1 /*
2  *	Handle firewalling
3  *	Linux ethernet bridge
4  *
5  *	Authors:
6  *	Lennert Buytenhek		<buytenh@gnu.org>
7  *	Bart De Schuymer		<bdschuym@pandora.be>
8  *
9  *	This program is free software; you can redistribute it and/or
10  *	modify it under the terms of the GNU General Public License
11  *	as published by the Free Software Foundation; either version
12  *	2 of the License, or (at your option) any later version.
13  *
14  *	Lennert dedicates this file to Kerstin Wurdinger.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34 
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38 
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
44 
45 #define skb_origaddr(skb)	 (((struct bridge_skb_cb *) \
46 				 (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb)	 (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb)	 (skb_origaddr(skb) != ip_hdr(skb)->daddr)
49 
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 #else
58 #define brnf_call_iptables 1
59 #define brnf_call_ip6tables 1
60 #define brnf_call_arptables 1
61 #define brnf_filter_vlan_tagged 0
62 #define brnf_filter_pppoe_tagged 0
63 #endif
64 
65 #define IS_IP(skb) \
66 	(!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
67 
68 #define IS_IPV6(skb) \
69 	(!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
70 
71 #define IS_ARP(skb) \
72 	(!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
73 
vlan_proto(const struct sk_buff * skb)74 static inline __be16 vlan_proto(const struct sk_buff *skb)
75 {
76 	if (vlan_tx_tag_present(skb))
77 		return skb->protocol;
78 	else if (skb->protocol == htons(ETH_P_8021Q))
79 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
80 	else
81 		return 0;
82 }
83 
84 #define IS_VLAN_IP(skb) \
85 	(vlan_proto(skb) == htons(ETH_P_IP) && \
86 	 brnf_filter_vlan_tagged)
87 
88 #define IS_VLAN_IPV6(skb) \
89 	(vlan_proto(skb) == htons(ETH_P_IPV6) && \
90 	 brnf_filter_vlan_tagged)
91 
92 #define IS_VLAN_ARP(skb) \
93 	(vlan_proto(skb) == htons(ETH_P_ARP) &&	\
94 	 brnf_filter_vlan_tagged)
95 
pppoe_proto(const struct sk_buff * skb)96 static inline __be16 pppoe_proto(const struct sk_buff *skb)
97 {
98 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
99 			    sizeof(struct pppoe_hdr)));
100 }
101 
102 #define IS_PPPOE_IP(skb) \
103 	(skb->protocol == htons(ETH_P_PPP_SES) && \
104 	 pppoe_proto(skb) == htons(PPP_IP) && \
105 	 brnf_filter_pppoe_tagged)
106 
107 #define IS_PPPOE_IPV6(skb) \
108 	(skb->protocol == htons(ETH_P_PPP_SES) && \
109 	 pppoe_proto(skb) == htons(PPP_IPV6) && \
110 	 brnf_filter_pppoe_tagged)
111 
fake_update_pmtu(struct dst_entry * dst,u32 mtu)112 static void fake_update_pmtu(struct dst_entry *dst, u32 mtu)
113 {
114 }
115 
fake_cow_metrics(struct dst_entry * dst,unsigned long old)116 static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old)
117 {
118 	return NULL;
119 }
120 
fake_neigh_lookup(const struct dst_entry * dst,const void * daddr)121 static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst, const void *daddr)
122 {
123 	return NULL;
124 }
125 
fake_mtu(const struct dst_entry * dst)126 static unsigned int fake_mtu(const struct dst_entry *dst)
127 {
128 	return dst->dev->mtu;
129 }
130 
131 static struct dst_ops fake_dst_ops = {
132 	.family =		AF_INET,
133 	.protocol =		cpu_to_be16(ETH_P_IP),
134 	.update_pmtu =		fake_update_pmtu,
135 	.cow_metrics =		fake_cow_metrics,
136 	.neigh_lookup =		fake_neigh_lookup,
137 	.mtu =			fake_mtu,
138 };
139 
140 /*
141  * Initialize bogus route table used to keep netfilter happy.
142  * Currently, we fill in the PMTU entry because netfilter
143  * refragmentation needs it, and the rt_flags entry because
144  * ipt_REJECT needs it.  Future netfilter modules might
145  * require us to fill additional fields.
