1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2010 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19 
20 #include <linux/types.h>
21 #include <linux/netdevice.h>
22 
23 
24 #include "bnx2x.h"
25 
26 extern int num_queues;
27 
28 /*********************** Interfaces ****************************
29  *  Functions that need to be implemented by each driver version
30  */
31 
32 /**
33  * Initialize link parameters structure variables.
34  *
35  * @param bp
36  * @param load_mode
37  *
38  * @return u8
39  */
40 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
41 
42 /**
43  * Configure hw according to link parameters structure.
44  *
45  * @param bp
46  */
47 void bnx2x_link_set(struct bnx2x *bp);
48 
49 /**
50  * Query link status
51  *
52  * @param bp
53  * @param is_serdes
54  *
55  * @return 0 - link is UP
56  */
57 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
58 
59 /**
60  * Handles link status change
61  *
62  * @param bp
63  */
64 void bnx2x__link_status_update(struct bnx2x *bp);
65 
66 /**
67  * Report link status to upper layer
68  *
69  * @param bp
70  *
71  * @return int
72  */
73 void bnx2x_link_report(struct bnx2x *bp);
74 
75 /**
76  * calculates MF speed according to current linespeed and MF
77  * configuration
78  *
79  * @param bp
80  *
81  * @return u16
82  */
83 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
84 
85 /**
86  * MSI-X slowpath interrupt handler
87  *
88  * @param irq
89  * @param dev_instance
90  *
91  * @return irqreturn_t
92  */
93 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
94 
95 /**
96  * non MSI-X interrupt handler
97  *
98  * @param irq
99  * @param dev_instance
100  *
101  * @return irqreturn_t
102  */
103 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
104 #ifdef BCM_CNIC
105 
106 /**
107  * Send command to cnic driver
108  *
109  * @param bp
110  * @param cmd
111  */
112 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
113 
114 /**
115  * Provides cnic information for proper interrupt handling
116  *
117  * @param bp
118  */
119 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
120 #endif
121 
122 /**
123  * Enable HW interrupts.
124  *
125  * @param bp
126  */
127 void bnx2x_int_enable(struct bnx2x *bp);
128 
129 /**
130  * Disable interrupts. This function ensures that there are no
131  * ISRs or SP DPCs (sp_task) are running after it returns.
132  *
133  * @param bp
134  * @param disable_hw if true, disable HW interrupts.
135  */
136 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
137 
138 /**
139  * Loads device firmware
140  *
141  * @param bp
142  *
143  * @return int
144  */
145 int bnx2x_init_firmware(struct bnx2x *bp);
146 
147 /**
148  * Init HW blocks according to current initialization stage:
149  * COMMON, PORT or FUNCTION.
150  *
151  * @param bp
152  * @param load_code: COMMON, PORT or FUNCTION
153  *
154  * @return int
155  */
156 int bnx2x_init_hw(struct bnx2x *bp, u32 load_code);
157 
158 /**
159  * Init driver internals:
160  *  - rings
161  *  - status blocks
162  *  - etc.
163  *
164  * @param bp
165  * @param load_code COMMON, PORT or FUNCTION
166  */
167 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
168 
169 /**
170  * Allocate driver's memory.
171  *
172  * @param bp
173  *
174  * @return int
175  */
176 int bnx2x_alloc_mem(struct bnx2x *bp);
177 
178 /**
179  * Release driver's memory.
180  *
181  * @param bp
182  */
183 void bnx2x_free_mem(struct bnx2x *bp);
184 
185 /**
186  * Setup eth Client.
187  *
188  * @param bp
189  * @param fp
190  * @param is_leading
191  *
192  * @return int
193  */
194 int bnx2x_setup_client(struct bnx2x *bp, struct bnx2x_fastpath *fp,
195 		       int is_leading);
196 
197 /**
198  * Set number of queues according to mode
199  *
200  * @param bp
201  *
202  */
203 void bnx2x_set_num_queues(struct bnx2x *bp);
204 
205 /**
206  * Cleanup chip internals:
207  * - Cleanup MAC configuration.
208  * - Close clients.
209  * - etc.
210  *
211  * @param bp
212  * @param unload_mode
213  */
214 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
215 
216 /**
217  * Acquire HW lock.
218  *
219  * @param bp
220  * @param resource Resource bit which was locked
221  *
222  * @return int
223  */
224 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
225 
226 /**
227  * Release HW lock.
