1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
mul_fp(int32_t x,int32_t y)60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
div_fp(s64 x,s64 y)65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
ceiling_fp(int32_t x)70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
mul_ext_fp(u64 x,u64 y)81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 return (x * y) >> EXT_FRAC_BITS;
84 }
85
div_ext_fp(u64 x,u64 y)86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92 * struct sample - Store performance sample
93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
94 * performance during last sample period
95 * @busy_scaled: Scaled busy value which is used to calculate next
96 * P state. This can be different than core_avg_perf
97 * to account for cpu idle period
98 * @aperf: Difference of actual performance frequency clock count
99 * read from APERF MSR between last and current sample
100 * @mperf: Difference of maximum performance frequency clock count
101 * read from MPERF MSR between last and current sample
102 * @tsc: Difference of time stamp counter between last and
103 * current sample
104 * @time: Current time from scheduler
105 *
106 * This structure is used in the cpudata structure to store performance sample
107 * data for choosing next P State.
108 */
109 struct sample {
110 int32_t core_avg_perf;
111 int32_t busy_scaled;
112 u64 aperf;
113 u64 mperf;
114 u64 tsc;
115 u64 time;
116 };
117
118 /**
119 * struct pstate_data - Store P state data
120 * @current_pstate: Current requested P state
121 * @min_pstate: Min P state possible for this platform
122 * @max_pstate: Max P state possible for this platform
123 * @max_pstate_physical:This is physical Max P state for a processor
124 * This can be higher than the max_pstate which can
125 * be limited by platform thermal design power limits
126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
127 * @scaling: Scaling factor between performance and frequency
128 * @turbo_pstate: Max Turbo P state possible for this platform
129 * @min_freq: @min_pstate frequency in cpufreq units
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int perf_ctl_scaling;
141 int scaling;
142 int turbo_pstate;
143 unsigned int min_freq;
144 unsigned int max_freq;
145 unsigned int turbo_freq;
146 };
147
148 /**
149 * struct vid_data - Stores voltage information data
150 * @min: VID data for this platform corresponding to
151 * the lowest P state
152 * @max: VID data corresponding to the highest P State.
153 * @turbo: VID data for turbo P state
154 * @ratio: Ratio of (vid max - vid min) /
155 * (max P state - Min P State)
156 *
157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158 * This data is used in Atom platforms, where in addition to target P state,
159 * the voltage data needs to be specified to select next P State.
160 */
161 struct vid_data {
162 int min;
163 int max;
164 int turbo;
165 int32_t ratio;
166 };
167
168 /**
169 * struct global_params - Global parameters, mostly tunable via sysfs.
170 * @no_turbo: Whether or not to use turbo P-states.
171 * @turbo_disabled: Whether or not turbo P-states are available at all,
172 * based on the MSR_IA32_MISC_ENABLE value and whether or
173 * not the maximum reported turbo P-state is different from
174 * the maximum reported non-turbo one.
175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 */
181 struct global_params {
182 bool no_turbo;
183 bool turbo_disabled;
184 bool turbo_disabled_mf;
185 int max_perf_pct;
186 int min_perf_pct;
187 };
188
189 /**
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @prev_cummulative_iowait: IO Wait time difference from last and
205 * current sample
206 * @sample: Storage for storing last Sample data
207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
209 * @acpi_perf_data: Stores ACPI perf information read from _PSS
210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
211 * @epp_powersave: Last saved HWP energy performance preference
212 * (EPP) or energy performance bias (EPB),
213 * when policy switched to performance
214 * @epp_policy: Last saved policy used to set EPP/EPB
215 * @epp_default: Power on default HWP energy performance
216 * preference/bias
217 * @epp_cached Cached HWP energy-performance preference value
218 * @hwp_req_cached: Cached value of the last HWP Request MSR
219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
220 * @last_io_update: Last time when IO wake flag was set
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @hwp_notify_work: workqueue for HWP notifications.
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228 struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 u64 prev_cummulative_iowait;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int sched_flags;
261 u32 hwp_boost_min;
262 bool suspended;
263 struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269 * struct pstate_funcs - Per CPU model specific callbacks
270 * @get_max: Callback to get maximum non turbo effective P state
271 * @get_max_physical: Callback to get maximum non turbo physical P state
272 * @get_min: Callback to get minimum P state
273 * @get_turbo: Callback to get turbo P state
274 * @get_scaling: Callback to get frequency scaling factor
275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283 struct pstate_funcs {
284 int (*get_max)(int cpu);
285 int (*get_max_physical)(int cpu);
286 int (*get_min)(int cpu);
287 int (*get_turbo)(int cpu);
288 int (*get_scaling)(void);
289 int (*get_cpu_scaling)(int cpu);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
intel_pstate_acpi_pm_profile_server(void)315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 return true;
320
321 return false;
322 }
323
intel_pstate_get_ppc_enable_status(void)324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326 if (intel_pstate_acpi_pm_profile_server())
327 return true;
328
329 return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337 sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342 #define CPPC_MAX_PERF U8_MAX
343
intel_pstate_set_itmt_prio(int cpu)344 static void intel_pstate_set_itmt_prio(int cpu)
345 {
346 struct cppc_perf_caps cppc_perf;
347 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
348 int ret;
349
350 ret = cppc_get_perf_caps(cpu, &cppc_perf);
351 if (ret)
352 return;
353
354 /*
355 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
356 * In this case we can't use CPPC.highest_perf to enable ITMT.
357 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
358 */
359 if (cppc_perf.highest_perf == CPPC_MAX_PERF)
360 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
361
362 /*
363 * The priorities can be set regardless of whether or not
364 * sched_set_itmt_support(true) has been called and it is valid to
365 * update them at any time after it has been called.
366 */
367 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
368
369 if (max_highest_perf <= min_highest_perf) {
370 if (cppc_perf.highest_perf > max_highest_perf)
371 max_highest_perf = cppc_perf.highest_perf;
372
373 if (cppc_perf.highest_perf < min_highest_perf)
374 min_highest_perf = cppc_perf.highest_perf;
375
376 if (max_highest_perf > min_highest_perf) {
377 /*
378 * This code can be run during CPU online under the
379 * CPU hotplug locks, so sched_set_itmt_support()
380 * cannot be called from here. Queue up a work item
381 * to invoke it.
382 */
383 schedule_work(&sched_itmt_work);
384 }
385 }
386 }
387
intel_pstate_get_cppc_guaranteed(int cpu)388 static int intel_pstate_get_cppc_guaranteed(int cpu)
389 {
390 struct cppc_perf_caps cppc_perf;
391 int ret;
392
393 ret = cppc_get_perf_caps(cpu, &cppc_perf);
394 if (ret)
395 return ret;
396
397 if (cppc_perf.guaranteed_perf)
398 return cppc_perf.guaranteed_perf;
399
400 return cppc_perf.nominal_perf;
401 }
402 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)403 static inline void intel_pstate_set_itmt_prio(int cpu)
404 {
405 }
406 #endif /* CONFIG_ACPI_CPPC_LIB */
407
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)408 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
409 {
410 struct cpudata *cpu;
411 int ret;
412 int i;
413
414 if (hwp_active) {
415 intel_pstate_set_itmt_prio(policy->cpu);
416 return;
417 }
418
419 if (!intel_pstate_get_ppc_enable_status())
420 return;
421
422 cpu = all_cpu_data[policy->cpu];
423
424 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
425 policy->cpu);
426 if (ret)
427 return;
428
429 /*
430 * Check if the control value in _PSS is for PERF_CTL MSR, which should
431 * guarantee that the states returned by it map to the states in our
432 * list directly.
433 */
434 if (cpu->acpi_perf_data.control_register.space_id !=
435 ACPI_ADR_SPACE_FIXED_HARDWARE)
436 goto err;
437
438 /*
439 * If there is only one entry _PSS, simply ignore _PSS and continue as
440 * usual without taking _PSS into account
441 */
442 if (cpu->acpi_perf_data.state_count < 2)
443 goto err;
444
445 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
446 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
447 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
448 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
449 (u32) cpu->acpi_perf_data.states[i].core_frequency,
450 (u32) cpu->acpi_perf_data.states[i].power,
451 (u32) cpu->acpi_perf_data.states[i].control);
452 }
453
454 /*
455 * The _PSS table doesn't contain whole turbo frequency range.
456 * This just contains +1 MHZ above the max non turbo frequency,
457 * with control value corresponding to max turbo ratio. But
458 * when cpufreq set policy is called, it will call with this
459 * max frequency, which will cause a reduced performance as
460 * this driver uses real max turbo frequency as the max
461 * frequency. So correct this frequency in _PSS table to
462 * correct max turbo frequency based on the turbo state.
463 * Also need to convert to MHz as _PSS freq is in MHz.
464 */
465 if (!global.turbo_disabled)
466 cpu->acpi_perf_data.states[0].core_frequency =
467 policy->cpuinfo.max_freq / 1000;
468 cpu->valid_pss_table = true;
469 pr_debug("_PPC limits will be enforced\n");
470
471 return;
472
473 err:
474 cpu->valid_pss_table = false;
475 acpi_processor_unregister_performance(policy->cpu);
476 }
477
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)478 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
479 {
480 struct cpudata *cpu;
481
482 cpu = all_cpu_data[policy->cpu];
483 if (!cpu->valid_pss_table)
484 return;
485
486 acpi_processor_unregister_performance(policy->cpu);
487 }
488 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)489 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
490 {
491 }
492
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)493 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
494 {
495 }
496
intel_pstate_acpi_pm_profile_server(void)497 static inline bool intel_pstate_acpi_pm_profile_server(void)
498 {
499 return false;
500 }
501 #endif /* CONFIG_ACPI */
502
503 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)504 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
505 {
506 return -ENOTSUPP;
507 }
508 #endif /* CONFIG_ACPI_CPPC_LIB */
509
510 /**
511 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
512 * @cpu: Target CPU.
513 *
514 * On hybrid processors, HWP may expose more performance levels than there are
515 * P-states accessible through the PERF_CTL interface. If that happens, the
516 * scaling factor between HWP performance levels and CPU frequency will be less
517 * than the scaling factor between P-state values and CPU frequency.
518 *
519 * In that case, adjust the CPU parameters used in computations accordingly.
520 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)521 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
522 {
523 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
524 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
525 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
526 int scaling = cpu->pstate.scaling;
527
528 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
529 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
530 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
531 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
532 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
533 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
534
535 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
536 perf_ctl_scaling);
537 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
538 perf_ctl_scaling);
539
540 cpu->pstate.max_pstate_physical =
541 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
542 scaling);
543
544 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
545 /*
546 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
547 * the effective range of HWP performance levels.
548 */
549 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
550 }
551
update_turbo_state(void)552 static inline void update_turbo_state(void)
553 {
554 u64 misc_en;
555 struct cpudata *cpu;
556
557 cpu = all_cpu_data[0];
558 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
559 global.turbo_disabled =
560 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
561 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
562 }
563
min_perf_pct_min(void)564 static int min_perf_pct_min(void)
565 {
566 struct cpudata *cpu = all_cpu_data[0];
567 int turbo_pstate = cpu->pstate.turbo_pstate;
568
569 return turbo_pstate ?
570 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
571 }
572
intel_pstate_get_epb(struct cpudata * cpu_data)573 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
574 {
575 u64 epb;
576 int ret;
577
578 if (!boot_cpu_has(X86_FEATURE_EPB))
579 return -ENXIO;
580
581 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
582 if (ret)
583 return (s16)ret;
584
585 return (s16)(epb & 0x0f);
586 }
587
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)588 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
589 {
590 s16 epp;
591
592 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
593 /*
594 * When hwp_req_data is 0, means that caller didn't read
595 * MSR_HWP_REQUEST, so need to read and get EPP.
