, length - semi_cnt);
455 } else {
456 skb_put_data(skb, bp, length);
457 }
458 bp += (length + 3) & ~3;
459 if (bp >= lp->end_dma_buff)
460 bp -= lp->dmasize*1024;
461 lp->rx_dma_ptr = bp;
462
463 cs89_dbg(3, info, "%s: received %d byte DMA packet of type %x\n",
464 dev->name, length,
465 ((skb->data[ETH_ALEN + ETH_ALEN] << 8) |
466 skb->data[ETH_ALEN + ETH_ALEN + 1]));
467
468 skb->protocol = eth_type_trans(skb, dev);
469 netif_rx(skb);
470 dev->stats.rx_packets++;
471 dev->stats.rx_bytes += length;
472 }
473
release_dma_buff(struct net_local * lp)474 static void release_dma_buff(struct net_local *lp)
475 {
476 if (lp->dma_buff) {
477 free_pages((unsigned long)(lp->dma_buff),
478 get_order(lp->dmasize * 1024));
479 lp->dma_buff = NULL;
480 }
481 }
482
483 #endif /* ALLOW_DMA */
484
485 static void
control_dc_dc(struct net_device * dev,int on_not_off)486 control_dc_dc(struct net_device *dev, int on_not_off)
487 {
488 struct net_local *lp = netdev_priv(dev);
489 unsigned int selfcontrol;
490 unsigned long timenow = jiffies;
491 /* control the DC to DC convertor in the SelfControl register.
492 * Note: This is hooked up to a general purpose pin, might not
493 * always be a DC to DC convertor.
494 */
495
496 selfcontrol = HCB1_ENBL; /* Enable the HCB1 bit as an output */
497 if (((lp->adapter_cnf & A_CNF_DC_DC_POLARITY) != 0) ^ on_not_off)
498 selfcontrol |= HCB1;
499 else
500 selfcontrol &= ~HCB1;
501 writereg(dev, PP_SelfCTL, selfcontrol);
502
503 /* Wait for the DC/DC converter to power up - 500ms */
504 while (time_before(jiffies, timenow + HZ))
505 ;
506 }
507
508 /* send a test packet - return true if carrier bits are ok */
509 static int
send_test_pkt(struct net_device * dev)510 send_test_pkt(struct net_device *dev)
511 {
512 struct net_local *lp = netdev_priv(dev);
513 char test_packet[] = {
514 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
515 0, 46, /* A 46 in network order */
516 0, 0, /* DSAP=0 & SSAP=0 fields */
517 0xf3, 0 /* Control (Test Req + P bit set) */
518 };
519 unsigned long timenow = jiffies;
520
521 writereg(dev, PP_LineCTL, readreg(dev, PP_LineCTL) | SERIAL_TX_ON);
522
523 memcpy(test_packet, dev->dev_addr, ETH_ALEN);
524 memcpy(test_packet + ETH_ALEN, dev->dev_addr, ETH_ALEN);
525
526 iowrite16(TX_AFTER_ALL, lp->virt_addr + TX_CMD_PORT);
527 iowrite16(ETH_ZLEN, lp->virt_addr + TX_LEN_PORT);
528
529 /* Test to see if the chip has allocated memory for the packet */
530 while (time_before(jiffies, timenow + 5))
531 if (readreg(dev, PP_BusST) & READY_FOR_TX_NOW)
532 break;
533 if (time_after_eq(jiffies, timenow + 5))
534 return 0; /* this shouldn't happen */
535
536 /* Write the contents of the packet */
537 writewords(lp, TX_FRAME_PORT, test_packet, (ETH_ZLEN + 1) >> 1);
538
539 cs89_dbg(1, debug, "Sending test packet ");
540 /* wait a couple of jiffies for packet to be received */
541 for (timenow = jiffies; time_before(jiffies, timenow + 3);)
542 ;
543 if ((readreg(dev, PP_TxEvent) & TX_SEND_OK_BITS) == TX_OK) {
544 cs89_dbg(1, cont, "succeeded\n");
545 return 1;
546 }
547 cs89_dbg(1, cont, "failed\n");
548 return 0;
549 }
550
551 #define DETECTED_NONE 0
552 #define DETECTED_RJ45H 1
553 #define DETECTED_RJ45F 2
554 #define DETECTED_AUI 3
555 #define DETECTED_BNC 4
556
557 static int
detect_tp(struct net_device * dev)558 detect_tp(struct net_device *dev)
559 {
560 struct net_local *lp = netdev_priv(dev);
561 unsigned long timenow = jiffies;
562 int fdx;
563
564 cs89_dbg(1, debug, "%s: Attempting TP\n", dev->name);
565
566 /* If connected to another full duplex capable 10-Base-T card
567 * the link pulses seem to be lost when the auto detect bit in
568 * the LineCTL is set. To overcome this the auto detect bit will
569 * be cleared whilst testing the 10-Base-T interface. This would
570 * not be necessary for the sparrow chip but is simpler to do it
571 * anyway.
572 */
573 writereg(dev, PP_LineCTL, lp->linectl & ~AUI_ONLY);
574 control_dc_dc(dev, 0);
575
576 /* Delay for the hardware to work out if the TP cable is present
577 * - 150ms
578 */
579 for (timenow = jiffies; time_before(jiffies, timenow + 15);)
580 ;
581 if ((readreg(dev, PP_LineST) & LINK_OK) == 0)
582 return DETECTED_NONE;
583
584 if (lp->chip_type == CS8900) {
585 switch (lp->force & 0xf0) {
586 #if 0
587 case FORCE_AUTO:
588 pr_info("%s: cs8900 doesn't autonegotiate\n",
589 dev->name);
590 return DETECTED_NONE;
591 #endif
592 /* CS8900 doesn't support AUTO, change to HALF*/
593 case FORCE_AUTO:
594 lp->force &= ~FORCE_AUTO;
595 lp->force |= FORCE_HALF;
596 break;
597 case FORCE_HALF:
598 break;
599 case FORCE_FULL:
600 writereg(dev, PP_TestCTL,
601 readreg(dev, PP_TestCTL) | FDX_8900);
602 break;
603 }
604 fdx = readreg(dev, PP_TestCTL) & FDX_8900;
605 } else {
606 switch (lp->force & 0xf0) {
607 case FORCE_AUTO:
608 lp->auto_neg_cnf = AUTO_NEG_ENABLE;
609 break;
610 case FORCE_HALF:
611 lp->auto_neg_cnf = 0;
612 break;
613 case FORCE_FULL:
614 lp->auto_neg_cnf = RE_NEG_NOW | ALLOW_FDX;
615 break;
616 }
617
618 writereg(dev, PP_AutoNegCTL, lp->auto_neg_cnf & AUTO_NEG_MASK);
619
620 if ((lp->auto_neg_cnf & AUTO_NEG_BITS) == AUTO_NEG_ENABLE) {
621 pr_info("%s: negotiating duplex...\n", dev->name);
622 while (readreg(dev, PP_AutoNegST) & AUTO_NEG_BUSY) {
623 if (time_after(jiffies, timenow + 4000)) {
624 pr_err("**** Full / half duplex auto-negotiation timed out ****\n");
625 break;
626 }
627 }
628 }
629 fdx = readreg(dev, PP_AutoNegST) & FDX_ACTIVE;
630 }
631 if (fdx)
632 return DETECTED_RJ45F;
633 else
634 return DETECTED_RJ45H;