228  *
229  * @param bp driver handle
230  * @param resource Resource bit which was locked
231  *
232  * @return int
233  */
234 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
235 
236 /**
237  * Configure eth MAC address in the HW according to the value in
238  * netdev->dev_addr.
239  *
240  * @param bp driver handle
241  * @param set
242  */
243 void bnx2x_set_eth_mac(struct bnx2x *bp, int set);
244 
245 #ifdef BCM_CNIC
246 /**
247  * Set/Clear FIP MAC(s) at the next enties in the CAM after the ETH
248  * MAC(s). This function will wait until the ramdord completion
249  * returns.
250  *
251  * @param bp driver handle
252  * @param set set or clear the CAM entry
253  *
254  * @return 0 if cussess, -ENODEV if ramrod doesn't return.
255  */
256 int bnx2x_set_fip_eth_mac_addr(struct bnx2x *bp, int set);
257 
258 /**
259  * Set/Clear ALL_ENODE mcast MAC.
260  *
261  * @param bp
262  * @param set
263  *
264  * @return int
265  */
266 int bnx2x_set_all_enode_macs(struct bnx2x *bp, int set);
267 #endif
268 
269 /**
270  * Set MAC filtering configurations.
271  *
272  * @remarks called with netif_tx_lock from dev_mcast.c
273  *
274  * @param dev net_device
275  */
276 void bnx2x_set_rx_mode(struct net_device *dev);
277 
278 /**
279  * Configure MAC filtering rules in a FW.
280  *
281  * @param bp driver handle
282  */
283 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
284 
285 /* Parity errors related */
286 void bnx2x_inc_load_cnt(struct bnx2x *bp);
287 u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
288 bool bnx2x_chk_parity_attn(struct bnx2x *bp);
289 bool bnx2x_reset_is_done(struct bnx2x *bp);
290 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
291 
292 /**
293  * Perform statistics handling according to event
294  *
295  * @param bp driver handle
296  * @param event bnx2x_stats_event
297  */
298 void bnx2x_stats_handle(struct bnx2x *bp, enum bnx2x_stats_event event);
299 
300 /**
301  * Handle ramrods completion
302  *
303  * @param fp fastpath handle for the event
304  * @param rr_cqe eth_rx_cqe
305  */
306 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
307 
308 /**
309  * Init/halt function before/after sending
310  * CLIENT_SETUP/CFC_DEL for the first/last client.
311  *
312  * @param bp
313  *
314  * @return int
315  */
316 int bnx2x_func_start(struct bnx2x *bp);
317 
318 /**
319  * Prepare ILT configurations according to current driver
320  * parameters.
321  *
322  * @param bp
323  */
324 void bnx2x_ilt_set_info(struct bnx2x *bp);
325 
326 /**
327  * Inintialize dcbx protocol
328  *
329  * @param bp
330  */
331 void bnx2x_dcbx_init(struct bnx2x *bp);
332 
333 /**
334  * Set power state to the requested value. Currently only D0 and
335  * D3hot are supported.
336  *
337  * @param bp
338  * @param state D0 or D3hot
339  *
340  * @return int
341  */
342 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
343 
344 /**
345  * Updates MAX part of MF configuration in HW
346  * (if required)
347  *
348  * @param bp
349  * @param value
350  */
351 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
352 
353 /* dev_close main block */
354 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
355 
356 /* dev_open main block */
357 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
358 
359 /* hard_xmit callback */
360 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
361 
362 /* select_queue callback */
363 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
364 
365 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
366 
367 /* NAPI poll Rx part */
368 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
369 
370 /* NAPI poll Tx part */
371 int bnx2x_tx_int(struct bnx2x_fastpath *fp);
372 
373 /* suspend/resume callbacks */
374 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
375 int bnx2x_resume(struct pci_dev *pdev);
376 
377 /* Release IRQ vectors */
378 void bnx2x_free_irq(struct bnx2x *bp);
379 
380 void bnx2x_init_rx_rings(struct bnx2x *bp);
381 void bnx2x_free_skbs(struct bnx2x *bp);
382 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
383 void bnx2x_netif_start(struct bnx2x *bp);
384 
385 /**
386  * Fill msix_table, request vectors, update num_queues according
387  * to number of available vectors
388  *
389  * @param bp
390  *
391  * @return int
392  */
393 int bnx2x_enable_msix(struct bnx2x *bp);
394 
395 /**
396  * Request msi mode from OS, updated internals accordingly
397  *
398  * @param bp
399  *
400  * @return int
401  */
402 int bnx2x_enable_msi(struct bnx2x *bp);
403 
404 /**
405  * NAPI callback
406  *
407  * @param napi
408  * @param budget
409  *
410  * @return int
411  */
412 int bnx2x_poll(struct napi_struct *napi, int budget);
413 
414 /**
415  * Allocate/release memories outsize main driver structure
416  *
417  * @param bp
