1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2010 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14 
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17 
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
19 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
20 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
21 				      u32 addr, u32 len);
22 
bnx2x_init_str_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)23 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
24 			      u32 len)
25 {
26 	u32 i;
27 
28 	for (i = 0; i < len; i++)
29 		REG_WR(bp, addr + i*4, data[i]);
30 }
31 
bnx2x_init_ind_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)32 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
33 			      u32 len)
34 {
35 	u32 i;
36 
37 	for (i = 0; i < len; i++)
38 		REG_WR_IND(bp, addr + i*4, data[i]);
39 }
40 
bnx2x_write_big_buf(struct bnx2x * bp,u32 addr,u32 len)41 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
42 {
43 	if (bp->dmae_ready)
44 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
45 	else
46 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
47 }
48 
bnx2x_init_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)49 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
50 {
51 	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
52 	u32 buf_len32 = buf_len/4;
53 	u32 i;
54 
55 	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
56 
57 	for (i = 0; i < len; i += buf_len32) {
58 		u32 cur_len = min(buf_len32, len - i);
59 
60 		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
61 	}
62 }
63 
bnx2x_init_wr_64(struct bnx2x * bp,u32 addr,const u32 * data,u32 len64)64 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
65 			     u32 len64)
66 {
67 	u32 buf_len32 = FW_BUF_SIZE/4;
68 	u32 len = len64*2;
69 	u64 data64 = 0;
70 	u32 i;
71 
72 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
73 	data64 = HILO_U64((*(data + 1)), (*data));
74 
75 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
76 	for (i = 0; i < len64; i++) {
77 		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
78 
79 		*pdata = data64;
80 	}
81 
82 	for (i = 0; i < len; i += buf_len32) {
83 		u32 cur_len = min(buf_len32, len - i);
84 
85 		bnx2x_write_big_buf(bp, addr + i*4, cur_len);
86 	}
87 }
88 
89 /*********************************************************
90    There are different blobs for each PRAM section.
91    In addition, each blob write operation is divided into a few operations
92    in order to decrease the amount of phys. contiguous buffer needed.
93    Thus, when we select a blob the address may be with some offset
94    from the beginning of PRAM section.
95    The same holds for the INT_TABLE sections.
96 **********************************************************/
97 #define IF_IS_INT_TABLE_ADDR(base, addr) \
98 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
99 
100 #define IF_IS_PRAM_ADDR(base, addr) \
101 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
102 
bnx2x_sel_blob(struct bnx2x * bp,u32 addr,const u8 * data)103 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
104 {
105 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
106 		data = INIT_TSEM_INT_TABLE_DATA(bp);
107 	else
108 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
109 			data = INIT_CSEM_INT_TABLE_DATA(bp);
110 	else
111 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
112 			data = INIT_USEM_INT_TABLE_DATA(bp);
113 	else
114 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
115 			data = INIT_XSEM_INT_TABLE_DATA(bp);
116 	else
117 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
118 			data = INIT_TSEM_PRAM_DATA(bp);
119 	else
120 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
121 			data = INIT_CSEM_PRAM_DATA(bp);
122 	else
123 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
124 			data = INIT_USEM_PRAM_DATA(bp);
125 	else
126 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
127 			data = INIT_XSEM_PRAM_DATA(bp);
128 