635 }
636
637 static int
detect_bnc(struct net_device * dev)638 detect_bnc(struct net_device *dev)
639 {
640 struct net_local *lp = netdev_priv(dev);
641
642 cs89_dbg(1, debug, "%s: Attempting BNC\n", dev->name);
643 control_dc_dc(dev, 1);
644
645 writereg(dev, PP_LineCTL, (lp->linectl & ~AUTO_AUI_10BASET) | AUI_ONLY);
646
647 if (send_test_pkt(dev))
648 return DETECTED_BNC;
649 else
650 return DETECTED_NONE;
651 }
652
653 static int
detect_aui(struct net_device * dev)654 detect_aui(struct net_device *dev)
655 {
656 struct net_local *lp = netdev_priv(dev);
657
658 cs89_dbg(1, debug, "%s: Attempting AUI\n", dev->name);
659 control_dc_dc(dev, 0);
660
661 writereg(dev, PP_LineCTL, (lp->linectl & ~AUTO_AUI_10BASET) | AUI_ONLY);
662
663 if (send_test_pkt(dev))
664 return DETECTED_AUI;
665 else
666 return DETECTED_NONE;
667 }
668
669 /* We have a good packet(s), get it/them out of the buffers. */
670 static void
net_rx(struct net_device * dev)671 net_rx(struct net_device *dev)
672 {
673 struct net_local *lp = netdev_priv(dev);
674 struct sk_buff *skb;
675 int status, length;
676
677 status = ioread16(lp->virt_addr + RX_FRAME_PORT);
678 length = ioread16(lp->virt_addr + RX_FRAME_PORT);
679
680 if ((status & RX_OK) == 0) {
681 count_rx_errors(status, dev);
682 return;
683 }
684
685 /* Malloc up new buffer. */
686 skb = netdev_alloc_skb(dev, length + 2);
687 if (skb == NULL) {
688 dev->stats.rx_dropped++;
689 return;
690 }
691 skb_reserve(skb, 2); /* longword align L3 header */
692
693 readwords(lp, RX_FRAME_PORT, skb_put(skb, length), length >> 1);
694 if (length & 1)
695 skb->data[length-1] = ioread16(lp->virt_addr + RX_FRAME_PORT);
696
697 cs89_dbg(3, debug, "%s: received %d byte packet of type %x\n",
698 dev->name, length,
699 (skb->data[ETH_ALEN + ETH_ALEN] << 8) |
700 skb->data[ETH_ALEN + ETH_ALEN + 1]);
701
702 skb->protocol = eth_type_trans(skb, dev);
703 netif_rx(skb);
704 dev->stats.rx_packets++;
705 dev->stats.rx_bytes += length;
706 }
707
708 /* The typical workload of the driver:
709 * Handle the network interface interrupts.
710 */
711
net_interrupt(int irq,void * dev_id)712 static irqreturn_t net_interrupt(int irq, void *dev_id)
713 {
714 struct net_device *dev = dev_id;
715 struct net_local *lp;
716 int status;
717 int handled = 0;
718
719 lp = netdev_priv(dev);
720
721 /* we MUST read all the events out of the ISQ, otherwise we'll never
722 * get interrupted again. As a consequence, we can't have any limit
723 * on the number of times we loop in the interrupt handler. The
724 * hardware guarantees that eventually we'll run out of events. Of
725 * course, if you're on a slow machine, and packets are arriving
726 * faster than you can read them off, you're screwed. Hasta la
727 * vista, baby!
728 */
729 while ((status = ioread16(lp->virt_addr + ISQ_PORT))) {
730 cs89_dbg(4, debug, "%s: event=%04x\n", dev->name, status);
731 handled = 1;
732 switch (status & ISQ_EVENT_MASK) {
733 case ISQ_RECEIVER_EVENT:
734 /* Got a packet(s). */
735 net_rx(dev);
736 break;
737 case ISQ_TRANSMITTER_EVENT:
738 dev->stats.tx_packets++;
739 netif_wake_queue(dev); /* Inform upper layers. */
740 if ((status & (TX_OK |
741 TX_LOST_CRS |
742 TX_SQE_ERROR |
743 TX_LATE_COL |
744 TX_16_COL)) != TX_OK) {
745 if ((status & TX_OK) == 0)
746 dev->stats.tx_errors++;
747 if (status & TX_LOST_CRS)
748 dev->stats.tx_carrier_errors++;
749 if (status & TX_SQE_ERROR)
750 dev->stats.tx_heartbeat_errors++;
751 if (status & TX_LATE_COL)
752 dev->stats.tx_window_errors++;
753 if (status & TX_16_COL)
754 dev->stats.tx_aborted_errors++;
755 }
756 break;
757 case ISQ_BUFFER_EVENT:
758 if (status & READY_FOR_TX) {
759 /* we tried to transmit a packet earlier,
760 * but inexplicably ran out of buffers.
761 * That shouldn't happen since we only ever
762 * load one packet. Shrug. Do the right
763 * thing anyway.
764 */
765 netif_wake_queue(dev); /* Inform upper layers. */
766 }
767 if (status & TX_UNDERRUN) {
768 cs89_dbg(0, err, "%s: transmit underrun\n",
769 dev->name);
770 lp->send_underrun++;
771 if (lp->send_underrun == 3)
772 lp->send_cmd = TX_AFTER_381;
773 else if (lp->send_underrun == 6)
774 lp->send_cmd = TX_AFTER_ALL;
775 /* transmit cycle is done, although
776 * frame wasn't transmitted - this
777 * avoids having to wait for the upper
778 * layers to timeout on us, in the
779 * event of a tx underrun
780 */
781 netif_wake_queue(dev); /* Inform upper layers. */
782 }
783 #if ALLOW_DMA
784 if (lp->use_dma && (status & RX_DMA)) {
785 int count = readreg(dev, PP_DmaFrameCnt);
786 while (count) {
787 cs89_dbg(5, debug,
788 "%s: receiving %d DMA frames\n",
789 dev->name, count);
790 if (count > 1)
791 cs89_dbg(2, debug,
792 "%s: receiving %d DMA frames\n",
793 dev->name, count);
794 dma_rx(dev);
795 if (--count == 0)
796 count = readreg(dev, PP_DmaFrameCnt);
797 if (count > 0)
798 cs89_dbg(2, debug,
799 "%s: continuing with %d DMA frames\n",
800 dev->name, count);
801 }
802 }
803 #endif
804 break;
805 case ISQ_RX_MISS_EVENT:
806 dev->stats.rx_missed_errors += (status >> 6);
807 break;
808 case ISQ_TX_COL_EVENT:
809 dev->stats.collisions += (status >> 6);
810 break;
811 }
812 }
813 return IRQ_RETVAL(handled);
814 }
815
816 /* Open/initialize the board. This is called (in the current kernel)
817 sometime after booting when the 'ifconfig' program is run.
818
819 This routine should set everything up anew at each open, even
820 registers that "should" only need to be set once at boot, so that
821 there is non-reboot way to recover if something goes wrong.