146  */
147 static const u32 br_dst_default_metrics[RTAX_MAX] = {
148 	[RTAX_MTU - 1] = 1500,
149 };
150 
br_netfilter_rtable_init(struct net_bridge * br)151 void br_netfilter_rtable_init(struct net_bridge *br)
152 {
153 	struct rtable *rt = &br->fake_rtable;
154 
155 	atomic_set(&rt->dst.__refcnt, 1);
156 	rt->dst.dev = br->dev;
157 	rt->dst.path = &rt->dst;
158 	dst_init_metrics(&rt->dst, br_dst_default_metrics, true);
159 	rt->dst.flags	= DST_NOXFRM | DST_NOPEER | DST_FAKE_RTABLE;
160 	rt->dst.ops = &fake_dst_ops;
161 }
162 
bridge_parent_rtable(const struct net_device * dev)163 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
164 {
165 	struct net_bridge_port *port;
166 
167 	port = br_port_get_rcu(dev);
168 	return port ? &port->br->fake_rtable : NULL;
169 }
170 
bridge_parent(const struct net_device * dev)171 static inline struct net_device *bridge_parent(const struct net_device *dev)
172 {
173 	struct net_bridge_port *port;
174 
175 	port = br_port_get_rcu(dev);
176 	return port ? port->br->dev : NULL;
177 }
178 
nf_bridge_alloc(struct sk_buff * skb)179 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
180 {
181 	skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
182 	if (likely(skb->nf_bridge))
183 		atomic_set(&(skb->nf_bridge->use), 1);
184 
185 	return skb->nf_bridge;
186 }
187 
nf_bridge_unshare(struct sk_buff * skb)188 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
189 {
190 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
191 
192 	if (atomic_read(&nf_bridge->use) > 1) {
193 		struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
194 
195 		if (tmp) {
196 			memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
197 			atomic_set(&tmp->use, 1);
198 		}
199 		nf_bridge_put(nf_bridge);
200 		nf_bridge = tmp;
201 	}
202 	return nf_bridge;
203 }
204 
nf_bridge_push_encap_header(struct sk_buff * skb)205 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
206 {
207 	unsigned int len = nf_bridge_encap_header_len(skb);
208 
209 	skb_push(skb, len);
210 	skb->network_header -= len;
211 }
212 
nf_bridge_pull_encap_header(struct sk_buff * skb)213 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
214 {
215 	unsigned int len = nf_bridge_encap_header_len(skb);
216 
217 	skb_pull(skb, len);
218 	skb->network_header += len;
219 }
220 
nf_bridge_pull_encap_header_rcsum(struct sk_buff * skb)221 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
222 {
223 	unsigned int len = nf_bridge_encap_header_len(skb);
224 
225 	skb_pull_rcsum(skb, len);
226 	skb->network_header += len;
227 }
228 
nf_bridge_save_header(struct sk_buff * skb)229 static inline void nf_bridge_save_header(struct sk_buff *skb)
230 {
231 	int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
232 
233 	skb_copy_from_linear_data_offset(skb, -header_size,
234 					 skb->nf_bridge->data, header_size);
235 }
236 
nf_bridge_update_protocol(struct sk_buff * skb)237 static inline void nf_bridge_update_protocol(struct sk_buff *skb)
238 {
239 	if (skb->nf_bridge->mask & BRNF_8021Q)
240 		skb->protocol = htons(ETH_P_8021Q);
241 	else if (skb->nf_bridge->mask & BRNF_PPPoE)
242 		skb->protocol = htons(ETH_P_PPP_SES);
243 }
244 
245 /* When handing a packet over to the IP layer
246  * check whether we have a skb that is in the
247  * expected format
248  */
249 
br_parse_ip_options(struct sk_buff * skb)250 static int br_parse_ip_options(struct sk_buff *skb)
251 {
252 	struct ip_options *opt;
253 	const struct iphdr *iph;
254 	struct net_device *dev = skb->dev;
255 	u32 len;
256 
257 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
258 		goto inhdr_error;
259 
260 	iph = ip_hdr(skb);
261 	opt = &(IPCB(skb)->opt);
262 
263 	/* Basic sanity checks */
264 	if (iph->ihl < 5 || iph->version != 4)
265 		goto inhdr_error;
266 
267 	if (!pskb_may_pull(skb, iph->ihl*4))
268 		goto inhdr_error;
269 
270 	iph = ip_hdr(skb);
271 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
272 		goto inhdr_error;
273 
274 	len = ntohs(iph->tot_len);
275 	if (skb->len < len) {
276 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
277 		goto drop;
278 	} else if (len < (iph->ihl*4))
279 		goto inhdr_error;
280 
281 	if (pskb_trim_rcsum(skb, len)) {
282 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
283 		goto drop;
284 	}
285 
286 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
287 	if (iph->ihl == 5)
288 		return 0;
289 
290 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
291 	if (ip_options_compile(dev_net(dev), opt, skb))
292 		goto inhdr_error;
293 
294 	/* Check correct handling of SRR option */
295 	if (unlikely(opt->srr)) {
296 		struct in_device *in_dev = __in_dev_get_rcu(dev);
297 		if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
298 			goto drop;
299 
300 		if (ip_options_rcv_srr(skb))
301 			goto drop;
302 	}
303 
304 	return 0;
305 
306 inhdr_error:
307 	IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
308 drop:
309 	return -1;
310 }
311 
312 /* Fill in the header for fragmented IP packets handled by
313  * the IPv4 connection tracking code.
