1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/drivers/thermal/cpufreq_cooling.c
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
6 *
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/device.h>
17 #include <linux/energy_model.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24 #include <linux/units.h>
25
26 #include <trace/events/thermal.h>
27
28 /*
29 * Cooling state <-> CPUFreq frequency
30 *
31 * Cooling states are translated to frequencies throughout this driver and this
32 * is the relation between them.
33 *
34 * Highest cooling state corresponds to lowest possible frequency.
35 *
36 * i.e.
37 * level 0 --> 1st Max Freq
38 * level 1 --> 2nd Max Freq
39 * ...
40 */
41
42 /**
43 * struct time_in_idle - Idle time stats
44 * @time: previous reading of the absolute time that this cpu was idle
45 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46 */
47 struct time_in_idle {
48 u64 time;
49 u64 timestamp;
50 };
51
52 /**
53 * struct cpufreq_cooling_device - data for cooling device with cpufreq
54 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
55 * @cpufreq_state: integer value representing the current state of cpufreq
56 * cooling devices.
57 * @max_level: maximum cooling level. One less than total number of valid
58 * cpufreq frequencies.
59 * @em: Reference on the Energy Model of the device
60 * @cdev: thermal_cooling_device pointer to keep track of the
61 * registered cooling device.
62 * @policy: cpufreq policy.
63 * @cooling_ops: cpufreq callbacks to thermal cooling device ops
64 * @idle_time: idle time stats
65 * @qos_req: PM QoS contraint to apply
66 *
67 * This structure is required for keeping information of each registered
68 * cpufreq_cooling_device.
69 */
70 struct cpufreq_cooling_device {
71 u32 last_load;
72 unsigned int cpufreq_state;
73 unsigned int max_level;
74 struct em_perf_domain *em;
75 struct cpufreq_policy *policy;
76 struct thermal_cooling_device_ops cooling_ops;
77 #ifndef CONFIG_SMP
78 struct time_in_idle *idle_time;
79 #endif
80 struct freq_qos_request qos_req;
81 };
82
83 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
84 /**
85 * get_level: Find the level for a particular frequency
86 * @cpufreq_cdev: cpufreq_cdev for which the property is required
87 * @freq: Frequency
88 *
89 * Return: level corresponding to the frequency.
90 */
get_level(struct cpufreq_cooling_device * cpufreq_cdev,unsigned int freq)91 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
92 unsigned int freq)
93 {
94 int i;
95
96 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
97 if (freq > cpufreq_cdev->em->table[i].frequency)
98 break;
99 }
100
101 return cpufreq_cdev->max_level - i - 1;
102 }
103
cpu_freq_to_power(struct cpufreq_cooling_device * cpufreq_cdev,u32 freq)104 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
105 u32 freq)
106 {
107 unsigned long power_mw;
108 int i;
109
110 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
111 if (freq > cpufreq_cdev->em->table[i].frequency)
112 break;
113 }
114
115 power_mw = cpufreq_cdev->em->table[i + 1].power;
116 power_mw /= MICROWATT_PER_MILLIWATT;
117
118 return power_mw;
119 }
120
cpu_power_to_freq(struct cpufreq_cooling_device * cpufreq_cdev,u32 power)121 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
122 u32 power)
123 {
124 unsigned long em_power_mw;
125 int i;
126
127 for (i = cpufreq_cdev->max_level; i > 0; i--) {
128 /* Convert EM power to milli-Watts to make safe comparison */
129 em_power_mw = cpufreq_cdev->em->table[i].power;
130 em_power_mw /= MICROWATT_PER_MILLIWATT;
131 if (power >= em_power_mw)
132 break;
133 }
134
135 return cpufreq_cdev->em->table[i].frequency;
136 }
137
138 /**
139 * get_load() - get load for a cpu
140 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
141 * @cpu: cpu number
142 * @cpu_idx: index of the cpu in time_in_idle array
143 *
144 * Return: The average load of cpu @cpu in percentage since this
145 * function was last called.