129 	return data;
130 }
131 
bnx2x_write_big_buf_wb(struct bnx2x * bp,u32 addr,u32 len)132 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
133 {
134 	if (bp->dmae_ready)
135 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
136 	else
137 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
138 }
139 
bnx2x_init_wr_wb(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)140 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
141 			     u32 len)
142 {
143 	const u32 *old_data = data;
144 
145 	data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
146 
147 	if (bp->dmae_ready) {
148 		if (old_data != data)
149 			VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
150 		else
151 			VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
152 	} else
153 		bnx2x_init_ind_wr(bp, addr, data, len);
154 }
155 
bnx2x_wr_64(struct bnx2x * bp,u32 reg,u32 val_lo,u32 val_hi)156 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi)
157 {
158 	u32 wb_write[2];
159 
160 	wb_write[0] = val_lo;
161 	wb_write[1] = val_hi;
162 	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
163 }
164 
bnx2x_init_wr_zp(struct bnx2x * bp,u32 addr,u32 len,u32 blob_off)165 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
166 {
167 	const u8 *data = NULL;
168 	int rc;
169 	u32 i;
170 
171 	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
172 
173 	rc = bnx2x_gunzip(bp, data, len);
174 	if (rc)
175 		return;
176 
177 	/* gunzip_outlen is in dwords */
178 	len = GUNZIP_OUTLEN(bp);
179 	for (i = 0; i < len; i++)
180 		((u32 *)GUNZIP_BUF(bp))[i] =
181 				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
182 
183 	bnx2x_write_big_buf_wb(bp, addr, len);
184 }
185 
bnx2x_init_block(struct bnx2x * bp,u32 block,u32 stage)186 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
187 {
188 	u16 op_start =
189 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
190 	u16 op_end =
191 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
192 	union init_op *op;
193 	int hw_wr;
194 	u32 i, op_type, addr, len;
195 	const u32 *data, *data_base;
196 
197 	/* If empty block */
198 	if (op_start == op_end)
199 		return;
200 
201 	if (CHIP_REV_IS_FPGA(bp))
202 		hw_wr = OP_WR_FPGA;
203 	else if (CHIP_REV_IS_EMUL(bp))
204 		hw_wr = OP_WR_EMUL;
205 	else
206 		hw_wr = OP_WR_ASIC;
207 
208 	data_base = INIT_DATA(bp);
209 
210 	for (i = op_start; i < op_end; i++) {
211 
212 		op = (union init_op *)&(INIT_OPS(bp)[i]);
213 
214 		op_type = op->str_wr.op;
215 		addr = op->str_wr.offset;
216 		len = op->str_wr.data_len;
217 		data = data_base + op->str_wr.data_off;
218 
219 		/* HW/EMUL specific */
220 		if ((op_type > OP_WB) && (op_type == hw_wr))
221 			op_type = OP_WR;
222 
223 		switch (op_type) {
224 		case OP_RD:
225 			REG_RD(bp, addr);
226 			break;
227 		case OP_WR:
228 			REG_WR(bp, addr, op->write.val);
229 			break;
230 		case OP_SW:
231 			bnx2x_init_str_wr(bp, addr, data, len);
232 			break;
233 		case OP_WB:
234 			bnx2x_init_wr_wb(bp, addr, data, len);
235 			break;
236 		case OP_SI:
237 			bnx2x_init_ind_wr(bp, addr, data, len);
238 			break;
239 		case OP_ZR:
240 			bnx2x_init_fill(bp, addr, 0, op->zero.len);
241 			break;
242 		case OP_ZP:
243 			bnx2x_init_wr_zp(bp, addr, len,
244 					 op->str_wr.data_off);
245 			break;
246 		case OP_WR_64:
247 			bnx2x_init_wr_64(bp, addr, data, len);
248 			break;
249 		default:
250 			/* happens whenever an op is of a diff HW */
251 			break;
252 		}
253 	}
254 }
255 
256 
257 /****************************************************************************
258 * PXP Arbiter
259 ****************************************************************************/
260 /*
261  * This code configures the PCI read/write arbiter
262  * which implements a weighted round robin
263  * between the virtual queues in the chip.
264  *
265  * The values were derived for each PCI max payload and max request size.
266  * since max payload and max request size are only known at run time,
267  * this is done as a separate init stage.