596 */
597 if (!hwp_req_data) {
598 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
599 &hwp_req_data);
600 if (epp)
601 return epp;
602 }
603 epp = (hwp_req_data >> 24) & 0xff;
604 } else {
605 /* When there is no EPP present, HWP uses EPB settings */
606 epp = intel_pstate_get_epb(cpu_data);
607 }
608
609 return epp;
610 }
611
intel_pstate_set_epb(int cpu,s16 pref)612 static int intel_pstate_set_epb(int cpu, s16 pref)
613 {
614 u64 epb;
615 int ret;
616
617 if (!boot_cpu_has(X86_FEATURE_EPB))
618 return -ENXIO;
619
620 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
621 if (ret)
622 return ret;
623
624 epb = (epb & ~0x0f) | pref;
625 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
626
627 return 0;
628 }
629
630 /*
631 * EPP/EPB display strings corresponding to EPP index in the
632 * energy_perf_strings[]
633 * index String
634 *-------------------------------------
635 * 0 default
636 * 1 performance
637 * 2 balance_performance
638 * 3 balance_power
639 * 4 power
640 */
641
642 enum energy_perf_value_index {
643 EPP_INDEX_DEFAULT = 0,
644 EPP_INDEX_PERFORMANCE,
645 EPP_INDEX_BALANCE_PERFORMANCE,
646 EPP_INDEX_BALANCE_POWERSAVE,
647 EPP_INDEX_POWERSAVE,
648 };
649
650 static const char * const energy_perf_strings[] = {
651 [EPP_INDEX_DEFAULT] = "default",
652 [EPP_INDEX_PERFORMANCE] = "performance",
653 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
654 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
655 [EPP_INDEX_POWERSAVE] = "power",
656 NULL
657 };
658 static unsigned int epp_values[] = {
659 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
660 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
661 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
662 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
663 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
664 };
665
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)666 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
667 {
668 s16 epp;
669 int index = -EINVAL;
670
671 *raw_epp = 0;
672 epp = intel_pstate_get_epp(cpu_data, 0);
673 if (epp < 0)
674 return epp;
675
676 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
677 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
678 return EPP_INDEX_PERFORMANCE;
679 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
680 return EPP_INDEX_BALANCE_PERFORMANCE;
681 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
682 return EPP_INDEX_BALANCE_POWERSAVE;
683 if (epp == epp_values[EPP_INDEX_POWERSAVE])
684 return EPP_INDEX_POWERSAVE;
685 *raw_epp = epp;
686 return 0;
687 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
688 /*
689 * Range:
690 * 0x00-0x03 : Performance
691 * 0x04-0x07 : Balance performance
692 * 0x08-0x0B : Balance power
693 * 0x0C-0x0F : Power
694 * The EPB is a 4 bit value, but our ranges restrict the
695 * value which can be set. Here only using top two bits
696 * effectively.
697 */
698 index = (epp >> 2) + 1;
699 }
700
701 return index;
702 }
703
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)704 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
705 {
706 int ret;
707
708 /*
709 * Use the cached HWP Request MSR value, because in the active mode the
710 * register itself may be updated by intel_pstate_hwp_boost_up() or
711 * intel_pstate_hwp_boost_down() at any time.
712 */
713 u64 value = READ_ONCE(cpu->hwp_req_cached);
714
715 value &= ~GENMASK_ULL(31, 24);
716 value |= (u64)epp << 24;
717 /*
718 * The only other updater of hwp_req_cached in the active mode,
719 * intel_pstate_hwp_set(), is called under the same lock as this
720 * function, so it cannot run in parallel with the update below.
721 */
722 WRITE_ONCE(cpu->hwp_req_cached, value);
723 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
724 if (!ret)
725 cpu->epp_cached = epp;
726
727 return ret;
728 }
729
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)730 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
731 int pref_index, bool use_raw,
732 u32 raw_epp)
733 {
734 int epp = -EINVAL;
735 int ret;
736
737 if (!pref_index)
738 epp = cpu_data->epp_default;
739
740 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
741 if (use_raw)
742 epp = raw_epp;
743 else if (epp == -EINVAL)
744 epp = epp_values[pref_index];
745
746 /*
747 * To avoid confusion, refuse to set EPP to any values different
748 * from 0 (performance) if the current policy is "performance",
749 * because those values would be overridden.
750 */
751 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
752 return -EBUSY;
753
754 ret = intel_pstate_set_epp(cpu_data, epp);
755 } else {
756 if (epp == -EINVAL)
757 epp = (pref_index - 1) << 2;
758 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
759 }
760
761 return ret;
762 }
763
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)764 static ssize_t show_energy_performance_available_preferences(
765 struct cpufreq_policy *policy, char *buf)
766 {
767 int i = 0;
768 int ret = 0;
769
770 while (energy_perf_strings[i] != NULL)
771 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
772
773 ret += sprintf(&buf[ret], "\n");
774
775 return ret;
776 }
777
778 cpufreq_freq_attr_ro(energy_performance_available_preferences);
779
780 static struct cpufreq_driver intel_pstate;
781
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)782 static ssize_t store_energy_performance_preference(
783 struct cpufreq_policy *policy, const char *buf, size_t count)
784 {
785 struct cpudata *cpu = all_cpu_data[policy->cpu];
786 char str_preference[21];
787 bool raw = false;
788 ssize_t ret;
789 u32 epp = 0;
790
791 ret = sscanf(buf, "%20s", str_preference);
792 if (ret != 1)
793 return -EINVAL;
794
795 ret = match_string(energy_perf_strings, -1, str_preference);
796 if (ret < 0) {
797 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
798 return ret;
799
800 ret = kstrtouint(buf, 10, &epp);
801 if (ret)
802 return ret;
803
804 if (epp > 255)
805 return -EINVAL;
806
807 raw = true;
808 }
809
810 /*
811 * This function runs with the policy R/W semaphore held, which
812 * guarantees that the driver pointer will not change while it is
813 * running.
814 */
815 if (!intel_pstate_driver)
816 return -EAGAIN;
817
818 mutex_lock(&intel_pstate_limits_lock);
819
820 if (intel_pstate_driver == &intel_pstate) {
821 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
822 } else {
823 /*
824 * In the passive mode the governor needs to be stopped on the
825 * target CPU before the EPP update and restarted after it,
826 * which is super-heavy-weight, so make sure it is worth doing
827 * upfront.
828 */
829 if (!raw)
830 epp = ret ? epp_values[ret] : cpu->epp_default;
831
832 if (cpu->epp_cached != epp) {
833 int err;
834
835 cpufreq_stop_governor(policy);
836 ret = intel_pstate_set_epp(cpu, epp);
837 err = cpufreq_start_governor(policy);
838 if (!ret)
839 ret = err;
840 }
841 }
842
843 mutex_unlock(&intel_pstate_limits_lock);
844
845 return ret ?: count;
846 }
847
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)848 static ssize_t show_energy_performance_preference(
849 struct cpufreq_policy *policy, char *buf)
850 {
851 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
852 int preference, raw_epp;
853
854 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
855 if (preference < 0)
856 return preference;
857
858 if (raw_epp)
859 return sprintf(buf, "%d\n", raw_epp);
860 else
861 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
862 }
863
864 cpufreq_freq_attr_rw(energy_performance_preference);
865
show_base_frequency(struct cpufreq_policy * policy,char * buf)866 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
867 {
868 struct cpudata *cpu = all_cpu_data[policy->cpu];
869 int ratio, freq;
870
871 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
872 if (ratio <= 0) {
873 u64 cap;
874
875 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
876 ratio = HWP_GUARANTEED_PERF(cap);
877 }
878
879 freq = ratio * cpu->pstate.scaling;
880 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
881 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
882
883 return sprintf(buf, "%d\n", freq);
884 }
885
886 cpufreq_freq_attr_ro(base_frequency);
887
888 static struct freq_attr *hwp_cpufreq_attrs[] = {
889 &energy_performance_preference,
890 &energy_performance_available_preferences,
891 &base_frequency,
892 NULL,
893 };
894
__intel_pstate_get_hwp_cap(struct cpudata * cpu)895 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
896 {
897 u64 cap;
898
899 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
900 WRITE_ONCE(cpu->hwp_cap_cached, cap);
901 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
902 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
903 }
904
intel_pstate_get_hwp_cap(struct cpudata * cpu)905 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
906 {
907 int scaling = cpu->pstate.scaling;
908
909 __intel_pstate_get_hwp_cap(cpu);
910
911 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
912 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
913 if (scaling != cpu->pstate.perf_ctl_scaling) {
914 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
915
916 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
917 perf_ctl_scaling);
918 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
919 perf_ctl_scaling);
920 }
921 }
922
intel_pstate_hwp_set(unsigned int cpu)923 static void intel_pstate_hwp_set(unsigned int cpu)
924 {
925 struct cpudata *cpu_data = all_cpu_data[cpu];
926 int max, min;
927 u64 value;
928 s16 epp;
929
930 max = cpu_data->max_perf_ratio;
931 min = cpu_data->min_perf_ratio;
932
933 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
934 min = max;
935
936 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
937
938 value &= ~HWP_MIN_PERF(~0L);
939 value |= HWP_MIN_PERF(min);
940
941 value &= ~HWP_MAX_PERF(~0L);
942 value |= HWP_MAX_PERF(max);
943
944 if (cpu_data->epp_policy == cpu_data->policy)
945 goto skip_epp;
946
947 cpu_data->epp_policy = cpu_data->policy;
948
949 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
950 epp = intel_pstate_get_epp(cpu_data, value);
951 cpu_data->epp_powersave = epp;
952 /* If EPP read was failed, then don't try to write */
953 if (epp < 0)
954 goto skip_epp;
955
956 epp = 0;
957 } else {
958 /* skip setting EPP, when saved value is invalid */
959 if (cpu_data->epp_powersave < 0)
960 goto skip_epp;
961
962 /*
963 * No need to restore EPP when it is not zero. This
964 * means:
965 * - Policy is not changed
966 * - user has manually changed
967 * - Error reading EPB
968 */
969 epp = intel_pstate_get_epp(cpu_data, value);
970 if (epp)
971 goto skip_epp;
972
973 epp = cpu_data->epp_powersave;
974 }
975 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
976 value &= ~GENMASK_ULL(31, 24);
977 value |= (u64)epp << 24;
978 } else {
979 intel_pstate_set_epb(cpu, epp);
980 }
981 skip_epp:
982 WRITE_ONCE(cpu_data->hwp_req_cached, value);
983 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
984 }
985
986 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
987
intel_pstate_hwp_offline(struct cpudata * cpu)988 static void intel_pstate_hwp_offline(struct cpudata *cpu)
989 {
990 u64 value = READ_ONCE(cpu->hwp_req_cached);
991 int min_perf;
992
993 intel_pstate_disable_hwp_interrupt(cpu);
994
995 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
996 /*
997 * In case the EPP has been set to "performance" by the
998 * active mode "performance" scaling algorithm, replace that
999 * temporary value with the cached EPP one.
1000 */
1001 value &= ~GENMASK_ULL(31, 24);
1002 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1003 /*
1004 * However, make sure that EPP will be set to "performance" when
1005 * the CPU is brought back online again and the "performance"
1006 * scaling algorithm is still in effect.
1007 */
1008 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1009 }
1010
1011 /*
1012 * Clear the desired perf field in the cached HWP request value to
1013 * prevent nonzero desired values from being leaked into the active
1014 * mode.