146 */
147 #ifdef CONFIG_SMP
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)148 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
149 int cpu_idx)
150 {
151 unsigned long util = sched_cpu_util(cpu);
152
153 return (util * 100) / arch_scale_cpu_capacity(cpu);
154 }
155 #else /* !CONFIG_SMP */
get_load(struct cpufreq_cooling_device * cpufreq_cdev,int cpu,int cpu_idx)156 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
157 int cpu_idx)
158 {
159 u32 load;
160 u64 now, now_idle, delta_time, delta_idle;
161 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
162
163 now_idle = get_cpu_idle_time(cpu, &now, 0);
164 delta_idle = now_idle - idle_time->time;
165 delta_time = now - idle_time->timestamp;
166
167 if (delta_time <= delta_idle)
168 load = 0;
169 else
170 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171
172 idle_time->time = now_idle;
173 idle_time->timestamp = now;
174
175 return load;
176 }
177 #endif /* CONFIG_SMP */
178
179 /**
180 * get_dynamic_power() - calculate the dynamic power
181 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
182 * @freq: current frequency
183 *
184 * Return: the dynamic power consumed by the cpus described by
185 * @cpufreq_cdev.
186 */
get_dynamic_power(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long freq)187 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
188 unsigned long freq)
189 {
190 u32 raw_cpu_power;
191
192 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
194 }
195
196 /**
197 * cpufreq_get_requested_power() - get the current power
198 * @cdev: &thermal_cooling_device pointer
199 * @power: pointer in which to store the resulting power
200 *
201 * Calculate the current power consumption of the cpus in milliwatts
202 * and store it in @power. This function should actually calculate
203 * the requested power, but it's hard to get the frequency that
204 * cpufreq would have assigned if there were no thermal limits.
205 * Instead, we calculate the current power on the assumption that the
206 * immediate future will look like the immediate past.
207 *
208 * We use the current frequency and the average load since this
209 * function was last called. In reality, there could have been
210 * multiple opps since this function was last called and that affects
211 * the load calculation. While it's not perfectly accurate, this
212 * simplification is good enough and works. REVISIT this, as more
213 * complex code may be needed if experiments show that it's not
214 * accurate enough.
215 *
216 * Return: 0 on success, this function doesn't fail.
217 */
cpufreq_get_requested_power(struct thermal_cooling_device * cdev,u32 * power)218 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
219 u32 *power)
220 {
221 unsigned long freq;
222 int i = 0, cpu;
223 u32 total_load = 0;
224 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
225 struct cpufreq_policy *policy = cpufreq_cdev->policy;
226
227 freq = cpufreq_quick_get(policy->cpu);
228
229 for_each_cpu(cpu, policy->related_cpus) {
230 u32 load;
231
232 if (cpu_online(cpu))
233 load = get_load(cpufreq_cdev, cpu, i);
234 else
235 load = 0;
236
237 total_load += load;
238 }
239
240 cpufreq_cdev->last_load = total_load;
241
242 *power = get_dynamic_power(cpufreq_cdev, freq);
243
244 trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
245
246 return 0;
247 }
248
249 /**
250 * cpufreq_state2power() - convert a cpu cdev state to power consumed
251 * @cdev: &thermal_cooling_device pointer
252 * @state: cooling device state to be converted
253 * @power: pointer in which to store the resulting power
254 *
255 * Convert cooling device state @state into power consumption in
256 * milliwatts assuming 100% load. Store the calculated power in
257 * @power.
258 *
259 * Return: 0 on success, -EINVAL if the cooling device state is bigger
260 * than maximum allowed.
261 */
cpufreq_state2power(struct thermal_cooling_device * cdev,unsigned long state,u32 * power)262 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
263 unsigned long state, u32 *power)
264 {
265 unsigned int freq, num_cpus, idx;
266 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
267
268 /* Request state should be less than max_level */
269 if (state > cpufreq_cdev->max_level)
270 return -EINVAL;
271
272 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
273
274 idx = cpufreq_cdev->max_level - state;
275 freq = cpufreq_cdev->em->table[idx].frequency;
276 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
277
278 return 0;
279 }
280
281 /**
282 * cpufreq_power2state() - convert power to a cooling device state
283 * @cdev: &thermal_cooling_device pointer
284 * @power: power in milliwatts to be converted
285 * @state: pointer in which to store the resulting state
286 *
287 * Calculate a cooling device state for the cpus described by @cdev
288 * that would allow them to consume at most @power mW and store it in
289 * @state. Note that this calculation depends on external factors
290 * such as the CPUs load. Calling this function with the same power
291 * as input can yield different cooling device states depending on those
292 * external factors.