822 */
823
824 /* AKPM: do we need to do any locking here? */
825
826 static int
net_open(struct net_device * dev)827 net_open(struct net_device *dev)
828 {
829 struct net_local *lp = netdev_priv(dev);
830 int result = 0;
831 int i;
832 int ret;
833
834 if (dev->irq < 2) {
835 /* Allow interrupts to be generated by the chip */
836 /* Cirrus' release had this: */
837 #if 0
838 writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL) | ENABLE_IRQ);
839 #endif
840 /* And 2.3.47 had this: */
841 writereg(dev, PP_BusCTL, ENABLE_IRQ | MEMORY_ON);
842
843 for (i = 2; i < CS8920_NO_INTS; i++) {
844 if ((1 << i) & lp->irq_map) {
845 if (request_irq(i, net_interrupt, 0, dev->name,
846 dev) == 0) {
847 dev->irq = i;
848 write_irq(dev, lp->chip_type, i);
849 /* writereg(dev, PP_BufCFG, GENERATE_SW_INTERRUPT); */
850 break;
851 }
852 }
853 }
854
855 if (i >= CS8920_NO_INTS) {
856 writereg(dev, PP_BusCTL, 0); /* disable interrupts. */
857 pr_err("can't get an interrupt\n");
858 ret = -EAGAIN;
859 goto bad_out;
860 }
861 } else {
862 #if IS_ENABLED(CONFIG_CS89x0_ISA)
863 if (((1 << dev->irq) & lp->irq_map) == 0) {
864 pr_err("%s: IRQ %d is not in our map of allowable IRQs, which is %x\n",
865 dev->name, dev->irq, lp->irq_map);
866 ret = -EAGAIN;
867 goto bad_out;
868 }
869 #endif
870 /* FIXME: Cirrus' release had this: */
871 writereg(dev, PP_BusCTL, readreg(dev, PP_BusCTL)|ENABLE_IRQ);
872 /* And 2.3.47 had this: */
873 #if 0
874 writereg(dev, PP_BusCTL, ENABLE_IRQ | MEMORY_ON);
875 #endif
876 write_irq(dev, lp->chip_type, dev->irq);
877 ret = request_irq(dev->irq, net_interrupt, 0, dev->name, dev);
878 if (ret) {
879 pr_err("request_irq(%d) failed\n", dev->irq);
880 goto bad_out;
881 }
882 }
883
884 #if ALLOW_DMA
885 if (lp->use_dma && (lp->isa_config & ANY_ISA_DMA)) {
886 unsigned long flags;
887 lp->dma_buff = (unsigned char *)__get_dma_pages(GFP_KERNEL,
888 get_order(lp->dmasize * 1024));
889 if (!lp->dma_buff) {
890 pr_err("%s: cannot get %dK memory for DMA\n",
891 dev->name, lp->dmasize);
892 goto release_irq;
893 }
894 cs89_dbg(1, debug, "%s: dma %lx %lx\n",
895 dev->name,
896 (unsigned long)lp->dma_buff,
897 (unsigned long)isa_virt_to_bus(lp->dma_buff));
898 if ((unsigned long)lp->dma_buff >= MAX_DMA_ADDRESS ||
899 !dma_page_eq(lp->dma_buff,
900 lp->dma_buff + lp->dmasize * 1024 - 1)) {
901 pr_err("%s: not usable as DMA buffer\n", dev->name);
902 goto release_irq;
903 }
904 memset(lp->dma_buff, 0, lp->dmasize * 1024); /* Why? */
905 if (request_dma(dev->dma, dev->name)) {
906 pr_err("%s: cannot get dma channel %d\n",
907 dev->name, dev->dma);
908 goto release_irq;
909 }
910 write_dma(dev, lp->chip_type, dev->dma);
911 lp->rx_dma_ptr = lp->dma_buff;
912 lp->end_dma_buff = lp->dma_buff + lp->dmasize * 1024;
913 spin_lock_irqsave(&lp->lock, flags);
914 disable_dma(dev->dma);
915 clear_dma_ff(dev->dma);
916 set_dma_mode(dev->dma, DMA_RX_MODE); /* auto_init as well */
917 set_dma_addr(dev->dma, isa_virt_to_bus(lp->dma_buff));
918 set_dma_count(dev->dma, lp->dmasize * 1024);
919 enable_dma(dev->dma);
920 spin_unlock_irqrestore(&lp->lock, flags);
921 }
922 #endif /* ALLOW_DMA */
923
924 /* set the Ethernet address */
925 for (i = 0; i < ETH_ALEN / 2; i++)
926 writereg(dev, PP_IA + i * 2,
927 (dev->dev_addr[i * 2] |
928 (dev->dev_addr[i * 2 + 1] << 8)));
929
930 /* while we're testing the interface, leave interrupts disabled */
931 writereg(dev, PP_BusCTL, MEMORY_ON);
932
933 /* Set the LineCTL quintuplet based on adapter configuration read from EEPROM */
934 if ((lp->adapter_cnf & A_CNF_EXTND_10B_2) &&
935 (lp->adapter_cnf & A_CNF_LOW_RX_SQUELCH))
936 lp->linectl = LOW_RX_SQUELCH;
937 else
938 lp->linectl = 0;
939
940 /* check to make sure that they have the "right" hardware available */
941 switch (lp->adapter_cnf & A_CNF_MEDIA_TYPE) {
942 case A_CNF_MEDIA_10B_T:
943 result = lp->adapter_cnf & A_CNF_10B_T;
944 break;
945 case A_CNF_MEDIA_AUI:
946 result = lp->adapter_cnf & A_CNF_AUI;
947 break;
948 case A_CNF_MEDIA_10B_2:
949 result = lp->adapter_cnf & A_CNF_10B_2;
950 break;
951 default:
952 result = lp->adapter_cnf & (A_CNF_10B_T |
953 A_CNF_AUI |
954 A_CNF_10B_2);
955 }
956 if (!result) {
957 pr_err("%s: EEPROM is configured for unavailable media\n",
958 dev->name);
959 release_dma:
960 #if ALLOW_DMA
961 free_dma(dev->dma);
962 release_irq:
963 release_dma_buff(lp);
964 #endif
965 writereg(dev, PP_LineCTL,
966 readreg(dev, PP_LineCTL) & ~(SERIAL_TX_ON | SERIAL_RX_ON));
967 free_irq(dev->irq, dev);
968 ret = -EAGAIN;
969 goto bad_out;
970 }
971
972 /* set the hardware to the configured choice */
973 switch (lp->adapter_cnf & A_CNF_MEDIA_TYPE) {
974 case A_CNF_MEDIA_10B_T:
975 result = detect_tp(dev);
976 if (result == DETECTED_NONE) {
977 pr_warn("%s: 10Base-T (RJ-45) has no cable\n",
978 dev->name);
979 if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
980 result = DETECTED_RJ45H; /* Yes! I don't care if I see a link pulse */
981 }
982 break;
983 case A_CNF_MEDIA_AUI:
984 result = detect_aui(dev);
985 if (result == DETECTED_NONE) {
986 pr_warn("%s: 10Base-5 (AUI) has no cable\n", dev->name);
987 if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
988 result = DETECTED_AUI; /* Yes! I don't care if I see a carrier */
989 }
990 break;
991 case A_CNF_MEDIA_10B_2:
992 result = detect_bnc(dev);
993 if (result == DETECTED_NONE) {
994 pr_warn("%s: 10Base-2 (BNC) has no cable\n", dev->name);
995 if (lp->auto_neg_cnf & IMM_BIT) /* check "ignore missing media" bit */
996 result = DETECTED_BNC; /* Yes! I don't care if I can xmit a packet */
997 }
998 break;
999 case A_CNF_MEDIA_AUTO:
1000 writereg(dev, PP_LineCTL, lp->linectl | AUTO_AUI_10BASET);
1001 if (lp->adapter_cnf & A_CNF_10B_T) {
1002 result = detect_tp(dev);
1003 if (result != DETECTED_NONE)
1004 break;
1005 }
1006 if (lp->adapter_cnf & A_CNF_AUI) {
1007 result = detect_aui(dev);
1008 if (result != DETECTED_NONE)
1009 break;
1010 }
1011 if (lp->adapter_cnf & A_CNF_10B_2) {
1012 result = detect_bnc(dev);
1013 if (result != DETECTED_NONE)
1014 break;
1015 }
1016 pr_err("%s: no media detected\n", dev->name);