314  */
nf_bridge_copy_header(struct sk_buff * skb)315 int nf_bridge_copy_header(struct sk_buff *skb)
316 {
317 	int err;
318 	unsigned int header_size;
319 
320 	nf_bridge_update_protocol(skb);
321 	header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
322 	err = skb_cow_head(skb, header_size);
323 	if (err)
324 		return err;
325 
326 	skb_copy_to_linear_data_offset(skb, -header_size,
327 				       skb->nf_bridge->data, header_size);
328 	__skb_push(skb, nf_bridge_encap_header_len(skb));
329 	return 0;
330 }
331 
332 /* PF_BRIDGE/PRE_ROUTING *********************************************/
333 /* Undo the changes made for ip6tables PREROUTING and continue the
334  * bridge PRE_ROUTING hook. */
br_nf_pre_routing_finish_ipv6(struct sk_buff * skb)335 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
336 {
337 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
338 	struct rtable *rt;
339 
340 	if (nf_bridge->mask & BRNF_PKT_TYPE) {
341 		skb->pkt_type = PACKET_OTHERHOST;
342 		nf_bridge->mask ^= BRNF_PKT_TYPE;
343 	}
344 	nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
345 
346 	rt = bridge_parent_rtable(nf_bridge->physindev);
347 	if (!rt) {
348 		kfree_skb(skb);
349 		return 0;
350 	}
351 	skb_dst_set_noref(skb, &rt->dst);
352 
353 	skb->dev = nf_bridge->physindev;
354 	nf_bridge_update_protocol(skb);
355 	nf_bridge_push_encap_header(skb);
356 	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
357 		       br_handle_frame_finish, 1);
358 
359 	return 0;
360 }
361 
362 /* Obtain the correct destination MAC address, while preserving the original
363  * source MAC address. If we already know this address, we just copy it. If we
364  * don't, we use the neighbour framework to find out. In both cases, we make
365  * sure that br_handle_frame_finish() is called afterwards.
366  */
br_nf_pre_routing_finish_bridge(struct sk_buff * skb)367 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
368 {
369 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
370 	struct neighbour *neigh;
371 	struct dst_entry *dst;
372 
373 	skb->dev = bridge_parent(skb->dev);
374 	if (!skb->dev)
375 		goto free_skb;
376 	dst = skb_dst(skb);
377 	neigh = dst_get_neighbour_noref(dst);
378 	if (neigh->hh.hh_len) {
379 		neigh_hh_bridge(&neigh->hh, skb);
380 		skb->dev = nf_bridge->physindev;
381 		return br_handle_frame_finish(skb);
382 	} else {
383 		/* the neighbour function below overwrites the complete
384 		 * MAC header, so we save the Ethernet source address and
385 		 * protocol number. */
386 		skb_copy_from_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN), skb->nf_bridge->data, ETH_HLEN-ETH_ALEN);
387 		/* tell br_dev_xmit to continue with forwarding */
388 		nf_bridge->mask |= BRNF_BRIDGED_DNAT;
389 		return neigh->output(neigh, skb);
390 	}
391 free_skb:
392 	kfree_skb(skb);
393 	return 0;
394 }
395 
396 /* This requires some explaining. If DNAT has taken place,
397  * we will need to fix up the destination Ethernet address.
398  *
399  * There are two cases to consider:
400  * 1. The packet was DNAT'ed to a device in the same bridge
401  *    port group as it was received on. We can still bridge
402  *    the packet.
403  * 2. The packet was DNAT'ed to a different device, either
404  *    a non-bridged device or another bridge port group.
405  *    The packet will need to be routed.
406  *
407  * The correct way of distinguishing between these two cases is to
408  * call ip_route_input() and to look at skb->dst->dev, which is
409  * changed to the destination device if ip_route_input() succeeds.
410  *
411  * Let's first consider the case that ip_route_input() succeeds:
412  *
413  * If the output device equals the logical bridge device the packet
414  * came in on, we can consider this bridging. The corresponding MAC
415  * address will be obtained in br_nf_pre_routing_finish_bridge.