1015 */
1016 value &= ~HWP_DESIRED_PERF(~0L);
1017 WRITE_ONCE(cpu->hwp_req_cached, value);
1018
1019 value &= ~GENMASK_ULL(31, 0);
1020 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1021
1022 /* Set hwp_max = hwp_min */
1023 value |= HWP_MAX_PERF(min_perf);
1024 value |= HWP_MIN_PERF(min_perf);
1025
1026 /* Set EPP to min */
1027 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1028 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1029
1030 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1031 }
1032
1033 #define POWER_CTL_EE_ENABLE 1
1034 #define POWER_CTL_EE_DISABLE 2
1035
1036 static int power_ctl_ee_state;
1037
set_power_ctl_ee_state(bool input)1038 static void set_power_ctl_ee_state(bool input)
1039 {
1040 u64 power_ctl;
1041
1042 mutex_lock(&intel_pstate_driver_lock);
1043 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1044 if (input) {
1045 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1046 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1047 } else {
1048 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1049 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1050 }
1051 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1052 mutex_unlock(&intel_pstate_driver_lock);
1053 }
1054
1055 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1056
intel_pstate_hwp_reenable(struct cpudata * cpu)1057 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1058 {
1059 intel_pstate_hwp_enable(cpu);
1060 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1061 }
1062
intel_pstate_suspend(struct cpufreq_policy * policy)1063 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1064 {
1065 struct cpudata *cpu = all_cpu_data[policy->cpu];
1066
1067 pr_debug("CPU %d suspending\n", cpu->cpu);
1068
1069 cpu->suspended = true;
1070
1071 /* disable HWP interrupt and cancel any pending work */
1072 intel_pstate_disable_hwp_interrupt(cpu);
1073
1074 return 0;
1075 }
1076
intel_pstate_resume(struct cpufreq_policy * policy)1077 static int intel_pstate_resume(struct cpufreq_policy *policy)
1078 {
1079 struct cpudata *cpu = all_cpu_data[policy->cpu];
1080
1081 pr_debug("CPU %d resuming\n", cpu->cpu);
1082
1083 /* Only restore if the system default is changed */
1084 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1085 set_power_ctl_ee_state(true);
1086 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1087 set_power_ctl_ee_state(false);
1088
1089 if (cpu->suspended && hwp_active) {
1090 mutex_lock(&intel_pstate_limits_lock);
1091
1092 /* Re-enable HWP, because "online" has not done that. */
1093 intel_pstate_hwp_reenable(cpu);
1094
1095 mutex_unlock(&intel_pstate_limits_lock);
1096 }
1097
1098 cpu->suspended = false;
1099
1100 return 0;
1101 }
1102
intel_pstate_update_policies(void)1103 static void intel_pstate_update_policies(void)
1104 {
1105 int cpu;
1106
1107 for_each_possible_cpu(cpu)
1108 cpufreq_update_policy(cpu);
1109 }
1110
__intel_pstate_update_max_freq(struct cpudata * cpudata,struct cpufreq_policy * policy)1111 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1112 struct cpufreq_policy *policy)
1113 {
1114 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1115 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1116 refresh_frequency_limits(policy);
1117 }
1118
intel_pstate_update_max_freq(unsigned int cpu)1119 static void intel_pstate_update_max_freq(unsigned int cpu)
1120 {
1121 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1122
1123 if (!policy)
1124 return;
1125
1126 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1127
1128 cpufreq_cpu_release(policy);
1129 }
1130
intel_pstate_update_limits(unsigned int cpu)1131 static void intel_pstate_update_limits(unsigned int cpu)
1132 {
1133 mutex_lock(&intel_pstate_driver_lock);
1134
1135 update_turbo_state();
1136 /*
1137 * If turbo has been turned on or off globally, policy limits for
1138 * all CPUs need to be updated to reflect that.
1139 */
1140 if (global.turbo_disabled_mf != global.turbo_disabled) {
1141 global.turbo_disabled_mf = global.turbo_disabled;
1142 arch_set_max_freq_ratio(global.turbo_disabled);
1143 for_each_possible_cpu(cpu)
1144 intel_pstate_update_max_freq(cpu);
1145 } else {
1146 cpufreq_update_policy(cpu);
1147 }
1148
1149 mutex_unlock(&intel_pstate_driver_lock);
1150 }
1151
1152 /************************** sysfs begin ************************/
1153 #define show_one(file_name, object) \
1154 static ssize_t show_##file_name \
1155 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1156 { \
1157 return sprintf(buf, "%u\n", global.object); \
1158 }
1159
1160 static ssize_t intel_pstate_show_status(char *buf);
1161 static int intel_pstate_update_status(const char *buf, size_t size);
1162
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1163 static ssize_t show_status(struct kobject *kobj,
1164 struct kobj_attribute *attr, char *buf)
1165 {
1166 ssize_t ret;
1167
1168 mutex_lock(&intel_pstate_driver_lock);
1169 ret = intel_pstate_show_status(buf);
1170 mutex_unlock(&intel_pstate_driver_lock);
1171
1172 return ret;
1173 }
1174
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1175 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1176 const char *buf, size_t count)
1177 {
1178 char *p = memchr(buf, '\n', count);
1179 int ret;
1180
1181 mutex_lock(&intel_pstate_driver_lock);
1182 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1183 mutex_unlock(&intel_pstate_driver_lock);
1184
1185 return ret < 0 ? ret : count;
1186 }
1187
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1188 static ssize_t show_turbo_pct(struct kobject *kobj,
1189 struct kobj_attribute *attr, char *buf)
1190 {
1191 struct cpudata *cpu;
1192 int total, no_turbo, turbo_pct;
1193 uint32_t turbo_fp;
1194
1195 mutex_lock(&intel_pstate_driver_lock);
1196
1197 if (!intel_pstate_driver) {
1198 mutex_unlock(&intel_pstate_driver_lock);
1199 return -EAGAIN;
1200 }
1201
1202 cpu = all_cpu_data[0];
1203
1204 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1205 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1206 turbo_fp = div_fp(no_turbo, total);
1207 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1208
1209 mutex_unlock(&intel_pstate_driver_lock);
1210
1211 return sprintf(buf, "%u\n", turbo_pct);
1212 }
1213
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1214 static ssize_t show_num_pstates(struct kobject *kobj,
1215 struct kobj_attribute *attr, char *buf)
1216 {
1217 struct cpudata *cpu;
1218 int total;
1219
1220 mutex_lock(&intel_pstate_driver_lock);
1221
1222 if (!intel_pstate_driver) {
1223 mutex_unlock(&intel_pstate_driver_lock);
1224 return -EAGAIN;
1225 }
1226
1227 cpu = all_cpu_data[0];
1228 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1229
1230 mutex_unlock(&intel_pstate_driver_lock);
1231
1232 return sprintf(buf, "%u\n", total);
1233 }
1234
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1235 static ssize_t show_no_turbo(struct kobject *kobj,
1236 struct kobj_attribute *attr, char *buf)
1237 {
1238 ssize_t ret;
1239
1240 mutex_lock(&intel_pstate_driver_lock);
1241
1242 if (!intel_pstate_driver) {
1243 mutex_unlock(&intel_pstate_driver_lock);
1244 return -EAGAIN;
1245 }
1246
1247 update_turbo_state();
1248 if (global.turbo_disabled)
1249 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1250 else
1251 ret = sprintf(buf, "%u\n", global.no_turbo);
1252
1253 mutex_unlock(&intel_pstate_driver_lock);
1254
1255 return ret;
1256 }
1257
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1258 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1259 const char *buf, size_t count)
1260 {
1261 unsigned int input;
1262 int ret;
1263
1264 ret = sscanf(buf, "%u", &input);
1265 if (ret != 1)
1266 return -EINVAL;
1267
1268 mutex_lock(&intel_pstate_driver_lock);
1269
1270 if (!intel_pstate_driver) {
1271 mutex_unlock(&intel_pstate_driver_lock);
1272 return -EAGAIN;
1273 }
1274
1275 mutex_lock(&intel_pstate_limits_lock);
1276
1277 update_turbo_state();
1278 if (global.turbo_disabled) {
1279 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1280 mutex_unlock(&intel_pstate_limits_lock);
1281 mutex_unlock(&intel_pstate_driver_lock);
1282 return -EPERM;
1283 }
1284
1285 global.no_turbo = clamp_t(int, input, 0, 1);
1286
1287 if (global.no_turbo) {
1288 struct cpudata *cpu = all_cpu_data[0];
1289 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1290
1291 /* Squash the global minimum into the permitted range. */
1292 if (global.min_perf_pct > pct)
1293 global.min_perf_pct = pct;
1294 }
1295
1296 mutex_unlock(&intel_pstate_limits_lock);
1297
1298 intel_pstate_update_policies();
1299 arch_set_max_freq_ratio(global.no_turbo);
1300
1301 mutex_unlock(&intel_pstate_driver_lock);
1302
1303 return count;
1304 }
1305
update_qos_request(enum freq_qos_req_type type)1306 static void update_qos_request(enum freq_qos_req_type type)
1307 {
1308 struct freq_qos_request *req;
1309 struct cpufreq_policy *policy;
1310 int i;
1311
1312 for_each_possible_cpu(i) {
1313 struct cpudata *cpu = all_cpu_data[i];
1314 unsigned int freq, perf_pct;
1315
1316 policy = cpufreq_cpu_get(i);
1317 if (!policy)
1318 continue;
1319
1320 req = policy->driver_data;
1321 cpufreq_cpu_put(policy);
1322
1323 if (!req)
1324 continue;
1325
1326 if (hwp_active)
1327 intel_pstate_get_hwp_cap(cpu);
1328
1329 if (type == FREQ_QOS_MIN) {
1330 perf_pct = global.min_perf_pct;
1331 } else {
1332 req++;
1333 perf_pct = global.max_perf_pct;
1334 }
1335
1336 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1337
1338 if (freq_qos_update_request(req, freq) < 0)
1339 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1340 }
1341 }
1342
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1343 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1344 const char *buf, size_t count)
1345 {
1346 unsigned int input;
1347 int ret;
1348
1349 ret = sscanf(buf, "%u", &input);
1350 if (ret != 1)
1351 return -EINVAL;
1352
1353 mutex_lock(&intel_pstate_driver_lock);
1354
1355 if (!intel_pstate_driver) {
1356 mutex_unlock(&intel_pstate_driver_lock);
1357 return -EAGAIN;
1358 }
1359
1360 mutex_lock(&intel_pstate_limits_lock);
1361
1362 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1363
1364 mutex_unlock(&intel_pstate_limits_lock);
1365
1366 if (intel_pstate_driver == &intel_pstate)
1367 intel_pstate_update_policies();
1368 else
1369 update_qos_request(FREQ_QOS_MAX);
1370
1371 mutex_unlock(&intel_pstate_driver_lock);
1372
1373 return count;
1374 }
1375
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1376 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1377 const char *buf, size_t count)
1378 {
1379 unsigned int input;
1380 int ret;
1381
1382 ret = sscanf(buf, "%u", &input);
1383 if (ret != 1)
1384 return -EINVAL;
1385
1386 mutex_lock(&intel_pstate_driver_lock);
1387
1388 if (!intel_pstate_driver) {
1389 mutex_unlock(&intel_pstate_driver_lock);
1390 return -EAGAIN;
1391 }
1392
1393 mutex_lock(&intel_pstate_limits_lock);
1394
1395 global.min_perf_pct = clamp_t(int, input,
1396 min_perf_pct_min(), global.max_perf_pct);
1397
1398 mutex_unlock(&intel_pstate_limits_lock);
1399
1400 if (intel_pstate_driver == &intel_pstate)
1401 intel_pstate_update_policies();
1402 else
1403 update_qos_request(FREQ_QOS_MIN);
1404
1405 mutex_unlock(&intel_pstate_driver_lock);
1406
1407 return count;
1408 }
1409
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1410 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1411 struct kobj_attribute *attr, char *buf)
1412 {
1413 return sprintf(buf, "%u\n", hwp_boost);
1414 }
1415
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1416 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1417 struct kobj_attribute *b,
1418 const char *buf, size_t count)
1419 {
1420 unsigned int input;
1421 int ret;
1422
1423 ret = kstrtouint(buf, 10, &input);
1424 if (ret)
1425 return ret;
1426
1427 mutex_lock(&intel_pstate_driver_lock);
1428 hwp_boost = !!input;
1429 intel_pstate_update_policies();
1430 mutex_unlock(&intel_pstate_driver_lock);
1431
1432 return count;
1433 }
1434
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1435 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1436 char *buf)
1437 {
1438 u64 power_ctl;
1439 int enable;
1440
1441 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1442 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1443 return sprintf(buf, "%d\n", !enable);
1444 }
1445
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1446 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1447 const char *buf, size_t count)
1448 {
1449 bool input;
1450 int ret;
1451
1452 ret = kstrtobool(buf, &input);
1453 if (ret)
1454 return ret;
1455
1456 set_power_ctl_ee_state(input);
1457
1458 return count;
1459 }
1460
1461 show_one(max_perf_pct, max_perf_pct);
1462 show_one(min_perf_pct, min_perf_pct);
1463
1464 define_one_global_rw(status);
1465 define_one_global_rw(no_turbo);
1466 define_one_global_rw(max_perf_pct);
1467 define_one_global_rw(min_perf_pct);
1468 define_one_global_ro(turbo_pct);
1469 define_one_global_ro(num_pstates);
1470 define_one_global_rw(hwp_dynamic_boost);
1471 define_one_global_rw(energy_efficiency);
1472
1473 static struct attribute *intel_pstate_attributes[] = {
1474 &status.attr,
1475 &no_turbo.attr,
1476 NULL
1477 };
1478
1479 static const struct attribute_group intel_pstate_attr_group = {
1480 .attrs = intel_pstate_attributes,
1481 };
1482
1483 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1484
1485 static struct kobject *intel_pstate_kobject;
1486
intel_pstate_sysfs_expose_params(void)1487 static void __init intel_pstate_sysfs_expose_params(void)
1488 {
1489 int rc;
1490
1491 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1492 &cpu_subsys.dev_root->kobj);
1493 if (WARN_ON(!intel_pstate_kobject))
1494 return;
1495