418  *
419  * @return int
420  */
421 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
422 void bnx2x_free_mem_bp(struct bnx2x *bp);
423 
424 /**
425  * Change mtu netdev callback
426  *
427  * @param dev
428  * @param new_mtu
429  *
430  * @return int
431  */
432 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
433 
434 /**
435  * tx timeout netdev callback
436  *
437  * @param dev
438  * @param new_mtu
439  *
440  * @return int
441  */
442 void bnx2x_tx_timeout(struct net_device *dev);
443 
444 #ifdef BCM_VLAN
445 /**
446  * vlan rx register netdev callback
447  *
448  * @param dev
449  * @param new_mtu
450  *
451  * @return int
452  */
453 void bnx2x_vlan_rx_register(struct net_device *dev,
454 				   struct vlan_group *vlgrp);
455 
456 #endif
457 
bnx2x_update_fpsb_idx(struct bnx2x_fastpath * fp)458 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
459 {
460 	barrier(); /* status block is written to by the chip */
461 	fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
462 }
463 
bnx2x_update_rx_prod(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 bd_prod,u16 rx_comp_prod,u16 rx_sge_prod)464 static inline void bnx2x_update_rx_prod(struct bnx2x *bp,
465 					struct bnx2x_fastpath *fp,
466 					u16 bd_prod, u16 rx_comp_prod,
467 					u16 rx_sge_prod)
468 {
469 	struct ustorm_eth_rx_producers rx_prods = {0};
470 	int i;
471 
472 	/* Update producers */
473 	rx_prods.bd_prod = bd_prod;
474 	rx_prods.cqe_prod = rx_comp_prod;
475 	rx_prods.sge_prod = rx_sge_prod;
476 
477 	/*
478 	 * Make sure that the BD and SGE data is updated before updating the
479 	 * producers since FW might read the BD/SGE right after the producer
480 	 * is updated.
481 	 * This is only applicable for weak-ordered memory model archs such
482 	 * as IA-64. The following barrier is also mandatory since FW will
483 	 * assumes BDs must have buffers.
484 	 */
485 	wmb();
486 
487 	for (i = 0; i < sizeof(struct ustorm_eth_rx_producers)/4; i++)
488 		REG_WR(bp,
489 		       BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset + i*4,
490 		       ((u32 *)&rx_prods)[i]);
491 
492 	mmiowb(); /* keep prod updates ordered */
493 
494 	DP(NETIF_MSG_RX_STATUS,
495 	   "queue[%d]:  wrote  bd_prod %u  cqe_prod %u  sge_prod %u\n",
496 	   fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
497 }
498 
bnx2x_igu_ack_sb_gen(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update,u32 igu_addr)499 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
500 					u8 segment, u16 index, u8 op,
501 					u8 update, u32 igu_addr)
502 {
503 	struct igu_regular cmd_data = {0};
504 
505 	cmd_data.sb_id_and_flags =
506 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
507 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
508 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
509 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
510 
511 	DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n",
512 	   cmd_data.sb_id_and_flags, igu_addr);
513 	REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
514 
515 	/* Make sure that ACK is written */
516 	mmiowb();
517 	barrier();
518 }
519 
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 idu_sb_id,bool is_Pf)520 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp,
521 					  u8 idu_sb_id, bool is_Pf)
522 {
523 	u32 data, ctl, cnt = 100;
524 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
525 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
526 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
527 	u32 sb_bit =  1 << (idu_sb_id%32);
528 	u32 func_encode = BP_FUNC(bp) |
529 			((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT);
530 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
531 
532 	/* Not supported in BC mode */
533 	if (CHIP_INT_MODE_IS_BC(bp))
534 		return;
535 
536 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
537 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
538 		IGU_REGULAR_CLEANUP_SET				|
539 		IGU_REGULAR_BCLEANUP;
540 
541 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
542 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
543 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
544 
545 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
546 			 data, igu_addr_data);
547 	REG_WR(bp, igu_addr_data, data);
548 	mmiowb();
549 	barrier();
550 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
551 			  ctl, igu_addr_ctl);
552 	REG_WR(bp, igu_addr_ctl, ctl);
553 	mmiowb();
554 	barrier();
555 
556 	/* wait for clean up to finish */
557 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
558 		msleep(20);
559 
560 
561 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
562 		DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: "
563 			  "idu_sb_id %d offset %d bit %d (cnt %d)\n",