268  */
269 
270 #define NUM_WR_Q			13
271 #define NUM_RD_Q			29
272 #define MAX_RD_ORD			3
273 #define MAX_WR_ORD			2
274 
275 /* configuration for one arbiter queue */
276 struct arb_line {
277 	int l;
278 	int add;
279 	int ubound;
280 };
281 
282 /* derived configuration for each read queue for each max request size */
283 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
284 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
285 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
286 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
287 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
288 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
289 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
290 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
291 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
292 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
293 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
294 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
295 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
296 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
297 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
298 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
299 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
300 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
301 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
302 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
303 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
304 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
305 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
306 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
307 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
308 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
309 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
310 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
311 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
312 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
313 };
314 
315 /* derived configuration for each write queue for each max request size */
316 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
317 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
318 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
319 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
320 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
321 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
322 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
323 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
324 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
325 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
326 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
327 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
328 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
329 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
330 };
331 
332 /* register addresses for read queues */
333 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
334 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
335 		PXP2_REG_RQ_BW_RD_UBOUND0},
336 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
337 		PXP2_REG_PSWRQ_BW_UB1},
338 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
339 		PXP2_REG_PSWRQ_BW_UB2},
340 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
341 		PXP2_REG_PSWRQ_BW_UB3},
342 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
343 		PXP2_REG_RQ_BW_RD_UBOUND4},
344 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
345 		PXP2_REG_RQ_BW_RD_UBOUND5},
346 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
347 		PXP2_REG_PSWRQ_BW_UB6},
348 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
349 		PXP2_REG_PSWRQ_BW_UB7},
350 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
351 		PXP2_REG_PSWRQ_BW_UB8},
352 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
353 		PXP2_REG_PSWRQ_BW_UB9},
354 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
355 		PXP2_REG_PSWRQ_BW_UB10},
356 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
357 		PXP2_REG_PSWRQ_BW_UB11},
358 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
359 		PXP2_REG_RQ_BW_RD_UBOUND12},
360 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
361 		PXP2_REG_RQ_BW_RD_UBOUND13},
362 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
363 		PXP2_REG_RQ_BW_RD_UBOUND14},
364 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
365 		PXP2_REG_RQ_BW_RD_UBOUND15},
366 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
367 		PXP2_REG_RQ_BW_RD_UBOUND16},
368 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
369 		PXP2_REG_RQ_BW_RD_UBOUND17},
370 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
371 		PXP2_REG_RQ_BW_RD_UBOUND18},
372 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
373 		PXP2_REG_RQ_BW_RD_UBOUND19},
374 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
375 		PXP2_REG_RQ_BW_RD_UBOUND20},
376 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
377 		PXP2_REG_RQ_BW_RD_UBOUND22},
378 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
379 		PXP2_REG_RQ_BW_RD_UBOUND23},
380 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
381 		PXP2_REG_RQ_BW_RD_UBOUND24},
382 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
383 		PXP2_REG_RQ_BW_RD_UBOUND25},
384 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
385 		PXP2_REG_RQ_BW_RD_UBOUND26},
386 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
387 		PXP2_REG_RQ_BW_RD_UBOUND27},
388 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
389 		PXP2_REG_PSWRQ_BW_UB28}
390 };
391 
392 /* register addresses for write queues */
393 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