1496 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1497 if (WARN_ON(rc))
1498 return;
1499
1500 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1501 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1502 WARN_ON(rc);
1503
1504 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1505 WARN_ON(rc);
1506 }
1507
1508 /*
1509 * If per cpu limits are enforced there are no global limits, so
1510 * return without creating max/min_perf_pct attributes
1511 */
1512 if (per_cpu_limits)
1513 return;
1514
1515 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1516 WARN_ON(rc);
1517
1518 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1519 WARN_ON(rc);
1520
1521 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1522 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1523 WARN_ON(rc);
1524 }
1525 }
1526
intel_pstate_sysfs_remove(void)1527 static void __init intel_pstate_sysfs_remove(void)
1528 {
1529 if (!intel_pstate_kobject)
1530 return;
1531
1532 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1533
1534 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1535 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1536 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1537 }
1538
1539 if (!per_cpu_limits) {
1540 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1541 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1542
1543 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1544 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1545 }
1546
1547 kobject_put(intel_pstate_kobject);
1548 }
1549
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1550 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1551 {
1552 int rc;
1553
1554 if (!hwp_active)
1555 return;
1556
1557 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1558 WARN_ON_ONCE(rc);
1559 }
1560
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1561 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1562 {
1563 if (!hwp_active)
1564 return;
1565
1566 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1567 }
1568
1569 /************************** sysfs end ************************/
1570
intel_pstate_notify_work(struct work_struct * work)1571 static void intel_pstate_notify_work(struct work_struct *work)
1572 {
1573 struct cpudata *cpudata =
1574 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1575 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1576
1577 if (policy) {
1578 intel_pstate_get_hwp_cap(cpudata);
1579 __intel_pstate_update_max_freq(cpudata, policy);
1580
1581 cpufreq_cpu_release(policy);
1582 }
1583
1584 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1585 }
1586
1587 static DEFINE_SPINLOCK(hwp_notify_lock);
1588 static cpumask_t hwp_intr_enable_mask;
1589
notify_hwp_interrupt(void)1590 void notify_hwp_interrupt(void)
1591 {
1592 unsigned int this_cpu = smp_processor_id();
1593 struct cpudata *cpudata;
1594 unsigned long flags;
1595 u64 value;
1596
1597 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1598 return;
1599
1600 rdmsrl_safe(MSR_HWP_STATUS, &value);
1601 if (!(value & 0x01))
1602 return;
1603
1604 spin_lock_irqsave(&hwp_notify_lock, flags);
1605
1606 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1607 goto ack_intr;
1608
1609 /*
1610 * Currently we never free all_cpu_data. And we can't reach here
1611 * without this allocated. But for safety for future changes, added
1612 * check.
1613 */
1614 if (unlikely(!READ_ONCE(all_cpu_data)))
1615 goto ack_intr;
1616
1617 /*
1618 * The free is done during cleanup, when cpufreq registry is failed.
1619 * We wouldn't be here if it fails on init or switch status. But for
1620 * future changes, added check.
1621 */
1622 cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1623 if (unlikely(!cpudata))
1624 goto ack_intr;
1625
1626 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1627
1628 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1629
1630 return;
1631
1632 ack_intr:
1633 wrmsrl_safe(MSR_HWP_STATUS, 0);
1634 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1635 }
1636
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1637 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1638 {
1639 unsigned long flags;
1640
1641 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1642 return;
1643
1644 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1645 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1646
1647 spin_lock_irqsave(&hwp_notify_lock, flags);
1648 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1649 cancel_delayed_work(&cpudata->hwp_notify_work);
1650 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1651 }
1652
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)1653 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1654 {
1655 /* Enable HWP notification interrupt for guaranteed performance change */
1656 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1657 unsigned long flags;
1658
1659 spin_lock_irqsave(&hwp_notify_lock, flags);
1660 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1661 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1662 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1663
1664 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1665 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1666 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1667 }
1668 }
1669
intel_pstate_update_epp_defaults(struct cpudata * cpudata)1670 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1671 {
1672 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1673
1674 /*
1675 * If this CPU gen doesn't call for change in balance_perf
1676 * EPP return.
1677 */
1678 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1679 return;
1680
1681 /*
1682 * If powerup EPP is something other than chipset default 0x80 and
1683 * - is more performance oriented than 0x80 (default balance_perf EPP)
1684 * - But less performance oriented than performance EPP
1685 * then use this as new balance_perf EPP.
1686 */
1687 if (cpudata->epp_default < HWP_EPP_BALANCE_PERFORMANCE &&
1688 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1689 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1690 return;
1691 }
1692
1693 /*
1694 * Use hard coded value per gen to update the balance_perf
1695 * and default EPP.
1696 */
1697 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1698 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1699 }
1700
intel_pstate_hwp_enable(struct cpudata * cpudata)1701 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1702 {
1703 /* First disable HWP notification interrupt till we activate again */
1704 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1705 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1706
1707 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1708
1709 intel_pstate_enable_hwp_interrupt(cpudata);
1710
1711 if (cpudata->epp_default >= 0)
1712 return;
1713
1714 intel_pstate_update_epp_defaults(cpudata);
1715 }
1716
atom_get_min_pstate(int not_used)1717 static int atom_get_min_pstate(int not_used)
1718 {
1719 u64 value;
1720
1721 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1722 return (value >> 8) & 0x7F;
1723 }
1724
atom_get_max_pstate(int not_used)1725 static int atom_get_max_pstate(int not_used)
1726 {
1727 u64 value;
1728
1729 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1730 return (value >> 16) & 0x7F;
1731 }
1732
atom_get_turbo_pstate(int not_used)1733 static int atom_get_turbo_pstate(int not_used)
1734 {
1735 u64 value;
1736
1737 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1738 return value & 0x7F;
1739 }
1740
atom_get_val(struct cpudata * cpudata,int pstate)1741 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1742 {
1743 u64 val;
1744 int32_t vid_fp;
1745 u32 vid;
1746
1747 val = (u64)pstate << 8;
1748 if (global.no_turbo && !global.turbo_disabled)
1749 val |= (u64)1 << 32;
1750
1751 vid_fp = cpudata->vid.min + mul_fp(
1752 int_tofp(pstate - cpudata->pstate.min_pstate),
1753 cpudata->vid.ratio);
1754
1755 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1756 vid = ceiling_fp(vid_fp);
1757
1758 if (pstate > cpudata->pstate.max_pstate)
1759 vid = cpudata->vid.turbo;
1760
1761 return val | vid;
1762 }
1763
silvermont_get_scaling(void)1764 static int silvermont_get_scaling(void)
1765 {
1766 u64 value;
1767 int i;
1768 /* Defined in Table 35-6 from SDM (Sept 2015) */
1769 static int silvermont_freq_table[] = {
1770 83300, 100000, 133300, 116700, 80000};
1771
1772 rdmsrl(MSR_FSB_FREQ, value);
1773 i = value & 0x7;
1774 WARN_ON(i > 4);
1775
1776 return silvermont_freq_table[i];
1777 }
1778
airmont_get_scaling(void)1779 static int airmont_get_scaling(void)
1780 {
1781 u64 value;
1782 int i;
1783 /* Defined in Table 35-10 from SDM (Sept 2015) */
1784 static int airmont_freq_table[] = {
1785 83300, 100000, 133300, 116700, 80000,
1786 93300, 90000, 88900, 87500};
1787
1788 rdmsrl(MSR_FSB_FREQ, value);
1789 i = value & 0xF;
1790 WARN_ON(i > 8);
1791
1792 return airmont_freq_table[i];
1793 }
1794
atom_get_vid(struct cpudata * cpudata)1795 static void atom_get_vid(struct cpudata *cpudata)
1796 {
1797 u64 value;
1798
1799 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1800 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1801 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1802 cpudata->vid.ratio = div_fp(
1803 cpudata->vid.max - cpudata->vid.min,
1804 int_tofp(cpudata->pstate.max_pstate -
1805 cpudata->pstate.min_pstate));
1806
1807 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1808 cpudata->vid.turbo = value & 0x7f;
1809 }
1810
core_get_min_pstate(int cpu)1811 static int core_get_min_pstate(int cpu)
1812 {
1813 u64 value;
1814
1815 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1816 return (value >> 40) & 0xFF;
1817 }
1818
core_get_max_pstate_physical(int cpu)1819 static int core_get_max_pstate_physical(int cpu)
1820 {
1821 u64 value;
1822
1823 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1824 return (value >> 8) & 0xFF;
1825 }
1826
core_get_tdp_ratio(int cpu,u64 plat_info)1827 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1828 {
1829 /* Check how many TDP levels present */
1830 if (plat_info & 0x600000000) {
1831 u64 tdp_ctrl;
1832 u64 tdp_ratio;
1833 int tdp_msr;
1834 int err;
1835
1836 /* Get the TDP level (0, 1, 2) to get ratios */
1837 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1838 if (err)
1839 return err;
1840
1841 /* TDP MSR are continuous starting at 0x648 */
1842 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1843 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1844 if (err)
1845 return err;
1846
1847 /* For level 1 and 2, bits[23:16] contain the ratio */
1848 if (tdp_ctrl & 0x03)
1849 tdp_ratio >>= 16;
1850
1851 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1852 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1853
1854 return (int)tdp_ratio;
1855 }
1856
1857 return -ENXIO;
1858 }
1859
core_get_max_pstate(int cpu)1860 static int core_get_max_pstate(int cpu)
1861 {
1862 u64 tar;
1863 u64 plat_info;
1864 int max_pstate;
1865 int tdp_ratio;
1866 int err;
1867
1868 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1869 max_pstate = (plat_info >> 8) & 0xFF;
1870
1871 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1872 if (tdp_ratio <= 0)
1873 return max_pstate;
1874
1875 if (hwp_active) {
1876 /* Turbo activation ratio is not used on HWP platforms */
1877 return tdp_ratio;
1878 }
1879
1880 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1881 if (!err) {
1882 int tar_levels;
1883
1884 /* Do some sanity checking for safety */
1885 tar_levels = tar & 0xff;
1886 if (tdp_ratio - 1 == tar_levels) {
1887 max_pstate = tar_levels;
1888 pr_debug("max_pstate=TAC %x\n", max_pstate);
1889 }
1890 }
1891
1892 return max_pstate;
1893 }
1894
core_get_turbo_pstate(int cpu)1895 static int core_get_turbo_pstate(int cpu)
1896 {
1897 u64 value;
1898 int nont, ret;
1899
1900 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1901 nont = core_get_max_pstate(cpu);
1902 ret = (value) & 255;
1903 if (ret <= nont)
1904 ret = nont;
1905 return ret;
1906 }
1907
core_get_scaling(void)1908 static inline int core_get_scaling(void)
1909 {
1910 return 100000;
1911 }
1912
core_get_val(struct cpudata * cpudata,int pstate)1913 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1914 {
1915 u64 val;
1916
1917 val = (u64)pstate << 8;
1918 if (global.no_turbo && !global.turbo_disabled)
1919 val |= (u64)1 << 32;
1920
1921 return val;
1922 }
1923
knl_get_aperf_mperf_shift(void)1924 static int knl_get_aperf_mperf_shift(void)
1925 {
1926 return 10;
1927 }
1928
knl_get_turbo_pstate(int cpu)1929 static int knl_get_turbo_pstate(int cpu)
1930 {
1931 u64 value;
1932 int nont, ret;
1933
1934 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1935 nont = core_get_max_pstate(cpu);
1936 ret = (((value) >> 8) & 0xFF);
1937 if (ret <= nont)
1938 ret = nont;
1939 return ret;
1940 }
1941
hybrid_get_type(void * data)1942 static void hybrid_get_type(void *data)
1943 {
1944 u8 *cpu_type = data;
1945
1946 *cpu_type = get_this_hybrid_cpu_type();
1947 }
1948
hybrid_get_cpu_scaling(int cpu)1949 static int hybrid_get_cpu_scaling(int cpu)
1950 {
1951 u8 cpu_type = 0;
1952
1953 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1954 /* P-cores have a smaller perf level-to-freqency scaling factor. */
1955 if (cpu_type == 0x40)
1956 return 78741;
1957
1958 return core_get_scaling();
1959 }
1960
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1961 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1962 {
1963 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1964 cpu->pstate.current_pstate = pstate;
1965 /*
1966 * Generally, there is no guarantee that this code will always run on
1967 * the CPU being updated, so force the register update to run on the
1968 * right CPU.