1017 goto release_dma;
1018 }
1019 switch (result) {
1020 case DETECTED_NONE:
1021 pr_err("%s: no network cable attached to configured media\n",
1022 dev->name);
1023 goto release_dma;
1024 case DETECTED_RJ45H:
1025 pr_info("%s: using half-duplex 10Base-T (RJ-45)\n", dev->name);
1026 break;
1027 case DETECTED_RJ45F:
1028 pr_info("%s: using full-duplex 10Base-T (RJ-45)\n", dev->name);
1029 break;
1030 case DETECTED_AUI:
1031 pr_info("%s: using 10Base-5 (AUI)\n", dev->name);
1032 break;
1033 case DETECTED_BNC:
1034 pr_info("%s: using 10Base-2 (BNC)\n", dev->name);
1035 break;
1036 }
1037
1038 /* Turn on both receive and transmit operations */
1039 writereg(dev, PP_LineCTL,
1040 readreg(dev, PP_LineCTL) | SERIAL_RX_ON | SERIAL_TX_ON);
1041
1042 /* Receive only error free packets addressed to this card */
1043 lp->rx_mode = 0;
1044 writereg(dev, PP_RxCTL, DEF_RX_ACCEPT);
1045
1046 lp->curr_rx_cfg = RX_OK_ENBL | RX_CRC_ERROR_ENBL;
1047
1048 if (lp->isa_config & STREAM_TRANSFER)
1049 lp->curr_rx_cfg |= RX_STREAM_ENBL;
1050 #if ALLOW_DMA
1051 set_dma_cfg(dev);
1052 #endif
1053 writereg(dev, PP_RxCFG, lp->curr_rx_cfg);
1054
1055 writereg(dev, PP_TxCFG, (TX_LOST_CRS_ENBL |
1056 TX_SQE_ERROR_ENBL |
1057 TX_OK_ENBL |
1058 TX_LATE_COL_ENBL |
1059 TX_JBR_ENBL |
1060 TX_ANY_COL_ENBL |
1061 TX_16_COL_ENBL));
1062
1063 writereg(dev, PP_BufCFG, (READY_FOR_TX_ENBL |
1064 RX_MISS_COUNT_OVRFLOW_ENBL |
1065 #if ALLOW_DMA
1066 dma_bufcfg(dev) |
1067 #endif
1068 TX_COL_COUNT_OVRFLOW_ENBL |
1069 TX_UNDERRUN_ENBL));
1070
1071 /* now that we've got our act together, enable everything */
1072 writereg(dev, PP_BusCTL, (ENABLE_IRQ
1073 | (dev->mem_start ? MEMORY_ON : 0) /* turn memory on */
1074 #if ALLOW_DMA
1075 | dma_busctl(dev)
1076 #endif
1077 ));
1078 netif_start_queue(dev);
1079 cs89_dbg(1, debug, "net_open() succeeded\n");
1080 return 0;
1081 bad_out:
1082 return ret;
1083 }
1084
1085 /* The inverse routine to net_open(). */
1086 static int
net_close(struct net_device * dev)1087 net_close(struct net_device *dev)
1088 {
1089 #if ALLOW_DMA
1090 struct net_local *lp = netdev_priv(dev);
1091 #endif
1092
1093 netif_stop_queue(dev);
1094
1095 writereg(dev, PP_RxCFG, 0);
1096 writereg(dev, PP_TxCFG, 0);
1097 writereg(dev, PP_BufCFG, 0);
1098 writereg(dev, PP_BusCTL, 0);
1099
1100 free_irq(dev->irq, dev);
1101
1102 #if ALLOW_DMA
1103 if (lp->use_dma && lp->dma) {
1104 free_dma(dev->dma);
1105 release_dma_buff(lp);
1106 }
1107 #endif
1108
1109 /* Update the statistics here. */
1110 return 0;
1111 }
1112
1113 /* Get the current statistics.
1114 * This may be called with the card open or closed.
1115 */
1116 static struct net_device_stats *
net_get_stats(struct net_device * dev)1117 net_get_stats(struct net_device *dev)
1118 {
1119 struct net_local *lp = netdev_priv(dev);
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&lp->lock, flags);
1123 /* Update the statistics from the device registers. */
1124 dev->stats.rx_missed_errors += (readreg(dev, PP_RxMiss) >> 6);
1125 dev->stats.collisions += (readreg(dev, PP_TxCol) >> 6);
1126 spin_unlock_irqrestore(&lp->lock, flags);
1127
1128 return &dev->stats;
1129 }
1130
net_timeout(struct net_device * dev,unsigned int txqueue)1131 static void net_timeout(struct net_device *dev, unsigned int txqueue)
1132 {
1133 /* If we get here, some higher level has decided we are broken.
1134 There should really be a "kick me" function call instead. */
1135 cs89_dbg(0, err, "%s: transmit timed out, %s?\n",
1136 dev->name,
1137 tx_done(dev) ? "IRQ conflict" : "network cable problem");
1138 /* Try to restart the adaptor. */
1139 netif_wake_queue(dev);
1140 }
1141
net_send_packet(struct sk_buff * skb,struct net_device * dev)1142 static netdev_tx_t net_send_packet(struct sk_buff *skb, struct net_device *dev)
1143 {
1144 struct net_local *lp = netdev_priv(dev);
1145 unsigned long flags;
1146
1147 cs89_dbg(3, debug, "%s: sent %d byte packet of type %x\n",
1148 dev->name, skb->len,
1149 ((skb->data[ETH_ALEN + ETH_ALEN] << 8) |
1150 skb->data[ETH_ALEN + ETH_ALEN + 1]));
1151
1152 /* keep the upload from being interrupted, since we
1153 * ask the chip to start transmitting before the
1154 * whole packet has been completely uploaded.
1155 */
1156
1157 spin_lock_irqsave(&lp->lock, flags);
1158 netif_stop_queue(dev);
1159
1160 /* initiate a transmit sequence */
1161 iowrite16(lp->send_cmd, lp->virt_addr + TX_CMD_PORT);
1162 iowrite16(skb->len, lp->virt_addr + TX_LEN_PORT);
1163
1164 /* Test to see if the chip has allocated memory for the packet */
1165 if ((readreg(dev, PP_BusST) & READY_FOR_TX_NOW) == 0) {
1166 /* Gasp! It hasn't. But that shouldn't happen since
1167 * we're waiting for TxOk, so return 1 and requeue this packet.
1168 */
1169
1170 spin_unlock_irqrestore(&lp->lock, flags);
1171 cs89_dbg(0, err, "Tx buffer not free!\n");
1172 return NETDEV_TX_BUSY;
1173 }
1174 /* Write the contents of the packet */
1175 writewords(lp, TX_FRAME_PORT, skb->data, (skb->len + 1) >> 1);
1176 spin_unlock_irqrestore(&lp->lock, flags);
1177 dev->stats.tx_bytes += skb->len;
1178 dev_consume_skb_any(skb);
1179
1180 /* We DO NOT call netif_wake_queue() here.
1181 * We also DO NOT call netif_start_queue().
1182 *
1183 * Either of these would cause another bottom half run through
1184 * net_send_packet() before this packet has fully gone out.
1185 * That causes us to hit the "Gasp!" above and the send is rescheduled.
1186 * it runs like a dog. We just return and wait for the Tx completion
1187 * interrupt handler to restart the netdevice layer
1188 */
1189
1190 return NETDEV_TX_OK;
1191 }
1192
set_multicast_list(struct net_device * dev)1193 static void set_multicast_list(struct net_device *dev)
1194 {
1195 struct net_local *lp = netdev_priv(dev);
1196 unsigned long flags;
1197 u16 cfg;
1198
1199 spin_lock_irqsave(&lp->lock, flags);
1200 if (dev->flags & IFF_PROMISC)
1201 lp->rx_mode = RX_ALL_ACCEPT;
1202 else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev))
1203 /* The multicast-accept list is initialized to accept-all,
1204 * and we rely on higher-level filtering for now.