394 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
395 		PXP2_REG_PSWRQ_BW_UB1},
396 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
397 		PXP2_REG_PSWRQ_BW_UB2},
398 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
399 		PXP2_REG_PSWRQ_BW_UB3},
400 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
401 		PXP2_REG_PSWRQ_BW_UB6},
402 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
403 		PXP2_REG_PSWRQ_BW_UB7},
404 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
405 		PXP2_REG_PSWRQ_BW_UB8},
406 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
407 		PXP2_REG_PSWRQ_BW_UB9},
408 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
409 		PXP2_REG_PSWRQ_BW_UB10},
410 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
411 		PXP2_REG_PSWRQ_BW_UB11},
412 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
413 		PXP2_REG_PSWRQ_BW_UB28},
414 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
415 		PXP2_REG_RQ_BW_WR_UBOUND29},
416 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
417 		PXP2_REG_RQ_BW_WR_UBOUND30}
418 };
419 
bnx2x_init_pxp_arb(struct bnx2x * bp,int r_order,int w_order)420 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
421 {
422 	u32 val, i;
423 
424 	if (r_order > MAX_RD_ORD) {
425 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
426 		   r_order, MAX_RD_ORD);
427 		r_order = MAX_RD_ORD;
428 	}
429 	if (w_order > MAX_WR_ORD) {
430 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
431 		   w_order, MAX_WR_ORD);
432 		w_order = MAX_WR_ORD;
433 	}
434 	if (CHIP_REV_IS_FPGA(bp)) {
435 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
436 		w_order = 0;
437 	}
438 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
439 
440 	for (i = 0; i < NUM_RD_Q-1; i++) {
441 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
442 		REG_WR(bp, read_arb_addr[i].add,
443 		       read_arb_data[i][r_order].add);
444 		REG_WR(bp, read_arb_addr[i].ubound,
445 		       read_arb_data[i][r_order].ubound);
446 	}
447 
448 	for (i = 0; i < NUM_WR_Q-1; i++) {
449 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
450 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
451 
452 			REG_WR(bp, write_arb_addr[i].l,
453 			       write_arb_data[i][w_order].l);
454 
455 			REG_WR(bp, write_arb_addr[i].add,
456 			       write_arb_data[i][w_order].add);
457 
458 			REG_WR(bp, write_arb_addr[i].ubound,
459 			       write_arb_data[i][w_order].ubound);
460 		} else {
461 
462 			val = REG_RD(bp, write_arb_addr[i].l);
463 			REG_WR(bp, write_arb_addr[i].l,
464 			       val | (write_arb_data[i][w_order].l << 10));
465 
466 			val = REG_RD(bp, write_arb_addr[i].add);
467 			REG_WR(bp, write_arb_addr[i].add,
468 			       val | (write_arb_data[i][w_order].add << 10));
469 
470 			val = REG_RD(bp, write_arb_addr[i].ubound);
471 			REG_WR(bp, write_arb_addr[i].ubound,
472 			       val | (write_arb_data[i][w_order].ubound << 7));
473 		}
474 	}
475 
476 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
477 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
478 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
479 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
480 
481 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
482 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
483 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
484 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
485 
486 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
487 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
488 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
489 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
490 
491 	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
492 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
493 
494 	if (CHIP_IS_E2(bp))
495 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
496 	else
497 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
498 
499 	if (CHIP_IS_E1H(bp) || CHIP_IS_E2(bp)) {
500 		/*    MPS      w_order     optimal TH      presently TH
501 		 *    128         0             0               2
502 		 *    256         1             1               3
503 		 *    >=512       2             2               3
504 		 */
505 		/* DMAE is special */
506 		if (CHIP_IS_E2(bp)) {
507 			/* E2 can use optimal TH */
508 			val = w_order;
509 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
510 		} else {
511 			val = ((w_order == 0) ? 2 : 3);
512 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
513 		}
514 
515 		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
516 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
517 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
518 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
519 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
520 		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
521 		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
522 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
523 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
524 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
525 	}
526 
527 	/* Validate number of tags suppoted by device */
528 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
529 	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
530 	val &= 0xFF;
531 	if (val <= 0x20)
532 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
533 }
534 
535 /****************************************************************************
536 * ILT management
537 ****************************************************************************/
538 /*
539  * This codes hides the low level HW interaction for ILT management and
540  * configuration. The API consists of a shadow ILT table which is set by the
541  * driver and a set of routines to use it to configure the HW.