1969 */
1970 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1971 pstate_funcs.get_val(cpu, pstate));
1972 }
1973
intel_pstate_set_min_pstate(struct cpudata * cpu)1974 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1975 {
1976 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1977 }
1978
intel_pstate_max_within_limits(struct cpudata * cpu)1979 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1980 {
1981 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1982
1983 update_turbo_state();
1984 intel_pstate_set_pstate(cpu, pstate);
1985 }
1986
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1987 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1988 {
1989 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1990 int perf_ctl_scaling = pstate_funcs.get_scaling();
1991
1992 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1993 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1994 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1995
1996 if (hwp_active && !hwp_mode_bdw) {
1997 __intel_pstate_get_hwp_cap(cpu);
1998
1999 if (pstate_funcs.get_cpu_scaling) {
2000 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2001 if (cpu->pstate.scaling != perf_ctl_scaling)
2002 intel_pstate_hybrid_hwp_adjust(cpu);
2003 } else {
2004 cpu->pstate.scaling = perf_ctl_scaling;
2005 }
2006 } else {
2007 cpu->pstate.scaling = perf_ctl_scaling;
2008 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2009 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2010 }
2011
2012 if (cpu->pstate.scaling == perf_ctl_scaling) {
2013 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2014 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2015 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2016 }
2017
2018 if (pstate_funcs.get_aperf_mperf_shift)
2019 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2020
2021 if (pstate_funcs.get_vid)
2022 pstate_funcs.get_vid(cpu);
2023
2024 intel_pstate_set_min_pstate(cpu);
2025 }
2026
2027 /*
2028 * Long hold time will keep high perf limits for long time,
2029 * which negatively impacts perf/watt for some workloads,
2030 * like specpower. 3ms is based on experiements on some
2031 * workoads.
2032 */
2033 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2034
intel_pstate_hwp_boost_up(struct cpudata * cpu)2035 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2036 {
2037 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2038 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2039 u32 max_limit = (hwp_req & 0xff00) >> 8;
2040 u32 min_limit = (hwp_req & 0xff);
2041 u32 boost_level1;
2042
2043 /*
2044 * Cases to consider (User changes via sysfs or boot time):
2045 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2046 * No boost, return.
2047 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2048 * Should result in one level boost only for P0.
2049 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2050 * Should result in two level boost:
2051 * (min + p1)/2 and P1.
2052 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2053 * Should result in three level boost:
2054 * (min + p1)/2, P1 and P0.
2055 */
2056
2057 /* If max and min are equal or already at max, nothing to boost */
2058 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2059 return;
2060
2061 if (!cpu->hwp_boost_min)
2062 cpu->hwp_boost_min = min_limit;
2063
2064 /* level at half way mark between min and guranteed */
2065 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2066
2067 if (cpu->hwp_boost_min < boost_level1)
2068 cpu->hwp_boost_min = boost_level1;
2069 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2070 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2071 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2072 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2073 cpu->hwp_boost_min = max_limit;
2074 else
2075 return;
2076
2077 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2078 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2079 cpu->last_update = cpu->sample.time;
2080 }
2081
intel_pstate_hwp_boost_down(struct cpudata * cpu)2082 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2083 {
2084 if (cpu->hwp_boost_min) {
2085 bool expired;
2086
2087 /* Check if we are idle for hold time to boost down */
2088 expired = time_after64(cpu->sample.time, cpu->last_update +
2089 hwp_boost_hold_time_ns);
2090 if (expired) {
2091 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2092 cpu->hwp_boost_min = 0;
2093 }
2094 }
2095 cpu->last_update = cpu->sample.time;
2096 }
2097
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2098 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2099 u64 time)
2100 {
2101 cpu->sample.time = time;
2102
2103 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2104 bool do_io = false;
2105
2106 cpu->sched_flags = 0;
2107 /*
2108 * Set iowait_boost flag and update time. Since IO WAIT flag
2109 * is set all the time, we can't just conclude that there is
2110 * some IO bound activity is scheduled on this CPU with just
2111 * one occurrence. If we receive at least two in two
2112 * consecutive ticks, then we treat as boost candidate.
2113 */
2114 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2115 do_io = true;
2116
2117 cpu->last_io_update = time;
2118
2119 if (do_io)
2120 intel_pstate_hwp_boost_up(cpu);
2121
2122 } else {
2123 intel_pstate_hwp_boost_down(cpu);
2124 }
2125 }
2126
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2127 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2128 u64 time, unsigned int flags)
2129 {
2130 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2131
2132 cpu->sched_flags |= flags;
2133
2134 if (smp_processor_id() == cpu->cpu)
2135 intel_pstate_update_util_hwp_local(cpu, time);
2136 }
2137
intel_pstate_calc_avg_perf(struct cpudata * cpu)2138 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2139 {
2140 struct sample *sample = &cpu->sample;
2141
2142 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2143 }
2144
intel_pstate_sample(struct cpudata * cpu,u64 time)2145 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2146 {
2147 u64 aperf, mperf;
2148 unsigned long flags;
2149 u64 tsc;
2150
2151 local_irq_save(flags);
2152 rdmsrl(MSR_IA32_APERF, aperf);
2153 rdmsrl(MSR_IA32_MPERF, mperf);
2154 tsc = rdtsc();
2155 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2156 local_irq_restore(flags);
2157 return false;
2158 }
2159 local_irq_restore(flags);
2160
2161 cpu->last_sample_time = cpu->sample.time;
2162 cpu->sample.time = time;
2163 cpu->sample.aperf = aperf;
2164 cpu->sample.mperf = mperf;
2165 cpu->sample.tsc = tsc;
2166 cpu->sample.aperf -= cpu->prev_aperf;
2167 cpu->sample.mperf -= cpu->prev_mperf;
2168 cpu->sample.tsc -= cpu->prev_tsc;
2169
2170 cpu->prev_aperf = aperf;
2171 cpu->prev_mperf = mperf;
2172 cpu->prev_tsc = tsc;
2173 /*
2174 * First time this function is invoked in a given cycle, all of the
2175 * previous sample data fields are equal to zero or stale and they must
2176 * be populated with meaningful numbers for things to work, so assume
2177 * that sample.time will always be reset before setting the utilization
2178 * update hook and make the caller skip the sample then.
2179 */
2180 if (cpu->last_sample_time) {
2181 intel_pstate_calc_avg_perf(cpu);
2182 return true;
2183 }
2184 return false;
2185 }
2186
get_avg_frequency(struct cpudata * cpu)2187 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2188 {
2189 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2190 }
2191
get_avg_pstate(struct cpudata * cpu)2192 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2193 {
2194 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2195 cpu->sample.core_avg_perf);
2196 }
2197
get_target_pstate(struct cpudata * cpu)2198 static inline int32_t get_target_pstate(struct cpudata *cpu)
2199 {
2200 struct sample *sample = &cpu->sample;
2201 int32_t busy_frac;
2202 int target, avg_pstate;
2203
2204 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2205 sample->tsc);
2206
2207 if (busy_frac < cpu->iowait_boost)
2208 busy_frac = cpu->iowait_boost;
2209
2210 sample->busy_scaled = busy_frac * 100;
2211
2212 target = global.no_turbo || global.turbo_disabled ?
2213 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2214 target += target >> 2;
2215 target = mul_fp(target, busy_frac);
2216 if (target < cpu->pstate.min_pstate)
2217 target = cpu->pstate.min_pstate;
2218
2219 /*
2220 * If the average P-state during the previous cycle was higher than the
2221 * current target, add 50% of the difference to the target to reduce
2222 * possible performance oscillations and offset possible performance
2223 * loss related to moving the workload from one CPU to another within
2224 * a package/module.