1205 */
1206 lp->rx_mode = RX_MULTCAST_ACCEPT;
1207 else
1208 lp->rx_mode = 0;
1209
1210 writereg(dev, PP_RxCTL, DEF_RX_ACCEPT | lp->rx_mode);
1211
1212 /* in promiscuous mode, we accept errored packets,
1213 * so we have to enable interrupts on them also
1214 */
1215 cfg = lp->curr_rx_cfg;
1216 if (lp->rx_mode == RX_ALL_ACCEPT)
1217 cfg |= RX_CRC_ERROR_ENBL | RX_RUNT_ENBL | RX_EXTRA_DATA_ENBL;
1218 writereg(dev, PP_RxCFG, cfg);
1219 spin_unlock_irqrestore(&lp->lock, flags);
1220 }
1221
set_mac_address(struct net_device * dev,void * p)1222 static int set_mac_address(struct net_device *dev, void *p)
1223 {
1224 int i;
1225 struct sockaddr *addr = p;
1226
1227 if (netif_running(dev))
1228 return -EBUSY;
1229
1230 eth_hw_addr_set(dev, addr->sa_data);
1231
1232 cs89_dbg(0, debug, "%s: Setting MAC address to %pM\n",
1233 dev->name, dev->dev_addr);
1234
1235 /* set the Ethernet address */
1236 for (i = 0; i < ETH_ALEN / 2; i++)
1237 writereg(dev, PP_IA + i * 2,
1238 (dev->dev_addr[i * 2] |
1239 (dev->dev_addr[i * 2 + 1] << 8)));
1240
1241 return 0;
1242 }
1243
1244 #ifdef CONFIG_NET_POLL_CONTROLLER
1245 /*
1246 * Polling receive - used by netconsole and other diagnostic tools
1247 * to allow network i/o with interrupts disabled.
1248 */
net_poll_controller(struct net_device * dev)1249 static void net_poll_controller(struct net_device *dev)
1250 {
1251 disable_irq(dev->irq);
1252 net_interrupt(dev->irq, dev);
1253 enable_irq(dev->irq);
1254 }
1255 #endif
1256
1257 static const struct net_device_ops net_ops = {
1258 .ndo_open = net_open,
1259 .ndo_stop = net_close,
1260 .ndo_tx_timeout = net_timeout,
1261 .ndo_start_xmit = net_send_packet,
1262 .ndo_get_stats = net_get_stats,
1263 .ndo_set_rx_mode = set_multicast_list,
1264 .ndo_set_mac_address = set_mac_address,
1265 #ifdef CONFIG_NET_POLL_CONTROLLER
1266 .ndo_poll_controller = net_poll_controller,
1267 #endif
1268 .ndo_validate_addr = eth_validate_addr,
1269 };
1270
reset_chip(struct net_device * dev)1271 static void __init reset_chip(struct net_device *dev)
1272 {
1273 #if !defined(CONFIG_MACH_MX31ADS)
1274 struct net_local *lp = netdev_priv(dev);
1275 unsigned long reset_start_time;
1276
1277 writereg(dev, PP_SelfCTL, readreg(dev, PP_SelfCTL) | POWER_ON_RESET);
1278
1279 /* wait 30 ms */
1280 msleep(30);
1281
1282 if (lp->chip_type != CS8900) {
1283 /* Hardware problem requires PNP registers to be reconfigured after a reset */
1284 iowrite16(PP_CS8920_ISAINT, lp->virt_addr + ADD_PORT);
1285 iowrite8(dev->irq, lp->virt_addr + DATA_PORT);
1286 iowrite8(0, lp->virt_addr + DATA_PORT + 1);
1287
1288 iowrite16(PP_CS8920_ISAMemB, lp->virt_addr + ADD_PORT);
1289 iowrite8((dev->mem_start >> 16) & 0xff,
1290 lp->virt_addr + DATA_PORT);
1291 iowrite8((dev->mem_start >> 8) & 0xff,
1292 lp->virt_addr + DATA_PORT + 1);
1293 }
1294
1295 /* Wait until the chip is reset */
1296 reset_start_time = jiffies;
1297 while ((readreg(dev, PP_SelfST) & INIT_DONE) == 0 &&
1298 time_before(jiffies, reset_start_time + 2))
1299 ;
1300 #endif /* !CONFIG_MACH_MX31ADS */
1301 }
1302
1303 /* This is the real probe routine.
1304 * Linux has a history of friendly device probes on the ISA bus.
1305 * A good device probes avoids doing writes, and
1306 * verifies that the correct device exists and functions.
1307 * Return 0 on success.
1308 */
1309 static int __init
cs89x0_probe1(struct net_device * dev,void __iomem * ioaddr,int modular)1310 cs89x0_probe1(struct net_device *dev, void __iomem *ioaddr, int modular)
1311 {
1312 struct net_local *lp = netdev_priv(dev);
1313 int i;
1314 int tmp;
1315 unsigned rev_type = 0;
1316 int eeprom_buff[CHKSUM_LEN];
1317 u8 addr[ETH_ALEN];
1318 int retval;
1319
1320 /* Initialize the device structure. */
1321 if (!modular) {
1322 memset(lp, 0, sizeof(*lp));
1323 spin_lock_init(&lp->lock);
1324 #ifndef MODULE
1325 #if ALLOW_DMA
1326 if (g_cs89x0_dma) {
1327 lp->use_dma = 1;
1328 lp->dma = g_cs89x0_dma;
1329 lp->dmasize = 16; /* Could make this an option... */
1330 }
1331 #endif
1332 lp->force = g_cs89x0_media__force;
1333 #endif
1334 }
1335
1336 pr_debug("PP_addr at %p[%x]: 0x%x\n",
1337 ioaddr, ADD_PORT, ioread16(ioaddr + ADD_PORT));
1338 iowrite16(PP_ChipID, ioaddr + ADD_PORT);
1339
1340 tmp = ioread16(ioaddr + DATA_PORT);
1341 if (tmp != CHIP_EISA_ID_SIG) {
1342 pr_debug("%s: incorrect signature at %p[%x]: 0x%x!="
1343 CHIP_EISA_ID_SIG_STR "\n",
1344 dev->name, ioaddr, DATA_PORT, tmp);
1345 retval = -ENODEV;
1346 goto out1;
1347 }
1348
1349 lp->virt_addr = ioaddr;
1350
1351 /* get the chip type */
1352 rev_type = readreg(dev, PRODUCT_ID_ADD);
1353 lp->chip_type = rev_type & ~REVISON_BITS;
1354 lp->chip_revision = ((rev_type & REVISON_BITS) >> 8) + 'A';
1355
1356 /* Check the chip type and revision in order to set the correct
1357 * send command. CS8920 revision C and CS8900 revision F can use
1358 * the faster send.
1359 */
1360 lp->send_cmd = TX_AFTER_381;
1361 if (lp->chip_type == CS8900 && lp->chip_revision >= 'F')
1362 lp->send_cmd = TX_NOW;
1363 if (lp->chip_type != CS8900 && lp->chip_revision >= 'C')
1364 lp->send_cmd = TX_NOW;
1365
1366 pr_info_once("%s\n", version);
1367
1368 pr_info("%s: cs89%c0%s rev %c found at %p ",
1369 dev->name,
1370 lp->chip_type == CS8900 ? '0' : '2',
1371 lp->chip_type == CS8920M ? "M" : "",
1372 lp->chip_revision,
1373 lp->virt_addr);
1374
1375 reset_chip(dev);
1376
1377 /* Here we read the current configuration of the chip.
1378 * If there is no Extended EEPROM then the idea is to not disturb
1379 * the chip configuration, it should have been correctly setup by
1380 * automatic EEPROM read on reset. So, if the chip says it read
1381 * the EEPROM the driver will always do *something* instead of
1382 * complain that adapter_cnf is 0.