416  * Otherwise, the packet is considered to be routed and we just
417  * change the destination MAC address so that the packet will
418  * later be passed up to the IP stack to be routed. For a redirected
419  * packet, ip_route_input() will give back the localhost as output device,
420  * which differs from the bridge device.
421  *
422  * Let's now consider the case that ip_route_input() fails:
423  *
424  * This can be because the destination address is martian, in which case
425  * the packet will be dropped.
426  * If IP forwarding is disabled, ip_route_input() will fail, while
427  * ip_route_output_key() can return success. The source
428  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
429  * thinks we're handling a locally generated packet and won't care
430  * if IP forwarding is enabled. If the output device equals the logical bridge
431  * device, we proceed as if ip_route_input() succeeded. If it differs from the
432  * logical bridge port or if ip_route_output_key() fails we drop the packet.
433  */
br_nf_pre_routing_finish(struct sk_buff * skb)434 static int br_nf_pre_routing_finish(struct sk_buff *skb)
435 {
436 	struct net_device *dev = skb->dev;
437 	struct iphdr *iph = ip_hdr(skb);
438 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
439 	struct rtable *rt;
440 	int err;
441 
442 	if (nf_bridge->mask & BRNF_PKT_TYPE) {
443 		skb->pkt_type = PACKET_OTHERHOST;
444 		nf_bridge->mask ^= BRNF_PKT_TYPE;
445 	}
446 	nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
447 	if (dnat_took_place(skb)) {
448 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
449 			struct in_device *in_dev = __in_dev_get_rcu(dev);
450 
451 			/* If err equals -EHOSTUNREACH the error is due to a
452 			 * martian destination or due to the fact that
453 			 * forwarding is disabled. For most martian packets,
454 			 * ip_route_output_key() will fail. It won't fail for 2 types of
455 			 * martian destinations: loopback destinations and destination
456 			 * 0.0.0.0. In both cases the packet will be dropped because the
457 			 * destination is the loopback device and not the bridge. */
458 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
459 				goto free_skb;
460 
461 			rt = ip_route_output(dev_net(dev), iph->daddr, 0,
462 					     RT_TOS(iph->tos), 0);
463 			if (!IS_ERR(rt)) {
464 				/* - Bridged-and-DNAT'ed traffic doesn't
465 				 *   require ip_forwarding. */
466 				if (rt->dst.dev == dev) {
467 					skb_dst_set(skb, &rt->dst);
468 					goto bridged_dnat;
469 				}
470 				ip_rt_put(rt);
471 			}
472 free_skb:
473 			kfree_skb(skb);
474 			return 0;
475 		} else {
476 			if (skb_dst(skb)->dev == dev) {
477 bridged_dnat:
478 				skb->dev = nf_bridge->physindev;
479 				nf_bridge_update_protocol(skb);
480 				nf_bridge_push_encap_header(skb);
481 				NF_HOOK_THRESH(NFPROTO_BRIDGE,
482 					       NF_BR_PRE_ROUTING,
483 					       skb, skb->dev, NULL,
484 					       br_nf_pre_routing_finish_bridge,
485 					       1);
486 				return 0;
487 			}
488 			memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
489 			skb->pkt_type = PACKET_HOST;
490 		}
491 	} else {
492 		rt = bridge_parent_rtable(nf_bridge->physindev);
493 		if (!rt) {
494 			kfree_skb(skb);
495 			return 0;
496 		}
497 		skb_dst_set_noref(skb, &rt->dst);
498 	}
499 
500 	skb->dev = nf_bridge->physindev;
501 	nf_bridge_update_protocol(skb);
502 	nf_bridge_push_encap_header(skb);
503 	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
504 		       br_handle_frame_finish, 1);
505 
506 	return 0;
507 }
508 
509 /* Some common code for IPv4/IPv6 */