2225 */
2226 avg_pstate = get_avg_pstate(cpu);
2227 if (avg_pstate > target)
2228 target += (avg_pstate - target) >> 1;
2229
2230 return target;
2231 }
2232
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2233 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2234 {
2235 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2236 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2237
2238 return clamp_t(int, pstate, min_pstate, max_pstate);
2239 }
2240
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2241 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2242 {
2243 if (pstate == cpu->pstate.current_pstate)
2244 return;
2245
2246 cpu->pstate.current_pstate = pstate;
2247 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2248 }
2249
intel_pstate_adjust_pstate(struct cpudata * cpu)2250 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2251 {
2252 int from = cpu->pstate.current_pstate;
2253 struct sample *sample;
2254 int target_pstate;
2255
2256 update_turbo_state();
2257
2258 target_pstate = get_target_pstate(cpu);
2259 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2260 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2261 intel_pstate_update_pstate(cpu, target_pstate);
2262
2263 sample = &cpu->sample;
2264 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2265 fp_toint(sample->busy_scaled),
2266 from,
2267 cpu->pstate.current_pstate,
2268 sample->mperf,
2269 sample->aperf,
2270 sample->tsc,
2271 get_avg_frequency(cpu),
2272 fp_toint(cpu->iowait_boost * 100));
2273 }
2274
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2275 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2276 unsigned int flags)
2277 {
2278 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2279 u64 delta_ns;
2280
2281 /* Don't allow remote callbacks */
2282 if (smp_processor_id() != cpu->cpu)
2283 return;
2284
2285 delta_ns = time - cpu->last_update;
2286 if (flags & SCHED_CPUFREQ_IOWAIT) {
2287 /* Start over if the CPU may have been idle. */
2288 if (delta_ns > TICK_NSEC) {
2289 cpu->iowait_boost = ONE_EIGHTH_FP;
2290 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2291 cpu->iowait_boost <<= 1;
2292 if (cpu->iowait_boost > int_tofp(1))
2293 cpu->iowait_boost = int_tofp(1);
2294 } else {
2295 cpu->iowait_boost = ONE_EIGHTH_FP;
2296 }
2297 } else if (cpu->iowait_boost) {
2298 /* Clear iowait_boost if the CPU may have been idle. */
2299 if (delta_ns > TICK_NSEC)
2300 cpu->iowait_boost = 0;
2301 else
2302 cpu->iowait_boost >>= 1;
2303 }
2304 cpu->last_update = time;
2305 delta_ns = time - cpu->sample.time;
2306 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2307 return;
2308
2309 if (intel_pstate_sample(cpu, time))
2310 intel_pstate_adjust_pstate(cpu);
2311 }
2312
2313 static struct pstate_funcs core_funcs = {
2314 .get_max = core_get_max_pstate,
2315 .get_max_physical = core_get_max_pstate_physical,
2316 .get_min = core_get_min_pstate,
2317 .get_turbo = core_get_turbo_pstate,
2318 .get_scaling = core_get_scaling,
2319 .get_val = core_get_val,
2320 };
2321
2322 static const struct pstate_funcs silvermont_funcs = {
2323 .get_max = atom_get_max_pstate,
2324 .get_max_physical = atom_get_max_pstate,
2325 .get_min = atom_get_min_pstate,
2326 .get_turbo = atom_get_turbo_pstate,
2327 .get_val = atom_get_val,
2328 .get_scaling = silvermont_get_scaling,
2329 .get_vid = atom_get_vid,
2330 };
2331
2332 static const struct pstate_funcs airmont_funcs = {
2333 .get_max = atom_get_max_pstate,
2334 .get_max_physical = atom_get_max_pstate,
2335 .get_min = atom_get_min_pstate,
2336 .get_turbo = atom_get_turbo_pstate,
2337 .get_val = atom_get_val,
2338 .get_scaling = airmont_get_scaling,
2339 .get_vid = atom_get_vid,
2340 };
2341
2342 static const struct pstate_funcs knl_funcs = {
2343 .get_max = core_get_max_pstate,
2344 .get_max_physical = core_get_max_pstate_physical,
2345 .get_min = core_get_min_pstate,
2346 .get_turbo = knl_get_turbo_pstate,
2347 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2348 .get_scaling = core_get_scaling,
2349 .get_val = core_get_val,
2350 };
2351
2352 #define X86_MATCH(model, policy) \
2353 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2354 X86_FEATURE_APERFMPERF, &policy)
2355
2356 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2357 X86_MATCH(SANDYBRIDGE, core_funcs),
2358 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2359 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2360 X86_MATCH(IVYBRIDGE, core_funcs),
2361 X86_MATCH(HASWELL, core_funcs),
2362 X86_MATCH(BROADWELL, core_funcs),
2363 X86_MATCH(IVYBRIDGE_X, core_funcs),
2364 X86_MATCH(HASWELL_X, core_funcs),
2365 X86_MATCH(HASWELL_L, core_funcs),
2366 X86_MATCH(HASWELL_G, core_funcs),
2367 X86_MATCH(BROADWELL_G, core_funcs),
2368 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2369 X86_MATCH(SKYLAKE_L, core_funcs),
2370 X86_MATCH(BROADWELL_X, core_funcs),
2371 X86_MATCH(SKYLAKE, core_funcs),
2372 X86_MATCH(BROADWELL_D, core_funcs),
2373 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2374 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2375 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2376 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2377 X86_MATCH(SKYLAKE_X, core_funcs),
2378 X86_MATCH(COMETLAKE, core_funcs),
2379 X86_MATCH(ICELAKE_X, core_funcs),
2380 X86_MATCH(TIGERLAKE, core_funcs),
2381 {}
2382 };
2383 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2384
2385 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2386 X86_MATCH(BROADWELL_D, core_funcs),
2387 X86_MATCH(BROADWELL_X, core_funcs),
2388 X86_MATCH(SKYLAKE_X, core_funcs),
2389 X86_MATCH(ICELAKE_X, core_funcs),
2390 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2391 {}
2392 };
2393
2394 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2395 X86_MATCH(KABYLAKE, core_funcs),
2396 {}
2397 };
2398
2399 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2400 X86_MATCH(SKYLAKE_X, core_funcs),
2401 X86_MATCH(SKYLAKE, core_funcs),
2402 {}
2403 };
2404
intel_pstate_init_cpu(unsigned int cpunum)2405 static int intel_pstate_init_cpu(unsigned int cpunum)
2406 {
2407 struct cpudata *cpu;
2408
2409 cpu = all_cpu_data[cpunum];
2410
2411 if (!cpu) {
2412 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2413 if (!cpu)
2414 return -ENOMEM;
2415
2416 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2417
2418 cpu->cpu = cpunum;
2419
2420 cpu->epp_default = -EINVAL;
2421
2422 if (hwp_active) {
2423 const struct x86_cpu_id *id;
2424
2425 intel_pstate_hwp_enable(cpu);
2426
2427 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2428 if (id && intel_pstate_acpi_pm_profile_server())
2429 hwp_boost = true;
2430 }
2431 } else if (hwp_active) {
2432 /*
2433 * Re-enable HWP in case this happens after a resume from ACPI
2434 * S3 if the CPU was offline during the whole system/resume
2435 * cycle.
2436 */
2437 intel_pstate_hwp_reenable(cpu);
2438 }
2439
2440 cpu->epp_powersave = -EINVAL;
2441 cpu->epp_policy = 0;
2442
2443 intel_pstate_get_cpu_pstates(cpu);
2444
2445 pr_debug("controlling: cpu %d\n", cpunum);
2446
2447 return 0;
2448 }
2449
intel_pstate_set_update_util_hook(unsigned int cpu_num)2450 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2451 {
2452 struct cpudata *cpu = all_cpu_data[cpu_num];
2453
2454 if (hwp_active && !hwp_boost)
2455 return;
2456
2457 if (cpu->update_util_set)
2458 return;
2459
2460 /* Prevent intel_pstate_update_util() from using stale data. */
2461 cpu->sample.time = 0;
2462 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2463 (hwp_active ?
2464 intel_pstate_update_util_hwp :
2465 intel_pstate_update_util));
2466 cpu->update_util_set = true;
2467 }
2468
intel_pstate_clear_update_util_hook(unsigned int cpu)2469 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2470 {
2471 struct cpudata *cpu_data = all_cpu_data[cpu];
2472
2473 if (!cpu_data->update_util_set)
2474 return;
2475
2476 cpufreq_remove_update_util_hook(cpu);
2477 cpu_data->update_util_set = false;
2478 synchronize_rcu();
2479 }
2480
intel_pstate_get_max_freq(struct cpudata * cpu)2481 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2482 {
2483 return global.turbo_disabled || global.no_turbo ?
2484 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2485 }
2486
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2487 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2488 unsigned int policy_min,
2489 unsigned int policy_max)
2490 {
2491 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2492 int32_t max_policy_perf, min_policy_perf;
2493
2494 max_policy_perf = policy_max / perf_ctl_scaling;
2495 if (policy_max == policy_min) {
2496 min_policy_perf = max_policy_perf;
2497 } else {
2498 min_policy_perf = policy_min / perf_ctl_scaling;
2499 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2500 0, max_policy_perf);
2501 }
2502
2503 /*
2504 * HWP needs some special consideration, because HWP_REQUEST uses
2505 * abstract values to represent performance rather than pure ratios.
2506 */
2507 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2508 int scaling = cpu->pstate.scaling;
2509 int freq;
2510
2511 freq = max_policy_perf * perf_ctl_scaling;
2512 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2513 freq = min_policy_perf * perf_ctl_scaling;
2514 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2515 }
2516
2517 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2518 cpu->cpu, min_policy_perf, max_policy_perf);
2519
2520 /* Normalize user input to [min_perf, max_perf] */
2521 if (per_cpu_limits) {
2522 cpu->min_perf_ratio = min_policy_perf;
2523 cpu->max_perf_ratio = max_policy_perf;
2524 } else {
2525 int turbo_max = cpu->pstate.turbo_pstate;
2526 int32_t global_min, global_max;
2527
2528 /* Global limits are in percent of the maximum turbo P-state. */
2529 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2530 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2531 global_min = clamp_t(int32_t, global_min, 0, global_max);
2532
2533 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2534 global_min, global_max);
2535
2536 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2537 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2538 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2539 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2540
2541 /* Make sure min_perf <= max_perf */
2542 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2543 cpu->max_perf_ratio);
2544
2545 }
2546 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2547 cpu->max_perf_ratio,
2548 cpu->min_perf_ratio);
2549 }
2550
intel_pstate_set_policy(struct cpufreq_policy * policy)2551 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2552 {
2553 struct cpudata *cpu;
2554
2555 if (!policy->cpuinfo.max_freq)
2556 return -ENODEV;
2557
2558 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2559 policy->cpuinfo.max_freq, policy->max);
2560
2561 cpu = all_cpu_data[policy->cpu];
2562 cpu->policy = policy->policy;
2563
2564 mutex_lock(&intel_pstate_limits_lock);
2565
2566 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2567
2568 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2569 /*
2570 * NOHZ_FULL CPUs need this as the governor callback may not
2571 * be invoked on them.
2572 */
2573 intel_pstate_clear_update_util_hook(policy->cpu);
2574 intel_pstate_max_within_limits(cpu);
2575 } else {
2576 intel_pstate_set_update_util_hook(policy->cpu);
2577 }
2578
2579 if (hwp_active) {
2580 /*
2581 * When hwp_boost was active before and dynamically it
2582 * was turned off, in that case we need to clear the
2583 * update util hook.
2584 */
2585 if (!hwp_boost)
2586 intel_pstate_clear_update_util_hook(policy->cpu);
2587 intel_pstate_hwp_set(policy->cpu);
2588 }
2589
2590 mutex_unlock(&intel_pstate_limits_lock);
2591
2592 return 0;
2593 }
2594
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2595 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2596 struct cpufreq_policy_data *policy)
2597 {
2598 if (!hwp_active &&
2599 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2600 policy->max < policy->cpuinfo.max_freq &&
2601 policy->max > cpu->pstate.max_freq) {
2602 pr_debug("policy->max > max non turbo frequency\n");
2603 policy->max = policy->cpuinfo.max_freq;
2604 }
2605 }
2606
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2607 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2608 struct cpufreq_policy_data *policy)
2609 {
2610 int max_freq;
2611
2612 update_turbo_state();
2613 if (hwp_active) {
2614 intel_pstate_get_hwp_cap(cpu);
2615 max_freq = global.no_turbo || global.turbo_disabled ?
2616 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2617 } else {
2618 max_freq = intel_pstate_get_max_freq(cpu);
2619 }
2620 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2621
2622 intel_pstate_adjust_policy_max(cpu, policy);
2623 }
2624
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2625 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2626 {
2627 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2628
2629 return 0;
2630 }
2631
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2632 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2633 {
2634 struct cpudata *cpu = all_cpu_data[policy->cpu];
2635
2636 pr_debug("CPU %d going offline\n", cpu->cpu);
2637
2638 if (cpu->suspended)
2639 return 0;
2640
2641 /*
2642 * If the CPU is an SMT thread and it goes offline with the performance
2643 * settings different from the minimum, it will prevent its sibling
2644 * from getting to lower performance levels, so force the minimum
2645 * performance on CPU offline to prevent that from happening.
2646 */
2647 if (hwp_active)
2648 intel_pstate_hwp_offline(cpu);
2649 else
2650 intel_pstate_set_min_pstate(cpu);
2651
2652 intel_pstate_exit_perf_limits(policy);
2653
2654 return 0;
2655 }
2656
intel_pstate_cpu_online(struct cpufreq_policy * policy)2657 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2658 {
2659 struct cpudata *cpu = all_cpu_data[policy->cpu];
2660
2661 pr_debug("CPU %d going online\n", cpu->cpu);
2662
2663 intel_pstate_init_acpi_perf_limits(policy);
2664
2665 if (hwp_active) {
2666 /*
2667 * Re-enable HWP and clear the "suspended" flag to let "resume"
2668 * know that it need not do that.
2669 */
2670 intel_pstate_hwp_reenable(cpu);
2671 cpu->suspended = false;
2672 }
2673
2674 return 0;
2675 }
2676
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2677 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2678 {
2679 intel_pstate_clear_update_util_hook(policy->cpu);
2680
2681 return intel_cpufreq_cpu_offline(policy);
2682 }
2683
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2684 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2685 {
2686 pr_debug("CPU %d exiting\n", policy->cpu);
2687
2688 policy->fast_switch_possible = false;
2689
2690 return 0;
2691 }
2692
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2693 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2694 {
2695 struct cpudata *cpu;
2696 int rc;
2697
2698 rc = intel_pstate_init_cpu(policy->cpu);
2699 if (rc)
2700 return rc;
2701
2702 cpu = all_cpu_data[policy->cpu];
2703
2704 cpu->max_perf_ratio = 0xFF;
2705 cpu->min_perf_ratio = 0;
2706
2707 /* cpuinfo and default policy values */
2708 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2709 update_turbo_state();
2710 global.turbo_disabled_mf = global.turbo_disabled;
2711 policy->cpuinfo.max_freq = global.turbo_disabled ?