1383 */
1384
1385 if ((readreg(dev, PP_SelfST) & (EEPROM_OK | EEPROM_PRESENT)) ==
1386 (EEPROM_OK | EEPROM_PRESENT)) {
1387 /* Load the MAC. */
1388 for (i = 0; i < ETH_ALEN / 2; i++) {
1389 unsigned int Addr;
1390 Addr = readreg(dev, PP_IA + i * 2);
1391 addr[i * 2] = Addr & 0xFF;
1392 addr[i * 2 + 1] = Addr >> 8;
1393 }
1394 eth_hw_addr_set(dev, addr);
1395
1396 /* Load the Adapter Configuration.
1397 * Note: Barring any more specific information from some
1398 * other source (ie EEPROM+Schematics), we would not know
1399 * how to operate a 10Base2 interface on the AUI port.
1400 * However, since we do read the status of HCB1 and use
1401 * settings that always result in calls to control_dc_dc(dev,0)
1402 * a BNC interface should work if the enable pin
1403 * (dc/dc converter) is on HCB1.
1404 * It will be called AUI however.
1405 */
1406
1407 lp->adapter_cnf = 0;
1408 i = readreg(dev, PP_LineCTL);
1409 /* Preserve the setting of the HCB1 pin. */
1410 if ((i & (HCB1 | HCB1_ENBL)) == (HCB1 | HCB1_ENBL))
1411 lp->adapter_cnf |= A_CNF_DC_DC_POLARITY;
1412 /* Save the sqelch bit */
1413 if ((i & LOW_RX_SQUELCH) == LOW_RX_SQUELCH)
1414 lp->adapter_cnf |= A_CNF_EXTND_10B_2 | A_CNF_LOW_RX_SQUELCH;
1415 /* Check if the card is in 10Base-t only mode */
1416 if ((i & (AUI_ONLY | AUTO_AUI_10BASET)) == 0)
1417 lp->adapter_cnf |= A_CNF_10B_T | A_CNF_MEDIA_10B_T;
1418 /* Check if the card is in AUI only mode */
1419 if ((i & (AUI_ONLY | AUTO_AUI_10BASET)) == AUI_ONLY)
1420 lp->adapter_cnf |= A_CNF_AUI | A_CNF_MEDIA_AUI;
1421 /* Check if the card is in Auto mode. */
1422 if ((i & (AUI_ONLY | AUTO_AUI_10BASET)) == AUTO_AUI_10BASET)
1423 lp->adapter_cnf |= A_CNF_AUI | A_CNF_10B_T |
1424 A_CNF_MEDIA_AUI | A_CNF_MEDIA_10B_T | A_CNF_MEDIA_AUTO;
1425
1426 cs89_dbg(1, info, "%s: PP_LineCTL=0x%x, adapter_cnf=0x%x\n",
1427 dev->name, i, lp->adapter_cnf);
1428
1429 /* IRQ. Other chips already probe, see below. */
1430 if (lp->chip_type == CS8900)
1431 lp->isa_config = readreg(dev, PP_CS8900_ISAINT) & INT_NO_MASK;
1432
1433 pr_cont("[Cirrus EEPROM] ");
1434 }
1435
1436 pr_cont("\n");
1437
1438 /* First check to see if an EEPROM is attached. */
1439
1440 if ((readreg(dev, PP_SelfST) & EEPROM_PRESENT) == 0)
1441 pr_warn("No EEPROM, relying on command line....\n");
1442 else if (get_eeprom_data(dev, START_EEPROM_DATA, CHKSUM_LEN, eeprom_buff) < 0) {
1443 pr_warn("EEPROM read failed, relying on command line\n");
1444 } else if (get_eeprom_cksum(START_EEPROM_DATA, CHKSUM_LEN, eeprom_buff) < 0) {
1445 /* Check if the chip was able to read its own configuration starting
1446 at 0 in the EEPROM*/
1447 if ((readreg(dev, PP_SelfST) & (EEPROM_OK | EEPROM_PRESENT)) !=
1448 (EEPROM_OK | EEPROM_PRESENT))
1449 pr_warn("Extended EEPROM checksum bad and no Cirrus EEPROM, relying on command line\n");
1450
1451 } else {
1452 /* This reads an extended EEPROM that is not documented
1453 * in the CS8900 datasheet.
1454 */
1455
1456 /* get transmission control word but keep the autonegotiation bits */
1457 if (!lp->auto_neg_cnf)
1458 lp->auto_neg_cnf = eeprom_buff[AUTO_NEG_CNF_OFFSET / 2];
1459 /* Store adapter configuration */
1460 if (!lp->adapter_cnf)
1461 lp->adapter_cnf = eeprom_buff[ADAPTER_CNF_OFFSET / 2];
1462 /* Store ISA configuration */
1463 lp->isa_config = eeprom_buff[ISA_CNF_OFFSET / 2];
1464 dev->mem_start = eeprom_buff[PACKET_PAGE_OFFSET / 2] << 8;
1465
1466 /* eeprom_buff has 32-bit ints, so we can't just memcpy it */
1467 /* store the initial memory base address */
1468 for (i = 0; i < ETH_ALEN / 2; i++) {
1469 addr[i * 2] = eeprom_buff[i];
1470 addr[i * 2 + 1] = eeprom_buff[i] >> 8;
1471 }
1472 eth_hw_addr_set(dev, addr);
1473 cs89_dbg(1, debug, "%s: new adapter_cnf: 0x%x\n",
1474 dev->name, lp->adapter_cnf);
1475 }
1476
1477 /* allow them to force multiple transceivers. If they force multiple, autosense */
1478 {
1479 int count = 0;
1480 if (lp->force & FORCE_RJ45) {
1481 lp->adapter_cnf |= A_CNF_10B_T;
1482 count++;
1483 }
1484 if (lp->force & FORCE_AUI) {
1485 lp->adapter_cnf |= A_CNF_AUI;
1486 count++;
1487 }
1488 if (lp->force & FORCE_BNC) {
1489 lp->adapter_cnf |= A_CNF_10B_2;
1490 count++;
1491 }
1492 if (count > 1)
1493 lp->adapter_cnf |= A_CNF_MEDIA_AUTO;
1494 else if (lp->force & FORCE_RJ45)
1495 lp->adapter_cnf |= A_CNF_MEDIA_10B_T;
1496 else if (lp->force & FORCE_AUI)
1497 lp->adapter_cnf |= A_CNF_MEDIA_AUI;
1498 else if (lp->force & FORCE_BNC)
1499 lp->adapter_cnf |= A_CNF_MEDIA_10B_2;
1500 }
1501
1502 cs89_dbg(1, debug, "%s: after force 0x%x, adapter_cnf=0x%x\n",
1503 dev->name, lp->force, lp->adapter_cnf);
1504
1505 /* FIXME: We don't let you set dc-dc polarity or low RX squelch from the command line: add it here */
1506
1507 /* FIXME: We don't let you set the IMM bit from the command line: add it to lp->auto_neg_cnf here */
1508
1509 /* FIXME: we don't set the Ethernet address on the command line. Use
1510 * ifconfig IFACE hw ether AABBCCDDEEFF
1511 */
1512
1513 pr_info("media %s%s%s",
1514 (lp->adapter_cnf & A_CNF_10B_T) ? "RJ-45," : "",
1515 (lp->adapter_cnf & A_CNF_AUI) ? "AUI," : "",
1516 (lp->adapter_cnf & A_CNF_10B_2) ? "BNC," : "");
1517
1518 lp->irq_map = 0xffff;
1519
1520 /* If this is a CS8900 then no pnp soft */
1521 if (lp->chip_type != CS8900 &&
1522 /* Check if the ISA IRQ has been set */
1523 (i = readreg(dev, PP_CS8920_ISAINT) & 0xff,
1524 (i != 0 && i < CS8920_NO_INTS))) {
1525 if (!dev->irq)
1526 dev->irq = i;
1527 } else {
1528 i = lp->isa_config & INT_NO_MASK;
1529 #if IS_ENABLED(CONFIG_CS89x0_ISA)
1530 if (lp->chip_type == CS8900) {