564 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
565 	}
566 }
567 
bnx2x_hc_ack_sb(struct bnx2x * bp,u8 sb_id,u8 storm,u16 index,u8 op,u8 update)568 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
569 				   u8 storm, u16 index, u8 op, u8 update)
570 {
571 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
572 		       COMMAND_REG_INT_ACK);
573 	struct igu_ack_register igu_ack;
574 
575 	igu_ack.status_block_index = index;
576 	igu_ack.sb_id_and_flags =
577 			((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
578 			 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
579 			 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
580 			 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
581 
582 	DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
583 	   (*(u32 *)&igu_ack), hc_addr);
584 	REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
585 
586 	/* Make sure that ACK is written */
587 	mmiowb();
588 	barrier();
589 }
590 
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)591 static inline void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
592 		      u16 index, u8 op, u8 update)
593 {
594 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
595 
596 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
597 			     igu_addr);
598 }
599 
bnx2x_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 storm,u16 index,u8 op,u8 update)600 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
601 				u16 index, u8 op, u8 update)
602 {
603 	if (bp->common.int_block == INT_BLOCK_HC)
604 		bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
605 	else {
606 		u8 segment;
607 
608 		if (CHIP_INT_MODE_IS_BC(bp))
609 			segment = storm;
610 		else if (igu_sb_id != bp->igu_dsb_id)
611 			segment = IGU_SEG_ACCESS_DEF;
612 		else if (storm == ATTENTION_ID)
613 			segment = IGU_SEG_ACCESS_ATTN;
614 		else
615 			segment = IGU_SEG_ACCESS_DEF;
616 		bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
617 	}
618 }
619 
bnx2x_hc_ack_int(struct bnx2x * bp)620 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
621 {
622 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
623 		       COMMAND_REG_SIMD_MASK);
624 	u32 result = REG_RD(bp, hc_addr);
625 
626 	DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
627 	   result, hc_addr);
628 
629 	barrier();
630 	return result;
631 }
632 
bnx2x_igu_ack_int(struct bnx2x * bp)633 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
634 {
635 	u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
636 	u32 result = REG_RD(bp, igu_addr);
637 
638 	DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n",
639 	   result, igu_addr);
640 
641 	barrier();
642 	return result;
643 }
644 
bnx2x_ack_int(struct bnx2x * bp)645 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
646 {
647 	barrier();
648 	if (bp->common.int_block == INT_BLOCK_HC)
649 		return bnx2x_hc_ack_int(bp);
650 	else
651 		return bnx2x_igu_ack_int(bp);
652 }
653 
bnx2x_has_tx_work_unload(struct bnx2x_fastpath * fp)654 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fastpath *fp)
655 {
656 	/* Tell compiler that consumer and producer can change */
657 	barrier();
658 	return fp->tx_pkt_prod != fp->tx_pkt_cons;
659 }
660 
bnx2x_tx_avail(struct bnx2x_fastpath * fp)661 static inline u16 bnx2x_tx_avail(struct bnx2x_fastpath *fp)
662 {
663 	s16 used;
664 	u16 prod;
665 	u16 cons;
666 
667 	prod = fp->tx_bd_prod;
668 	cons = fp->tx_bd_cons;
669 
670 	/* NUM_TX_RINGS = number of "next-page" entries
671 	   It will be used as a threshold */
672 	used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
673 
674 #ifdef BNX2X_STOP_ON_ERROR
675 	WARN_ON(used < 0);
676 	WARN_ON(used > fp->bp->tx_ring_size);
677 	WARN_ON((fp->bp->tx_ring_size - used) > MAX_TX_AVAIL);
678 #endif
679 
680 	return (s16)(fp->bp->tx_ring_size) - used;
681 }
682 
bnx2x_has_tx_work(struct bnx2x_fastpath * fp)683 static inline int bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
684 {
685 	u16 hw_cons;
686 
687 	/* Tell compiler that status block fields can change */
688 	barrier();
689 	hw_cons = le16_to_cpu(*fp->tx_cons_sb);
690 	return hw_cons != fp->tx_pkt_cons;
691 }
692 
bnx2x_has_rx_work(struct bnx2x_fastpath * fp)693 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
694 {
695 	u16 rx_cons_sb;
696 
697 	/* Tell compiler that status block fields can change */
698 	barrier();
699 	rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
700 	if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
701 		rx_cons_sb++;
702 	return (fp->rx_comp_cons != rx_cons_sb);
703 }
704 
705 /**
706  * disables tx from stack point of view
707  *
708  * @param bp
709  */
bnx2x_tx_disable(struct bnx2x * bp)710 static inline void bnx2x_tx_disable(struct bnx2x *bp)
711 {
712 	netif_tx_disable(bp->dev);