542  *
543  */
544 
545 /* ILT HW init operations */
546 
547 /* ILT memory management operations */
548 #define ILT_MEMOP_ALLOC		0
549 #define ILT_MEMOP_FREE		1
550 
551 /* the phys address is shifted right 12 bits and has an added
552  * 1=valid bit added to the 53rd bit
553  * then since this is a wide register(TM)
554  * we split it into two 32 bit writes
555  */
556 #define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
557 #define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
558 #define ILT_RANGE(f, l)		(((l) << 10) | f)
559 
bnx2x_ilt_line_mem_op(struct bnx2x * bp,struct ilt_line * line,u32 size,u8 memop)560 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line,
561 				 u32 size, u8 memop)
562 {
563 	if (memop == ILT_MEMOP_FREE) {
564 		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
565 		return 0;
566 	}
567 	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
568 	if (!line->page)
569 		return -1;
570 	line->size = size;
571 	return 0;
572 }
573 
574 
bnx2x_ilt_client_mem_op(struct bnx2x * bp,int cli_num,u8 memop)575 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop)
576 {
577 	int i, rc;
578 	struct bnx2x_ilt *ilt = BP_ILT(bp);
579 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
580 
581 	if (!ilt || !ilt->lines)
582 		return -1;
583 
584 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
585 		return 0;
586 
587 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
588 		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
589 					   ilt_cli->page_size, memop);
590 	}
591 	return rc;
592 }
593 
bnx2x_ilt_mem_op(struct bnx2x * bp,u8 memop)594 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
595 {
596 	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
597 	if (!rc)
598 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
599 	if (!rc)
600 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
601 	if (!rc)
602 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
603 
604 	return rc;
605 }
606 
bnx2x_ilt_line_wr(struct bnx2x * bp,int abs_idx,dma_addr_t page_mapping)607 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
608 			      dma_addr_t page_mapping)
609 {
610 	u32 reg;
611 
612 	if (CHIP_IS_E1(bp))
613 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
614 	else
615 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
616 
617 	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
618 }
619 
bnx2x_ilt_line_init_op(struct bnx2x * bp,struct bnx2x_ilt * ilt,int idx,u8 initop)620 static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt,
621 				   int idx, u8 initop)
622 {
623 	dma_addr_t	null_mapping;
624 	int abs_idx = ilt->start_line + idx;
625 
626 
627 	switch (initop) {
628 	case INITOP_INIT:
629 		/* set in the init-value array */
630 	case INITOP_SET:
631 		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
632 		break;
633 	case INITOP_CLEAR:
634 		null_mapping = 0;
635 		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
636 		break;
637 	}
638 }
639 
bnx2x_ilt_boundry_init_op(struct bnx2x * bp,struct ilt_client_info * ilt_cli,u32 ilt_start,u8 initop)640 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
641 				      struct ilt_client_info *ilt_cli,
642 				      u32 ilt_start, u8 initop)
643 {
644 	u32 start_reg = 0;
645 	u32 end_reg = 0;
646 
647 	/* The boundary is either SET or INIT,
648 	   CLEAR => SET and for now SET ~~ INIT */
649 
650 	/* find the appropriate regs */
651 	if (CHIP_IS_E1(bp)) {
652 		switch (ilt_cli->client_num) {
653 		case ILT_CLIENT_CDU:
654 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
655 			break;
656 		case ILT_CLIENT_QM:
657 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
658 			break;
659 		case ILT_CLIENT_SRC:
660 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
661 			break;
662 		case ILT_CLIENT_TM:
663 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
664 			break;
665 		}
666 		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
667 		       ILT_RANGE((ilt_start + ilt_cli->start),
668 				 (ilt_start + ilt_cli->end)));
669 	} else {
670 		switch (ilt_cli->client_num) {
671 		case ILT_CLIENT_CDU:
672 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
673 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
674 			break;
675 		case ILT_CLIENT_QM:
676 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
677 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
678 			break;
679 		case ILT_CLIENT_SRC:
680 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
681 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
682 			break;
683 		case ILT_CLIENT_TM:
684 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
685 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
686 			break;
687 		}
688 		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
689 		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
690 	}
691 }
692 
bnx2x_ilt_client_init_op_ilt(struct bnx2x * bp,struct bnx2x_ilt * ilt,struct ilt_client_info * ilt_cli,u8 initop)693 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
694 					 struct bnx2x_ilt *ilt,
695 					 struct ilt_client_info *ilt_cli,
696 					 u8 initop)
697 {
698 	int i;
699 
700 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
701 		return;
702 
703 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
704 		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
705 
706 	/* init/clear the ILT boundries */
707 	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
708 }
709 