293 *
294 * Return: 0 on success, this function doesn't fail.
295 */
cpufreq_power2state(struct thermal_cooling_device * cdev,u32 power,unsigned long * state)296 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
297 u32 power, unsigned long *state)
298 {
299 unsigned int target_freq;
300 u32 last_load, normalised_power;
301 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
302 struct cpufreq_policy *policy = cpufreq_cdev->policy;
303
304 last_load = cpufreq_cdev->last_load ?: 1;
305 normalised_power = (power * 100) / last_load;
306 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
307
308 *state = get_level(cpufreq_cdev, target_freq);
309 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
310 power);
311 return 0;
312 }
313
em_is_sane(struct cpufreq_cooling_device * cpufreq_cdev,struct em_perf_domain * em)314 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
315 struct em_perf_domain *em) {
316 struct cpufreq_policy *policy;
317 unsigned int nr_levels;
318
319 if (!em || em_is_artificial(em))
320 return false;
321
322 policy = cpufreq_cdev->policy;
323 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
324 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
325 cpumask_pr_args(em_span_cpus(em)),
326 cpumask_pr_args(policy->related_cpus));
327 return false;
328 }
329
330 nr_levels = cpufreq_cdev->max_level + 1;
331 if (em_pd_nr_perf_states(em) != nr_levels) {
332 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
333 cpumask_pr_args(em_span_cpus(em)),
334 em_pd_nr_perf_states(em), nr_levels);
335 return false;
336 }
337
338 return true;
339 }
340 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
341
342 #ifdef CONFIG_SMP
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)343 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
344 {
345 return 0;
346 }
347
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)348 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
349 {
350 }
351 #else
allocate_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)352 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
353 {
354 unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
355
356 cpufreq_cdev->idle_time = kcalloc(num_cpus,
357 sizeof(*cpufreq_cdev->idle_time),
358 GFP_KERNEL);
359 if (!cpufreq_cdev->idle_time)
360 return -ENOMEM;
361
362 return 0;
363 }
364
free_idle_time(struct cpufreq_cooling_device * cpufreq_cdev)365 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
366 {
367 kfree(cpufreq_cdev->idle_time);
368 cpufreq_cdev->idle_time = NULL;
369 }
370 #endif /* CONFIG_SMP */
371
get_state_freq(struct cpufreq_cooling_device * cpufreq_cdev,unsigned long state)372 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
373 unsigned long state)
374 {
375 struct cpufreq_policy *policy;
376 unsigned long idx;
377
378 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
379 /* Use the Energy Model table if available */
380 if (cpufreq_cdev->em) {
381 idx = cpufreq_cdev->max_level - state;
382 return cpufreq_cdev->em->table[idx].frequency;
383 }
384 #endif
385
386 /* Otherwise, fallback on the CPUFreq table */
387 policy = cpufreq_cdev->policy;
388 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
389 idx = cpufreq_cdev->max_level - state;
390 else
391 idx = state;
392
393 return policy->freq_table[idx].frequency;
394 }
395
396 /* cpufreq cooling device callback functions are defined below */
397
398 /**
399 * cpufreq_get_max_state - callback function to get the max cooling state.
400 * @cdev: thermal cooling device pointer.
401 * @state: fill this variable with the max cooling state.
402 *
403 * Callback for the thermal cooling device to return the cpufreq
404 * max cooling state.
405 *
406 * Return: 0 on success, this function doesn't fail.
407 */
cpufreq_get_max_state(struct thermal_cooling_device * cdev,unsigned long * state)408 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
409 unsigned long *state)
410 {
411 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
412
413 *state = cpufreq_cdev->max_level;
414 return 0;
415 }
416
417 /**
418 * cpufreq_get_cur_state - callback function to get the current cooling state.