1531 /* Translate the IRQ using the IRQ mapping table. */
1532 if (i >= ARRAY_SIZE(cs8900_irq_map))
1533 pr_err("invalid ISA interrupt number %d\n", i);
1534 else
1535 i = cs8900_irq_map[i];
1536
1537 lp->irq_map = CS8900_IRQ_MAP; /* fixed IRQ map for CS8900 */
1538 } else {
1539 int irq_map_buff[IRQ_MAP_LEN/2];
1540
1541 if (get_eeprom_data(dev, IRQ_MAP_EEPROM_DATA,
1542 IRQ_MAP_LEN / 2,
1543 irq_map_buff) >= 0) {
1544 if ((irq_map_buff[0] & 0xff) == PNP_IRQ_FRMT)
1545 lp->irq_map = ((irq_map_buff[0] >> 8) |
1546 (irq_map_buff[1] << 8));
1547 }
1548 }
1549 #endif
1550 if (!dev->irq)
1551 dev->irq = i;
1552 }
1553
1554 pr_cont(" IRQ %d", dev->irq);
1555
1556 #if ALLOW_DMA
1557 if (lp->use_dma) {
1558 get_dma_channel(dev);
1559 pr_cont(", DMA %d", dev->dma);
1560 } else
1561 #endif
1562 pr_cont(", programmed I/O");
1563
1564 /* print the ethernet address. */
1565 pr_cont(", MAC %pM\n", dev->dev_addr);
1566
1567 dev->netdev_ops = &net_ops;
1568 dev->watchdog_timeo = HZ;
1569
1570 cs89_dbg(0, info, "cs89x0_probe1() successful\n");
1571
1572 retval = register_netdev(dev);
1573 if (retval)
1574 goto out2;
1575 return 0;
1576 out2:
1577 iowrite16(PP_ChipID, lp->virt_addr + ADD_PORT);
1578 out1:
1579 return retval;
1580 }
1581
1582 #if IS_ENABLED(CONFIG_CS89x0_ISA)
1583 /*
1584 * This function converts the I/O port address used by the cs89x0_probe() and
1585 * init_module() functions to the I/O memory address used by the
1586 * cs89x0_probe1() function.
1587 */
1588 static int __init
cs89x0_ioport_probe(struct net_device * dev,unsigned long ioport,int modular)1589 cs89x0_ioport_probe(struct net_device *dev, unsigned long ioport, int modular)
1590 {
1591 struct net_local *lp = netdev_priv(dev);
1592 int ret;
1593 void __iomem *io_mem;
1594
1595 if (!lp)
1596 return -ENOMEM;
1597
1598 dev->base_addr = ioport;
1599
1600 if (!request_region(ioport, NETCARD_IO_EXTENT, DRV_NAME)) {
1601 ret = -EBUSY;
1602 goto out;
1603 }
1604
1605 io_mem = ioport_map(ioport & ~3, NETCARD_IO_EXTENT);
1606 if (!io_mem) {
1607 ret = -ENOMEM;
1608 goto release;
1609 }
1610
1611 /* if they give us an odd I/O address, then do ONE write to
1612 * the address port, to get it back to address zero, where we
1613 * expect to find the EISA signature word. An IO with a base of 0x3
1614 * will skip the test for the ADD_PORT.
1615 */
1616 if (ioport & 1) {
1617 cs89_dbg(1, info, "%s: odd ioaddr 0x%lx\n", dev->name, ioport);
1618 if ((ioport & 2) != 2) {
1619 if ((ioread16(io_mem + ADD_PORT) & ADD_MASK) !=
1620 ADD_SIG) {
1621 pr_err("%s: bad signature 0x%x\n",
1622 dev->name, ioread16(io_mem + ADD_PORT));
1623 ret = -ENODEV;
1624 goto unmap;
1625 }
1626 }
1627 }
1628
1629 ret = cs89x0_probe1(dev, io_mem, modular);
1630 if (!ret)
1631 goto out;
1632 unmap:
1633 ioport_unmap(io_mem);
1634 release:
1635 release_region(ioport, NETCARD_IO_EXTENT);
1636 out:
1637 return ret;
1638 }
1639
1640 #ifndef MODULE
1641 /* Check for a network adaptor of this type, and return '0' iff one exists.
1642 * If dev->base_addr == 0, probe all likely locations.
1643 * If dev->base_addr == 1, always return failure.
1644 * If dev->base_addr == 2, allocate space for the device and return success
1645 * (detachable devices only).
1646 * Return 0 on success.
1647 */
1648
cs89x0_probe(int unit)1649 struct net_device * __init cs89x0_probe(int unit)
1650 {
1651 struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
1652 unsigned *port;
1653 int err = 0;
1654 int irq;
1655 int io;
1656
1657 if (!dev)
1658 return ERR_PTR(-ENODEV);
1659
1660 sprintf(dev->name, "eth%d", unit);
1661 netdev_boot_setup_check(dev);
1662 io = dev->base_addr;
1663 irq = dev->irq;
1664
1665 cs89_dbg(0, info, "cs89x0_probe(0x%x)\n", io);
1666
1667 if (io > 0x1ff) { /* Check a single specified location. */
1668 err = cs89x0_ioport_probe(dev, io, 0);
1669 } else if (io != 0) { /* Don't probe at all. */
1670 err = -ENXIO;
1671 } else {
1672 for (port = netcard_portlist; *port; port++) {
1673 if (cs89x0_ioport_probe(dev, *port, 0) == 0)
1674 break;
1675 dev->irq = irq;
1676 }
1677 if (!*port)
1678 err = -ENODEV;
1679 }
1680 if (err)
1681 goto out;
1682 return dev;
1683 out:
1684 free_netdev(dev);
1685 pr_warn("no cs8900 or cs8920 detected. Be sure to disable PnP with SETUP\n");
1686 return ERR_PTR(err);
1687 }
1688 #else
1689 static struct net_device *dev_cs89x0;
1690
1691 /* Support the 'debug' module parm even if we're compiled for non-debug to
1692 * avoid breaking someone's startup scripts
1693 */
1694
1695 static int io;
1696 static int irq;
1697 static int debug;
1698 static char media[8];
1699 static int duplex = -1;
1700
1701 static int use_dma; /* These generate unused var warnings if ALLOW_DMA = 0 */
1702 static int dma;
1703 static int dmasize = 16; /* or 64 */
1704
1705 module_param_hw(io, int, ioport, 0);
1706 module_param_hw(irq, int, irq, 0);
1707 module_param(debug, int, 0);
1708 module_param_string(media, media, sizeof(media), 0);
1709 module_param(duplex, int, 0);
1710 module_param_hw(dma , int, dma, 0);
1711 module_param(dmasize , int, 0);
1712 module_param(use_dma , int, 0);
1713 MODULE_PARM_DESC(io, "cs89x0 I/O base address");
1714 MODULE_PARM_DESC(irq, "cs89x0 IRQ number");
1715 #if DEBUGGING
1716 MODULE_PARM_DESC(debug, "cs89x0 debug level (0-6)");
1717 #else
1718 MODULE_PARM_DESC(debug, "(ignored)");
1719 #endif
1720 MODULE_PARM_DESC(media, "Set cs89x0 adapter(s) media type(s) (rj45,bnc,aui)");
1721 /* No other value than -1 for duplex seems to be currently interpreted */
1722 MODULE_PARM_DESC(duplex, "(ignored)");
1723 #if ALLOW_DMA