713 	netif_carrier_off(bp->dev);
714 }
715 
bnx2x_free_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)716 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
717 				     struct bnx2x_fastpath *fp, u16 index)
718 {
719 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
720 	struct page *page = sw_buf->page;
721 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
722 
723 	/* Skip "next page" elements */
724 	if (!page)
725 		return;
726 
727 	dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
728 		       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
729 	__free_pages(page, PAGES_PER_SGE_SHIFT);
730 
731 	sw_buf->page = NULL;
732 	sge->addr_hi = 0;
733 	sge->addr_lo = 0;
734 }
735 
bnx2x_add_all_napi(struct bnx2x * bp)736 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
737 {
738 	int i;
739 
740 	/* Add NAPI objects */
741 	for_each_napi_queue(bp, i)
742 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
743 			       bnx2x_poll, BNX2X_NAPI_WEIGHT);
744 }
745 
bnx2x_del_all_napi(struct bnx2x * bp)746 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
747 {
748 	int i;
749 
750 	for_each_napi_queue(bp, i)
751 		netif_napi_del(&bnx2x_fp(bp, i, napi));
752 }
753 
bnx2x_disable_msi(struct bnx2x * bp)754 static inline void bnx2x_disable_msi(struct bnx2x *bp)
755 {
756 	if (bp->flags & USING_MSIX_FLAG) {
757 		pci_disable_msix(bp->pdev);
758 		bp->flags &= ~USING_MSIX_FLAG;
759 	} else if (bp->flags & USING_MSI_FLAG) {
760 		pci_disable_msi(bp->pdev);
761 		bp->flags &= ~USING_MSI_FLAG;
762 	}
763 }
764 
bnx2x_calc_num_queues(struct bnx2x * bp)765 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
766 {
767 	return  num_queues ?
768 		 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
769 		 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
770 }
771 
bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath * fp)772 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
773 {
774 	int i, j;
775 
776 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
777 		int idx = RX_SGE_CNT * i - 1;
778 
779 		for (j = 0; j < 2; j++) {
780 			SGE_MASK_CLEAR_BIT(fp, idx);
781 			idx--;
782 		}
783 	}
784 }
785 
bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath * fp)786 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
787 {
788 	/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
789 	memset(fp->sge_mask, 0xff,
790 	       (NUM_RX_SGE >> RX_SGE_MASK_ELEM_SHIFT)*sizeof(u64));
791 
792 	/* Clear the two last indices in the page to 1:
793 	   these are the indices that correspond to the "next" element,
794 	   hence will never be indicated and should be removed from
795 	   the calculations. */
796 	bnx2x_clear_sge_mask_next_elems(fp);
797 }
798 
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)799 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
800 				     struct bnx2x_fastpath *fp, u16 index)
801 {
802 	struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
803 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
804 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
805 	dma_addr_t mapping;
806 
807 	if (unlikely(page == NULL))
808 		return -ENOMEM;
809 
810 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
811 			       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
812 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
813 		__free_pages(page, PAGES_PER_SGE_SHIFT);
814 		return -ENOMEM;
815 	}
816 
817 	sw_buf->page = page;
818 	dma_unmap_addr_set(sw_buf, mapping, mapping);
819 
820 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
821 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
822 
823 	return 0;
824 }
825 
bnx2x_alloc_rx_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index)826 static inline int bnx2x_alloc_rx_skb(struct bnx2x *bp,
827 				     struct bnx2x_fastpath *fp, u16 index)
828 {
829 	struct sk_buff *skb;
830 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
831 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
832 	dma_addr_t mapping;
833 
834 	skb = netdev_alloc_skb(bp->dev, fp->rx_buf_size);
835 	if (unlikely(skb == NULL))
836 		return -ENOMEM;
837 
838 	mapping = dma_map_single(&bp->pdev->dev, skb->data, fp->rx_buf_size,
839 				 DMA_FROM_DEVICE);
840 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
841 		dev_kfree_skb(skb);
842 		return -ENOMEM;
843 	}
844 
845 	rx_buf->skb = skb;
846 	dma_unmap_addr_set(rx_buf, mapping, mapping);
847 
848 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
849 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
850 
851 	return 0;
852 }
853 
854 /* note that we are not allocating a new skb,
855  * we are just moving one from cons to prod
856  * we are not creating a new mapping,
857  * so there is no need to check for dma_mapping_error().