2712 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2713
2714 policy->min = policy->cpuinfo.min_freq;
2715 policy->max = policy->cpuinfo.max_freq;
2716
2717 intel_pstate_init_acpi_perf_limits(policy);
2718
2719 policy->fast_switch_possible = true;
2720
2721 return 0;
2722 }
2723
intel_pstate_cpu_init(struct cpufreq_policy * policy)2724 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2725 {
2726 int ret = __intel_pstate_cpu_init(policy);
2727
2728 if (ret)
2729 return ret;
2730
2731 /*
2732 * Set the policy to powersave to provide a valid fallback value in case
2733 * the default cpufreq governor is neither powersave nor performance.
2734 */
2735 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2736
2737 if (hwp_active) {
2738 struct cpudata *cpu = all_cpu_data[policy->cpu];
2739
2740 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2741 }
2742
2743 return 0;
2744 }
2745
2746 static struct cpufreq_driver intel_pstate = {
2747 .flags = CPUFREQ_CONST_LOOPS,
2748 .verify = intel_pstate_verify_policy,
2749 .setpolicy = intel_pstate_set_policy,
2750 .suspend = intel_pstate_suspend,
2751 .resume = intel_pstate_resume,
2752 .init = intel_pstate_cpu_init,
2753 .exit = intel_pstate_cpu_exit,
2754 .offline = intel_pstate_cpu_offline,
2755 .online = intel_pstate_cpu_online,
2756 .update_limits = intel_pstate_update_limits,
2757 .name = "intel_pstate",
2758 };
2759
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)2760 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2761 {
2762 struct cpudata *cpu = all_cpu_data[policy->cpu];
2763
2764 intel_pstate_verify_cpu_policy(cpu, policy);
2765 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2766
2767 return 0;
2768 }
2769
2770 /* Use of trace in passive mode:
2771 *
2772 * In passive mode the trace core_busy field (also known as the
2773 * performance field, and lablelled as such on the graphs; also known as
2774 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2775 * driver call was via the normal or fast switch path. Various graphs
2776 * output from the intel_pstate_tracer.py utility that include core_busy
2777 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2778 * so we use 10 to indicate the normal path through the driver, and
2779 * 90 to indicate the fast switch path through the driver.
2780 * The scaled_busy field is not used, and is set to 0.
2781 */
2782
2783 #define INTEL_PSTATE_TRACE_TARGET 10
2784 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2785
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2786 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2787 {
2788 struct sample *sample;
2789
2790 if (!trace_pstate_sample_enabled())
2791 return;
2792
2793 if (!intel_pstate_sample(cpu, ktime_get()))
2794 return;
2795
2796 sample = &cpu->sample;
2797 trace_pstate_sample(trace_type,
2798 0,
2799 old_pstate,
2800 cpu->pstate.current_pstate,
2801 sample->mperf,
2802 sample->aperf,
2803 sample->tsc,
2804 get_avg_frequency(cpu),
2805 fp_toint(cpu->iowait_boost * 100));
2806 }
2807
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)2808 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2809 u32 desired, bool fast_switch)
2810 {
2811 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2812
2813 value &= ~HWP_MIN_PERF(~0L);
2814 value |= HWP_MIN_PERF(min);
2815
2816 value &= ~HWP_MAX_PERF(~0L);
2817 value |= HWP_MAX_PERF(max);
2818
2819 value &= ~HWP_DESIRED_PERF(~0L);
2820 value |= HWP_DESIRED_PERF(desired);
2821
2822 if (value == prev)
2823 return;
2824
2825 WRITE_ONCE(cpu->hwp_req_cached, value);
2826 if (fast_switch)
2827 wrmsrl(MSR_HWP_REQUEST, value);
2828 else
2829 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2830 }
2831
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)2832 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2833 u32 target_pstate, bool fast_switch)
2834 {
2835 if (fast_switch)
2836 wrmsrl(MSR_IA32_PERF_CTL,
2837 pstate_funcs.get_val(cpu, target_pstate));
2838 else
2839 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2840 pstate_funcs.get_val(cpu, target_pstate));
2841 }
2842
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)2843 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2844 int target_pstate, bool fast_switch)
2845 {
2846 struct cpudata *cpu = all_cpu_data[policy->cpu];
2847 int old_pstate = cpu->pstate.current_pstate;
2848
2849 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2850 if (hwp_active) {
2851 int max_pstate = policy->strict_target ?
2852 target_pstate : cpu->max_perf_ratio;
2853
2854 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2855 fast_switch);
2856 } else if (target_pstate != old_pstate) {
2857 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2858 }
2859
2860 cpu->pstate.current_pstate = target_pstate;
2861
2862 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2863 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2864
2865 return target_pstate;
2866 }
2867
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2868 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2869 unsigned int target_freq,
2870 unsigned int relation)
2871 {
2872 struct cpudata *cpu = all_cpu_data[policy->cpu];
2873 struct cpufreq_freqs freqs;
2874 int target_pstate;
2875
2876 update_turbo_state();
2877
2878 freqs.old = policy->cur;
2879 freqs.new = target_freq;
2880
2881 cpufreq_freq_transition_begin(policy, &freqs);
2882
2883 switch (relation) {
2884 case CPUFREQ_RELATION_L:
2885 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2886 break;
2887 case CPUFREQ_RELATION_H:
2888 target_pstate = freqs.new / cpu->pstate.scaling;
2889 break;
2890 default:
2891 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2892 break;
2893 }
2894
2895 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2896
2897 freqs.new = target_pstate * cpu->pstate.scaling;
2898
2899 cpufreq_freq_transition_end(policy, &freqs, false);
2900
2901 return 0;
2902 }
2903
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2904 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2905 unsigned int target_freq)
2906 {
2907 struct cpudata *cpu = all_cpu_data[policy->cpu];
2908 int target_pstate;
2909
2910 update_turbo_state();
2911
2912 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2913
2914 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2915
2916 return target_pstate * cpu->pstate.scaling;
2917 }
2918
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2919 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2920 unsigned long min_perf,
2921 unsigned long target_perf,
2922 unsigned long capacity)
2923 {
2924 struct cpudata *cpu = all_cpu_data[cpunum];
2925 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2926 int old_pstate = cpu->pstate.current_pstate;
2927 int cap_pstate, min_pstate, max_pstate, target_pstate;
2928
2929 update_turbo_state();
2930 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2931 HWP_HIGHEST_PERF(hwp_cap);
2932
2933 /* Optimization: Avoid unnecessary divisions. */
2934
2935 target_pstate = cap_pstate;
2936 if (target_perf < capacity)
2937 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2938
2939 min_pstate = cap_pstate;
2940 if (min_perf < capacity)
2941 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2942
2943 if (min_pstate < cpu->pstate.min_pstate)
2944 min_pstate = cpu->pstate.min_pstate;
2945
2946 if (min_pstate < cpu->min_perf_ratio)
2947 min_pstate = cpu->min_perf_ratio;
2948
2949 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2950 if (max_pstate < min_pstate)
2951 max_pstate = min_pstate;
2952
2953 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2954
2955 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2956
2957 cpu->pstate.current_pstate = target_pstate;
2958 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2959 }
2960
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2961 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2962 {
2963 struct freq_qos_request *req;
2964 struct cpudata *cpu;
2965 struct device *dev;
2966 int ret, freq;
2967
2968 dev = get_cpu_device(policy->cpu);
2969 if (!dev)
2970 return -ENODEV;
2971
2972 ret = __intel_pstate_cpu_init(policy);
2973 if (ret)
2974 return ret;
2975
2976 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2977 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2978 policy->cur = policy->cpuinfo.min_freq;
2979
2980 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2981 if (!req) {
2982 ret = -ENOMEM;
2983 goto pstate_exit;
2984 }
2985
2986 cpu = all_cpu_data[policy->cpu];
2987
2988 if (hwp_active) {
2989 u64 value;
2990
2991 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2992
2993 intel_pstate_get_hwp_cap(cpu);
2994
2995 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2996 WRITE_ONCE(cpu->hwp_req_cached, value);
2997
2998 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2999 } else {
3000 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3001 }
3002
3003 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3004
3005 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3006 freq);
3007 if (ret < 0) {
3008 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3009 goto free_req;
3010 }
3011
3012 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3013
3014 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3015 freq);
3016 if (ret < 0) {
3017 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3018 goto remove_min_req;
3019 }
3020
3021 policy->driver_data = req;
3022
3023 return 0;
3024
3025 remove_min_req:
3026 freq_qos_remove_request(req);
3027 free_req:
3028 kfree(req);
3029 pstate_exit:
3030 intel_pstate_exit_perf_limits(policy);
3031
3032 return ret;
3033 }
3034
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3035 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3036 {
3037 struct freq_qos_request *req;
3038
3039 req = policy->driver_data;
3040
3041 freq_qos_remove_request(req + 1);
3042 freq_qos_remove_request(req);
3043 kfree(req);
3044
3045 return intel_pstate_cpu_exit(policy);
3046 }
3047
intel_cpufreq_suspend(struct cpufreq_policy * policy)3048 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3049 {
3050 intel_pstate_suspend(policy);
3051
3052 if (hwp_active) {
3053 struct cpudata *cpu = all_cpu_data[policy->cpu];
3054 u64 value = READ_ONCE(cpu->hwp_req_cached);
3055
3056 /*
3057 * Clear the desired perf field in MSR_HWP_REQUEST in case
3058 * intel_cpufreq_adjust_perf() is in use and the last value
3059 * written by it may not be suitable.