1724 MODULE_PARM_DESC(dma , "cs89x0 ISA DMA channel; ignored if use_dma=0");
1725 MODULE_PARM_DESC(dmasize , "cs89x0 DMA size in kB (16,64); ignored if use_dma=0");
1726 MODULE_PARM_DESC(use_dma , "cs89x0 using DMA (0-1)");
1727 #else
1728 MODULE_PARM_DESC(dma , "(ignored)");
1729 MODULE_PARM_DESC(dmasize , "(ignored)");
1730 MODULE_PARM_DESC(use_dma , "(ignored)");
1731 #endif
1732
1733 MODULE_AUTHOR("Mike Cruse, Russwll Nelson <nelson@crynwr.com>, Andrew Morton");
1734 MODULE_LICENSE("GPL");
1735
1736 /*
1737 * media=t - specify media type
1738 * or media=2
1739 * or media=aui
1740 * or medai=auto
1741 * duplex=0 - specify forced half/full/autonegotiate duplex
1742 * debug=# - debug level
1743 *
1744 * Default Chip Configuration:
1745 * DMA Burst = enabled
1746 * IOCHRDY Enabled = enabled
1747 * UseSA = enabled
1748 * CS8900 defaults to half-duplex if not specified on command-line
1749 * CS8920 defaults to autoneg if not specified on command-line
1750 * Use reset defaults for other config parameters
1751 *
1752 * Assumptions:
1753 * media type specified is supported (circuitry is present)
1754 * if memory address is > 1MB, then required mem decode hw is present
1755 * if 10B-2, then agent other than driver will enable DC/DC converter
1756 * (hw or software util)
1757 */
1758
cs89x0_isa_init_module(void)1759 static int __init cs89x0_isa_init_module(void)
1760 {
1761 struct net_device *dev;
1762 struct net_local *lp;
1763 int ret = 0;
1764
1765 #if DEBUGGING
1766 net_debug = debug;
1767 #else
1768 debug = 0;
1769 #endif
1770 dev = alloc_etherdev(sizeof(struct net_local));
1771 if (!dev)
1772 return -ENOMEM;
1773
1774 dev->irq = irq;
1775 dev->base_addr = io;
1776 lp = netdev_priv(dev);
1777
1778 #if ALLOW_DMA
1779 if (use_dma) {
1780 lp->use_dma = use_dma;
1781 lp->dma = dma;
1782 lp->dmasize = dmasize;
1783 }
1784 #endif
1785
1786 spin_lock_init(&lp->lock);
1787
1788 /* boy, they'd better get these right */
1789 if (!strcmp(media, "rj45"))
1790 lp->adapter_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T;
1791 else if (!strcmp(media, "aui"))
1792 lp->adapter_cnf = A_CNF_MEDIA_AUI | A_CNF_AUI;
1793 else if (!strcmp(media, "bnc"))
1794 lp->adapter_cnf = A_CNF_MEDIA_10B_2 | A_CNF_10B_2;
1795 else
1796 lp->adapter_cnf = A_CNF_MEDIA_10B_T | A_CNF_10B_T;
1797
1798 if (duplex == -1)
1799 lp->auto_neg_cnf = AUTO_NEG_ENABLE;
1800
1801 if (io == 0) {
1802 pr_err("Module autoprobing not allowed\n");
1803 pr_err("Append io=0xNNN\n");
1804 ret = -EPERM;
1805 goto out;
1806 } else if (io <= 0x1ff) {
1807 ret = -ENXIO;
1808 goto out;
1809 }
1810
1811 #if ALLOW_DMA
1812 if (use_dma && dmasize != 16 && dmasize != 64) {
1813 pr_err("dma size must be either 16K or 64K, not %dK\n",
1814 dmasize);
1815 ret = -EPERM;
1816 goto out;
1817 }
1818 #endif
1819 ret = cs89x0_ioport_probe(dev, io, 1);
1820 if (ret)
1821 goto out;
1822
1823 dev_cs89x0 = dev;
1824 return 0;
1825 out:
1826 free_netdev(dev);
1827 return ret;
1828 }
1829 module_init(cs89x0_isa_init_module);
1830
cs89x0_isa_cleanup_module(void)1831 static void __exit cs89x0_isa_cleanup_module(void)
1832 {
1833 struct net_local *lp = netdev_priv(dev_cs89x0);
1834
1835 unregister_netdev(dev_cs89x0);
1836 iowrite16(PP_ChipID, lp->virt_addr + ADD_PORT);
1837 ioport_unmap(lp->virt_addr);
1838 release_region(dev_cs89x0->base_addr, NETCARD_IO_EXTENT);
1839 free_netdev(dev_cs89x0);
1840 }
1841 module_exit(cs89x0_isa_cleanup_module);
1842 #endif /* MODULE */
1843 #endif /* CONFIG_CS89x0_ISA */
1844
1845 #if IS_ENABLED(CONFIG_CS89x0_PLATFORM)
cs89x0_platform_probe(struct platform_device * pdev)1846 static int __init cs89x0_platform_probe(struct platform_device *pdev)
1847 {
1848 struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
1849 void __iomem *virt_addr;
1850 int err;
1851
1852 if (!dev)
1853 return -ENOMEM;
1854
1855 dev->irq = platform_get_irq(pdev, 0);
1856 if (dev->irq <= 0) {
1857 dev_warn(&dev->dev, "interrupt resource missing\n");
1858 err = -ENXIO;
1859 goto free;
1860 }
1861
1862 virt_addr = devm_platform_ioremap_resource(pdev, 0);
1863 if (IS_ERR(virt_addr)) {
1864 err = PTR_ERR(virt_addr);
1865 goto free;
1866 }
1867
1868 err = cs89x0_probe1(dev, virt_addr, 0);
1869 if (err) {
1870 dev_warn(&dev->dev, "no cs8900 or cs8920 detected\n");
1871 goto free;
1872 }
1873
1874 platform_set_drvdata(pdev, dev);
1875 return 0;
1876
1877 free:
1878 free_netdev(dev);
1879 return err;
1880 }
1881
cs89x0_platform_remove(struct platform_device * pdev)1882 static int cs89x0_platform_remove(struct platform_device *pdev)
1883 {
1884 struct net_device *dev = platform_get_drvdata(pdev);
1885
1886 /* This platform_get_resource() call will not return NULL, because
1887 * the same call in cs89x0_platform_probe() has returned a non NULL
1888 * value.
1889 */
1890 unregister_netdev(dev);
1891 free_netdev(dev);
1892 return 0;
1893 }
1894
1895 static const struct of_device_id __maybe_unused cs89x0_match[] = {
1896 { .compatible = "cirrus,cs8900", },
1897 { .compatible = "cirrus,cs8920", },
1898 { },
1899 };
1900 MODULE_DEVICE_TABLE(of, cs89x0_match);
1901
1902 static struct platform_driver cs89x0_driver = {
1903 .driver = {
1904 .name = DRV_NAME,
1905 .of_match_table = of_match_ptr(cs89x0_match),
1906 },
1907 .remove = cs89x0_platform_remove,
1908 };
1909
1910 module_platform_driver_probe(cs89x0_driver, cs89x0_platform_probe);
1911
1912 #endif /* CONFIG_CS89x0_PLATFORM */
1913
1914 MODULE_LICENSE("GPL");
1915 MODULE_DESCRIPTION("Crystal Semiconductor (Now Cirrus Logic) CS89[02]0 network driver");
1916 MODULE_AUTHOR("Russell Nelson <nelson@crynwr.com>");
1917