858  */
bnx2x_reuse_rx_skb(struct bnx2x_fastpath * fp,u16 cons,u16 prod)859 static inline void bnx2x_reuse_rx_skb(struct bnx2x_fastpath *fp,
860 				      u16 cons, u16 prod)
861 {
862 	struct bnx2x *bp = fp->bp;
863 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
864 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
865 	struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
866 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
867 
868 	dma_sync_single_for_device(&bp->pdev->dev,
869 				   dma_unmap_addr(cons_rx_buf, mapping),
870 				   RX_COPY_THRESH, DMA_FROM_DEVICE);
871 
872 	prod_rx_buf->skb = cons_rx_buf->skb;
873 	dma_unmap_addr_set(prod_rx_buf, mapping,
874 			   dma_unmap_addr(cons_rx_buf, mapping));
875 	*prod_bd = *cons_bd;
876 }
877 
bnx2x_free_rx_sge_range(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)878 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
879 					   struct bnx2x_fastpath *fp, int last)
880 {
881 	int i;
882 
883 	for (i = 0; i < last; i++)
884 		bnx2x_free_rx_sge(bp, fp, i);
885 }
886 
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)887 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
888 				       struct bnx2x_fastpath *fp, int last)
889 {
890 	int i;
891 
892 	for (i = 0; i < last; i++) {
893 		struct sw_rx_bd *rx_buf = &(fp->tpa_pool[i]);
894 		struct sk_buff *skb = rx_buf->skb;
895 
896 		if (skb == NULL) {
897 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
898 			continue;
899 		}
900 
901 		if (fp->tpa_state[i] == BNX2X_TPA_START)
902 			dma_unmap_single(&bp->pdev->dev,
903 					 dma_unmap_addr(rx_buf, mapping),
904 					 fp->rx_buf_size, DMA_FROM_DEVICE);
905 
906 		dev_kfree_skb(skb);
907 		rx_buf->skb = NULL;
908 	}
909 }
910 
911 
bnx2x_init_tx_rings(struct bnx2x * bp)912 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
913 {
914 	int i, j;
915 
916 	for_each_tx_queue(bp, j) {
917 		struct bnx2x_fastpath *fp = &bp->fp[j];
918 
919 		for (i = 1; i <= NUM_TX_RINGS; i++) {
920 			struct eth_tx_next_bd *tx_next_bd =
921 				&fp->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
922 
923 			tx_next_bd->addr_hi =
924 				cpu_to_le32(U64_HI(fp->tx_desc_mapping +
925 					    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
926 			tx_next_bd->addr_lo =
927 				cpu_to_le32(U64_LO(fp->tx_desc_mapping +
928 					    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
929 		}
930 
931 		SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
932 		fp->tx_db.data.zero_fill1 = 0;
933 		fp->tx_db.data.prod = 0;
934 
935 		fp->tx_pkt_prod = 0;
936 		fp->tx_pkt_cons = 0;
937 		fp->tx_bd_prod = 0;
938 		fp->tx_bd_cons = 0;
939 		fp->tx_pkt = 0;
940 	}
941 }
942 
bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath * fp)943 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
944 {
945 	int i;
946 
947 	for (i = 1; i <= NUM_RX_RINGS; i++) {
948 		struct eth_rx_bd *rx_bd;
949 
950 		rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
951 		rx_bd->addr_hi =
952 			cpu_to_le32(U64_HI(fp->rx_desc_mapping +
953 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
954 		rx_bd->addr_lo =
955 			cpu_to_le32(U64_LO(fp->rx_desc_mapping +
956 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
957 	}
958 }
959 
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)960 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
961 {
962 	int i;
963 
964 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
965 		struct eth_rx_sge *sge;
966 
967 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
968 		sge->addr_hi =
969 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
970 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
971 
972 		sge->addr_lo =
973 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
974 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