setup_pre_routing(struct sk_buff * skb)510 static struct net_device *setup_pre_routing(struct sk_buff *skb)
511 {
512 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
513 
514 	if (skb->pkt_type == PACKET_OTHERHOST) {
515 		skb->pkt_type = PACKET_HOST;
516 		nf_bridge->mask |= BRNF_PKT_TYPE;
517 	}
518 
519 	nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
520 	nf_bridge->physindev = skb->dev;
521 	skb->dev = bridge_parent(skb->dev);
522 	if (skb->protocol == htons(ETH_P_8021Q))
523 		nf_bridge->mask |= BRNF_8021Q;
524 	else if (skb->protocol == htons(ETH_P_PPP_SES))
525 		nf_bridge->mask |= BRNF_PPPoE;
526 
527 	return skb->dev;
528 }
529 
530 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
check_hbh_len(struct sk_buff * skb)531 static int check_hbh_len(struct sk_buff *skb)
532 {
533 	unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
534 	u32 pkt_len;
535 	const unsigned char *nh = skb_network_header(skb);
536 	int off = raw - nh;
537 	int len = (raw[1] + 1) << 3;
538 
539 	if ((raw + len) - skb->data > skb_headlen(skb))
540 		goto bad;
541 
542 	off += 2;
543 	len -= 2;
544 
545 	while (len > 0) {
546 		int optlen = nh[off + 1] + 2;
547 
548 		switch (nh[off]) {
549 		case IPV6_TLV_PAD0:
550 			optlen = 1;
551 			break;
552 
553 		case IPV6_TLV_PADN:
554 			break;
555 
556 		case IPV6_TLV_JUMBO:
557 			if (nh[off + 1] != 4 || (off & 3) != 2)
558 				goto bad;
559 			pkt_len = ntohl(*(__be32 *) (nh + off + 2));
560 			if (pkt_len <= IPV6_MAXPLEN ||
561 			    ipv6_hdr(skb)->payload_len)
562 				goto bad;
563 			if (pkt_len > skb->len - sizeof(struct ipv6hdr))
564 				goto bad;
565 			if (pskb_trim_rcsum(skb,
566 					    pkt_len + sizeof(struct ipv6hdr)))
567 				goto bad;
568 			nh = skb_network_header(skb);
569 			break;
570 		default:
571 			if (optlen > len)
572 				goto bad;
573 			break;
574 		}
575 		off += optlen;
576 		len -= optlen;
577 	}
578 	if (len == 0)
579 		return 0;
580 bad:
581 	return -1;
582 
583 }
584 
585 /* Replicate the checks that IPv6 does on packet reception and pass the packet
586  * to ip6tables, which doesn't support NAT, so things are fairly simple. */
br_nf_pre_routing_ipv6(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))587 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook,
588 					   struct sk_buff *skb,
589 					   const struct net_device *in,
590 					   const struct net_device *out,
591 					   int (*okfn)(struct sk_buff *))
592 {
593 	const struct ipv6hdr *hdr;
594 	u32 pkt_len;
595 
596 	if (skb->len < sizeof(struct ipv6hdr))
597 		return NF_DROP;
598 
599 	if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
600 		return NF_DROP;
601 
602 	hdr = ipv6_hdr(skb);
603 
604 	if (hdr->version != 6)
605 		return NF_DROP;
606 
607 	pkt_len = ntohs(hdr->payload_len);
608 
609 	if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
610 		if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
611 			return NF_DROP;
612 		if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
613 			return NF_DROP;
614 	}
615 	if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
616 		return NF_DROP;
617 
618 	nf_bridge_put(skb->nf_bridge);
619 	if (!nf_bridge_alloc(skb))
620 		return NF_DROP;
621 	if (!setup_pre_routing(skb))
622 		return NF_DROP;
623 
624 	skb->protocol = htons(ETH_P_IPV6);
625 	NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
626 		br_nf_pre_routing_finish_ipv6);
627 
628 	return NF_STOLEN;
629 }
630 
631 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
632  * Replicate the checks that IPv4 does on packet reception.