bnx2x_ilt_client_init_op(struct bnx2x * bp,struct ilt_client_info * ilt_cli,u8 initop)710 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
711 				     struct ilt_client_info *ilt_cli, u8 initop)
712 {
713 	struct bnx2x_ilt *ilt = BP_ILT(bp);
714 
715 	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
716 }
717 
bnx2x_ilt_client_id_init_op(struct bnx2x * bp,int cli_num,u8 initop)718 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
719 					int cli_num, u8 initop)
720 {
721 	struct bnx2x_ilt *ilt = BP_ILT(bp);
722 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
723 
724 	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
725 }
726 
bnx2x_ilt_init_op(struct bnx2x * bp,u8 initop)727 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
728 {
729 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
730 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
731 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
732 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
733 }
734 
bnx2x_ilt_init_client_psz(struct bnx2x * bp,int cli_num,u32 psz_reg,u8 initop)735 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
736 					    u32 psz_reg, u8 initop)
737 {
738 	struct bnx2x_ilt *ilt = BP_ILT(bp);
739 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
740 
741 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
742 		return;
743 
744 	switch (initop) {
745 	case INITOP_INIT:
746 		/* set in the init-value array */
747 	case INITOP_SET:
748 		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
749 		break;
750 	case INITOP_CLEAR:
751 		break;
752 	}
753 }
754 
755 /*
756  * called during init common stage, ilt clients should be initialized
757  * prioir to calling this function
758  */
bnx2x_ilt_init_page_size(struct bnx2x * bp,u8 initop)759 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
760 {
761 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
762 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
763 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
764 				  PXP2_REG_RQ_QM_P_SIZE, initop);
765 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
766 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
767 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
768 				  PXP2_REG_RQ_TM_P_SIZE, initop);
769 }
770 
771 /****************************************************************************
772 * QM initializations
773 ****************************************************************************/
774 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
775 #define QM_INIT_MIN_CID_COUNT	31
776 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
777 
778 /* called during init port stage */
bnx2x_qm_init_cid_count(struct bnx2x * bp,int qm_cid_count,u8 initop)779 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
780 				    u8 initop)
781 {
782 	int port = BP_PORT(bp);
783 
784 	if (QM_INIT(qm_cid_count)) {
785 		switch (initop) {
786 		case INITOP_INIT:
787 			/* set in the init-value array */
788 		case INITOP_SET:
789 			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
790 			       qm_cid_count/16 - 1);
791 			break;
792 		case INITOP_CLEAR:
793 			break;
794 		}
795 	}
796 }
797 
bnx2x_qm_set_ptr_table(struct bnx2x * bp,int qm_cid_count)798 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
799 {
800 	int i;
801 	u32 wb_data[2];
802 
803 	wb_data[0] = wb_data[1] = 0;
804 
805 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
806 		REG_WR(bp, QM_REG_BASEADDR + i*4,
807 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
808 		bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
809 				  wb_data, 2);
810 
811 		if (CHIP_IS_E1H(bp)) {
812 			REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
813 			       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
814 			bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
815 					  wb_data, 2);
816 		}
817 	}
818 }
819 
820 /* called during init common stage */
bnx2x_qm_init_ptr_table(struct bnx2x * bp,int qm_cid_count,u8 initop)821 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
822 				    u8 initop)
823 {
824 	if (!QM_INIT(qm_cid_count))
825 		return;
826 
827 	switch (initop) {
828 	case INITOP_INIT:
829 		/* set in the init-value array */
830 	case INITOP_SET:
831 		bnx2x_qm_set_ptr_table(bp, qm_cid_count);
832 		break;
833 	case INITOP_CLEAR:
834 		break;
835 	}
836 }
837 
838 /****************************************************************************
839 * SRC initializations
840 ****************************************************************************/
841 #ifdef BCM_CNIC
842 /* called during init func stage */
bnx2x_src_init_t2(struct bnx2x * bp,struct src_ent * t2,dma_addr_t t2_mapping,int src_cid_count)843 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
844 			      dma_addr_t t2_mapping, int src_cid_count)
845 {
846 	int i;
847 	int port = BP_PORT(bp);
848 
849 	/* Initialize T2 */
850 	for (i = 0; i < src_cid_count-1; i++)
851 		t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent));
852 
853 	/* tell the searcher where the T2 table is */
854 	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
855 
856 	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
857 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
858 
859 	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
860 		    U64_LO((u64)t2_mapping +
861 			   (src_cid_count-1) * sizeof(struct src_ent)),
862 		    U64_HI((u64)t2_mapping +
863 			   (src_cid_count-1) * sizeof(struct src_ent)));
864 }
865 #endif
866 #endif /* BNX2X_INIT_OPS_H */
867