975 	}
976 }
977 
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)978 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
979 {
980 	int i;
981 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
982 		struct eth_rx_cqe_next_page *nextpg;
983 
984 		nextpg = (struct eth_rx_cqe_next_page *)
985 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
986 		nextpg->addr_hi =
987 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
988 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
989 		nextpg->addr_lo =
990 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
991 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
992 	}
993 }
994 
995 #ifdef BCM_CNIC
bnx2x_init_fcoe_fp(struct bnx2x * bp)996 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
997 {
998 	bnx2x_fcoe(bp, cl_id) = BNX2X_FCOE_ETH_CL_ID +
999 		BP_E1HVN(bp) * NONE_ETH_CONTEXT_USE;
1000 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1001 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1002 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1003 	bnx2x_fcoe(bp, bp) = bp;
1004 	bnx2x_fcoe(bp, state) = BNX2X_FP_STATE_CLOSED;
1005 	bnx2x_fcoe(bp, index) = FCOE_IDX;
1006 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1007 	bnx2x_fcoe(bp, tx_cons_sb) = BNX2X_FCOE_L2_TX_INDEX;
1008 	/* qZone id equals to FW (per path) client id */
1009 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fcoe(bp, cl_id) +
1010 		BP_PORT(bp)*(CHIP_IS_E2(bp) ? ETH_MAX_RX_CLIENTS_E2 :
1011 				ETH_MAX_RX_CLIENTS_E1H);
1012 	/* init shortcut */
1013 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) = CHIP_IS_E2(bp) ?
1014 	    USTORM_RX_PRODS_E2_OFFSET(bnx2x_fcoe(bp, cl_qzone_id)) :
1015 	    USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), bnx2x_fcoe_fp(bp)->cl_id);
1016 
1017 }
1018 #endif
1019 
__storm_memset_struct(struct bnx2x * bp,u32 addr,size_t size,u32 * data)1020 static inline void __storm_memset_struct(struct bnx2x *bp,
1021 					 u32 addr, size_t size, u32 *data)
1022 {
1023 	int i;
1024 	for (i = 0; i < size/4; i++)
1025 		REG_WR(bp, addr + (i * 4), data[i]);
1026 }
1027 
storm_memset_mac_filters(struct bnx2x * bp,struct tstorm_eth_mac_filter_config * mac_filters,u16 abs_fid)1028 static inline void storm_memset_mac_filters(struct bnx2x *bp,
1029 			struct tstorm_eth_mac_filter_config *mac_filters,
1030 			u16 abs_fid)
1031 {
1032 	size_t size = sizeof(struct tstorm_eth_mac_filter_config);
1033 
1034 	u32 addr = BAR_TSTRORM_INTMEM +
1035 			TSTORM_MAC_FILTER_CONFIG_OFFSET(abs_fid);
1036 
1037 	__storm_memset_struct(bp, addr, size, (u32 *)mac_filters);
1038 }
1039 
storm_memset_cmng(struct bnx2x * bp,struct cmng_struct_per_port * cmng,u8 port)1040 static inline void storm_memset_cmng(struct bnx2x *bp,
1041 				struct cmng_struct_per_port *cmng,
1042 				u8 port)
1043 {
1044 	size_t size = sizeof(struct cmng_struct_per_port);
1045 
1046 	u32 addr = BAR_XSTRORM_INTMEM +
1047 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1048 
1049 	__storm_memset_struct(bp, addr, size, (u32 *)cmng);
1050 }
1051 
1052 /* HW Lock for shared dual port PHYs */
1053 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1054 void bnx2x_release_phy_lock(struct bnx2x *bp);
1055 
1056 /**
1057  * Extracts MAX BW part from MF configuration.
1058  *
1059  * @param bp
1060  * @param mf_cfg
1061  *
1062  * @return u16
1063  */
bnx2x_extract_max_cfg(struct bnx2x * bp,u32 mf_cfg)1064 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1065 {
1066 	u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1067 			      FUNC_MF_CFG_MAX_BW_SHIFT;
1068 	if (!max_cfg) {
1069 		BNX2X_ERR("Illegal configuration detected for Max BW - "
1070 			  "using 100 instead\n");
1071 		max_cfg = 100;
1072 	}
1073 	return max_cfg;
1074 }
1075 
1076 #endif /* BNX2X_CMN_H */
1077