633  * Set skb->dev to the bridge device (i.e. parent of the
634  * receiving device) to make netfilter happy, the REDIRECT
635  * target in particular.  Save the original destination IP
636  * address to be able to detect DNAT afterwards. */
br_nf_pre_routing(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))637 static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff *skb,
638 				      const struct net_device *in,
639 				      const struct net_device *out,
640 				      int (*okfn)(struct sk_buff *))
641 {
642 	struct net_bridge_port *p;
643 	struct net_bridge *br;
644 	__u32 len = nf_bridge_encap_header_len(skb);
645 
646 	if (unlikely(!pskb_may_pull(skb, len)))
647 		return NF_DROP;
648 
649 	p = br_port_get_rcu(in);
650 	if (p == NULL)
651 		return NF_DROP;
652 	br = p->br;
653 
654 	if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
655 		if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
656 			return NF_ACCEPT;
657 
658 		nf_bridge_pull_encap_header_rcsum(skb);
659 		return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn);
660 	}
661 
662 	if (!brnf_call_iptables && !br->nf_call_iptables)
663 		return NF_ACCEPT;
664 
665 	if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
666 		return NF_ACCEPT;
667 
668 	nf_bridge_pull_encap_header_rcsum(skb);
669 
670 	if (br_parse_ip_options(skb))
671 		return NF_DROP;
672 
673 	nf_bridge_put(skb->nf_bridge);
674 	if (!nf_bridge_alloc(skb))
675 		return NF_DROP;
676 	if (!setup_pre_routing(skb))
677 		return NF_DROP;
678 	store_orig_dstaddr(skb);
679 	skb->protocol = htons(ETH_P_IP);
680 
681 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
682 		br_nf_pre_routing_finish);
683 
684 	return NF_STOLEN;
685 }
686 
687 
688 /* PF_BRIDGE/LOCAL_IN ************************************************/
689 /* The packet is locally destined, which requires a real
690  * dst_entry, so detach the fake one.  On the way up, the
691  * packet would pass through PRE_ROUTING again (which already
692  * took place when the packet entered the bridge), but we
693  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
694  * prevent this from happening. */
br_nf_local_in(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))695 static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff *skb,
696 				   const struct net_device *in,
697 				   const struct net_device *out,
698 				   int (*okfn)(struct sk_buff *))
699 {
700 	br_drop_fake_rtable(skb);
701 	return NF_ACCEPT;
702 }
703 
704 /* PF_BRIDGE/FORWARD *************************************************/
br_nf_forward_finish(struct sk_buff * skb)705 static int br_nf_forward_finish(struct sk_buff *skb)
706 {
707 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
708 	struct net_device *in;
709 
710 	if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
711 		in = nf_bridge->physindev;
712 		if (nf_bridge->mask & BRNF_PKT_TYPE) {
713 			skb->pkt_type = PACKET_OTHERHOST;
714 			nf_bridge->mask ^= BRNF_PKT_TYPE;
715 		}
716 		nf_bridge_update_protocol(skb);
717 	} else {
718 		in = *((struct net_device **)(skb->cb));
719 	}
720 	nf_bridge_push_encap_header(skb);
721 
722 	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
723 		       skb->dev, br_forward_finish, 1);
724 	return 0;
725 }
726 
727 
728 /* This is the 'purely bridged' case.  For IP, we pass the packet to
729  * netfilter with indev and outdev set to the bridge device,
730  * but we are still able to filter on the 'real' indev/outdev
731  * because of the physdev module. For ARP, indev and outdev are the
732  * bridge ports. */
br_nf_forward_ip(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))733 static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff *skb,
734 				     const struct net_device *in,
735 				     const struct net_device *out,
736 				     int (*okfn)(struct sk_buff *))
737 {
738 	struct nf_bridge_info *nf_bridge;
739 	struct net_device *parent;
740 	u_int8_t pf;
741 
742 	if (!skb->nf_bridge)
743 		return NF_ACCEPT;
744 
745 	/* Need exclusive nf_bridge_info since we might have multiple
746 	 * different physoutdevs. */
747 	if (!nf_bridge_unshare(skb))
748 		return NF_DROP;
749 
750 	parent = bridge_parent(out);
751 	if (!parent)
752 		return NF_DROP;
753 
754 	if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
755 		pf = PF_INET;