419 * @cdev: thermal cooling device pointer.
420 * @state: fill this variable with the current cooling state.
421 *
422 * Callback for the thermal cooling device to return the cpufreq
423 * current cooling state.
424 *
425 * Return: 0 on success, this function doesn't fail.
426 */
cpufreq_get_cur_state(struct thermal_cooling_device * cdev,unsigned long * state)427 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
428 unsigned long *state)
429 {
430 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
431
432 *state = cpufreq_cdev->cpufreq_state;
433
434 return 0;
435 }
436
437 /**
438 * cpufreq_set_cur_state - callback function to set the current cooling state.
439 * @cdev: thermal cooling device pointer.
440 * @state: set this variable to the current cooling state.
441 *
442 * Callback for the thermal cooling device to change the cpufreq
443 * current cooling state.
444 *
445 * Return: 0 on success, an error code otherwise.
446 */
cpufreq_set_cur_state(struct thermal_cooling_device * cdev,unsigned long state)447 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
448 unsigned long state)
449 {
450 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
451 struct cpumask *cpus;
452 unsigned int frequency;
453 int ret;
454
455 /* Request state should be less than max_level */
456 if (state > cpufreq_cdev->max_level)
457 return -EINVAL;
458
459 /* Check if the old cooling action is same as new cooling action */
460 if (cpufreq_cdev->cpufreq_state == state)
461 return 0;
462
463 frequency = get_state_freq(cpufreq_cdev, state);
464
465 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
466 if (ret >= 0) {
467 cpufreq_cdev->cpufreq_state = state;
468 cpus = cpufreq_cdev->policy->related_cpus;
469 arch_update_thermal_pressure(cpus, frequency);
470 ret = 0;
471 }
472
473 return ret;
474 }
475
476 /**
477 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
478 * @np: a valid struct device_node to the cooling device tree node
479 * @policy: cpufreq policy
480 * Normally this should be same as cpufreq policy->related_cpus.
481 * @em: Energy Model of the cpufreq policy
482 *
483 * This interface function registers the cpufreq cooling device with the name
484 * "cpufreq-%s". This API can support multiple instances of cpufreq
485 * cooling devices. It also gives the opportunity to link the cooling device
486 * with a device tree node, in order to bind it via the thermal DT code.
487 *
488 * Return: a valid struct thermal_cooling_device pointer on success,
489 * on failure, it returns a corresponding ERR_PTR().
490 */
491 static struct thermal_cooling_device *
__cpufreq_cooling_register(struct device_node * np,struct cpufreq_policy * policy,struct em_perf_domain * em)492 __cpufreq_cooling_register(struct device_node *np,
493 struct cpufreq_policy *policy,
494 struct em_perf_domain *em)
495 {
496 struct thermal_cooling_device *cdev;
497 struct cpufreq_cooling_device *cpufreq_cdev;
498 unsigned int i;
499 struct device *dev;
500 int ret;
501 struct thermal_cooling_device_ops *cooling_ops;
502 char *name;
503
504 if (IS_ERR_OR_NULL(policy)) {
505 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
506 return ERR_PTR(-EINVAL);
507 }
508
509 dev = get_cpu_device(policy->cpu);
510 if (unlikely(!dev)) {
511 pr_warn("No cpu device for cpu %d\n", policy->cpu);
512 return ERR_PTR(-ENODEV);
513 }
514
515 i = cpufreq_table_count_valid_entries(policy);
516 if (!i) {
517 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
518 __func__);
519 return ERR_PTR(-ENODEV);
520 }
521
522 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
523 if (!cpufreq_cdev)
524 return ERR_PTR(-ENOMEM);
525
526 cpufreq_cdev->policy = policy;
527
528 ret = allocate_idle_time(cpufreq_cdev);
529 if (ret) {
530 cdev = ERR_PTR(ret);
531 goto free_cdev;
532 }
533
534 /* max_level is an index, not a counter */
535 cpufreq_cdev->max_level = i - 1;
536
537 cooling_ops = &cpufreq_cdev->cooling_ops;
538 cooling_ops->get_max_state = cpufreq_get_max_state;
539 cooling_ops->get_cur_state = cpufreq_get_cur_state;
540 cooling_ops->set_cur_state = cpufreq_set_cur_state;
541
542 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