3060 */
3061 value &= ~HWP_DESIRED_PERF(~0L);
3062 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3063 WRITE_ONCE(cpu->hwp_req_cached, value);
3064 }
3065
3066 return 0;
3067 }
3068
3069 static struct cpufreq_driver intel_cpufreq = {
3070 .flags = CPUFREQ_CONST_LOOPS,
3071 .verify = intel_cpufreq_verify_policy,
3072 .target = intel_cpufreq_target,
3073 .fast_switch = intel_cpufreq_fast_switch,
3074 .init = intel_cpufreq_cpu_init,
3075 .exit = intel_cpufreq_cpu_exit,
3076 .offline = intel_cpufreq_cpu_offline,
3077 .online = intel_pstate_cpu_online,
3078 .suspend = intel_cpufreq_suspend,
3079 .resume = intel_pstate_resume,
3080 .update_limits = intel_pstate_update_limits,
3081 .name = "intel_cpufreq",
3082 };
3083
3084 static struct cpufreq_driver *default_driver;
3085
intel_pstate_driver_cleanup(void)3086 static void intel_pstate_driver_cleanup(void)
3087 {
3088 unsigned int cpu;
3089
3090 cpus_read_lock();
3091 for_each_online_cpu(cpu) {
3092 if (all_cpu_data[cpu]) {
3093 if (intel_pstate_driver == &intel_pstate)
3094 intel_pstate_clear_update_util_hook(cpu);
3095
3096 spin_lock(&hwp_notify_lock);
3097 kfree(all_cpu_data[cpu]);
3098 WRITE_ONCE(all_cpu_data[cpu], NULL);
3099 spin_unlock(&hwp_notify_lock);
3100 }
3101 }
3102 cpus_read_unlock();
3103
3104 intel_pstate_driver = NULL;
3105 }
3106
intel_pstate_register_driver(struct cpufreq_driver * driver)3107 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3108 {
3109 int ret;
3110
3111 if (driver == &intel_pstate)
3112 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3113
3114 memset(&global, 0, sizeof(global));
3115 global.max_perf_pct = 100;
3116
3117 intel_pstate_driver = driver;
3118 ret = cpufreq_register_driver(intel_pstate_driver);
3119 if (ret) {
3120 intel_pstate_driver_cleanup();
3121 return ret;
3122 }
3123
3124 global.min_perf_pct = min_perf_pct_min();
3125
3126 return 0;
3127 }
3128
intel_pstate_show_status(char * buf)3129 static ssize_t intel_pstate_show_status(char *buf)
3130 {
3131 if (!intel_pstate_driver)
3132 return sprintf(buf, "off\n");
3133
3134 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3135 "active" : "passive");
3136 }
3137
intel_pstate_update_status(const char * buf,size_t size)3138 static int intel_pstate_update_status(const char *buf, size_t size)
3139 {
3140 if (size == 3 && !strncmp(buf, "off", size)) {
3141 if (!intel_pstate_driver)
3142 return -EINVAL;
3143
3144 if (hwp_active)
3145 return -EBUSY;
3146
3147 cpufreq_unregister_driver(intel_pstate_driver);
3148 intel_pstate_driver_cleanup();
3149 return 0;
3150 }
3151
3152 if (size == 6 && !strncmp(buf, "active", size)) {
3153 if (intel_pstate_driver) {
3154 if (intel_pstate_driver == &intel_pstate)
3155 return 0;
3156
3157 cpufreq_unregister_driver(intel_pstate_driver);
3158 }
3159
3160 return intel_pstate_register_driver(&intel_pstate);
3161 }
3162
3163 if (size == 7 && !strncmp(buf, "passive", size)) {
3164 if (intel_pstate_driver) {
3165 if (intel_pstate_driver == &intel_cpufreq)
3166 return 0;
3167
3168 cpufreq_unregister_driver(intel_pstate_driver);
3169 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3170 }
3171
3172 return intel_pstate_register_driver(&intel_cpufreq);
3173 }
3174
3175 return -EINVAL;
3176 }
3177
3178 static int no_load __initdata;
3179 static int no_hwp __initdata;
3180 static int hwp_only __initdata;
3181 static unsigned int force_load __initdata;
3182
intel_pstate_msrs_not_valid(void)3183 static int __init intel_pstate_msrs_not_valid(void)
3184 {
3185 if (!pstate_funcs.get_max(0) ||
3186 !pstate_funcs.get_min(0) ||
3187 !pstate_funcs.get_turbo(0))
3188 return -ENODEV;
3189
3190 return 0;
3191 }
3192
copy_cpu_funcs(struct pstate_funcs * funcs)3193 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3194 {
3195 pstate_funcs.get_max = funcs->get_max;
3196 pstate_funcs.get_max_physical = funcs->get_max_physical;
3197 pstate_funcs.get_min = funcs->get_min;
3198 pstate_funcs.get_turbo = funcs->get_turbo;
3199 pstate_funcs.get_scaling = funcs->get_scaling;
3200 pstate_funcs.get_val = funcs->get_val;
3201 pstate_funcs.get_vid = funcs->get_vid;
3202 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3203 }
3204
3205 #ifdef CONFIG_ACPI
3206
intel_pstate_no_acpi_pss(void)3207 static bool __init intel_pstate_no_acpi_pss(void)
3208 {
3209 int i;
3210
3211 for_each_possible_cpu(i) {
3212 acpi_status status;
3213 union acpi_object *pss;
3214 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3215 struct acpi_processor *pr = per_cpu(processors, i);
3216
3217 if (!pr)
3218 continue;
3219
3220 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3221 if (ACPI_FAILURE(status))
3222 continue;
3223
3224 pss = buffer.pointer;
3225 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3226 kfree(pss);
3227 return false;
3228 }
3229
3230 kfree(pss);
3231 }
3232
3233 pr_debug("ACPI _PSS not found\n");
3234 return true;
3235 }
3236
intel_pstate_no_acpi_pcch(void)3237 static bool __init intel_pstate_no_acpi_pcch(void)
3238 {
3239 acpi_status status;
3240 acpi_handle handle;
3241
3242 status = acpi_get_handle(NULL, "\\_SB", &handle);
3243 if (ACPI_FAILURE(status))
3244 goto not_found;
3245
3246 if (acpi_has_method(handle, "PCCH"))
3247 return false;
3248
3249 not_found:
3250 pr_debug("ACPI PCCH not found\n");
3251 return true;
3252 }
3253
intel_pstate_has_acpi_ppc(void)3254 static bool __init intel_pstate_has_acpi_ppc(void)
3255 {
3256 int i;
3257
3258 for_each_possible_cpu(i) {
3259 struct acpi_processor *pr = per_cpu(processors, i);
3260
3261 if (!pr)
3262 continue;
3263 if (acpi_has_method(pr->handle, "_PPC"))
3264 return true;
3265 }
3266 pr_debug("ACPI _PPC not found\n");
3267 return false;
3268 }
3269
3270 enum {
3271 PSS,
3272 PPC,
3273 };
3274
3275 /* Hardware vendor-specific info that has its own power management modes */
3276 static struct acpi_platform_list plat_info[] __initdata = {
3277 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3278 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3279 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3280 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3281 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3282 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3283 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3284 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3285 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3286 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3287 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3288 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3289 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3290 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3291 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3292 { } /* End */
3293 };
3294
3295 #define BITMASK_OOB (BIT(8) | BIT(18))
3296
intel_pstate_platform_pwr_mgmt_exists(void)3297 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3298 {
3299 const struct x86_cpu_id *id;
3300 u64 misc_pwr;
3301 int idx;
3302
3303 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3304 if (id) {
3305 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3306 if (misc_pwr & BITMASK_OOB) {
3307 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3308 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3309 return true;
3310 }
3311 }
3312
3313 idx = acpi_match_platform_list(plat_info);
3314 if (idx < 0)
3315 return false;
3316
3317 switch (plat_info[idx].data) {
3318 case PSS:
3319 if (!intel_pstate_no_acpi_pss())
3320 return false;
3321
3322 return intel_pstate_no_acpi_pcch();
3323 case PPC:
3324 return intel_pstate_has_acpi_ppc() && !force_load;
3325 }
3326
3327 return false;
3328 }
3329
intel_pstate_request_control_from_smm(void)3330 static void intel_pstate_request_control_from_smm(void)
3331 {
3332 /*
3333 * It may be unsafe to request P-states control from SMM if _PPC support
3334 * has not been enabled.
3335 */
3336 if (acpi_ppc)
3337 acpi_processor_pstate_control();
3338 }
3339 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3340 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3341 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3342 static inline void intel_pstate_request_control_from_smm(void) {}
3343 #endif /* CONFIG_ACPI */
3344
3345 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3346
3347 #define X86_MATCH_HWP(model, hwp_mode) \
3348 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3349 X86_FEATURE_HWP, hwp_mode)
3350
3351 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3352 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3353 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3354 X86_MATCH_HWP(ANY, 0),
3355 {}
3356 };
3357
intel_pstate_hwp_is_enabled(void)3358 static bool intel_pstate_hwp_is_enabled(void)
3359 {
3360 u64 value;
3361
3362 rdmsrl(MSR_PM_ENABLE, value);
3363 return !!(value & 0x1);
3364 }
3365
3366 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3367 /*
3368 * Set EPP value as 102, this is the max suggested EPP
3369 * which can result in one core turbo frequency for
3370 * AlderLake Mobile CPUs.
3371 */
3372 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3373 {}
3374 };
3375
intel_pstate_init(void)3376 static int __init intel_pstate_init(void)
3377 {
3378 static struct cpudata **_all_cpu_data;
3379 const struct x86_cpu_id *id;
3380 int rc;
3381
3382 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3383 return -ENODEV;
3384
3385 id = x86_match_cpu(hwp_support_ids);
3386 if (id) {
3387 bool hwp_forced = intel_pstate_hwp_is_enabled();
3388
3389 if (hwp_forced)
3390 pr_info("HWP enabled by BIOS\n");
3391 else if (no_load)
3392 return -ENODEV;
3393
3394 copy_cpu_funcs(&core_funcs);
3395 /*
3396 * Avoid enabling HWP for processors without EPP support,
3397 * because that means incomplete HWP implementation which is a
3398 * corner case and supporting it is generally problematic.
3399 *
3400 * If HWP is enabled already, though, there is no choice but to
3401 * deal with it.
3402 */
3403 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3404 WRITE_ONCE(hwp_active, 1);
3405 hwp_mode_bdw = id->driver_data;
3406 intel_pstate.attr = hwp_cpufreq_attrs;
3407 intel_cpufreq.attr = hwp_cpufreq_attrs;
3408 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3409 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3410 if (!default_driver)
3411 default_driver = &intel_pstate;
3412
3413 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3414 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
3415
3416 goto hwp_cpu_matched;
3417 }
3418 pr_info("HWP not enabled\n");
3419 } else {
3420 if (no_load)
3421 return -ENODEV;
3422
3423 id = x86_match_cpu(intel_pstate_cpu_ids);
3424 if (!id) {
3425 pr_info("CPU model not supported\n");
3426 return -ENODEV;
3427 }
3428
3429 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3430 }
3431
3432 if (intel_pstate_msrs_not_valid()) {
3433 pr_info("Invalid MSRs\n");
3434 return -ENODEV;
3435 }
3436 /* Without HWP start in the passive mode. */
3437 if (!default_driver)
3438 default_driver = &intel_cpufreq;
3439
3440 hwp_cpu_matched:
3441 /*
3442 * The Intel pstate driver will be ignored if the platform
3443 * firmware has its own power management modes.
3444 */
3445 if (intel_pstate_platform_pwr_mgmt_exists()) {
3446 pr_info("P-states controlled by the platform\n");
3447 return -ENODEV;
3448 }
3449
3450 if (!hwp_active && hwp_only)
3451 return -ENOTSUPP;
3452
3453 pr_info("Intel P-state driver initializing\n");
3454
3455 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3456 if (!_all_cpu_data)
3457 return -ENOMEM;
3458
3459 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3460
3461 intel_pstate_request_control_from_smm();
3462
3463 intel_pstate_sysfs_expose_params();
3464
3465 if (hwp_active) {
3466 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3467
3468 if (id)
3469 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3470 }
3471
3472 mutex_lock(&intel_pstate_driver_lock);
3473 rc = intel_pstate_register_driver(default_driver);
3474 mutex_unlock(&intel_pstate_driver_lock);
3475 if (rc) {
3476 intel_pstate_sysfs_remove();
3477 return rc;
3478 }
3479
3480 if (hwp_active) {
3481 const struct x86_cpu_id *id;
3482
3483 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3484 if (id) {
3485 set_power_ctl_ee_state(false);
3486 pr_info("Disabling energy efficiency optimization\n");
3487 }
3488
3489 pr_info("HWP enabled\n");
3490 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3491 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3492 }
3493
3494 return 0;
3495 }
3496 device_initcall(intel_pstate_init);
3497
intel_pstate_setup(char * str)3498 static int __init intel_pstate_setup(char *str)
3499 {
3500 if (!str)
3501 return -EINVAL;
3502
3503 if (!strcmp(str, "disable"))
3504 no_load = 1;
3505 else if (!strcmp(str, "active"))
3506 default_driver = &intel_pstate;
3507 else if (!strcmp(str, "passive"))
3508 default_driver = &intel_cpufreq;
3509
3510 if (!strcmp(str, "no_hwp"))
3511 no_hwp = 1;
3512
3513 if (!strcmp(str, "force"))
3514 force_load = 1;
3515 if (!strcmp(str, "hwp_only"))
3516 hwp_only = 1;
3517 if (!strcmp(str, "per_cpu_perf_limits"))
3518 per_cpu_limits = true;
3519
3520 #ifdef CONFIG_ACPI
3521 if (!strcmp(str, "support_acpi_ppc"))
3522 acpi_ppc = true;
3523 #endif
3524
3525 return 0;
3526 }
3527 early_param("intel_pstate", intel_pstate_setup);
3528
3529 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3530 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3531 MODULE_LICENSE("GPL");
3532