756 	else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
757 		pf = PF_INET6;
758 	else
759 		return NF_ACCEPT;
760 
761 	nf_bridge_pull_encap_header(skb);
762 
763 	nf_bridge = skb->nf_bridge;
764 	if (skb->pkt_type == PACKET_OTHERHOST) {
765 		skb->pkt_type = PACKET_HOST;
766 		nf_bridge->mask |= BRNF_PKT_TYPE;
767 	}
768 
769 	if (pf == PF_INET && br_parse_ip_options(skb))
770 		return NF_DROP;
771 
772 	/* The physdev module checks on this */
773 	nf_bridge->mask |= BRNF_BRIDGED;
774 	nf_bridge->physoutdev = skb->dev;
775 	if (pf == PF_INET)
776 		skb->protocol = htons(ETH_P_IP);
777 	else
778 		skb->protocol = htons(ETH_P_IPV6);
779 
780 	NF_HOOK(pf, NF_INET_FORWARD, skb, bridge_parent(in), parent,
781 		br_nf_forward_finish);
782 
783 	return NF_STOLEN;
784 }
785 
br_nf_forward_arp(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))786 static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff *skb,
787 				      const struct net_device *in,
788 				      const struct net_device *out,
789 				      int (*okfn)(struct sk_buff *))
790 {
791 	struct net_bridge_port *p;
792 	struct net_bridge *br;
793 	struct net_device **d = (struct net_device **)(skb->cb);
794 
795 	p = br_port_get_rcu(out);
796 	if (p == NULL)
797 		return NF_ACCEPT;
798 	br = p->br;
799 
800 	if (!brnf_call_arptables && !br->nf_call_arptables)
801 		return NF_ACCEPT;
802 
803 	if (!IS_ARP(skb)) {
804 		if (!IS_VLAN_ARP(skb))
805 			return NF_ACCEPT;
806 		nf_bridge_pull_encap_header(skb);
807 	}
808 
809 	if (arp_hdr(skb)->ar_pln != 4) {
810 		if (IS_VLAN_ARP(skb))
811 			nf_bridge_push_encap_header(skb);
812 		return NF_ACCEPT;
813 	}
814 	*d = (struct net_device *)in;
815 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
816 		(struct net_device *)out, br_nf_forward_finish);
817 
818 	return NF_STOLEN;
819 }
820 
821 #if IS_ENABLED(CONFIG_NF_CONNTRACK_IPV4)
br_nf_dev_queue_xmit(struct sk_buff * skb)822 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
823 {
824 	int ret;
825 
826 	if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) &&
827 	    skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
828 	    !skb_is_gso(skb)) {
829 		if (br_parse_ip_options(skb))
830 			/* Drop invalid packet */
831 			return NF_DROP;
832 		ret = ip_fragment(skb, br_dev_queue_push_xmit);
833 	} else
834 		ret = br_dev_queue_push_xmit(skb);
835 
836 	return ret;
837 }
838 #else
br_nf_dev_queue_xmit(struct sk_buff * skb)839 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
840 {
841         return br_dev_queue_push_xmit(skb);
842 }
843 #endif
844 
845 /* PF_BRIDGE/POST_ROUTING ********************************************/
br_nf_post_routing(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))846 static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff *skb,
847 				       const struct net_device *in,
848 				       const struct net_device *out,
849 				       int (*okfn)(struct sk_buff *))
850 {
851 	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
852 	struct net_device *realoutdev = bridge_parent(skb->dev);
853 	u_int8_t pf;
854 
855 	if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
856 		return NF_ACCEPT;
857 
858 	if (!realoutdev)
859 		return NF_DROP;
860 
861 	if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
862 		pf = PF_INET;
863 	else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
864 		pf = PF_INET6;
865 	else
866 		return NF_ACCEPT;
867 
868 	/* We assume any code from br_dev_queue_push_xmit onwards doesn't care
869 	 * about the value of skb->pkt_type. */
870 	if (skb->pkt_type == PACKET_OTHERHOST) {
871 		skb->pkt_type = PACKET_HOST;
872 		nf_bridge->mask |= BRNF_PKT_TYPE;
873 	}
874 
875 	nf_bridge_pull_encap_header(skb);
876 	nf_bridge_save_header(skb);
877 	if (pf == PF_INET)
878 		skb->protocol = htons(ETH_P_IP);
879 	else
880 		skb->protocol = htons(ETH_P_IPV6);
881 
882 	NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
883 		br_nf_dev_queue_xmit);
884 
885 	return NF_STOLEN;
886 }
887 
888 /* IP/SABOTAGE *****************************************************/
889 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
890  * for the second time. */
ip_sabotage_in(unsigned int hook,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))891 static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff *skb,