543 if (em_is_sane(cpufreq_cdev, em)) {
544 cpufreq_cdev->em = em;
545 cooling_ops->get_requested_power = cpufreq_get_requested_power;
546 cooling_ops->state2power = cpufreq_state2power;
547 cooling_ops->power2state = cpufreq_power2state;
548 } else
549 #endif
550 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
551 pr_err("%s: unsorted frequency tables are not supported\n",
552 __func__);
553 cdev = ERR_PTR(-EINVAL);
554 goto free_idle_time;
555 }
556
557 ret = freq_qos_add_request(&policy->constraints,
558 &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
559 get_state_freq(cpufreq_cdev, 0));
560 if (ret < 0) {
561 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
562 ret);
563 cdev = ERR_PTR(ret);
564 goto free_idle_time;
565 }
566
567 cdev = ERR_PTR(-ENOMEM);
568 name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
569 if (!name)
570 goto remove_qos_req;
571
572 cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
573 cooling_ops);
574 kfree(name);
575
576 if (IS_ERR(cdev))
577 goto remove_qos_req;
578
579 return cdev;
580
581 remove_qos_req:
582 freq_qos_remove_request(&cpufreq_cdev->qos_req);
583 free_idle_time:
584 free_idle_time(cpufreq_cdev);
585 free_cdev:
586 kfree(cpufreq_cdev);
587 return cdev;
588 }
589
590 /**
591 * cpufreq_cooling_register - function to create cpufreq cooling device.
592 * @policy: cpufreq policy
593 *
594 * This interface function registers the cpufreq cooling device with the name
595 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
596 * devices.
597 *
598 * Return: a valid struct thermal_cooling_device pointer on success,
599 * on failure, it returns a corresponding ERR_PTR().
600 */
601 struct thermal_cooling_device *
cpufreq_cooling_register(struct cpufreq_policy * policy)602 cpufreq_cooling_register(struct cpufreq_policy *policy)
603 {
604 return __cpufreq_cooling_register(NULL, policy, NULL);
605 }
606 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
607
608 /**
609 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
610 * @policy: cpufreq policy
611 *
612 * This interface function registers the cpufreq cooling device with the name
613 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
614 * devices. Using this API, the cpufreq cooling device will be linked to the
615 * device tree node provided.
616 *
617 * Using this function, the cooling device will implement the power
618 * extensions by using the Energy Model (if present). The cpus must have
619 * registered their OPPs using the OPP library.
620 *
621 * Return: a valid struct thermal_cooling_device pointer on success,
622 * and NULL on failure.
623 */
624 struct thermal_cooling_device *
of_cpufreq_cooling_register(struct cpufreq_policy * policy)625 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
626 {
627 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
628 struct thermal_cooling_device *cdev = NULL;
629
630 if (!np) {
631 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
632 policy->cpu);
633 return NULL;
634 }
635
636 if (of_find_property(np, "#cooling-cells", NULL)) {
637 struct em_perf_domain *em = em_cpu_get(policy->cpu);
638
639 cdev = __cpufreq_cooling_register(np, policy, em);
640 if (IS_ERR(cdev)) {
641 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
642 policy->cpu, PTR_ERR(cdev));
643 cdev = NULL;
644 }
645 }
646
647 of_node_put(np);
648 return cdev;
649 }
650 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
651
652 /**
653 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
654 * @cdev: thermal cooling device pointer.
655 *
656 * This interface function unregisters the "cpufreq-%x" cooling device.
657 */
cpufreq_cooling_unregister(struct thermal_cooling_device * cdev)658 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
659 {
660 struct cpufreq_cooling_device *cpufreq_cdev;
661
662 if (!cdev)
663 return;
664
665 cpufreq_cdev = cdev->devdata;
666
667 thermal_cooling_device_unregister(cdev);
668 freq_qos_remove_request(&cpufreq_cdev->qos_req);
669 free_idle_time(cpufreq_cdev);
670 kfree(cpufreq_cdev);
671 }
672 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
673