892 				   const struct net_device *in,
893 				   const struct net_device *out,
894 				   int (*okfn)(struct sk_buff *))
895 {
896 	if (skb->nf_bridge &&
897 	    !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
898 		return NF_STOP;
899 	}
900 
901 	return NF_ACCEPT;
902 }
903 
904 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
905  * br_dev_queue_push_xmit is called afterwards */
906 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
907 	{
908 		.hook = br_nf_pre_routing,
909 		.owner = THIS_MODULE,
910 		.pf = PF_BRIDGE,
911 		.hooknum = NF_BR_PRE_ROUTING,
912 		.priority = NF_BR_PRI_BRNF,
913 	},
914 	{
915 		.hook = br_nf_local_in,
916 		.owner = THIS_MODULE,
917 		.pf = PF_BRIDGE,
918 		.hooknum = NF_BR_LOCAL_IN,
919 		.priority = NF_BR_PRI_BRNF,
920 	},
921 	{
922 		.hook = br_nf_forward_ip,
923 		.owner = THIS_MODULE,
924 		.pf = PF_BRIDGE,
925 		.hooknum = NF_BR_FORWARD,
926 		.priority = NF_BR_PRI_BRNF - 1,
927 	},
928 	{
929 		.hook = br_nf_forward_arp,
930 		.owner = THIS_MODULE,
931 		.pf = PF_BRIDGE,
932 		.hooknum = NF_BR_FORWARD,
933 		.priority = NF_BR_PRI_BRNF,
934 	},
935 	{
936 		.hook = br_nf_post_routing,
937 		.owner = THIS_MODULE,
938 		.pf = PF_BRIDGE,
939 		.hooknum = NF_BR_POST_ROUTING,
940 		.priority = NF_BR_PRI_LAST,
941 	},
942 	{
943 		.hook = ip_sabotage_in,
944 		.owner = THIS_MODULE,
945 		.pf = PF_INET,
946 		.hooknum = NF_INET_PRE_ROUTING,
947 		.priority = NF_IP_PRI_FIRST,
948 	},
949 	{
950 		.hook = ip_sabotage_in,
951 		.owner = THIS_MODULE,
952 		.pf = PF_INET6,
953 		.hooknum = NF_INET_PRE_ROUTING,
954 		.priority = NF_IP6_PRI_FIRST,
955 	},
956 };
957 
958 #ifdef CONFIG_SYSCTL
959 static
brnf_sysctl_call_tables(ctl_table * ctl,int write,void __user * buffer,size_t * lenp,loff_t * ppos)960 int brnf_sysctl_call_tables(ctl_table * ctl, int write,
961 			    void __user * buffer, size_t * lenp, loff_t * ppos)
962 {
963 	int ret;
964 
965 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
966 
967 	if (write && *(int *)(ctl->data))
968 		*(int *)(ctl->data) = 1;
969 	return ret;
970 }
971 
972 static ctl_table brnf_table[] = {
973 	{
974 		.procname	= "bridge-nf-call-arptables",
975 		.data		= &brnf_call_arptables,
976 		.maxlen		= sizeof(int),
977 		.mode		= 0644,
978 		.proc_handler	= brnf_sysctl_call_tables,
979 	},
980 	{
981 		.procname	= "bridge-nf-call-iptables",
982 		.data		= &brnf_call_iptables,
983 		.maxlen		= sizeof(int),
984 		.mode		= 0644,
985 		.proc_handler	= brnf_sysctl_call_tables,
986 	},
987 	{
988 		.procname	= "bridge-nf-call-ip6tables",
989 		.data		= &brnf_call_ip6tables,
990 		.maxlen		= sizeof(int),
991 		.mode		= 0644,
992 		.proc_handler	= brnf_sysctl_call_tables,
993 	},
994 	{
995 		.procname	= "bridge-nf-filter-vlan-tagged",
996 		.data		= &brnf_filter_vlan_tagged,
997 		.maxlen		= sizeof(int),
998 		.mode		= 0644,
999 		.proc_handler	= brnf_sysctl_call_tables,
1000 	},
1001 	{
1002 		.procname	= "bridge-nf-filter-pppoe-tagged",
1003 		.data		= &brnf_filter_pppoe_tagged,
1004 		.maxlen		= sizeof(int),
1005 		.mode		= 0644,
1006 		.proc_handler	= brnf_sysctl_call_tables,
1007 	},
1008 	{ }
1009 };
1010 
1011 static struct ctl_path brnf_path[] = {
1012 	{ .procname = "net", },
1013 	{ .procname = "bridge", },
1014 	{ }
1015 };
1016 #endif
1017 
br_netfilter_init(void)1018 int __init br_netfilter_init(void)
1019 {
1020 	int ret;
1021 
1022 	ret = dst_entries_init(&fake_dst_ops);
1023 	if (ret < 0)
1024 		return ret;
1025 
1026 	ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1027 	if (ret < 0) {
1028 		dst_entries_destroy(&fake_dst_ops);
1029 		return ret;
1030 	}
1031 #ifdef CONFIG_SYSCTL
1032 	brnf_sysctl_header = register_sysctl_paths(brnf_path, brnf_table);
1033 	if (brnf_sysctl_header == NULL) {
1034 		printk(KERN_WARNING
1035 		       "br_netfilter: can't register to sysctl.\n");
1036 		nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1037 		dst_entries_destroy(&fake_dst_ops);
1038 		return -ENOMEM;
1039 	}
1040 #endif
1041 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1042 	return 0;
1043 }
1044 
br_netfilter_fini(void)1045 void br_netfilter_fini(void)
1046 {
1047 	nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1048 #ifdef CONFIG_SYSCTL
1049 	unregister_sysctl_table(brnf_sysctl_header);
1050 #endif
1051 	dst_entries_destroy(&fake_dst_ops);
1052 }
1053